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_ (b) Assume a particular solution of the form
‘ ' " Ye(X) = u(x) cos x- + v(x) sin x.
(Note that the constants or parameters ¢, and ¢, haQe been replaced by func-
tlf)ns u(x) anc:l v(x). Our ob;ective will be to obtain two equations in #’(x) and
* v’(x) that can then be solved simultaneously.) Differentiate to obtain
YHX) = —u(x) sin x + v{(x) cos x -

with |
u'(x)cos x + v'(x)sinx = 0.
Obser.ve t'hat:;this last condition simpliﬂés y,j(x), yAx) and provides a secbnd
. equation in u’(x) and v’ (x). ' _ S ' :

| (c) Differentiate yp(x) in part (b) and substitute into the given differential equa--

tion to obtain

, . ;o —u’(x) sin x + v’(x) cos x lan'. X.
(d) Solve the system " )
—z('(x)_sin X+ v{x) cosx = tan x
u'(x)cosx + v'(x)sinx =0
- for u"(x) ahd y'(x) by Craier’s rule or by elimination. . .
(e) Integrate u’(x) and v'(x) td find u(x) and v(x).

() Find y,(x) an'd.;h‘us obtain the general solution. Note that s,uécess'ih using thé:
method of variation of parameters is contingent on being able to obtain u(x) '

and v(x) from u’(x) and v'(x). © = . :

Use the method of Exercise 13 to obtain  the general soiuti‘ohs of each ofnlh.e'

following equations:

(@ y" —y =seclx — tan x

(b) »" -2 +y = exp /(1 - 9?
(©) y"+y=secxtanx ‘
(d) y"+y=setx

() Yy -2y +y=e/x?

() y"+ 4y = cot 2x )
Solve the initial-value problem - - .

YW ey =€/ =X N0 =2, y0) =6
Verify that »i(x) =X and yz(x)' ="1/x are solutions of =
' X¥By" +xty’ — xp = 0.
. Then-use this information and the method of variétioh of parametérs to:ﬁnd thé
general solution of _ : S ’
. o x3y” 4+ xty' — xy = x/(1 + x)..
‘(a) Solve the equation - L '

yr - y = X sin x '

CHAP.1 - SEC.1.3
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18. Consider
. y'+ay’ + by = S0,

A58

where a and b are constants with & # 0 and f{x) is a polynomial of degrge n. Sho

" that this equation always has a solution that is a polynomial of

- .where b = 0. ) o
20. If u(x). »(x), and w(x) are differentiable functions of x, use the fd
: diﬂerentialing a product, ' :

d(uv)-= u'ﬂ-}- v_q.li,
dx L dx dx

" to find d(uvw)/dx.

degree |

, 19.' In Exercise 18, show that the solution is a polynomial of degree n + 1jin the ca:

rmula fi

21, Show that recdnqiling the coefficients of like terms in the method of undetermine
coefficients depends on the forming of a linearly independent set by th¢ functios

"involved. (Hint: Recall that if fi(x), i=1,2,...,n,aren linearly in
. functions over the reals, then

n

Y i =0

‘holds only if each ¢; = 0.) .

depende:

4.3 CAUCHY-EULER EQUATIONS

"“will occur frequently throughout the remaining chapters, we will

- can be reduced to a form already considered is the Cauchy-Euler!
* which has the normal form -

In the two. preceding sections we discussed second-order linear
differential-equations with constant coefficients. While equations.o

occasion to solve other linear differential equations, that is, equati
form ' '
ao(X)y” + a(X)y’ + axx)y = Ax)-

One typé of linear differential equation with variable coeffi

xy" + axy’ + by = fix), x >0,

where a and b are constants. This équation is also called a Cauchy™
-an Eulert equation, and an equidimensional equation. The last tg

ordina
[ this ty
also ha
ons of t

(1.3-

cients th
equatio

(1.3-

equatic
rm com

from the fact that the physical dimension of x in the left-hand menélber of E

_(1;3—2)‘ is immaterial, since replacing x by cx, where ¢ is a nonzer

constai
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leaves the dimension of the left-hand member unchanged. We will meet a form
of this equation later in our study of boundary value problems havmg circular
symmetry. We assume throughout this section that x # 0. For the most part

we assume that x > 0, although we also deal with the case x < 0 later. We

begin with an example to 111ustrate the method of solutlon

EXAMPLE 1.3-1 Find the complementary solution of the equatlon

xy” +2xy — 2y = x2exp (- x), x>0

Solution This is a Cauchy—Euler equanon and we make the followmg- o

substrtuuons in the reduced equatxon
_ Yelx) = x7,
so the homogeneous equation becomes

{mim = 1) + 2m — 2™ = 0.

. o
y. = mx™ oyl = m(m - "

Because of the .restriction x # 0, we must have
m? o+ m - 2= 0,
which has roots m, = —2 and m,; = 1. Thus

y ) =cax?+ox. M

We remark that the substitution, y.(x) = x™, did not come'from thin'
air. It was dictated by the form of the left-hand member of the differential .
equation, which in turn ensured that each term of the equauon would contam-

the common factor x™.
It should be pointed out also that 1f we were interested i in obtammg the

general solution of the equation in Example 1.3-1, we could use the com- -
plementary solution above and the method of variation of paramelers (See -

Exercise 13 in Section 1.2.) -

EXAMPLE 1.3-2  Obtain ;he-complementary'solution of
xiy” + 3xy":+ y _='x3, x> 0.
Solution .This time the substitution y, = x™ leads to

m +2m+1=0,

which has a double root m = —1. Hence we have one solution of the .

homogeneous equation, namely,

Yl()?) =x"\

One might “guess” that a second linearly independent solution could be ob-
tained by multlplymg yi(x) by x. This procedure however, s limited to the
case of equations with constant coefficients and is thus not applicable here. Itis

SEC.1.3 _ : Cauchy-Euler Equations

- - easy to check thaty = 1isnota 501ution.: In this case we can use the methc
reduction of order to find a second solution.
- We set y2(x) = u(x)/x and compute two derivatives. Thus
' u'x — u

yiHx) = —xz— B

. . 2 n o _ 4
yix) = X (xu 2;: ) + 2ux ,
X
and substitution into the homogeneous equation results in
] xu” +'u’ =0,

. which __cgh__be- solved* by setting u’ = v and separating the variables. The:

p =4 _ o
. T dx x
andf
. u=c log x.-
‘Hence o

: c
yix) = —>log x,
and the complememary‘ solution lS
yc(x) =y log X.

