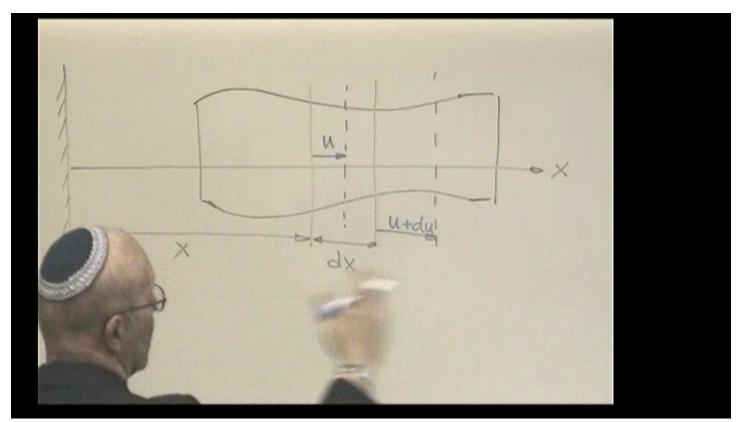
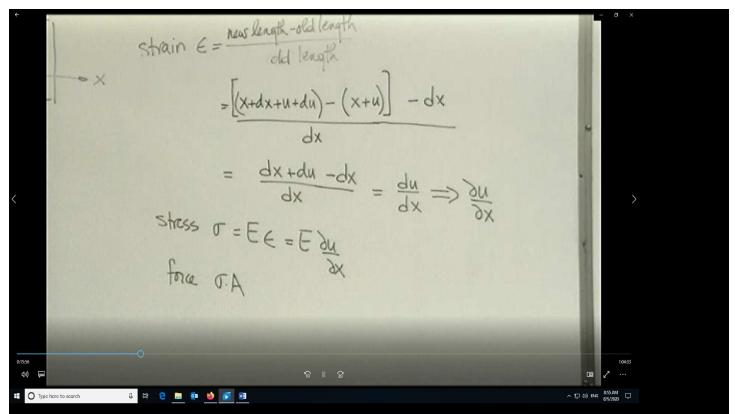
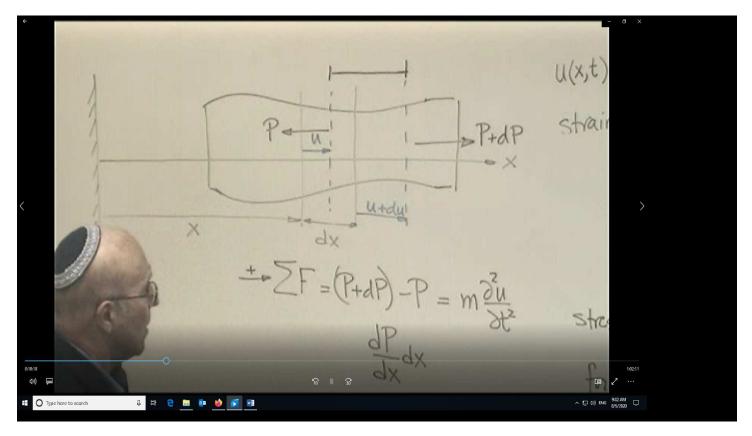
The derivation of the wave equation. Let u(x,t) represent the displacement of a cross-section of the bar at x



