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Finite Fourier Transforms

and Nonhomogeneous Problems

Finite Fourier Transforms

[n Section 3.3 we used transformations and eigenfunction
aonhomogeneous (initial) boundary value problems. These pro
straightforward, principally because they contained only one spatial variable. When
nonhomogeneities were time independent, the solution was represented as the sum of
steady-state and transient parts. The steady-state portion was determined by an ODE,
and the transient portion satisfied a homogeneous problem. (In
three spatial variables, the steady-state part will satisfy two- or three-dimensional
boundary value problems.) When nonhomogeneities were
of eigenfunction expansions had to be used. The correspond
was solved, and arbitrary constants were then replaced by
In this chapter we present an alternative technique for solving nonhomogeneous
(initial) boundary value problems, namely, finite Fourier transforms. They handle

time-dependent and time-independent nonhomogeneities in exactly the same way and

adapt to problems in higher dimensions very easily.

problems with two or

time dependent, the method
ing homogeneous problem
functions of time.

expansions to solve
blems were relatively
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This function is identical to g(x) except at X = L/2, where its value is 1/2.1In addition,

because the series converges 10 zero at X

2 21— cos(nn/2)

R h(X) = ;!— ..Z\ n

- -

where h(x) is the function in Figure 6.2(b).

- glx)

-—

(SR

Figure 6.2 (a)

When solving (initial) boundary value problems by

—~0and x =

sin—"s
L

L, we may write

nnx
o<x<L,

h(x)

[ 3 R

L
2

(b)

finite Fourier transforms, it is

often necessary to answer questions like that posed in the following example.

Example 1:
Liouville system

X"+ 22X = 0,

Given that the finite Fourier transform of a function f(x) with res

pect t0 the Sturm-

0<x<L,

x(©) =0= XL

is

f) =

find f(x)-

Solution: Eigenvalues of the Smrm-Liouv'\\\c system are

malized e'\genfunctions X x)=

. (L 2 .
9(/-.‘)';& 1L

0
13

S S ALY
Tk

JEE

{n addition, if hixy =4

~ . fLo 2 nnx
(2, = S \]},S‘“de =

0

j=
VL
Since f(}.,,) =

/*.2

2 (-L
——COS
nt

250 + (). it follows that fx) =

JLu Y 1 + QL= Vi
nn ?

_ nir?/L2, with corresponding nor-

nnx -
L )o

n

J2/L sin(nnx /L) When g(x) = %

'

nm

2
_Z—sin
nin?

Lx nnx
cos— t+

L

_
V2L -t
nr

nnx "
L }o

29(x) + hx) =2x ¥ 1.

-
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Exercises 6.1

In Exercises 1-10, find the finite Fourier transform of the function f(x). defined on the interval
0 <x < L, with respect to the given Sturm-Liouville systent.

1. fix)= r-2¢ X'+t i2x =0, X0 = X(L=0

2 f() =5 XTHAX= 0, X©O = X(Ly=9-

L f) =5 X'+ X= 0. X' =X({)y=0

L[y =x XTHAX= 0. X© =0 LXWI+ h,X(L) =0

L f=L-x X'+ X =0, X'(©=0 LX)+ h,X(L)=0
) =sinx; X"+ s =0, X'(0)=X(L)=0

Ly =es XU F ax =0, X'©=X0L=0

—

qo«mbu

x! 0<xs<L2 s .
. fxy= 4 " =0, X0=XL=0
8. f(x) {0 La<xsl X"+ 42X (V] w)

9. f(x)= sin(rx/L)cos(nx/L); x4+ 22X =0, X ©) = X(=0
% 10. f() =1 X" +2X + X =0, X©O= X'wLy=9
ﬂ In Exercises 1 1-14, find, in closed form, the inverse finite Fourier transform for f- (1,) with
v respect to the given Sturm-Liouville system.
& 1. fG)=(— 0 1(2L)%2 [(n); X"+ AX =0 X(0) = X(L)=0
: 3 JALs(- 1", 6217
e —— + n)

_ atl
e AL+ (=01, gy iax =0, KO = X0
nmn n

JZT‘ n=0

n>0

12' f(;'n) =
13. fGh) = {?) X e 2K =0, X@=X= 0

14. [ =

Q2L — 1)\/2/1,(—1)"” _
!

2J2/L
,12/ CoX" 4 X =0, X'©) = X(L) =0

6.2 Nonhomogeneous Problems in Two Variables

We now show how finite Fourier transforms can be used to solve (initial) boundary
value problems. Every initial boundary value problem that we have solved by
separation of variables can also be solved using transforms. There is little advantage,
however, in using transforms for homogeneous problems; their power is realized when
the PDE and/or the boundary conditions are nonhomogeneous. Nonetheless, we
choose to introduce the method with problem (8) of Section 3.2, a problem with
 homogeneous PDE and homogeneous boundary conditions. We do this because the
application of finite Fourier transforms to initial boundary value problems always
follows the same pattern whether the problem is homogeneous Or nonhomogeneous.
As a result, we can clearly illustrate the technique in 2 homogeneous problem without
. added complications due to nonhomogeneities.
E The separation method on

@2’ A2y )
—l=c2°’2, 0<x<L, t >0, (4a)
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(L, =0, t>0, (4¢c)
p(x,0) = f(x), 0<x<L, _ (ad)
. y(x,0) = 0, 0<x<L (4e)
- determine? 'séb?irate‘d functions y(x,t) = X ()T, which satisfy (4a, b, ¢, ¢). The result
is a Sturm-Liouville system in X(x) and an ordinary differential equation in T(¢):
X"+ 22X =0, 0<x<L, (52 T + 22T =0, t>0, (62
X0 =0, (5b) T'(0) = 0. (6b)
X(Ly=09; (5¢)
e the form C \/5/—1—, sin(nnx/L)cos(nnct/L) for
perposing these

ated functions tak

jution of problem @) is obtained by su

From these, separ
arbitrary C. The so
nnct

functions,
(x,t) = i < zsinﬂicos———
yoat)= L1 L L’

and imposing (4d) to give
L 2 . nmx
Cp = L f(x)\/;—sm—[j—dx.

te Fourier transforms,

(7a)

(7b)

we note that the transform

lem by fini
Liouville system (5)is
(8)

- L
) =§ S X (x)dx,
0
¢ eigenvalues and ortho-

J3/L sin(nnx/L) are th
this transform to both sides of PDE (4a),

L azy ) L azy
50 EFX,,(x) dx =¢ So 5;—2X,‘(x)dx.