. We shall see later that the functlon log X occurs in the case of repez
rools a

- EXAMPLE 1.3-3 Find the complementary solution of
' Xy xy' +y —-cos-?x,‘ x> 0.
Solution In this example we have, after subsmutmg yx) = x™,
. ¥1= = 0
s.o't_hat the solutions are x"b‘ aud x~*. Hence the complementary solution is
4 Yx) = Cx' + C,,x" - @3

" A more useful form can be obtamed however by replacing C, and C,
(c' ~ ic;)/2 and (c, + ic))/2, respecnvely, and noting that

= exp (z log x) = cos (log x) + isin (log x).

- *An alternative method is to note that xu” + = d(xu’) = 0, leading toxu’ = c,.
tWe will consistently use log x for the narural Iogarcrhm of x.
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With these changesfthe complementaryfsolution (1.3-3) can be'w'ritten
. y) = ¢y cos (log x) + 2 sin (log X)), ‘B '
We shall summarize the various cases that occur when solving the
homogeneous Cauchy-Euler equation '

xy” + qu’ + by = 0. . (1.3-4)

Substitution of V%) = x™ and its derivatives into Eq. (1.3-4) leads to the

equation
mim — 1) +am + b.=0
or

m+ (@~ DHm+b=0. - (1.3-5)

This is called the auxiliary equation of the homogeneous Cauthy-Euler equa-
tion (1.3-4). - : ‘ i :

Casel. (@ — D? - 4b > 0. The roots of Eq. (1'.3—.5) are real and unequal, -
_say, m, and m,. Then o : o T :

lx) = XM 4+ x™, ' o (1.3-6) -

and since the Wronskian
x™ ' x"‘i . . . .
. = (mz - m;)X'"'"""" ¢ O,v '

map-t

my X" myx

showing that x™t and x™2 are linearly independent.* -

Case II. (@ — 1)* - 4b.= 0. The roots of Eq.-(1.3+5) are real and equal,

say, m, = M = m. Then _ ,
- i) = x"

is one solution off"Eq‘. (1.3—4)', A second solution can be found by the method
of reduction of order. Let . '

) = X7l
be a second solution, differentiate twice, and substitute into Eq. (1.3-4). Then

ulm(m — 1) + am + bx™ + u'@m + ax™' + ux™?* = 0.

e e~ A in aceantial hare

'SEC.13

Cauchy-Euler Equations
‘ But theA coefficient of u vanishes because x™ is a solution of Eq. (1.3~
- 2m + a =1 from Eq. (1.3-5). Thus
' ‘ - ., ' xu”+ u =0,
which is satisfied by u = log‘x and |
3 yix) = x™ log x.
In this case the complémentary solution is

' yc‘(x) =:x*"(c, + G log x). (

Case lil. (@ = 1)* - 4b < 0. The roots of Eq. (1.3-5) are cpmplex
 gates, say, m; = o + fiand m; = o — Bi. Then two linearly indep:
- solutions of the homogeneous equation are - '
| | Mx) = xevai ='.x°'x"" = x= exp (iB log x)

and _ ' | ' » ’

oy = X = xex® = x=exp (=B log %)
. Using Euler’s fbrmu'la* to transform the exponential gives us
| S = x{cos (8 log x) + isin (B log x)]
'ar.xdl ' _ | .
- yz(x) = x=[cos (B lﬁg x) — isin (8 log ).
. Henée the co'm'plementa-ry solution becomes

y0) = x°[c, cos (B log X) + ¢y sin (8 log .

v 1f the general solution to Eq. (1.3-2) is required, it is nedessary
particular solution to the appropriate complementary solution. A pa
~ solution can be found by the method of 'variation'of parameters, al
difficulties may be encountered, as was mentioned in Exercise 13 of |
1.2. Note that the method of undetermined coefficients is not dpplicabl
since the Cauchy-Euler differential equation does not have c
coefficients. : '
_ " ‘There is an alternative method for solving Eq. (1.3-4). Since x :
can make the substitution

u = log x.

’cxp—(—;O) = cosf + isinf.
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We also have

dx* dx \dx
_ Ld_(d)du 1_@
x.du du dx x*du

This method has the advanlage that Eq. (1.3-4) is transformed into
ay : - ' .
g

Thus the differential equation has constant coefficients, and the-methods of

+ (a - ,l)%'l by = f(exp u).

Section 1.1 are available for finding the complementary solution -of

the Cauchy-Euler equation. In fact, if flexp «) has the proper form, then the

method of undetermined coeﬂicrents may lead to the general solution of the :

nonhomogeneous equation quite easrly
We have considered exclusively the case where x > 0. If solutions are

desrred for values of x satisfying x < 0, then x may be replaced by —-xin the.

differential equatron and in the solution. .

Ke'y Words and Phrases

Cauchy-Euler equation.
variation of parameters-
reduction of order

separating the variables
auxiliary equation '

13 Exercises

ln the following exercises, assume that the mdependem vanable is posmve unless other-
wise stated. : :

1. Use the substitution ¥ = log x to solve each of the following equations.
@ xy"+ 2y -2y=0 (Compare Example 1.3-1)
(b) x»" + 3xy’ + y =0 _ (Compare Example 1.3-2) -
© x»y"+xy' +y=20 (Compare Example 1.3-3)

2. Obtain the general solution of the equation
Xy + 3yt y=

(Hint: Use the substitution of Exercise 1 alnd the result of Exémple 1.3-2.)

CHAP.1 .

10.

11.

12.

-13.

14.

15.

‘Cauchy-Euler Equations

Use Euler’s formula

» . " exp (10) "cos 0 + isin @
to ﬁll in the delarls in Case III.
Solve the initial-value problem

W -2 =0, =6y =3
: Find the general solution of : ‘
- » 'xy”+5xj’;5y=0.
Find lhe general solutionof .
ly + Sty + 5y = 0.
Find the general solution of -
A r'u” + 3ru + u=0.
Obtain the general soluuon for
xy” +xy —9y¥x‘—2r;.

