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and hence I3 can also be evaluated in terms of boundary quantities, Thus,
the An can be found without recourse to any numerical integration! This

is often the case; the key is always integration by parts.

4.7 splitting

We have seen that problems with linear PDEs and BCs can be solved by
constructing linear combinations of the eigensolutions for appropriate homo-
geneous partial problems. We also saw that in transient problems the
inhomogeneities can be "removed" by "splitting" the solution into steady-state
~and transient parts. The concept of problém splitting can also be used to
"remove inhomogeneities" in other problems.

To illustrate the idéa, consider the problém shown in Fig. 4.7.1. The
PDE is the inhomogeneous Laplace equation,

V2¢ = ¢ +9 = h(x,y) ' | (4.7.1)
XX vy ' :
The domain is the rectangle shown, and the boundary conditions specify ¢
‘around the boundary, in terms of the functions shown. Note tﬁat all of these
boundary conditions are inhomogeneous. v

To use the methods developed in this chapter, we can "split" the problem
into the five problems shown in Fig. 4.7.1. Problem (p) will take care of the
inhomogeneity in the PDE. The solution ¢(p) is any particuiar solution of
the PDE, without regard for boundary conditions. It will yield the values of ]
¢(p) on the boundaries denoted by the functions g - g4_.We shall discuss
means for finding the particular solution shbrtly. The four problems
¢(l) - ¢(4) involve homogeneous PDEs and nearly completely homogeneous bound-
ary conditions. Therefore, for each the eigensolutions of the homogéneous
partial problem can be found, and then a linear combination of these eigen-
functions taken to construct a solution satisfying the remaining inhomogeneous

boundary condition. Note that the sum
4

6 = 0P 4 z $) (4.7.2)
k=1
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satisfies the inhomogeneous PDE and inhomogeneous boundary conditions. This

type of splitting can, of course, only be done in linear problems.
Let's presume that we have the particular solutionm ¢(p) » and are ready

¢(l) _ ¢(4)

to solve problems We will do the ¢(l) problem; the other

three are done in the same way.

The ¢(l) PDE is, dropping the superscript (1),
¢XX + ¢yy = 0 (4.7.3)

and the boundary conditions are

= 0 on y=20 (4.7.4)

¢

¢ = 0 on x=20 : (4.7.5)

¢ = 0 on x=a (4.7.6)
—_— ¢ = £ -g® = a4 on y=b (4.7.7)

We look for eigehsolutions to the homogeneous partial problem (4.7.3) - (4.7.6)

in the form

¢ = X(x) Y(y) (4~7-8)
and, from (4.7.3), find
K%L - - Z%L Y | (4.7.9)
Hence,
X"+ A%% = 0 (4.7.10)
' -y = o . (4.7.11)

The decision to name the separation constant —Xz was dictated by the recogni-
tion that the X-solutions must oscillate in X in order to match the boundary

conditions. The X solution is
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X = Cl sin(Ax) + C2 cos (Ax) , (4.7.12)

The BC (4.7.5) gives 02 = 0 . Then, the BC (4.7.6) requires sin(la) = 0 .

Hence,

Ana = nm (4.7.13)
The Y equation solution is

Y = C, sinh(Ay) + C, cosh(ky) ' (4.7.14)

3

The BC (4.7.4) requires C4 = 0 . Hence, the eigensolutions are (apart from a

scaling constant)

¢n(#,y) = sgin(nmx/a) sinh(nﬁy/a) (4.7.15)

Finally, we seek the solution satisfying the inhomogeneous condition

‘”(4;7{7)'55 an expansion in the eigenfunctions,

¢ = ;é; AL b, (4.7.16)
Thus, at y = b,
d(b,x) = q(x) = ES A.n sin(nmx/a) sinh(nmb/a) 4.7.17)

n=1

The orthogonality property for the Xn eigenfunctions is*

a

J/.X X dx
n m
0 :

. .
Developed in the usual way.

1l
o

n #m (4.7.18)




So, multiplying (4.7.17) by sin(mmx/a) , and integrating

a
/q(x) sin(mmx/a)
Ay T 0 ' (4.7.19)
: a
Sinh(mﬂb/a)/sinz(mﬂx/a)dx
0
Given q(x) , we could compute the A.n . Hence, the ¢(l) solution is com-

pletely known.

The ¢(2) R ¢(3) , and ¢(4) problems could be handled in much the same
(3
®

way. In tae problem, the Y equacions would again be (4.7.11), and

Y(b) = 0 . Hence, rather than (4.7.14), a "more artistic" form of the Y

solution is

Y = sinh[A(y-b)] + Cg cosh[A(y=b)] (4.7.20)

Cs

because C, will have to be zero for Y(b) =0 .

6
r Let's now discuss the particular solution. If h depends upon only one
of the independent variables, say x , the particular solution may be developed

by assuming

- 6P - F(x) (4.7.21)
The inhomogeneous PDE is then

F'' = h(x) (4.7.22)
which has the solution (by double integration)

X €

F =/ / h(0) do dE (4.7.23)

0 0
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If h = h(x,y) , the particular solution can be obtained by expanding
h in a Fourier series in either x or y . If we choose to do it in x

we would write

oo

h(x,y) = 22 an(y) cos(2nmx/a) + ZS bn(y) sin(2nmx/a) -
n=1 -

n=o

(4.7.24)

The coefficients a and bn are determined using the orthogonality property

of the sine and cosine functions;

a
a = -i-f h dx | (4.7.25a)
“o
a ‘
a = é;/r h cos(2mﬂx/a)dx (4.7.25b)
' 0
a
b = -f;/h sin(2mmx/a)dx (4.7.25¢)
0

Next, one would look for a particular solution in the form

¢(P) = :S Fn(y) cos(2nmx/a) + :S G (y) sin(2nmx/a)
n=p n=1

(4.7.26)

Substituting into the PDE, and equating coefficients of the sines and cosines,

one finds
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F'' = a (4.7.27a)

AU (§§£> F, o= a (4.7.27b)
G'V M 2G - b 4

Particular solutions to these three ODEs can be obtained by standafd methods
(e.g., the method of separation of variables).

In this problem, the corners would be singular points. The series solu-
tions would conﬁerge everywhere, except at the corners, where the solutions

o (1) _ 4 (8

would 2all ke zero becauss of the method of solutior.

4.8 Some Generalizations

While some problems fall into the Sturm-Liouville form, others do not.
However, the same general ideas can be used with the help of a new concept,
'édjoint operations.

Suppose that the SOV pfocess in a linear, homogeneous PDE problem produces
the ODE ‘ |

Lu = Mu-+ ANu = 0 (4.8.1)

where L , M, and N are linear operators. Suppose that the linear,

homogeneous boundary conditions are a set of equations of the form

{Biu = 0} at x=aorb (4.8.2)

where the Bi are also linear operators. The eigenvalues A are those values
for which non-trivial solutions to (4.8.1), and (4.8.2) exist. The adjoint

operators L* , M* | N* |, and Bz are defined by the requirement that

b . b

/vLudx = /uL*de (4.8.3)
a a
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Fig. 4.7.1.
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