
The derivation of the wave equation.  Let u(x,t) represent the displacement of a cross-section of the bar at x 

 

 

Force at any cross-section is A (A the cross-sectional area)=P.  In 1-D we assume stress is the average across the cross-

section. 

Now application of the ∑ F = mass x acceleration gives 



 

Since P depends on stress and stress depends on variation of u with respect to x, then P is a function of x 

 



 

In the case where the extensional stiffness EA is a constant, each can change at every cross-section but their product is 

constant, then 

 

Here c is the bar speed.   is the density, in this case mass/unit length.  E has units of load/unit area. 



 

To characterize this equation to what we have learned previously 

 

 

Now let us look at the 1-D heat equation and characterize it using the information we have previously learned 



 

Since dt/dx=0, then t=constant, let’s call it ξ and the other characteristic is any line that crosses it like η=constant=x.  

Hence, the 1-D Heat equation is an example of a parabolic PDE. 

Now look at the steady state 2-D heat equation 

 

Since the discriminant is less than zero, this is an example of an elliptic PDE 



 

For a well posed wave-equation type problem, these are the basic requirements 

 

For a well posed parabolic PDE, you need 1 IC and 2 BCs 



 

For elliptic conditions you need 4 BCs, in this case 2 in x and 2 in y 

 

From Trim’s book, Section 1.1 Exercise 1.1.  Look at the 2-D equivalent of problem 2 



 

In this semi-infinite problem, at y=ꝏ the solution BC is that it must remain bounded.  On the x=constant, the BCs can at 

most be functions of y, since x is fixed.  On the y=constant line the BC can be at most a function of x. 

Now looking at problem 4 

 

This is a semi circular region.  The four boundaries are at θ=0, θ=π, r=ro and at r=0 



 

r=0 is a limiting case of r=ε where epsilon is a small quantity which is made smaller and smaller until it reaches zero. 

Namely, the semi-circle is a limiting case of a thick-walled cylinder where the inner radius is made so small as to collapse 

to a point. 

 

In the above, for θ=constant lines, the BCs can be at most functions of r; similarly, on constant r lines, the BCs can be at 

most functions of theta. 



 

Here we show the definition of the Laplacian in different coordinate systems, Cartesian, cylindrical and spherical. 

Examples of types of BCs: first type of Dirichlet (on u), second type or Neumann (on derivative of u), third type or 

mixed/Robin (on combination of u and its derivative) 