Find the general solution of .
' x’y” + xy’ + 4y = log x. ‘

Solve the mmal value problem
Xy - xy’ +2y—5—4x, .y(l)- 0, y'(1)=0.

Solve each of the followmg initial- value problems

(@) xp” + xy =0, y)=1 y@)s=

b xy"-2y=0  ¥H=0 ¥ (1)

Use the method of reduction of order to find a second solunon for each ¢
followmg drflerenual equations, given one ‘solution as shown

(a) X" - xy + y 0, »nx=x
) x4+ 3y , =2

o) X+ xp - 4y =0, i)y = x* .
L) Xy -xy +y=0, y.(x)-—xlogxz S

Show that the products xy’ and xiy” remam unchanged if x is replaced b

-where ¢ is a nonzero constant.

Show that the subsmutron X = exp u transforms the equation
Xy + axy’ + by =0,
where a and b are constants, into

d¥y '
ul

d)’
-1)=+ by=0.
)du y

Solve each of the following lnitial—value problems.
(@ 4xy" -4y +3y=0  H)=0, yWh)s=
() xy"+ 50y +4y=0,. y)=1, y)=
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16. Obtain the general sqlutidn of the equation
S Xy + axy’ =0,

where a is a constant.

{.4 INFINITE SERIES|

Since we will need to solve second-order linear equations with variable coeffi- "

cients that are not of Cauchy-Euler type (Eq. 1'.372),-'we must explore other
methods of solution. One powerful method is the power series method. In

" using this method we assume that the solution to a given differential equation -
can be expressed as a power series. Inasmuch as we will need certain facts
. about infinite series and their convergence, we digress in this section to review

some aspects of these.
Each of the followi

ng is an-example of a series of constants:

I 4+2+3 44+ eodn+ oo, o (14-D)
Lol 4lo1 4l 4o+ (=D" e, (14D
04040+ - +04 -y (04D
1, o1 e s
1+—2—p—+§-i,—+"'+71-;+"': , (1'4—4)

al +r+ P4 I A -'i),- . :(.1'.4-—'5)
1,1 G e

- = - - S A T 1.4-6
L-3%5°- R Y -« )‘

The series in (1;.4—1) is divergent because the part.ial s'ul'nsﬂ- R
S.=1, Se=142 S=142+3, Si=1+2+3+4" ...

forma seﬁuence . . :
{Su Say Say o+ - 1= 11,3,6,10. ..},

which has no limit poih't.‘ On the other hand, the ser_'_'iﬂes in (1 4-2) is‘d'ivergve'nt
because its sequence of partial sums has two limit points, + 1 and 0. The series

in (1.4-3) is a trivial example of a convergent series, since its sequence of par-

tial sums has a unique% limit point, namely zero. -

#A point is catled a limit point of a sequence if an infinite number of terms in the sequence S
are within a distance of ¢ of the point, where ¢ is an arbitrarily small positive number. A limit pplr}t o
need not be unique and need not be an element of the sequence. For example, 1'is the unique limit "~ -

point of the sequence

| Y

i
O\IU!
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]

N

- SEC. 14 . . Infinite Seriés

- calculus, who proved the theorem in 1705.

o _By a more sophisticated test (the integral test) it can be shown that t
series_ of (1.4-4) is convergent for p > 1 and divergent for p g 1. Wh
p = 1, the series is called a harmonic series. The series of (1.4-5) is

_geomeltric series with first term g and common ratio r. It can be shown (by t

ratio test) that (1.4-5) converges if |r| < 1 and diverges if |r] =1 a
a # 0. The sum of (1.4-5) can be written in closed form as :

. a h
ay r= , < 1.
42,- 1 —r Irl

Finally, the S¢;ies of (1.4-6) is an example of an alternating series that can
proved (using a theorem of Leibniz*) to be convergent because the followi
two conditions hold:

1. ‘The absolute value of each.term is less than or equal to the absplute va
.+ of its predecessor. : : :
-2.- The limiting value of the nth term is zero as n — .

. We remark that it is one thing to determine whether a given|series c¢

,.'\{erges; but quite another to determine what it converges to. It is not obvio
.- for example, that the sum of the series in (1.4-6) is w/4, although we will «
" tain this result and some others in the exercises for Section 4.3. (See Exerci

'23 and 25 of that section.) _ : . ‘
- Of greater interest to us than a series of constants will be power series

‘the form

ao + afx — Xo) + axx — Xo) + - - +oax —Xo)" + . (1.4

. Such a series is called a power series in X — Xo. A power series zf{ways_.‘ ct
i

.verges. ‘F()r‘exa'mple, (1.4-7) converges for x = Xo, but we will be interested
convergence on an interval such as (xo — R, X0 + R). Wecall R (R > 0):

‘radius of convergence of the power series and determine its value by using

ratio testf as shown in_ the next example.

EXAMPLE 1.4-1. Find the radius of convergence of the series

T Rt VI © el S
2 3 . 4

e = 1) -

*Gottfried Wilhelnﬁ Leibniz '(1646-1716), the co-inventor (with Sir Isaac Ngwton) of

"+ . tAlso called D’Alembert’s ratio test after Jean-le-Rond D’Alembert (1717-1183), a Fre.

mathematician who made important contributions in analytical mechanics.
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i (_l)'ﬂr(x _ l)"
=1 n : ':

According to the ratio test, a series converges whenever

lim [ Hnet

n—aoo

<1,

n

where u, represents the nth term of the series. In the present case,

lim Eﬁﬂ = lim (_l)n+2(x )_'HI" n . s
n—o u, - | n '+ 1 ) (_l)n»-rl(x _ lA)n .
— _ H n — -
= lx = 1lim : lx — 1} < L.

Hence -1 <x—-1<lor0<x< 2, showing that th_e: radius - of. con-
shown (Exercise 3) that the interval of convergence here is 0. < x=<2 %\

mathematical technique that has many apphcatrons Recall that the Maclaurin*
series for a function f(x) is given by

*After Colin Maclaurin (1698-1746), a Scottish mathematician.