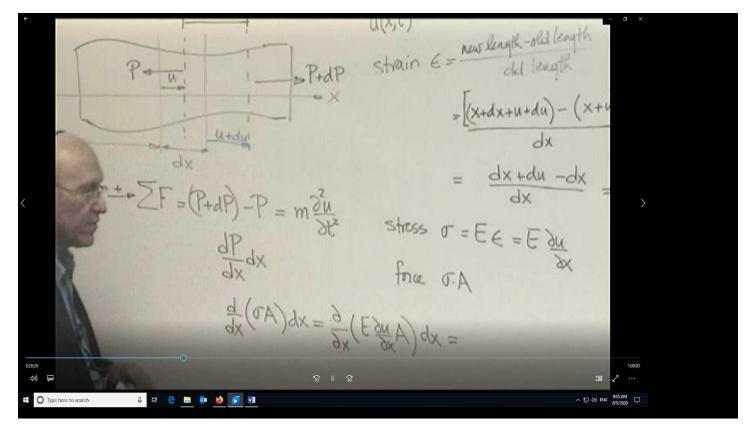


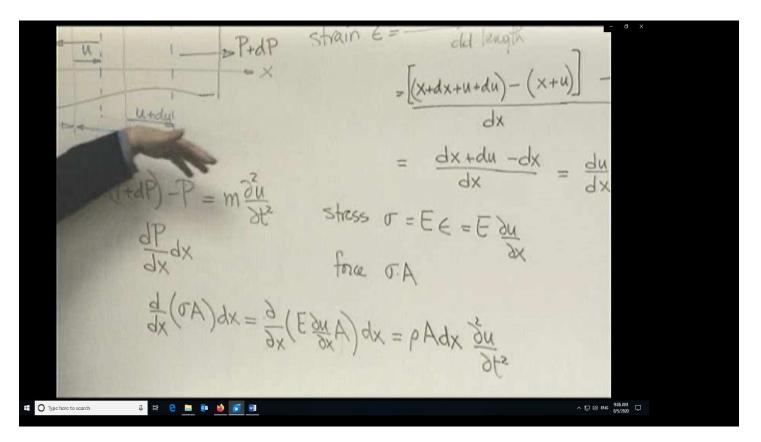
Force at any cross-section is $\sigma \bullet A$ (A the cross-sectional area)=P. In 1-D we assume stress is the average across the cross-section.

Now application of the Σ F = mass x acceleration gives



Since P depends on stress and stress depends on variation of u with respect to x, then P is a function of x





In the case where the extensional stiffness EA is a constant, each can change at every cross-section but their product is constant, then

 $\frac{\partial}{\partial x} (EA \frac{\partial u}{\partial x}) = pA \frac{\partial u}{\partial t^2}$ EA = const $EA \frac{\partial u}{\partial u^2} = pA \frac{\partial u}{\partial t^2}$ $\frac{\partial u}{\partial u^2} = \frac{1}{\sqrt{2}} \frac{\partial u}{\partial t^2}$ E/p 0:26:51 Į, О Турс 9 Hi 🤤 📄 🔤 📦 W

Here c is the bar speed. ρ is the density, in this case mass/unit length. E has units of load/unit area.

IF EA = const $EA \frac{\partial^2 u}{\partial x^2} = \rho A \frac{\partial^2 u}{\partial t^2}$ $\frac{\partial u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t^2} \quad C = \overline{E/\rho}$ $u_{xx} - \frac{1}{C^2} u_{tt} = 0 \qquad t \leftrightarrow y$ Au_{xx} + Bu_{xy} + C U_{yy} + \dots = 0 \qquad A = 1 \qquad B = 0 \quad C = -1 0:29:45 **\$**) О Тур 0 Hi 🔯 📦 👩 🖬

To characterize this equation to what we have learned previously

 $\frac{dy}{dx} = \frac{BE}{B^2-4AC}$ $\frac{dt}{dx} = \pm \frac{2}{2} = \pm \frac{1}{2}$ t - - - x = 5 も+ と×= り (() 0 H C 🕽 💀 龄 🌠 🗐 O Type here to sea ~ 🗆 🕸 M 🖓

Now let us look at the 1-D heat equation and characterize it using the information we have previously learned

1-D Heat Egn $\frac{\partial^2 T}{\partial x^2} = \alpha \frac{\partial T}{\partial t} \qquad \alpha = \rho \frac{\partial V}{k}$ 0= B-4AC A=1 B=0 C=0 $\frac{dt}{dx} = \frac{B \pm \int B^2 - 4AC}{ZA} = 0$ 0:42:03 (う) 0 H w 0 0 6

Since dt/dx=0, then t=constant, let's call it ξ and the other characteristic is any line that crosses it like η =constant=x. Hence, the 1-D Heat equation is an example of a parabolic PDE.

