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10; Solve Exercise 9 for every contour that does not touch the half

z = 0 of the real axis. : Ans. —m1.
11. Note the single-valued function :
- 18 T 3r
f(z)=z%=\/rexp§ (r>0,—§§0<—2—;
J0) =0
is continuous throughout the half plane 0 = f ==, r = 0. Let C
denote the entire boundary of the half diskr £ 1,0 6 =, where C
is described in the positive direction. Show that

Jor@a =0

by computing the integrals of f over the semicircle and over the two
radii on the z axis. Why does the Cauchy-Goursat theorem not apply

here? : _
12. Nested Iniervals. An infinite sequence of closed intervals @, =
£2<b, (n=0,1,2 ... 1s determined according to some rule of

" selecting half intervals, so that the interval (ay,bs) is either the left-hand

anelyfic mians
mﬁ(‘; whifken,

dmC

or right-hand half of a given interval (ao,bo); then (as,bs) is one of the
two halves of (a1,by), and so on. - Prove that there is a point o which

belongs to every one of the closed intervals ((_z,;,b,,).

Suggestion: Note that the left-hand end points a. represent a bounded

nondecreasing sequence of numbers, since ao s £ Gy < bo; hence

they have a limit 4 as n— . ‘Show likewise that the end points bs
have a limit B; then that B = 4 = zo.
Sy = dy where

13. Nested Squares. A square oo: G0 = & = bo, €0 =
bo — @o = do — Co, is divided into four equal squares by lines parallel to

the coordinate axes. One of those four smaller squares ¢1: @ =z E by

o £y = di, whereby — oy = dy — ¢y, is selected according to some rule,
and it is divided into four equal squares, one of which, o, is selected, ete.
(Sec. 47). Prove that thereisa point (zo,y0) which belongs to-everyone
‘of the closed regions of the infinite sequence oo, 03, 73, - - - - .
Suggestion: Apply the results of Exercise 12 to each of the sequences

oSz =brandc. T Y =dn n=01,2 ...
51. The Cauchy Integral Formula. Another fundamental

result will now be established. _
Theorem. Let f be analytic everywhere within and on a closed
contour C. If zo is any point interior to C, then

cZ — %o

® O L gy

where the integral is taken in the positz’be sense around C. .

. whose radius r¢ is small enough
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Formula (1) is Cauchy’s integral formula. It shows that the
value of 4 function that is analytic in a region is determined
throughout the region by its values on the boundary. Thus
there.is no choice of ways in which the function can be defined
at points away from the boundary once the function is defined
on tl}e boundary. Every alteration of values of the function at
interior points must be accompanied by"a change of its values
on the boundary, if the function is to remain analytic. We shall
see further evidence of this organic character of analytic functions
as we proceed.

According to the Cauchy integral formula, for example, if C is
the circle |z| = 2 described in the positive sense, then ’taking
2o to be —1, we can write - , ’

/ zdz = 9.4 —1 T
c@=—e+n o=~ F
since the funetion f(2) = 2/(9 — 2?%) is analytic within and on C.

To prove the theorem, let Cy
be a circle about z,

.IZ '—“Zol = To,

that Cy isinterior to C (Fig. 38).
The function f(z)/(z — 2¢) is
analytic at all points within
and on C except the point zp. ~
Hence its integral around the boundary of the ring-shaped region
between C and Cp is zero, according to the Cauchy-Goursat
theorem; that is,

Fiag. 38

f&) dz f(z) dz —0

c2— 2o Co 2 — 2o ?

where both integrals are taken counterclockwise.
Since the integrals around C and C, are equal, we can write

@) . f(z) dz = f(zo) /c,,z izzo + j J(z) — f(za) dz.

cZ — 20 2 — 20

" But z — 2o = ree® on Co.and dz = 7ree®® dd, so that

dz 2r
3 - o
(3) /;OZ_ZD—zA.do_zm,
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for every positivero. Also,f is continuous at the pointzo. Hence,
if we select any positive number e, then a positive number 5»ex1sts

such that ~
|f(2) — f(zo)| < ¢ Whenever |z — 2] S 8.

We take ro equal to that number é. Then |z — 2zo| = §, and

RPN 1) = JE 11 < £ (2n0) = 2me.

€ 22— % = Jo 2 — 2l D
The absolute value of the last integral in equation (2) can
therefore be made arbitrarily small by taking ro sufficiently
small. But since the other two integrals in that equation are
independent of 7o, N view of equation (3), this one must be
independent of 7o also. Its value must therefore be zero.
Equation (2) then reduces to the formula

and the theorem is proved. ‘
59. Derivatives of Analytic Functions. A formula for the

derivative f'(z0) can be written formally by differentiating the
integral in Cauchy’s integral formula

: I C)
1) fe) =55 |7 == dz
with respect to zo, inside the integral sign. Thus,
. . . * t
1 (=) d mPadan
Ly £ — YN . 4__‘_.
(Z) f (ZU) Ol 9%(2 _ 20)2 z ) ]

As before, we assume that f is analytic with';n and on the closed
contour C and that zo is within ¢. To establish formula (2),
we first note that, according to O,

f(z0 + Azo) — f(20) 1 ; 1 - z
ek eo = f6) L Lo (L ) e e

AZo 21” AZ()
1 £(@) dz _
= 2nt Jo (z — 20 — B20)(z — 20)