Review of Ordinary Differential Equations ' . CHAP. 1

Solution It will be convenient to write the series using summation notation,

vergence is 1. In many problems it is necessary to examine the endpoints of the - '
interval of convergence as well, and this must be done separately. It can be

Obtaining a power series representation of a function is-an important

S = 10 +rop+ L 2“” + L 3$°’ b a4
Following are some familiar Maclaurm series expansions:
x? x o Xt , . .
expx-l+x+—2T+?!~.v+---+E+--A-,: (1.4-9)
. XJ Xs (_ l)nﬂxln-|
=X —-—T—4+ T — 4 e L = -
SX =X T T e T E
g . : C(1.4-10)
cosx =1 _x + X + -+ CHmie
21 7 4l " @n -2 ' -
' : (1.4-11)
2 3 ' : __. nel o
log(l +0 =x -2 + X _ 4 ...+_(_M_+
2 3 n

(1.4-12)

SEC. 1.4 : Infinlte Serles

The Maclaurin series for’ exp X, sin x, and cos x converge for all fin
values of x, while the series (1.4-12) has an’ interval of convergence given
—1 < x < 1. All four of the series are partrcular cases of Eq. (1.4-8). Usi
summanon notation, we can wnte*

~. X

n!

‘exp x
. n=0
. _ (__ l)n&l 2n-~4
ﬂm_g(nqy

—1)reixn2

y e
| €Os X = E an = 2)'

Clog (1 + ) = E (I

- where we have used the convention 0! = 1. Observe that  is a dummy ind
.and may be replaced by somethmg else if this is desirable. For example, repl:
_ing nby m — 1in. Eq (1.4-12) produces

“log (1 + x) = E_—(—l)m i l.

m -1

‘We shall'make use of this ﬂe_xibility of Athe dummy index in the next sectio

A Maclaurin series representation of a-function can be thought of as

approxnmatron of the function in the neighborhood of x = 0 as shownin F

1.4-1. If a series expansion about some pomt other than x = 0 is require
then we can use ‘a Taylort series -

A9 = f@) + f @ - a) o L D x -

. (1.4-
o+ f—-—-—(a) (x — a)’ + '

- Note that Maclaurin’s series is a special case of Taylor’s series, the case wh

a=0. A : : - 4
It would appear from Egs. (1.4~8) and (1.4-13) that any function t|
has an infinite number of-derivatives that are deﬁned at x = a can be rep

: sented by a Taylor series in the nelghborhood of x = a. This is not entir

*We shall omit the upper values of n on summations henceforth if they are n = o,

tAfter Brook Taylor (1685-1731), a Brilish mathemancran who dlscovered it in 17
Historically, Taylor’s series predated Maclaurin’s series. ;
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Figure 1.4-1

Approxlmations of -partial sums to sin x. (From H M.
Kammerer, “Sine and Coslne Approxlmation Curves," MAA :
Monthly 43, p. 293) | .

true. The conjéctu're in the last statement -'repres'énts an oversimplification of
. the facts.* We will discuss this and related topics further in the next séction. -

Key W}ords»énd Phrases -

series of constants closed form

divergent alternating series.
partial sums power series

sequence radius of convergence .
limit point tatio test

convergent interval of convergence

Maclaurin series -
dummy index
Taylor series

integral:test
harmonic series
geomeétric series
common ratio

1.4 Exerclses :

® 1. Write the sequence of partial sums for each of the followmg senes
@ 1-1+1—-14+—----+(- )"“f--
b 0+,0+0+0_+~'

‘A small caveat is necessary here, since there are some (pathologlcal) f unchons that have

sad he o Taular cariac thera

B i S R s tom

'SEC.1.4

‘.-(a) sin x = E (2n + ot

(b) cos x = E (_(21’)1; 2n.

*7.

10.

. *Calculator problem.

M 1 +

"—1 < x < 1. See Eq. (1.4-12).

. , T _ (; l)"-',{'_'

() exp(~x) = Tl—)'—"

n=1 .

' (d) coshx = e+ e = -

. 2 @2m!

. n=0

. . S - e'* - x2n-1

() - sinh x = _Z;I(En_—f)"

- the fact that the cr_ror has the same sngn as the first neglected term but ha
“absolute value.)

.(b) Show that 1 is the lim»it point of the sequence.

rf < 1.

" (b} Find th_e sum of the series. -

- Infinite Serles
(©) 1 - + -
R R I
What is the sum of the series in Exermse l(d)"
Show that the series of Example 1.4-1 converges when x =
x = 0. .
Use the ratio test to show that the Maclaurm series-for exp x, sin x,
converge for all Xx.

1
3
1

ot b |ome
omul .

Show lhat the interval of convergence of the Maclaurin series for log|

Vérify that each. of the following summations is correct.

Zn#l

Use Maclaurin’s series to compute sin 3 and cos § to four decimals.

Consnder the sequence

" 14 3 2,1 ... :
{—z— ’ —4' * 0 » 1 ’ }.

(a) Write the nth term of the sequence.

Apply the ratio test to the series (1.4-5) to show that the series con

1 N
< 4 .__—ll + _ll 4 e .,

2 and diverges whe

and cos

I+ x

(Hint: U:
s a small

verges f(
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11. Find the radius of convergence of each of the following power senes

@
(b)
©

@
©

4]

x 1)’ x -1
-1 e
- 1)+ 3 s+
x? X‘ — ) : )
1 + '-2'; + E +. a— 4 ..
x+3) (x+3)7 (x+3)°
1 + :
2 3 "1 ¢
x| 3 At
x + 7 + 3 + e oo (Hint: Use the limit definition of e.)
1+ &+, G+ L a2,
3 2:3r 3.3
P CIell V. el MR € Sl | LY
2! 4! . 6!

12. Find the interval of convergence of each of the followmg power series. If the mter—

val is finite, mvestlgate the convergence of -the seriés at the endpomts of the - - B

interval.
(® E %,;

n=0

x2n+l

® Z; —

: x-D".
© El —
@ =
. n=}

- (¢

xn
E n"
n=}

13. Verify that each of the following series is convergent". :

(=)

(b)

(©

@

E n
bt n+ 1)y
1
n!

!
EO)
2
n=1
vn + 3
(n -1

CHAP.1

SEC.15

14.

15. -

K11} ]6,

17.