gration with respect t
tion. Integration by parts on the

To solve this prob
associated with Sturm-

where A2 = nin?/L* and X x)=
normal eigenfunctions. If we apply
)

o x and differentiation with respect
right, together with the

We interchange orders of inte
to t on the left side of thisequa
fact that X,(0) = X(L)y=0, gives
: (L P L La L
| yXdx = oy o U 2| Lxdx=-¢ Wy dx,  (10)
t? Jo Ox 0 o 06X °

he definition of F(Aq, 1), the finite Fouriet

e again on the right yields

(2%

\

2l

The integral on the left of this equation ist
transform of y(x.0)- Integration by parts onc
(::2 . L
—cH{yX6 T e ( yX,dx

+0

w2 S‘(/m t)
— (LX) + 200X (0) + c? S

i

L
yX o dx. an
0
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Now, boundary conditions (4b, c) imply that the first two terms on the right vanish.
Further, equation (5a) may be used to replace X with —A2X,, with the result

P50t _ 2 J

L L
3 W—=A2X,)dx = —czlfj yX,dx = —c2A2§(Ans0)- (12)

0 . o
- -

Because ;7(1,,. t) is a function of only one variable, ¢, and a parameter, 4,, the partial
derivative may be replaced by an ordinary derivative,

= —c2A2y. (13a)

This is an ordinary differential equation for F(A4,t). When we take finite Fourier
transforms of initial conditions (4d, ¢), we obtain initial conditions for ODE (13a):

T3, 0) = f(Aa) (13b)
4540 _ 139
dt :

What the finite Fourier transform has done, therefore, is replace initial boundary value
problem (4) for y(x,t) with initial value problem (13) for y(4,,1); a PDE has been
reduced to an ODE. In actual fact, (13} is an infinite system of ODEs (n = 1,2,..,
but because all differential equations have exactly the same form, solving one solves
them all.

The general solution of (13a) is

F(Anrt) = A,cOs Ayt + B,sin clt, (14)
where A, and B, are constants. Initial conditions (13b, c) require these constants to
satisfy

A,=f(), 0=clB, (15)
and therefore .
(Ao t) = f(A,)cOS CA4L. (16)

The inverse transform defines the solution of problem (4) as

pe 0= 5 0K = 5, Fhcoscht X

2 2 -, . nnx  nmuct
= JI ';l f(4,)sin T COS | (17)
a solution identical to that obtained by separation of variables.

Briefly, the transform technique applied to the PDE replaces the PDE in y(x,?)
with an ordinary differential equation in its transform $(4n, ). Once the differential
equation for §(%,,!) is solved, the inverse transform yields y(x, t). A number of aspects
of the method deserve special mention:

(1) Not just any finite Fourier transform will yield a solution to this initial
boundary value problem. It must be the transform associated with Sturm-Liouville
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system (5); that is, it must be the transform associated with the Sturm-Liouville
system X(x) that would result if separation of variables were applied to the
problem. In nonhomogeneous problems, we use the transform associated with the
Sturm-Liouville system that would result were separation used on the correspond-
ing hamegeneous __p_roblcm. Apparently, then, to use transforms effectively, we
must be able to recognize quickly the Sturm-Liouville system that would result
were we to use separation of variables.

(2) Boundary conditions on y(X, t)are incorporated in the simplification leading to
the ordinary differential equation in 7(4q. 0):

(3) Initial conditions on yx, 1) are converted by the transform into initial
conditions on F(4. t).

(4) Finite Fourier transforms always give a solution in the form of an infinite series
(the inverse transform). It may happen that part of all of the solution is the
eigenfunction expansion of a simple function. In particular, when nonhomogene-
ities are time independent, part of the solution is always represcntable in closed
form. However, considerable ingenuity may be required to discover this function.
The next example illustrates this point.

Itis probably fair to say that the transform technique applied to the above problem
is more involved than the separation method. This is in agreement with our earlier
statement that the transform method shows its true versatility in problems with
nonhomogeneous PDE and/or boundary conditions. To illustrate this, consider
problem (34) of Section 3.3, where gravity introduces a nonhomogeneity into the PDE:

%%:czg—z%+g, 0<x <L, t>0, (g <0) (18a)
y(0,8) = 0, t>0, (18b)
y(L,y=0, t>0, (180)
y(x,0) = f(x), 0<x<lL, (18d)
y(x,0) = 0, 0<x<L. (18e)

In Section 3.3 we expressed the solution in the form y(x,t) = z(x,t) + y(x), where
Pix) = (g/QcHULx — x?) is the solution of the corresponding static deflection
problem. The function z(x, t) must then satisfy the homogeneous problem

?iz__czazz Q<x<L t>0 (192)
3 ox*’ ’ ’ '

2(0,0) =0, t >0, (19b}
2(L,t) = 0, t >0, (19¢)
26,0) = [(x) — EQF(L.\' _ ¢, 0<x<L (19d)

z(x,0) = 0, 0 < x< L. (19¢)
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Separation of variables on (19) gives

z(x,t) = “21 c,sin %cos '—Ii;f—t, (20a)
where .~ Co = 2 (* fxe~ g (Lx = x*) sinﬂdx (20b)
- "L, PN = L
The final solution is
yix,) = 206,1) + 5o (Lx = x°). @1)

Consider now the finite Fourier transform technique applied to this problem.
The transform associated with this problem is again (9), where A2 = n*z*/L* and
X (x) = \[2—/Esin(mtx/L) are the eigenpairs of (5) (this being the Sturm-Liouville sys-
tem that would result were separation of variables used on the corresponding homo-
geneous problem). If we apply the transform to PDE (18a), i

L azy L ) azy '
j‘o -é—t—z-X,.(x) dx = L (c Fres + g) X, (x)dx. (22)
Integration by parts on the right, along with the fact that X,(0) = X.(L) =0, gives

a* " ,iay L, L gy -

=3 =c* == — —X,d 1

50 LyX,,dx c {6xx" . c oaxX,, x + g

Loy -
— 2 Ly’ 2
¢ J.O axX,,dx+gl, (23)

where 1 is the transform of the function identically equal to unity,

L L /
1= j X, (x)dx = j \/%—singfdx =——2—£[l + (=1t (24)
0 0

L nm
Integration by parts again and boundary conditions (18b, ¢) yield
92 L -
b—t;j)'(/l,,,t) = —c2{yX,}5+ c? j yXudx + gl
0
L - -
= czj‘ y(—A2X,)dx + g1
V]
d*y
» de*
This is an ordinary differential equation for §4n,t). Transforms of initial conditions
(18d, ) require ji(4,,t) to satisfy the initial conditions
F(3s0) = J(Aa), (25b)
453, 0) _
i

2

or = —c¥lj+ gl (25a)

0. (25¢)
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The general solution of (25a) is

o 1
P(Aq, 1) = AqCOS cA t + Bysincat + C—gfﬁ (26)
n
where A, and ﬁ: are constaats. Initial conditions (25b, €) require these constants to
satisfy

-~

- g 1
f()‘n) = An + E_z—l—,.i’ 0= C'lan (27)
and therefore
- = gl gl
y(l.,t) = (f().,‘) - ﬁg) coscA,t + ~c—2'l—:j (28)

The inverse transform now defines the solution of (18) as

0= 3, Fho X,
- i 1
. lx,m([f(x,) - C‘i li]cos At + E%T)

2 © . nnx{{ x. g1 nnct gl 29)
_\/;.;sm——L—<[f(/.,‘)-czl:]cos T +c’l§>'

To show that this solution is identical to that obtained by separation, we calculate

s

#

" that for (x) = [g/2cHILx — x*),

:’sn,\/zu [+ (=11 =-C%3-. (30)

- L
J) = j VX0 dx =

CZ

Consequently, the last term of the series in (29) can be expressed as
© 2 . nnx gT o o~

—sin—- = )X (x) = .

