The derivation of the wave equation. Let u(x,t) represent the displacement of a cross-section of the bar at x
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Force at any cross-section is oeA (A the cross-sectional area)=P. In 1-D we assume stress is the average across the cross-
section.

Now application of the 3 F = mass x acceleration gives
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In the case where the extensional stiffness EA is a constant, each can change at every cross-section but their product is
constant, then
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Here cis the bar speed. p is the density, in this case mass/unit length. E has units of load/unit area.
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To characterize this equation to what we have learned previously
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Now let us look at the 1-D heat equation and characterize it using the information we have previously learned
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Since dt/dx=0, then t=constant, let’s call it £ and the other characteristic is any line that crosses it like n=constant=x.
Hence, the 1-D Heat equation is an example of a parabolic PDE.

Now look at the steady state 2-D heat equation
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Since the discriminant is less than zero, this is an example of an elliptic PDE
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For a well posed parabolic PDE, you need 1 IC and 2 BCs
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Exercises for Section 1.1

Exercises 1.1

On the regions in Exercises 1-7 what form do Dirichlet, Neumann, and Robin
take for the PDE?
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Use the same PDE as in Exercise 6, but on the region
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From Trim’s book, Section 1.1 Exercise 1.1. Look at the 2-D equivalent of problem 2
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In this semi-infinite problem, at y=co the solution BC is that it must remain bounded. On the x=constant, the BCs can at
most be functions of y, since x is fixed. On the y=constant line the BC can be at most a function of x.

Now looking at problem 4

Exercises for Section 1.1

Exercises 1.1

On the regions in Exercises 1-7 what form do Dirichlet, Neumann, and Robin
take for the PDE?
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Use the same PDE as in Exercise 6, but on the region
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This is a semi circular region. The four boundaries are at 6=0, 8=n, r=ro and at r=0
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r=0 is a limiting case of r=¢ where epsilon is a small quantity which is made smaller and smaller until it reaches zero.
Namely, the semi-circle is a limiting case of a thick-walled cylinder where the inner radius is made so small as to collapse
to a point.
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In the above, for B=constant lines, the BCs can be at most functions of r; similarly, on constant r lines, the BCs can be at
most functions of theta.



Here we show the definition of the Laplacian in different coordinate systems, Cartesian, cylindrical and spherical.

Examples of types of BCs: first type of Dirichlet (on u), second type or Neumann (on derivative of u), third type or
mixed/Robin (on combination of u and its derivative)