18,

®)- E 2"

‘ Serles Solutions

Vern'y thal each of the followmg series is dlvergent

_vE\/_logn

© E (n - l)

o n
@) E CERTE

n=1
Deler_mine the values of p for which the following series converges and div
Y
. n® log n
n=2

where pisa posmve mteger
Use the- mtegral test .to determine for- what values of ppisa real numbe

_ series
1
P
- n=1 -
converges.
Consider the series -
LI NP I
1.3 24 35

(a) Write S,, the sum of the first n terms in closed form. (Hint: Decompo
nth term of the series into partial fracuons )

~(b) Obtam the sum of the. series.

Generalize Exercise 17 for

‘ 1

n=1

where p is a positive integer.

4.5 SERIES SOLUTIONS .

Before we give an example of how a power series solution of a linear diff
tial equation can be obtained, we need the results of two theorems. Thes

actad wdilimest mennfe in Aedor tn nracsrua the rantinnity
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THEOREM 1.5-1
A power series E,, 0 AufX — x,,)" and its: denvatzve 2,, ! na,,(x - Xp)"!
have the same radius of convergence.

THEOREM 1.5-2 :
Leta functzon f(x) be represented by a power series E -0 a..(x - xo)" in -
the interior of its mterval of convergence. Then the funcuon is differen-
tiable there, and its derivative is given by

() = E na.(x — x,)" .

n=1

We are now ready to look at a simple drﬂerentral equatlon with a view
to solving it by using series. To begin with, we will take x, to be zero. Later we‘

wrll indicate why this is not’ always possrble

EXAMPLE 1.5-1 Find a solutxon of the equation y —xy =0,

Solution We assume that there i 1s a solutxon of the form
y = E a.x".
n=90 )
Then B o :
) y.' = E nanxn~l )
n=} R
: E n(n —~ Da,x"~2.

n=_2

and

yll

Substituting these values into the given equation produces

E n(n — Da,x"* - E a,x"tt =.0.

n=2 . . n=0

In order to collect terms it would be convement to have x™ in both summa-

tions. This can be accomphshed by realizing that n is a dummy index of sum-

mation and can be replaced by any other letter just as we change variables in

definite integrals. Accordingly, we replace each n in the first sum byn + 2 and
each n m the second sum by n — 1. Then
- E a,,_,x" = 0.

E (n + D + Dapeax”

n=0 T

| cHAP.1 B cEC.1s5

_Next we combine the two sums into one with  going from 1 to oo,

which is a linear combination of 1, x, x?, .

. 2al = Ov
and, in general, ' _
| | (1 + 21 + Da; = a4, = 0.
. From the first of these, a, = 0, and from the second we obtain th
formula
o @y ' _
an¢2 - (ﬂ + 2)(” +"' 1')‘ v n - 1., 2, ..
s Forn = 1 we have a, = —;‘32— , so that g, can be arbitrary.
. ' For n = 2'we have a..~—"~ﬁ, SO that a, can be arbltrary
" Forn = 50.4 az, a.’n s,
zero. ‘
e Forn = ave g = — 20
Forn = 4 \:ve.have ae 37.65"
o o _ Qa _ a, L
For n = 5 we lrave &= e = 7396 ancl SO on.

"T_he solution to the given differential equation is

" which shows the two arbitrary constants we expect to find in the s
" second-order differential equation. It can be shown (Exercxse 1

Serles Solutlorrs

terms that are left out of this sum. Thus

Y ln + 9+ Dayy —
n=1 V .

a, }x" + 2a, = 0,

. Since the set of fu

[lxxx" J

ymaetax ¥ L B B ye o Doy
A S VA R 7

This last equation can also be written. as

' v. : XJ xs ' ‘X‘ X7
, y-ao(l+-g—+ 180+"'>+“‘<X+Ti'_+'5'6?+"'

adding a

nctions

isa lmearly mdependent set, a linear combination of these l'unctnons can
'zero if and only if each. coeﬂlcnent is zero. Hence

E recursi

. are

“—
-

Jlution .
) that b

series converge for —o0 < x < . W
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While many series can be written in closed form, for example,

2 3 o : B
—l+x+x ’3"+'-_--, (1.5-1)
. _ x? X x’ 5.2y
SinX = X - G4y oF b, | (1.5-2)
2 4 6 . i
cos_x_=1—§!—+—i%—57+—~--, o (15-3)
2 . 3 L4 : .
log(l + 30 =x— 2+ X _ X 4+ _ ... : .5-4
og ( X)) =x 2 + 3 2 + . ) (1.5-4)

this is not always possible. If a function can be represented in an open interval:

containing x, by a convergent series of the form E,,-;., a,(x — xo)", then the

function is said to be analytic at x = xo. The functions in Egs. (1.5-1) through'
~(1.5-4) are all analytic at x = 0. If a function is analytic at every point where it . -
is defined, it is called an analytic function. All polynomials are analytlc, and so !

are rational functions except where their denominators vanish.

Now let us look at another example of a series solution of a dlﬂ”erentlal i

equation.

EXAMPLE 1.5-2 Solve the equation
-y -ty = 0.
Solution As before, assume’ ' '

=Y e - E_""n?”t" = E n(n _"l)anxn-z,‘

] : 1 o 2

and substitute into the given differential equation. Then

E n(ﬁ". Da,x"" - E .n(n..—. l)a,,)c'f"‘z - E na,x" +'E'q,,x" =
2 -

2

Replacenbyn + 1in the first sum and replace nbyn + 2i in the second sum
50 that we have -

E *n + l)na,.u X"~ 2 (n+ 2 + l)a,,.zx

Ena,,x +Ea,.r =

or

E [n(n + Va,,, — (n + D(n + 2)a,,, — na, +_a,,]}c" - 2a; + a, = 0.

SEC.1.5 ' . Serles Solutions '

:Equating the coefficients of various powers of x to zero gives us the follos

a, is arbitrary,

d, is arbitrary, ' R _f : E
a, = %ao, .
- n(n + Dawe + (1 = ma, .
e S (R i A
a4, = 20, . G _ 4o .
2T 2373 T 32
go= @@ @@ &
AR = RN T VR VI 7] o

etc. Hence .