PN (C%) 3 X0 = )

Solution (29) can therefore be written in the form

px0) = \E ); sinTL—x( Fid = W) cos"—"gE + Y0, 31)

which is clearly identical to that obtained by separation.

The transform method applied to this problem with a nonhomogeneous PDE is
essentially the same as when applied to the homogeneous problem (4). This is the
advantage of the transform method: it does not require homogeneous PDEs or
boundary conditions. To illustrate the method applied to nonhomogeneous boundary
conditions, we consider Example 4 in Section 3.3:

e} 2
i:kﬂ, 0<x<L, t >0, (32a)
at ax?

U@©,1) = U, t >0, (32b)
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UL, =0, t>0, (32¢)

U(x,0) = f(x), 0<x<L. 32d)

The finite Fourier transform for this problem is once again (9), where A2 =
n2n?/L? and X, = /2/L sin(nnx/L) are the eigenpairs of Sturm-Liouville system (5)

[obtained by separation when (32b, ¢) are homogeneous]. If we apply this transform
to (32a),

Lau L3y
— = — dx. 3
. X (x)dx =k , o2 X, (x)dx (33)
Integration by parts on the right, together with the fact that X,(0) = X (L) =0,
gives
L ’ L L L3y
2 UX,dx =k é—qX,I —k a—U-X:,dx=—k ?——X;dx. (34)
at 0 6x 0 0 ax 0 3x
Another integration by parts yields

L
0,0 = —k{UXL}5 + kj. UX"dx
V]

9
ot

L
= —k(U(L, X (L) — U0, X (0)) + kj~ U(~-22X,)dx,
[\ .

in which we may use boundary conditions (32b, c):

d0 2 . 2 .
I-——kUL\/;/I,(—l) +kU0\/;—l,, kA2U

~ 2
= —ki2U + k\/;,l,,[uo + U(—=1)"*1]. (35a)
Accompanying this ODE in U(4,, ) is the transform of initial condition (32d),
T2 0) = f(2,). (35b)
The general solution of (35a) is
- R 2
U(A,,t) = Aje™ ™ + A;‘\/%[Uo + Uy (—1)"*1], (36)

where A, is a constant. Initial condition (35b) requires that

f(;*n) = An + ;';1 \/%[UO + UL(_ l)"+l]1 (37)

Ulhy,0) = e"‘“'(f("-..) = \/%[Uo + U~ 1)"”])

]2 ' ‘
+ 7t \/E[UO + U= '] (38)

and therefore
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Inverse transform (3b) defines the solution of problem (32) as

Ulx, 1) = i. (2, () X(x)

?{2 ﬁm%@"’*‘w[ fG) = A7" ﬁ[uo + U(— l)"“]]

a5 \/%[uo + U= 1)"“]). (39)

To show that this s_olutidn is identical to that obtained by separation of vari-
ables in Example 4 of Section 3.3, we calculate that for Y(x) = Uy + (U — Up)x/L,

L
) = [ VRX L) dx = A \E[Uo £ U1 “0)
o .

Solution (39) can therefore be written in the form

U(x,t) = ﬁ 2 eI F0 ) — §(A,)) sinﬁ;—ii + Y(x), (a1)

identical to that obtained by separation of variables.

If we set x = 0 and x = L in (39), we obtain U(0,t) = U(L,t) = 0, whereas x = 0
and x = Lin(41) give U(0,t) = Uyand U(L,t) = U..Inother words, the function in (39)
does not satisfy boundary conditions (32b, c), but (41) does. This is because the series
expansion of (x) in (39) is a Fourier sine series, and as such it converges to the odd
extension of Y(x) to a function of period 2L. At x =0 and x = L, this extension (see
Figure 6.3) is discontinuous, and the series therefore converges to the average value of
the right and left limits, namely zero. For any other value of x between O and L,
solutions (39) and (41) give identical results.

A U+
%
o

-L L 2L
AT Uq P
Oddextension .-~ e
o " . .
of lh(x,)// =" Periodic
o k» -U, o extension

Parts of a finite Fourier transform solution that can be expressed in closed form
should always be so represented. An additional reason for doing this is that the rate of
convergence of the series is enhanced when the closed-form portion is extracted.

In the remainder of this section we consider two additional problems that have
nonhomogeneities of a more general nature.




ample 2:

Solution:

e
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Solve the heat conduction problem

2—?=k%2;[2£, O0<x<L, t>0, (42a)
U@, = fit) == +>0,. _ (42b)
UL, )= —x"'fr(), >0, (420)
U(x,0) = f(x), 0<x<L. (42d)

Physically described is a rod of length L with insulated sides that at time ¢ = 0 has
temperature f(x). For t > 0, the temperature of its left end is a prescribed £,(t), and heat
is transferred across the right end at a rate f5(¢). When f(t) is positive, heat is being
removed from the rod, and when f5(t) is negative, heat is being added.

Were separation of variables to be applied to the associated homogeneous probiem
[with f,(t) = f,(¢) = 0], the Sturm-Liouville system

X"+ 22X =0, X0)=0 X(L)=

would result. Eigenvalues are A2 = (2n — 1)>n?/(4L?), with corresponding eigen-
functions X,(x) = +/2/Lsin 4,x. If we apply the finite Fourier transform associated

with this system to (42a),
L L 32
W ydx=k| 22 x,dx.
o O o 0x?

Integration by parts on the right integral gives

F) oU Lou _,
é?f UX,dx —k{a }O—kLa—Xd
L
= kUL, )X,(L) — k{UX.}5 + kj UXYdx
0

L
= k(U,t(L. OX,(L) + UQ©Q,0)X,©0) + j. —AiXU dx). (43)
0

When we use (42¢) in the first term and (42b) in the second, we may write

dU

o = k- KT HOXAL) + [ ()X (0) — 22T (A, 0)].

