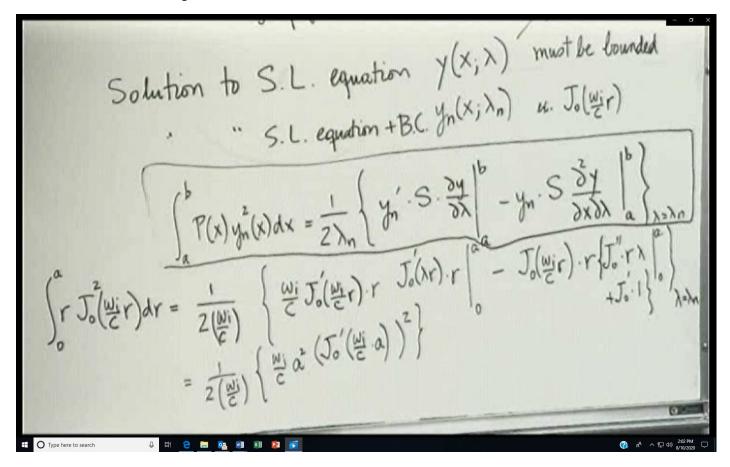
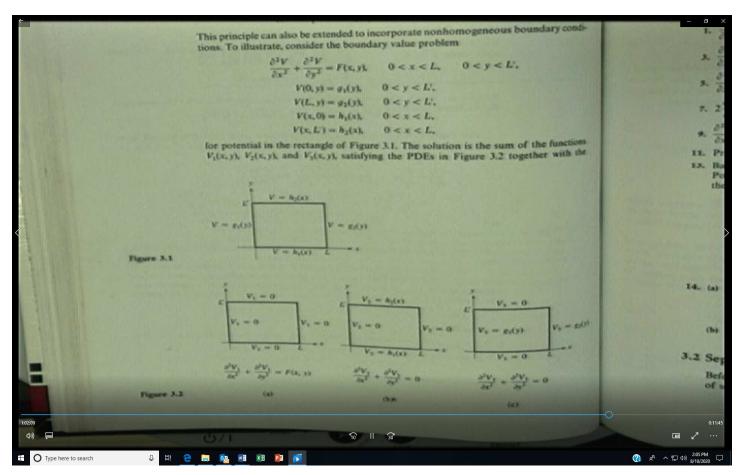
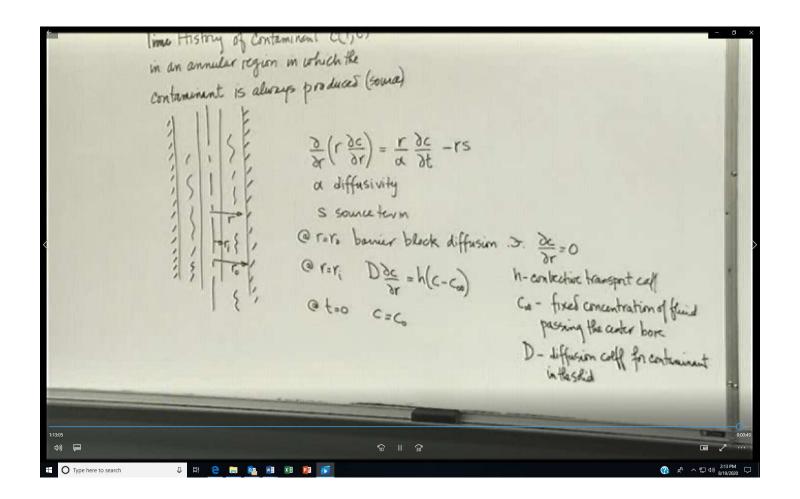


Solution to S.L. equation
$$y(x; \lambda)$$
 must be bounded


Solution to S.L. equation $y(x; \lambda)$ must be bounded

Solution to S.L. equation $y(x; \lambda)$ must be bounded


S.L. equation $y(x; \lambda)$ u. $J_0(w)$
 $y(x; \lambda)$ $y(x; \lambda)$ $y(x; \lambda)$
 $y(x; \lambda)$ $y(x; \lambda)$
 $y(x; \lambda)$ $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x; \lambda)$
 $y(x;$


THERE IS A MISSING TERM IN THE PREVIOUS SLIDE. tHE LAST TERM SHOULD BE Jo(wir/c)*r*[Jo"(λ r) *r* λ +Jo'(λ r)*1]. When evaluated, that term gives zero. That term is in the next slide.

An inhomogeneous PDE with inhomogeneous BCs can be split into several problems in which only one of the BCs is non-zero