: : : z. . ,
}’.f_-a.x+ao<l+x §!+§;"+"'>’,

_.and it can be shown (Exercxse 2) that x and e” are two lmearly indeper

solutions of the given equation. Here the solution can be written in c.
form in contrast to the solution of Example 1.5-1 (Exercxse 3), B

Unfortuhately, the series method of solving ordinary differential ¢

" tions is not as simple as the last two examples seem to indicate. Conside

equation o
Zx’y” + Sxy’ +?y = 0.

We leave it as an exercise (Exercise 4) to show that the series method with

0 will produce only the trivial solution y;= 0. Yet the given equation

Cauchy-Euler equauon and both x-V2 and 1/x are solutions (Exercise 5).
answer to the apparent mystery lies in the fact that the individual solutions
Cauchy-Euler equation are not linearly mdependent 'on any interval the
cludes the origin. Recall that in Section 1.3 we solved Cauchy-Euler equa;
assuming that x > 0 orx < 0.

Consider the most general second- order, lmear, homogeneous ordi
dlﬁerentxal equatlon,

. y"_+ POy’ + Qj(x)j» = 0. _‘ .

Those values of x, call them x,, at which éoth-P(x) and Q(x) are analyti

called ordinary points of Eq. (1.5-5). If either P(xo) or Q(xo) is not anal

then x, is a singular point of Eq. (1.5-5). If, however, x, is a singular poi.
Eq. (1.5-5) but both (x — xo)P(x) and (x — xo)*Q(x) are analytic at x =
then x, is a regular singular point of Eq. (I 5-5) AIl other smgular point
called irregular singular points. '
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- and on substituting into the given equation we have

: E.lz(q + (n 4_-:Ar' -1+ 5n + n + Hax" = 0.

0

EXAMPLE 1.5-3 Classify the singular points of the equation’
('1 — Xy~ 2xy" + n_(n' + 1)y =0,
where n = 0, 1, 2, ‘

The only smgular pomts are x, = +1 Ifxo = —1, th.ebn o k _Sihce the c_oeﬂicienl of x"*" must be zero for n = 0, 1, 2, . . ., we have
(-2 _ 20 g e+ g+ 1) _ nln ¥ D+ 1)".: : =0 o :
T - x x—l T = X2 x — 1 ' . _ . (2r* + 3r + Da, = 0.
Since both of these rational functrons are analytrc at x =.— I, the latter is a C_hoosing a, to be arbitrary, that is, nonzero, produces
regular singular point. Srmrlarly, for xo = 1 we have . ' ' 25t + 3r + -l - 0
x —1 1_)(x;2x) = xz-:(l and x - ll)_’fz(;z D n(n +1 l-z(lx— X, h Wthh is called the indicial equatlon Its roots are —1 and —1/2. {In gene

so that x, = 1 is also a regular singular point. | _— B a2n° + 4nr +3m =0 n=12..

i . which can be sa'tlsﬁed only by takmg a,=0,n=1,2,....Hdncewe.

, - The pomt of all this is contained- in an 1865 theorem due to Fuchs.* . " left with the two possibilities, '

Fuchs theorem states that it is always possible to obtain at least one power_ 3 :

series solution to a linear differential equation provided that the assumed series -
“solution is about an ordinary point or, at worst, a regular smgular point.

The work of Fuchs was extended by Frobenius,t who i in 1874 suggested

that instead of assuming a series solution of the form Eo a,x", one should use

the form X a,x™". The use of this form to solve lmear ordinary differential

equations is known today as the method of Frobenius. We illustrate with an

example using the Cauchy-Euler equation referred to above..

nix) = a(,,r’.‘ and  yi(x) = box‘”’.

- Note that the two _consrams are arbitrary, since each root of the indicial eq
" tion leads to an infinite series. In this.example, however, each serjes cons
of a single term. | ’

‘When solvmg second—order lmear differential equations by the meth
‘ , . , . of Frobenius, the indicial equation is a quadratic equation, |and th
EXAMPLE 1.5-4 Solve the equatio‘n ’ v , 'p055|b|hues exrst We list these together with their consequences here. .
Zx’y” + 5xy +y= 0 .
- 1. 'If the roots of the mdlcral equatron are equal, then only one splution «
... be obtained.
2. If-the roots of the indicial equauon differ by a number that is not
. integer, then two linearly independent solutions may be obtained.

3. If the roots of the indicial equation differ by an integer, then the lar
integer of the two will: yleld a solution, whereas the smaller may or n

not yield a solution. :

by the method of Frobenius.

Solution We have

y = E ax"”

(1]

’ - E (n + rNax"',

0

<
II

"It should be mentioned that the theory behind the method of Frobenius is by nc
’means simple. A good discussion of the various cases that may arise (although the
case where the indicial equation has complex roots is omitted) can be|found in
Albert L. Rabenstein, Elementary Differential Equations with LmearAlgebra, 3
ed. (New York Academic Press, 1982), pp. 391 ff.

S
i

" : ' E (n+nn+r-— 1)_a,,x"v+"‘2,
-

: ‘We conclude this section by solving two 1mportant drﬂ"erential eq
" tions that will appear later in the text in connection with certain types

*Lazarus Fuchs (1833‘.1902j, a German' mathematician. " boundary-val problem
ry-value problems.

+Georg Frobenius (1849-1917), a German mathematician.
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EXAMPLE 1.5-§ Obtaina sr)_lution of the differential equation
dy 1d n? S o .
Tty t (1,—x—,>y=o,-. n=0,1,2.... (156

This equaﬁon is known aé Bessel’s differential equalion; It was originally obtained .
by Friedrich Wilhelm Bessel (1784-1846); a German mathematician, in the course -
of his studies of planetary motion.. Since then, this equation has-appeared in

problems of heat conduction, electromagneuc theory, and acoustics that are ex- - '

pressed in cylmdrtcal coordinates.

Solution Since the coeﬂicrents are not constant, we seek a series soluhon

Multrplymg Eq. (1. 5 6) by x?, we obtain
X"+ xy 4+ (¢ = n)y = 0. (1.5-7)

We note that x = 0 is a regular smgular pomt hence we use the method of
Frobenius. Assume that '

y = 2 : amxmcr

m=0

. y,' E am(m.‘_*_ »I')X"H'r_‘s

m=0 .