Thus, U(A,, ) must satisfy the ODE

dU ~
ot kA2U = A(A,,0), (44a)
where Al 1) = k[~ k™ f7() X(L) + f1() X,(0)]
5
=k \/; (=D + 4 fi(0] (44b)

subject to the transform of (42d),
T(4,0) = f). (44¢)
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The general solution of (44a) is

0Q,,1) = e J A(R,, 1)e 4™ dt,

- - -,

but, in order to incorp;)?éte initial condition (44c), it is advantageous to express this
solution as a definite integral:

t
0., 0= e—**i‘(J A, u)e ™ du + c,)
0

= C,e "% + J: AL, u)e e~ dy,
Condition {(44c) now requires that f (4,) = C,, and therefore
T(A,. 1) = f(Ag)e ¥ + J‘;A(A,,u)e“%("-"du. (45)
The solution to problem (42) is defined by the inverse finite Fourier transform,

U(x,t) =

(] - 2 t o .
=73, <f(/1,.)e““-' +j A(R,, u)e ”du) \/%sm AnX. (46)
a=1 ')

As a specific example, suppose the rod is initially at temperature zero [f(x)=0],
its right end is insulated [ f5(t) = 0], and its left end is held at constant temperature
100°C. According to (44b) and (45),

% ‘ : J2iL .
U@, t) = j‘ k\/%l,,(l()())e"*“‘"'”du - E.QA__/_.O — e kA

[}

U, ) X(x)

e

and hence
2 100\/ 2/L 2 2 . n 1
U(X, t) = "Z‘ -___—-——;t" / (1 — e_kl"') \[— sxn(___z_.l___.

The solution may be simplified by noting that when h(x) = 100,

L 2 100+/2/L
hi4,) = J lOOJ%sin Axdx = ——7—/—
0

n

Thus. hx) =100 = Y

and it follows that

400 £ e—(ln—l;’u’kl;ML’l (2n — nx
U(x,t) =100 — — in—-————
(=100 - =23 — =7 "L

This function is plotted for various values of t in Figure 6.4 (assuming a thermal
diffusivity of k = 12 x 107¢ m?/s).
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U(x, 36,000)

50

N\~ Utx, 0) L

A taut string has one end, at x = 0, fixed on the x-axis while the other end, at x = L, is
forced to undergo periodic vertical motion described by g(f) = Asinwt, t > 0(4a
constant). If the string is initially at rest on the x-axis, find its subsequent displacement.

The initial boundary value problem for displacements y(x, t) of points on the string is
a’y 0%

cm T O0<x<L, t>0, (47a)
y(0,t) =0, t>0, (47b)
y(L,t) = g(t), t>0, (47¢)
y(x,0) =0, 0<x<L, (47d)
J,0)=0, O<x<L (47¢)

The finite Fourier transform associated with x is

L
f@) = J S(¥) X (x)dx,
0

where A2 = n?r?/L? and X,(x) = +/2/Lsin A,x. Application of the transform to PDE
(47a) leads to the following ODE in y(4,, t):

d*y
T+ =~ Xi(L)g)

(48a)
subject to
;(/.'nvo) = ;’(}.",O) = O

Variation of parameters on problem (48) gives the solution in the form

*n 4]

F(lns ) = —_—f—);(—"(—u J g(u)sin cz,(t — u)du.
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This is a general formula valid for any function g(f) whatsoever. In this problem,
g(t) = Asinwt, so that F(/q» 1) could be obtained by evaluation of integral (49). (Try it.)
Alternatively, if we return to (48a), the general solution when g(t) = Asinwt is

ActX (L)

sin wt, (50)
il —w?

T (A, )= B,cos CA,t + Dysincut —

provided @ # c4, for any integer n. Initial conditions (48b) imply that

AccwX (L)

0=8, 0=Cl..Dn—m»

from which
- AcoX (L) . Ac2X (L) .
= —_ . 51
FA.. 0 Tl — wz)sm cAat T —o? sin wt (51)
Thus, y(x, 1) = Y, Fnr ) Xal(x)
a=1
© AcX(L) fw . . .
= .Z::l s (Z sin cA,t — csin wt) X, (x)
= 2 A i (- wL sinﬂ — nncsinwt sinﬂt—’5 (52a)
- &ontnict — ofl? , L L’

This is the solution of problem (47), provided w # cA,; that is, provided w is not equal
to a natural frequency of the vibrating string. If this solution is separated into two
series,

® (=" nmct | nnx

w0 = 2weld 3, o st L L

© (-1t . nmx
+onclAsinot ¥, w573y Is
,Z:‘, ninic? — w?l? L
it is not unreasonable to expect that the second series, since it is void of t, is the Fourier
expansion for some function. Indeed, it is straightforward to show that the series
represents (2nc?) ! sin(wx/c)/sin(w L/c). In other words, the solution may be expressed

in the simplified form

Asi ) sin wt ® -1y t .
sin(wx/c) sinw + 2wcLA z (-1 nnc nnx

(x,t) = - in——sin——. (52b
v sin(wL/c) ,.=ln21tzcz—szzsm L L (52b)

We now investigate what happens when w is equal to a natural frequency of the
vibrating string; that is, suppose @ = mnc/L for some integer m. When n # m, solution
(51) of (48) is unchanged. But for n = m. §{4,.t) must satisfy

d 2
[2

=

|

+c2idy = —c* X (L)Asincints (53a)

[~

G 0) = (2, 0) = 0. (53b

The general solution of (53a)is

. . . AcX: (L .
Fhpmo 1) = Bpcoscanl + D, sincA,t + ———-.—(——)tcos Clhnt. (54

m
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Initial conditions (53b) imply that

AcX (L)
0=8B, 0=ci,D, T
from which- T
- —AX(L) . AcX.(L)
= = . 5
y(&,..,t) 222 ncl,t + 2. £COS CAt (55)

In other words, when @ = cd,, = mnc/L, the sequence {J(4,,t)} remains unchanged
except for the mth term, (4, t). The inverse transform now gives

Y060) = Fhms 0Xal) + 3. Tl 0,0

ntm

and substitutions from (55) and (51) lead to
A(—-D)" mnct L . mmct\ . mnx
y(x,t) = ———| ctcos —— — ——sin sin—

L L mn L L
24 = —-1)" t . { AN
+— "};t n( b — (m sm-nTc— — nsin mzc >sm % (56)
ntEm

For large ¢, the first term in (56) becomes unbounded. This phenomenon is known as
resonance. When the forcing frequency (w) is equal to a natural frequency (c4,) of the
vibrating system, oscillations may become excessive and destroy the system. "

Further instances of resonance are discussed in Exercises 23-32 and 35. In some
applications, resonance is disastrous for the system; in others, resonance is exactly what
is desired. '

In this section we have dealt with initial boundary value problems. Finite Fourier
transforms can also be used to solve nonhomogeneous boundary value problems in
Cartesian coordinates x and y. We have already suggested (see Section 5.3) that when
nonhomogeneities occur only in boundary conditions, the problem can easily be solved
by subdivision into homogeneous problems. In other words, finite Fourier transforms

need only be used to accommodate nonhomogeneities in the PDE. This s illustrated in
Exercises 42-47.