2-D STEADY STATE HEAT ERN $\frac{\partial^2 T}{\partial x^2} + \frac{\partial T}{\partial y^2} = \frac{\partial T}{\partial t} = 0$ $\frac{\partial T}{\partial x^2} + \frac{\partial T}{\partial y^2} = 0$ Auxx+Buxy+Cuyy+...=0 $T \xrightarrow{\leftarrow} u \qquad A=1 \quad B=0 \quad C=1$ $x \xrightarrow{\leftarrow} x \qquad B^2-4AC = -4 < 0$ 4----(d)) 0 🔤 📫 🌠 📰

Now look at the steady state 2-D heat equation

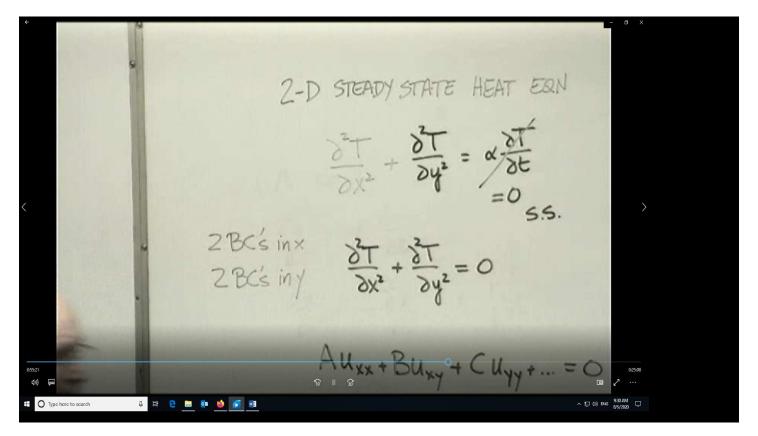
Since the discriminant is less than zero, this is an example of an elliptic PDE

Wave Equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$ 2 initial conditions 2 BCs 0:53:58 **\$**) J H 😫 🗮 🔯 🍏 🌠 🗐 О Тур

For a well posed wave-equation type problem, these are the basic requirements

2-D STEADY S 1-D Heat Equ 0= 2-44C A=1 B=0 C=0 6+ <u>16</u> $\frac{dt}{dx} = \frac{B \pm \int B^{2} AAC}{2A} = O \qquad \int ang line that cross$ Aux+Bu, O Type here to search J H 2 🗔 🕶 🍏 🗾 ヘ 担 \$0) ENG ^{9:28} AM □

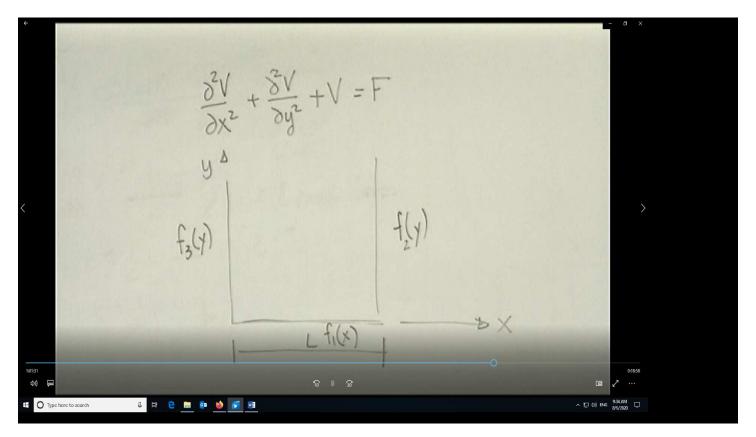
For a well posed parabolic PDE, you need 1 IC and 2 BCs