Il

" E an(m + nim + r - l))r"f*”"2

m=0

and substitute into Eq. (1.5-7). Then -
E an(m + Dm + r — Dx™" + E d,,,_(m + X
m=0

m=0 _
+ Z :amxrn+r+2 _
. m=o . .

1f we replace m by m ~ 2 in the third series, the last equation can be written as

m=0 "

'E[a,,.(m +0(m+r— 1)+ auim+ 1)+ a, , - nda)xmt"
m=2 ' - . . _.

+ aor(r _ Dx" + aorx” — nlaex” + au(r + 1)x™'
+ a(r + l.)x’;'l — ‘nlax™t .= 0.
Simplifying, we get i :
E [a,,,((m + 1 —-—n)+ a, z]x”"' + ao(r* — n?)x"

m=2

Lt arr+2r+1 - n’)x’*' =0..

The coefficient of x” must be zero; hence if we assume a,- # 0, then we -

obtair_r r = xn. We choose the positive sign,-since n ‘was defined as a non-

SEC.1.5 -

n? z Amx™" = 0.

Series S_olutions'

we may choose a, = 0. Then the recursron formula is obtained by semr
coefﬁcxent of x""’ equal to zero. Thus
—a

. S
m(m + 2n) - :

A

The first few coefﬁcrents can be computed from this formula. They a

follows:
— 2.. ___—ao__ 2
m = i a, 2n + 1)
= 4: _ @ : . Ao
e A Y D) + 2
= 6: - | —das T o
.m =-6: ae"— 253(n + 3) = 26.33(,1 + D(n + 2)(n +
In geuerai we have
. .(—l)mao m = l,.2, . o oy

| = G Do+ 2 @ ")’

. and a solutron to Eq. (l 5 6) can be wntten as

m=0

) - ) - (__ l)m Zm*n .
. yn(x) = ‘ao E 22’"]71'(" + 1)(’1 + 2) (n + Iﬂ)
= 2 ',?!""_E mi(m + mt\2/- .

" The Bessel function of t'h_e first kind of order n is defined by givi
the value 1/2"n!. We have '

o (=D §>2m+~@. _'=0 12 i
Jn_(-x)'"z,n!("n_*_n)! 2 . ] » n -1-’ L ] (
m- - .
a solution.of Bessel’s drfferenual equatron We wrll consider this functi
greater detarl m Chapter 7.
’ EXAMPLE 1.5-6 Obtam a solutron of the equation
-yt -2y o+ Dy =0, a

where 2 is a constant. This equation is known as Legendre’s differ:
_equation.* : ' L

*After Adnen Marie Legendre (1752- 1833). a French mathematician who is known |

fe Lle ceomnl ten smieseabone thanes  allintin fimctinne - and ealenlue of variatione.
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~ Solution Since x = +1 are regular smgulaf pomts (see Example 1.5-3), we

may assume a power series about x = 0, which is an ordinary point. Accord- ‘o]

ingly, put

y = Z Anx™, ¥ = Z a,mx™", y” = E anm(m — Hx™2.

m=0 ! m=1 m=2
. l .

Substituting these \{alﬁes into Eq. (1.549) produces

2 am(im — 15x“~? = X i e -
m=2 . . m=2 . .
-2 : 'm m ) m ™
,,,E:, a m)e + n(n + l‘) ,,,E=o a x

Replacing m by m- + 2 in the first 'sum,' we gét

i
e

E A + 2)(m + i)xm — E a,.(m - l)x"'

“m=0 : pnr S

or

Z [a,,,.,(m + 2)(m + 1) - a,,,m(m -1 - 2a,,,m + @nnin + 1)];(”
m=2

+ 2a2 + 6asx — 2a1x + n(n + Das + n(n + Dawx = 0

Settmg the coefﬁc;ent of each power of x equal to zero in the above, we have :

—n(n + I)ao

2a, + n(n + a, =0, a, = > a., arbitrary;

6(13 - 20] +-n(n + .l)a,’ = 0,‘ as = [2 — n(’é + l:)]a" .
In general, we can say ‘
Qpei(m + 20 + 1) — [m(m — 1) + 2m - n(n + 1)]a,,, = 0

_m(m+1)—n(n+l)
@2 = "+ 2)(m + 1)

"1’

(m — n)(m +n+1) " (1.5_10)‘ |

Ime = 0 F)mr

Equation (1. 5- 10) is the recurrence relatlon from Wthh the coefﬁcnents
can be found : -

'_m-012

CHAP.1 =

_ZEammx +n(n+ I)Ea,,, X =‘(.), .

a, arbitrary. -

SEC. 1.5 Series Solutions

Computirig the first few coefficients gives us

—-n - Y- 3)@n - 5)(n + 2)(n + 4)(n + 6)

Hence a solutio_n to Legendre’s eQuation can be written as

YulX) =‘fvao'[l - "("2*'“ 1) X n(n - 2)(n44'r D+ 3)

n(n - - @ + DN + Hn + 5) X - -
6!

_ —nOz + 1)
a; = ——l 2 (3
2. = @ — n)n + 3) _ n(n = 2)(n ¥ IXn + 3)
ST T 43 a = 41 '
a = (4 - n)(n + 5) _ —nn - 2n — H(n + D + 3)n + 3)
o 65 N 6!
4. = (l - n)(n + 2) _ —(n - )n + 2)
? 32 = 31
g = (3 —mn + 4) _{n = D@ = 3)n + 2n + 4) a
s 54 . T 5!
: - ‘n)(n + 6)
= 76 s

do,

]

o+ a.[x S G '13)’5" +2) o4

o )t = 3)n = S + D+ D+ 6) o
- ]

Both series converge for -1 < x < L.
Ifn = 0,2,4, . ..anda, is chosen to be zero, then the solutj

Eq. (1.5-11), become

yo(x) = aOy )
y:x) = ao(l — 3x3),
yalx) = ao<l — 10x* + %S—x‘), " etc.