Exercises 6.2

Use finite Fourier transforms to solve all problems in this set of exercises.

Part A— Heat Conduction

1. A cylindrical, homogeneous, isotropic rod with insulated sides has temperature f(x),0 < x < L,
attime t = 0. For time ¢ > 0, the end x = O is held at 0°C and the end x = L is held at constant
temperature U, °C. What is the temperature in the rod for0 < x < Land t > 0?

2. A cylindrical, homogeneous, isotropic rod with insulated sides is initially at temperature lO°C
throughout (0 < x < L). Fortime t > 0, its ends (x = 0 and x = L) are held at temperature 0°C.
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At each position x in the rod, heat generation occurs and is defined by g{x, 1) = e” % a > 0,0 > 0,
0 < x < L. Find the temperature in the rod as a function of x and 1. Assume that o # nmnk/L?
for any integer n.

3. Solve Exercise' | in Section 3.3
4. Solve Exercise 6 in Sectiof 3.3.
5. A cylindrical, homogeneous, isotropic rod with insulated sides is initially at temperature

Ul — x/L), U, a constant. For time ¢ > 0, theend x = 0 is maintained at temperature U, and
end x = L is insulated. Find the temperature in the rodfor0 <x < Landt>0.

. Solve the initial boundary value problem for temperature in a homogeneous, isotropic rod with

insulated sides and ends held at temperature zero. Heat generation is defined at position x and
time ¢ by g(x, ¢}, and the initial temperature of the rod is described by f(x).

7. Repeat Exercise 6 if the ends of the rod are insulated.

8. (a) Show that finite Fourier transforms for the problem in Exercise 5 of Section 3.3 leads to the

10.

following solution: ‘
' o 01+ (="' k(=" \ e

U ) = 00 a2xlke/L
(x.0) =2 ,.Z:. [( nw + nirnik — L? ¢

nak(—1)"*! e"] nmx

n2ntk — L? s

(b) Simplify this solution by finding the transform of the function f(x) = x and using the partial

fraction decomposition

1 -y nnik/L?
n(nin?k — L} n n*ntk — L?

on the last term.

We have claimed that to solve an initial boundary value problem with finite Fourier transforms,

it is necessary to use the transform associated with the Sturm-Liouville system that would result

were separation of variables used on the corresponding homogeneous problem. To illustrate
this, apply the finite Fourier transform associated with Sturm-Liouville system (2) of Chapter 4
to Exercise 2. Show that an insoluble problem in J(4,,t) is obtained.

A cylindrical, homogeneous, isotropic rod with insulated sides is initially at temperature zero
throughout. For times ¢ > 0, there is located at cross section x = b (0 < b < L) a plane heat
source of constant strength g. If the ends x =0 and x = L of the rod are kept at zero
temperature, the initial boundary value problem for temperature in the rod is

P#U téU g

E;(T"E’E_t"‘zé(-\'—b). 0<x<L, t>0,
U.0) =0, t>0,
U(L.1) =0, t>0.

U{x,0)=0, 0<x<L,

where 8(x — b) is the Dirac deita function. Solve this problem for Uf{x,t), using the fact that

L
j‘ f(x)d(x — bydx = f(b).

0
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11. Solve Exercise 8 in Section 3.3.

12. Repeat Exercise 5 if the temperature of the end x = Ois Upe™ ™ (x > O aconstant). To simplify the
solution, use the technique of Exercise 8(b) with f(x) = 1. Assume that x # n?a2k/L? for any
integer n.

13. If the ends x = 0 and x = L of the thin-wire pteblem in_Exercise 3 of Section 5.2 are kept at
constant temperatures U, and Uy, respectively, and the initial temperature is zero throughout,
show that

_ U, sinh A/k(L — x) + U, sinhh/kx
sinh/h/kL

e 2 0lUs + (DU i g, X
— 2kme™™ n[Uo L n2x2ki/L il
R T

U(x,t)

14. Repeat Exercise 5 if heat is added uniformly over the end x = L at a constant rate ¢ W/m?.

15. (a) A cylindrical, homogencous, isotropic rod with insulated sides is initially at constant
temperature U, throughout. For time ¢ > 0, the right end, x = L, continues to be held at
temperature U,. Heat is added uniformly over the left end, x = 0, at a constant rate ¢ W/m?
for the first t, seconds, and the end is insulated thereafter. Find the temperature in the rod for
O<x<Land0 <t <t _

(b) Assuming that U(x,t) must be continuous at time ty, find U(x,t) for 0 <x < Landt > ¢,.
(9 What is the steady-state solution?
16. Repeat Exercise 15if theend x = L is insulated.

17. Find a formula for the solution of the general one-dimensional heat conduction problem

ou ﬂ}_ kg(x,t)

—aT=kax2+ p 0<x<L, t>0,
U
—11-5;+h1U=f,(t), x =0, t>0,
U

lz—x‘+h2U=f2(t), X=L, t>0,

U(x,0) = f(x), 0<x<L.

18. The general thin-wire problem (see Exercise 31 in Section 1.2) is

eU v k
= _kF—xT—h(U—U,,,)+;g(x,t), 0<x<L,
eU
—lx—a?+h,U=f1(t), x =0, t >0,
eu

lz'g‘;'i"hz[j:fz(l), X = L, t>0‘

Ux,0)= f(x)y O<x<L.
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(a) Show that the change of dependent variable U(x,1) = e"U(x, 1) leads to the initial boundary
value problem
;U 0 k
0 Y (U gt et 0<x <l t>0,
- ==L Ot &x K
au L
—ly ot w0 =€, x=0 1> 0,
’2%% + hzl-] = emfz(t), x = L, t> 0,

Ox,0 = f(x), 0<x<L.

(b} Use the results of Exercise 17 to find U(x, ) and hence U(x,¢).

Part B— Vibrations

19. Solve Exercise 13 in Section 3.3.

20. Solve Exercise 14 in Section 3.3.

21. Theend x=00f a horizontal elastic bar of length L is kept fixed, and the other end, x = L, is
subjected to a constant force per unit area F acting parallel to the bar. If the bar is initially

unstrained and at rest, the initial boundary value problem for longitudinal displacement y(x,t)of
the cross section originaily at position x is

:t—z—=cb-;2—, 0<x<L, t>0,
30,0 =0, t >0,

MLY _ g >0

éx

y(x,0)=0, 0<x<UL,
_— y,(x,0) =0, 0<x<L,

where E/p = ¢*(E = Young's modulus of elasticity and p = density).
(a) Show that the solution to this problem is

8LF 2 (—1)*! -1 —1
(-1 <1——cos(2n )cnt)sin(Zn )nx'

¥t =g "; @n -1 L 2L

(b) Find the finite Fourier transform of the function M{x) = x,0 <x < L, and use the result to
write y(x, 1) in the form '
8LF = (—1r+! Qn — Dert . (2n — nx
—_— L sin——

L) = = M) = =5
sy =g M) T Lo 2L 2L

(¢} Show that y(x.t)can now be expressed in the form

F 1 { :
yx.)y = —E(M((Y) - :j.\fd.‘( + ct) — EML(x - C!)),

where M;(x) is the extension of M(x)toan odd, odd-harmonic function (see Exercise 2tin
Section 2.2). 3



22.