The last integral approaches the i;ﬂ;egral

/ (2) de
c (2 — 20)?
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as Az a,pip_lfoaches zero; for the difference between that integral
and this one reduces to

- J(2) d=
Az ,/;J(Z — 202z — 20 — Azo)

Let M be the maximum value of |f(2)] on C and let L be the
length of C. Then, if do is the shortest distance from zo to €
and if |Azo| < do, we can write

f(z) dz

c (2 — 20)*(z — 20 — Azo)

Azo e (do — [Az])

and the last fraction approaches zero when Az, approaches zero.
Consequently, '

lim f(zo 4 Azo) — f(za) _ 1 / f(z) dz

20 Azo 271 Jo Gz — 20)?

and formula (2) is established.

If we differentiate both members of equation (2) and assume
that the order of differentiation with respect to 2o and integration
with respect to z can be interchanged, we find that

', _ 2! f(z) dz ]
(3) F(z0) = e /C(z — z0)*

This formula can be established by the same method that'was
used to establish formula (2).. For it follows from formula (2) .
that

s /(o0 + Aze) — F(z0)
Azqg

f

/{ 1 _ 1 J f2) dz
Joy @z — 20 — Azog)* (2 — 20)°

TR e

(Z —. 2o — AZQ)Z(Z fand

Zo

Following the same procedure that was used before, we can show

that the limit of the last integral, as Az, approaches zero, is

2/ f(2) dz
¢

(z — 20) ¥

and formula (3) follows at once.
We have now sstablished the existence of the derivative of the
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function f/ at each point 2, interior to the region bounded by the

curve C.
We recall our definition that 2 function f is analytic at a

point 2, if and only if there is a neighborhood about z1 at each
point of which f'(2) exists. Hence f is analytic in some neigh-
borhood of the point. If the curve C used above is a circle
|z — z1] = 71 in that neighborhood, then f(z) exists at each
point inside the circle, and therefore f’ is analytic at z1. We
can apply the same argument to the function f/ to conclude
that its derivative f'' is analytic at z1, etc. Thus the following
fundamental result is a consequence of formula (3). '
Theorem. If a function f s analytic at a point, then its deriva-
tives of all orders, ', f", . . ., are also analytic functions at that
point. ‘
Since f is analytic and therefore continuous, and since

o 0w B _ @ du
@ =g T % "5 oy
it follows that the partial derivatives of u(z,y) and v(z,y) of the
Girst order are continuous. Since f''(2) is analytic and
F*u . 0% k) . u
144 —_ e = —— —
7"@) dz? T dx? 9z dy > oy

ete., it follows that the partial derivatives of w and v of all orders
are continuous functions of z and y at each point where f is
analytic.
derivatives of the second order, in the

functions.
The argument used in establishing formulas (2) and (3) can be

applied successively to obtain a formula for the derivative of any
given order. But mathematical induction can now be applied

to establish the general formula

discussion of harmonic

C (Z —_ zo)n+1

That is, if we assume that this formula is true for any particular
integer n = k, we can show by proceeding as before that it is
true if n = k + 1. The details of the proof can be left to the
reader, with the suggestion that in the algebraic simplifications
he retain the difference (z — 2o) throughout as a single term.

4) 10(z0) = 5

This result was anticipated.in Sec. 20, for the partial -

n! 55—————f@ dz (n=12 .- )(T:pﬂbf

SEC. 54] INTEGRALS _ 123

-The ck?;sed contour C here, as well .as in Cauchy’s integral
formula, #an be replaced by the oriented boundary B of a multiply
connected closed region R of the type described in the theorem in
Sec. 49,.When f is analytic in R and z, is any interior point of E.
Our derlvations of the Cauchy integral formula and its extensions
(4) are still valid when C is replaced by B.

. 53. Morera’s Theorem. In Sec. 50 we proved that the deriva-
tive of the function '

Fe) = [ 16 d
exists at each point of a simply connected domain D, in fact, that
F'(z) = f(2).

We assumed there that f is analytic in D. But in our proof we
Psgd only two properties of the analytic function f, namely, that
it is conjcinuous ‘in D and that its integral around every cilosed
contc?ur interior to D vanishes. Thus, when f satisfies those two
conditions, the function F is analytic in D.

We: pro.ved in Sec. 52 that the derivative of every analytic
functicfn is analytic. .Since F'(z) = f(z), it follows that f is
fmalytlc. The following theorem, due to E. Morera (1856-1909)
is therefore established. ’

Theorem. If a funciion f is continuous throughout ¢ simply
connected domain D and if, for every closed contour C interior to D,

. g%f(z)dz=0, ’4:’;“

then f is analytic throughout D.

Morera’s theorem serves as a converse of the Cauchy-Goursat
theorem. - : : :

.54. Maximum Moduli of Functions. Let f be analytic at a
pc'nnt.; zo. If C, denotes any one of the circles |z — 2ol = 7o
7v_11;h1n and on which f is analytic, then, according to Caﬁchy’s
integral formula, :
1 f(z) dz.

) =5 | TES
It follows that
1) el = 50 [ 1O lded = 4o