(n — D(n = 3)n + 2)(n + 4)
51

sl

jons, usi
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'If we also impose the condition that y,,(l) = [, then ‘we can evaluate the a, to" ’~

obtam

o
M

Pyx) =

Pyx) = (3x’ -, (1.5-12)

| e Nl'-—

Pyx) = (35x“ - 30x + 3), e

These polynomials are called the Legendre polynomials of even degree.
Ifn=1,3,5,
using Eq. (1.5-11), become

yilx) = a.x,

. / _ —5- 3)
al(x 3X y

a,( - x3 + 25—lx5),_ ' etc.

Ya(x)

I

Ys(x)

obtain

Pix) = x, - P;(x) 7(5x° - 3,
- (1.5-13)

Pix) = g(63x° = 702 + 15, .. ..

These polynomials are called the Legendre polynomials of odd degree. ®=

The Legendre polynomials will be of use in Sectron 1.3, since.they arise g

in boundary-value problems expressed in sphencal coordinates.

Key Words and Phrase_s

recursion formula

closed form -

analytic

analytic function

ordinary point

singular point .

regular and irregular singular point
method of Frobenius

indicial equation’
Bessel’s différential equation
- Bessel function of the first kind-
of order n, E
Legendre’s differential equation
Legendre polynomials of even degree
"Legendre polynomials of odd degree’

CHAP.1- .

. . .and g, is chosen to be zero, then the soluuons, o

If we again impose the condmon that y,,(l) = 1, then we can evaluate thea, to '

'SEC.15

1.

_ Show that assummg ‘a solution’ of the form y =

Serles Solutions -
* 1.5 Exercises .

(a) Show thal one solution of the drﬂ‘erentral equatxon y"—xy =0inE
1.5- l can be written as

. y.(x) = a E 1 4? (3n§2'$n —~A2) xsn.

(b) : Write the second solution in a srmrlar form.

‘(¢) Find thé radius of convergence of the series in part (a).

(d) Observe thal Xo

analytic. 3 :
Verify that ») = x and y,(x) = e* are’linearly' independent solutions
differential equation (x —1)y” — xy’ + y 0.

= 0 is an ordirrary point and hence that both solutic

'(a) Show that the solution obtained in Example l 5-2is eqmvalent to

y(x) = c.x + c:e 8

,:(b) ‘For what values of X is-the above solution valid?

Eo a,x" for the equation
2.x’y + Sxy. +y= '0 A '

leads to the trivial solution y = 0.,

_Verify that x-!/2 and 1/x are lmearly independent solutions of the equa

Exercrse 4 on every- mterval not contammg the origin.

Classify the smgular pomts of each of the following differential equations
@) Xy + xy’ +(x’—n‘)y—0 n==012,.

b xXp"—xy' +y=0

© x4+ (dx -1y +2y=20

) X*x - D" + x‘(x-- DYy +y=0
Use power series o solve each of the followmg equations.
(8 y +y=0 :
b y'-y=0
© y-y=x
(Note that the power series method 1s not lrmrted to homogeneaus equz

@y -x=0. : Pos

~(If possible, write the solution in closed form.)
@ (+xy +y' —2y=0 ,
Solve each of the following dlﬂ'erennal equauons by the method of Frobe
(@ x»"+y +xp=0
(b) dxy" + 2y +y=0

' @) Xyt 2yt -2y =0

Solve the equation 4 ' ,
xp"+ 2y =0

by two methods. (Hint: x is an integrating factor.)
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10. Solve the equation
Y =xp—y=0

by assuming a solunon that is a power series in'(x — 1). ln this case the coefﬁc:ent ;
x must also be written: in terms of x — 1. This can be done by assuming lhat -3
X=Ax-1)+ B and determmmg the constants A and B.

11. 'Obtain a solution of

4 _ xy" + y o+ 4xj-= 0.
12. Obtain a solution of '

Figure 1.5-1
Airy functions.

_ xy” '~ 2p = 0.
ees 13. The differential equation ' '

y - xp. =0

is known -as Airy's equauon,* and its solunons are. called Alry l'uncuons (Fig.

1.5-1), which have applications in the theory of dxlfracnon .

(a) Obtain the solution in terms of a. power series in. x. :

(b) Obtain the solutxon in terms of a power series in (x —1). (Compare Exercise
10.)

4.6 UNIFORM CONVERGENCE

_Wegivea brief discussion of some of the theoretical aspects in the present st
tion, not for the sake of the theory per se but to prepare for a wide var_iety
appllcatlons 1t will be: shown for example, that we will have to broaden o

concept of convergence

14. Compare the soluuons of. Exercnse 13 with those of y” ‘ -y =0 ‘Cor_nment.

15. Solve the initial-value problem T _ -
Y =2, y0) =0 =

16. Solve the dlfferentlal equatxon ' '

: Ao+ y =0 Pointwise COnvergence- '
17. Find the interval of convergence of the two senes in the solution of Exercxse 16

18. Solve the initial-valae problem : Recall what s meant by saymg that a sequence of funcuons, ceﬁned.l

Y A W0,y =y O =] asx=b
19. Obtain the general solution of : ' : {f n(_X),fz(x),f:(X), e s JuX¥)s - s

converges {0 f(x). When we write

29"~ xy’ 4 (L =x)y =
. f(x) hm f,.(x) for all x in [a, b},

20. Obtain the general solution of
. : X" £ xly’ — 2y = 0, _
21. Ilustrate Theorem l 5 i by differentiating the series in Exercise 11 of Section 1. 4

. and finding the radii of convergence of the differentiated series. (Note that this
does nof constitute a proof.of the theorem.)

22, Hlustrate Theorem I. 5—2 by differentiating the functions and series in Eqs (L5-1) - ]
through (1.5-4). : : _ s o If,.(xo) - flx) | < e ' (1.6
: o 'whenever n = N(e, xo), an mteger In other words, given ¢ > 0, we can fi
.. an integer N such that the inequality (1.6-1) holds whenever n = V. The i
_ portant thmg to nouce here is that N will usually depend on e anc Koy $O
write Nle. x.).:

‘we mean- thal the difference between Jx) and f,.(x) can be madejarbitrar
small provided that # is taken large enough. o

In more precise mathematical language we would say that| given a
positive number e and any point x, in the interval [a, b}, we can satisfy

23. Find the general solution of

Y Exy 4y =0

“*After Sir Georee B. Airv (1801-1892). an Enelish maihematician and astronomer.