23.

24.

Exercises for Section 6.2 241

(d) Evaluate y(L,)and draw its graph as a function of ¢ to illustrate the motion of the endx=1L
of the bar.

A horizontal elastic bar of natural length L lies along the x-axis between x = 0 and x = L. At
time ¢ = 0, it is stretched so that the displacement of the cross section at position x is given by the
function kx, k > 0 a constant, 0 < x < L._The_bar is released from rest at this position. Ifa
constant forc€ per unit area F acts paraﬂel'(é the bar-on the end x = 0, find subsequent
displacements of cross sections of the bar.

A taut string initially at rest 'along the x-axis has its ends x = 0 and x = L fixed on the axis. If a
periodic external force Fy sin wt, t 2 0, per unit x-length acts at every point on the string, find the
displacement of the string. Include a discussion of resonance.

A taut string initially at rest along the x-axis has its end x = 0 fixed on the x-axis. Theend x = L

is forced to undergo periodic vertical motion Asinawt, t 20 (4 and @ constants). Find the
displacement of the string. Include a discussion of resonance.

In Exercises 25-32, determine frequencies of the applied force that will produce resonance. Do
not determine the solution to the initial boundary value problem, only the frequencies.

25.

26.

27.
28,
29.
30.

31

32.

33.

34.

The string in Example 4 if theend x = 'L is free to slide vertically and an external force Fy sin wt,
1 > 0, per unit x-length acts at every point on the string.

The string in Example 4 if both ends are free to slide vertically and an external force Fosinwt,
t > 0, per unit x-length acts at every point on the string. [Find the solution y(x, t} in this case.}

The bar in Exercise 21 if the force is F = Fysin wt.
The bar in Exercise 21 if the end x = O is free and F = Fysin wt.
The bar in Exercise 21 if the end x = L has a prescribed displacement A4 sin wt.

The bar in Exercise 21 if the end x = 0 is free and the end x = L has a prescribed displacement
Agsinwt.

The bar in Exercise 21 if the ends x = 0 and x = L have prescribed displacements A, sin wt and
By sin ¢t, respectively.

The bar in Exercise 21 if the ends x = 0 and x = L are subjected to forces F, sin wt and G, sin ¢t
(per unit area), respectively.

An elastic bar of natural length L is clamped along its length, turned to the vertical position, and

hung from itsend x = 0. At time t = 0, the clamp is removed and gravity is therefore permitted to
act on the bar.

(a) Show that vertical displacements of cross sections of the bar are given by

16gL% = 1 : — _
g 3 (2n 1)Cmsin(2n 1)nx‘

gx
=2 0L -x-
Y0 =500 = =7y L G TS oL 2L

(b) Find a closed-form solution for y(x,t). [Hint: See part (c) of Exercise 21.]
(c) Sketch a graph of y(L,t). Does the end x = L of the bar oscillate about its equilibrium

position, that is, the position of the lower end of the bar if the bar were to hang motionless
under its own weight? (See Exercise 13 in Section 1.3.)

{a) Find displacements in the bar of Exercise 33 if the top of the bar is attached to a spring with

constant k. Let x = O correspond to the top end of the bar when the spring is in the
unstretched position.

(b) Does the lower end of the bar oscillate about its equilibrium position? (See Exercise 14 in
Section 1.3.)
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35. Repeat Example 3 if a damping force — fey/at, proportional to velocity, acts at every point on
the string. Assume that § < 2rpc/L. Can resonance with unbounded oscillations occur?

36. (a) Theends of a taut string are fixed at x = 0and x = L on the x-axis. The string is initially at
rest along the axis and then is allowed to drop under its own weight. Find a series
represemation for the displacement of the string.

(b) Show that the solution in (a) can be expressed in the closed form

x, t) = M{(x) — %[M(x +ct) + M(x — ct)],

where M(x) is the odd, 2L-periodic extension of the function g(Lx — x)/(2c?).

37. Repeat Exercise 36 if the string has an initial displacement f(x).

38. The ends of a taut string are looped around smooth vertical supports at x =0 and x = L.If the
string falls from rest along the x-axis, and a constant vertical force F, acts on the loop at x = L,
find displacements of the string. Take gravity into account.

39. A motionless, horizontal beam hasits ends simply supported at x =0 andx = L. Attimet =0,a
concentrated force of magnitude A is suddenly applied at the midpoint.

{a) If the weight per unit length of the beam is negligible compared with A, show that the initial
boundary value problem for transverse displacements y(x, ) is

ay 0% A L
hoA it A | e B 0<x<L, t>0,
Tt P *73 x
y0,0) = y(L, 6y =0, >0,
.Vxx(oa t) = yxx(Lv ty = 0, t>0,
y(X,O) = ,V;(X‘O) =0, 0<x<L,
where ¢2 = EI/p and p is the linear density of the beam.

(b) Solve this problem using the finite Fourier transform associated with Sturm-Liouville system
(1) of Chapter 4.[See Exercise 10 for the requisite property of the delta function 8(x — L/2).]

40. Find a formula for the solution of the general one-dimensional vibration problem
8?2 %y  F(x,t
Y o2 ___y. 4 _(__),

— = 0<x<L, t>0,
¢ ax? P * :

oy
—h- +hy=f@, x=01>0,

I7j
lzgy; + hyy = f(0), x=1L, t >0,
Wx,0) = flx), O0<x<L,
y(x,0) = g(x), 0<x<L:

41. Theend x = 0of a horizontal elastic bar of length L is kept fixed, and the other end has a mass m
attached to it. The mass mis then subjected toa horizontal periodic force F = Fo sin wt. If the bar
is initially unstrained and at rest. set up the initial boundary value problem for longitudinal
displacements in the bar. Can we solve this problem with finite Fourier transforms?
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Part C— Potential, Steady-State Heat Conduction,
Static Deflections of Membranes

42,

43.

44.

45.

46.

47.

A charge distribution with density a(x, y’) coulombs per cubic meter occupies the volume R in
space bounded by the planes x =0, y = 0 x= L and y = L', and these planes are all held at
potential zer6. _ —

(a) Use finite Fourier transforms to find the potential V(x, y) in R when ¢ is constant. Find two
series, one by transforming the x-variable and the other by transforming the y-variable.

(b) If o = o(x) is a function.of x only, find V(x, y).
() Find V(x,y) when o = xy.