For elliptic conditions you need 4 BCs, in this case 2 in x and 2 in y

cs	Exercises for Section 1.1
	Exercises 1.1
(95)	On the regions in Exercises 1–7 what form do Dirichlet, Neumann, and Robin boundar take for the PDE?
s, its La-	1. $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = F(x, y), 0 < x < L, 0 < y < L^2$
, -crinca-	$1e^{\frac{1}{2}L} 2, \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} + V = F(x, y, z), 0 < x < L, y > 0, z > 0$
(104)	draw 3. $\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = F(r,\theta), 0 < r < r_0, -\pi < \theta \le \pi, (r,\theta) \text{ polar coording}$
Calman a	with short 4. $\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = F(r,\theta), 0 < r < r_0, 0 < \theta < \pi$
(106)	$s, \frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2} = F(r, \theta, z), 0 < r < r_0, -\pi < \theta \le \pi, z > 0,$
1316	cylindrical coordinates 6. $\frac{\partial^2 V}{\partial r^2} + \frac{2}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial V}{\partial \phi} \right) + \frac{1}{r^2 \sin^2 \phi} \frac{\partial^2 V}{\partial \theta^2} = F(r, \theta, \phi), 0 < r < r_0$
(100)	$-\pi < \theta < \pi$, $0 < \phi < \pi$, (r, σ, ϕ) spherical coordinates
a second	7. Use the same PDE as in Exercise 6, but on the region $0 < r < r_0, -\pi < \theta \le \pi, 0 < \phi < \frac{\pi}{2}.$
0:57:10	
d») 📮	8. When a bound of y value problem (but not an initial boundary value problem) (2319 boundary condition on all parts of its boundary it must satisfy a consistencial 2
E O Type here to search	다. 1911 Miles are (16 2017) 1911 1911 1911 1911 1911 1911 1911 1

From Trim's book, Section 1.1 Exercise 1.1. Look at the 2-D equivalent of problem 2

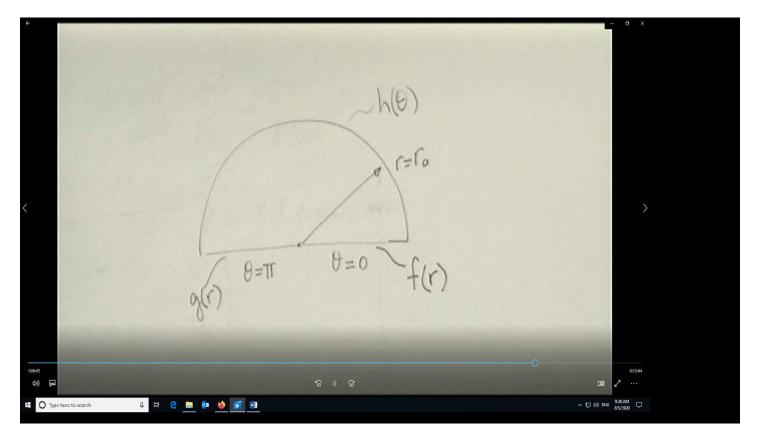


In this semi-infinite problem, at $y=\infty$ the solution BC is that it must remain bounded. On the x=constant, the BCs can at most be functions of y, since x is fixed. On the y=constant line the BC can be at most a function of x.