A uniform charge distribution of density o coulombs per cubic meter occupies the volume R
bounded by the planes x = 0,y = 0, x = L,and y = L' If the electrostatic potential on the planes
x =0,y =0,and y = L'is zero and that on x = L is f(y), find the potential in R.

Repeat Exercise 43 when planes x = 0, x = L, and y = L' are held at zero potential and y = 0
is at potential g{x).

Repeat Exercise 43 when planes x = L and y = L' are held at zero potentialand x = 0and y =0
are at f(y)and g(x), respectively.

Find a formula for the solution of the general two—dlmensxonal Dirichlet boundary value
problem

61V v
== +t53 357
VO.y) =£fi(»), O0<y<L,
VIL,y)= fo(y), O<y<lL,
V(x,0) = g,(x), O0<x<L,
V(x, L") = g,(x), O0<x<L.

= F(x, y), 0<x<L, O<y<L,

We suggested at the end of this section that two-dimensional boundary value problems on
rectangles with four nonhomogeneous boundary conditions and homogeneous PDEs can be
subdivided into two problems, each of which has two homogeneous and two nonhomogeneous
boundary conditions. There is an exception to this, namely the Neumann problem. For example,
the Neumann problem associated with Laplace's equation is

v 8 .
'(ax—z'f’a——z‘:(), O0<x<L, 0<y<L',
v,y _ .
ax fl( )’ 0 < ,V < L1
éV(L )
= n) 0<y<lLy
aV(x,O) _
2y =g:x), O<x<L,
aV(x, L")

3y = g,(x), O<x<L,
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where the nonhomogeneities must satisfy the consistency condition

L L
J- [g2(x) — g2(x))dx + J Lf:(») — fi(y)]dy =0.
0 0
Our prcvious.-sTxggdtioT\“would indicate that ¥(x, y) should be set equal to V(x,y) = Vi(x,y) +

Vy(x, y), where V, and ¥, satisfy Laplace’s equation on the rectangle and the following bound-
ary conditions:

V0, y) .
S o<y<Ly

.
-

aVz(o, ,V) -
Ox

Vy(L.y) _
Jdx

aVi(x,0) _ V,(x,0)
2y =0, 0<x<L, 2 = g,(x), 0<x<L,

Vi Lt Vy(x, L'
ML) o gex<Li ML) o, 0<x<L.

0, C<y<lL,

aVl(Li Y)

o =filyy O<y<L, 0, O<y<lL,

But these Neumann problems must satisfy the consistency conditions

L L
L. (20— fi(y)]ldy =0 and J‘o [g2(x) — g:(x)]dx = 0.

The difficulty is that the combined consistency condition on fi f2» 91, and g, may not imply
these separately. [n general, then, solutions for ¥, and ¥, may not exist. With finite Fourier
transforms, this difficulty presents no problem. Find V(x, y) using such a transform.

6.3 Higher-Dimensional Problems in Cartesian Coordinates

To solve nonhomogeneous initial boundary value problems in three and four variables,
we can once again remove space variables from the problem with finite Fourier
transforms, leaving an ODE in the transform function regarded only as a function of
time. There are two ways to do this. Successive finite Fourier transforms, each a
transform in only one space variable, can be applied to the PDE. This corresponds to
successively separating off space variables in homogeneous problems. Alternatively,
multidimensional finite Fourier transforms associated with multidimensional eigen-
value problems (see Section 5.5) can be introduced. We take the former approach. To
illustrate, consider the following initial boundary value problem.

Example 4: Solve the heat conduction problem

cU U U
< '{-7;—74"‘——2‘, O0<x<L, - 0<y<L', t>0, (57a)
éx dy

o
U, y,0) =Uy, O<y<lL, t >0, (57b)
UL,y t) =0, O<y<lL, t>0, (57¢)

U(x,0,1) = U,, 0<x<L, t >0, (57d)
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Ufx,L',t)=0, 0<x<L, t>0, (57e)
U(x,y,0) =0, O<x<lL, O<y<L. (57f)

Physically described is a horizontal plate that is insulated top and bottom and along
the edge ¥ = L'. Initially the temperature is zerq throughout the plate, and for ¢ > 0,
faces x=0, x = L, and y =0 are held at constant temperatures U, 0, and U,,
respectively.

The finite Fourier transform associated with the x-variable is

fn) = f * X ) dx, (58)
[}

where A2 =n?a?/L? and X,(x) = J2/Lsin(nnx/L) are the eigenpairs of the Sturm-
Liouville system '
X"+2%X =0, 0O0<x<L,
‘X(0) = X(L)=0.
This is the system that would result were separation of variables applied to problem

{57) with homogeneous boundary conditions. If we apply this transform to PDE (57a),
and use integration by parts,

L L /32 2
J t-:’HX,,dx=kJ (6 v +a—E>X,dx

o Ot o \éx? © 3y?
a* (t ou _\* Lau
= ks — — — X' dx.
3 L UX,dx + k{ax X,.}o kJ.o Em wdx
Since X,(0) = X, (L) =0,
a L azﬁ(lnfyf t) +\L L "
Y L UX,dx = kT —k{UX, }6+k \ UX,dx.
Boundary conditions (57b, ¢) and the fact that X, = —A2X, now give
ou o , L ,
—a't— = ka’—i— + kle,,(O) + k jl) U(—l,,X,,)dx
Thus, U(4,, y, ) must satisfy the PDE '
a0 | 3*0 _
— =k + kU X,(0) — kAU, O<y< L, t>0 (59a)
ot dy
subject to the transforms of conditions (57d -f),
U(:,0,0) = Up1,,  t>0, (59b)
U4, L 0)=0, - >0, , (59¢)
U(y,00=0, O<y<lL, (59d)

- L L / R LES!
where {, = j‘ X"dx = J /%sinf{idx = 2LLL+( ) ] (59¢)
nn

0 0




246

Chapter 6 Finite Fourier Transforms and Nonhomogeneous Problems

The finite Fourier transform associated with the y-variable in problem (59) is
L
S} = J F() Ya(y)dy, (60)
0

where u2 =f§‘rh_'- 1)2x34L'?) and Y (y) = J2/L'sin[(2m — 1)my/(2L')] are eigen-
pairs of the Sturm-Liouville system
Y'+u*Y=0, O<y<lL|
Y(0)= Y(L)=0.
If we apply this transform to PDE (59a),

L 2 Lt
f oU — Y, dy= kJ. 2’0 Y, dy +I (KU, X(0) — kA2U] Y, dy,
0

o Ot oy?
and use integration by parts,
30y, s 1) o0 v a0
T ymrm kA2 k{—Y, —k — Y,
E kU, X'(0)1,, + kA2 0= 3 . , By dy,
X L
- (2m — Dmy 2\/2L'
h = =
where 1, L Y, dy j. \/; 75 dy (2m am— ' (61)