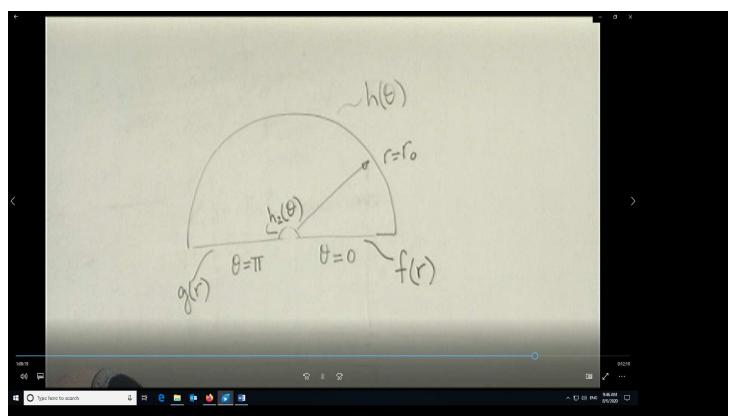
Now looking at problem 4

+		
cs	Exercises for Section 1.1	
	Exercises 1.1	
(95)	On the regions in Exercises 1–7 what form do Dirichlet, Neumann, and Robin boundar take for the PDE?	
s, its La-	1. $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = F(x, y), 0 < x < L, 0 < y < L^2$	
verifica-	Here $z, \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} + V = F(x, y, z), 0 < x < L, y > 0, z > 0$	
(10a)	above $3, \frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = F(r,\theta), 0 < r < r_0, -\pi < \theta \le \pi, (r,\theta) \text{ polar coordination}$	
Test	subshalow 4. $\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = F(r,\theta), 0 < r < r_0, 0 < \theta < \pi$	
(106)	$5. \frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2} = F(r,\theta,z), 0 < r < r_0, -\pi < \theta \le \pi, z > 0,$	
1000	cylindrical coordinates 6. $\frac{\partial^2 V}{\partial r^2} + \frac{2}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial V}{\partial \phi} \right) + \frac{1}{r^2 \sin^2 \phi} \frac{\partial^2 V}{\partial \theta^2} = F(r, \theta, \phi), 0 < r < r_0$	
(100)	$-\pi < \theta < \pi$, $0 < \phi < \pi$, (r, θ, ϕ) spherical coordinates	
Transferra Sta	7. Use the same PDE as in Exercise 6, but on the region $0 < r < r_0, -\pi < \theta \le \pi, 0 < \phi < \frac{\pi}{2}.$	
(11)	0	
0:57:10 (1)	8. When a boundary value problem (but not an initial boundary value problem) 1 9219 boundary condition on all parts of its boundary, it must satisfy a consistenc a 2	
Type here to search	다 Hi C 🗊 🤷 🚺 👔 🔹 🕹 🔽	

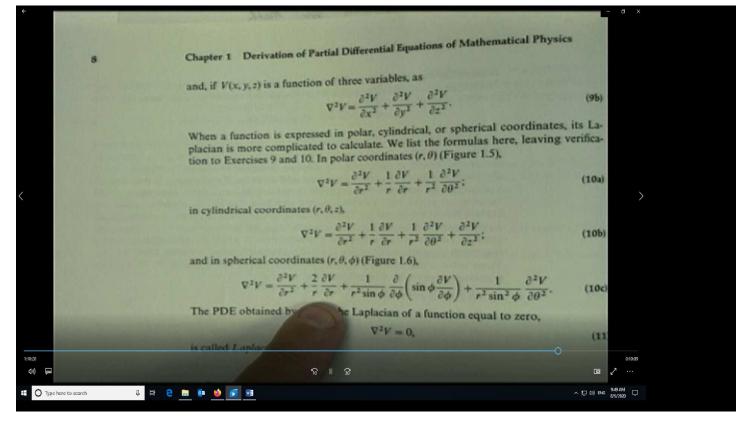
This is a semi circular region. The four boundaries are at $\theta=0$, $\theta=\pi$, r=ro and at r=0



r=0 is a limiting case of $r=\varepsilon$ where epsilon is a small quantity which is made smaller and smaller until it reaches zero. Namely, the semi-circle is a limiting case of a thick-walled cylinder where the inner radius is made so small as to collapse to a point.



In the above, for θ =constant lines, the BCs can be at most functions of r; similarly, on constant r lines, the BCs can be at most functions of theta.



Here we show the definition of the Laplacian in different coordinate systems, Cartesian, cylindrical and spherical.

Examples of types of BCs: first type of Dirichlet (on u), second type or Neumann (on derivative of u), third type or mixed/Robin (on combination of u and its derivative)