Since Y,,(0) = 0 and 8U(4,, L', t)/dy = 0,

%ﬂ — kU, X (0T, + k20 = —k{UY,)5 + k[ gy, dy
Boundary condition (59b) and the facts that Y/ (L) =0and Y, = — p,,,Y,,, yield
aU ’ T 2 7 t T L 2
o kU X0, + kAZU = kU, Y, (0) 1, + k \ U(—pkY)dy
dU 2 ,
or T + k(A2 + p,,,)U kU, Y, 01, + U X (01,1 (62a)

Accompanying this ODE in [7(/1,,, fhm, ) is the transform of initial condition (59d),
O(As, s 0) = 0. (62b)

Because the right side of (62a) is a constant with respect to t, a general solution of this
ODE is

Gt ) = Apge™ MRS U, Y’m(O)l + U X0,
ny I mn A +ﬂm ,

where the A,,, are constants. Initial condition {62b) requires that

u,Y, (0)1 + U X, o1,
AL+

0=A

mn
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and therefore

Us Yol O)To + Ui X0l (| -riiteutiy

TGy s t) = 6
To find U(g, y,t), we now invert transforras (60) and (58):
© ©
U0 = 3 3 Ol D YlNXL)
Substitutions for (7().,,, s 1), Yu(¥) and X, (x) lead to
U(X, v t) =8 i < Bm,,(l . e—[dn’:*L‘*i»(Zm—l)’x’Lzlkt/(-tL’L"))
m=1n=1
.onax . (2m— Dy
X sin L sin 30 , (64a)
et 1212 2112
where 8 = (t+(=)"""132m =1 L2U, + 4n’L"*U, « (64b)

mn = T p2m — O(aniniL? + (2m — 1)*7?L*)
As a second example, we consider a boundary value problem in three dimensions.

Find the potential inside the region bounded by the planes x =0,x =L,y = 0,y=L,
7 = 0,and z = L"if all such planes are held at potential zero and the region contains a
uniform charge distribution with density ¢ coulombs per cubic meter.

The boundary value problem for potential ¥(x,y, z) in the region is

o W PV _ ¢

'EZ—“LEFJ’azZ -0 0<x<L, O<y<l, 0<z< L', (65a)
V(0,y,2) =0, O<y<lL, O0<z<L" (65b)

V(L,y, 2z} =0, 0<y<lL, 0<z< L (65¢)

V(x,0,2) =0, 0<x<L, 0<z<L" (65d)

Vix,L',z) =0, 0<x<L, O0<z<L", (65e)
Vix,5,0)=0, 0<x<L, 0<y<L (65f)

Vix,y, L} =0, O0<x<UL, O<y<L. (65g)

The finite Fourier transform associated with the x-variable is

- L
flh) = J f(x)X,(x)dx, (66)

[

where 42 = n*r?/L? and X, (x) = V2/L sin{nnx/L) are the eigenpairs of the Sturm-
Liouville system

X"+ 22X =0, 0<x<L,
X(0) = 0 = X(L).
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When we apply this transform to PDE (65a) and use integration by parts,

Loy W o Latv
PV BV I\ydax=—| X
L (Byf t 2 + e> ndX L ax: " *

S ov - [tov
= —{—— —-X.d
{6): X"}O+L ox " x

{and since X,(0) = X (L) =0}

L
— (VX.}E —j VX' dx
0

{and since V(L,y,2) = V©O,y,2) = 0]

L.
= -j V(—A2X,)dx

]

= A2V (A 1:2)

Thus, V{(4,, y,z) must satisly the PDE
v 9
ERT

subject to the boundary conditions

7(,,0,2)=0, 0<z< LY,
Pa,. L, =0, 0<z< L,
Ph,y,00 =0, 0<y< L,
P, yLY=0 0<y< L

—i?.l7=-—%'f,,, 0<y<Ly

and i, =
0

0<z<lL"

L — nt+l
.- i = LT

To eliminate y from problem (67), we use the finite Fourier transform

~ L‘
fea) = So T(y) Yl ) dys

where p% = min?/L? and Yo(y) = J2/L' sin(mny/L") are ei

Liouville system
v o4+ ulY =0, 0<y<L,
Yy =0= Y(L".

Application of this transform to (67a) yields

Loty . o= (Le
C L av+ -l Y. dy = — 2 Y, dy
So (E:z ! € ﬂ) ’ ,\0 ey’ )

5‘7 L L ‘7
- —{%Q A
cy 0 o ¢Y

(67a)

(67b)
67¢)
(67d)
(67¢)

676)

(68)

genpairs of the Sturm-
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o
= {VY;}g‘—j VYendy
0
[and since 7(4,,0,2) =

- L‘ ~
o

V(4. L'\2) = 0]

: = 2V (Ays s D)
Thus, V(A U, 2) MUst satisfy the ODE
2= V = =
%;‘2—/—(/13 + ul)yW = —-%l,,,,, ‘ 0<z<lL (69a)
subject to l;;(l,,, Hem»0) =0, {69b)
V(A itms L) =0 (69)
- L f ] _ytt __qymt1
and Tﬂm= j. 1,Y.dy =z_,l_‘!‘_—[}—t(——:r);‘?lg—i(’_l)"]—. (69d)
[+]

The general solution of (69a) is
@m0

Por2) = A, coshAr + iz + B,,sinhy/A% + iz + Tr

(A
Boundary conditions (69b, ¢) require that
(0/8)Lam
0= 5
A ¥ Tl

Tl i
0 = ApacoshIZ ¥ RAL" + BasinhV 4z + uAL" + —‘Yz/?- e

and B, and the results are substituted into (70),

(0l (sinb T+ RR(L" )

l:} Ay Bes 2) =
oot (12 + p)sinh /A2 + HAL"

When these are solved for Amn
Vi(dns Ums 2) simplifies to

+ sinh J2A2 + piz — sinh JAZ 4 p LY. (71)
The solution of problem (65) is therefore
a (72)

Vixgd) = 5 2 Plins bt DX Yl

m=1n=1

Exercises 6.3

Part A— Heat Conduction
te has its top and bottom faces insulated. Edges x = 0,

eous, horizontal pla
peratures Uy, U,, Uy, and U, respectively,

L' are all held at constant tem

1. Anisotropic, homogen
x=L,y=0andy=




250 Chapter

for time ¢ > 0. 1f the temperature in the plate at time ¢ = 0is f{x.yh

its temperature thereafter.

6 Finite Fourier Transforms and Nonhomogeneous Problems

OSXSL,OSySL'.ﬁnd

2. (a) Solve the following heat conduction problem:
- :-%%zk(%;yz_+%}(;i>' 0<x<L, o<y<L, >0
U@,y = U, 0<y<lL, t>0,
UL,y.t)=U,, 0<y<lL, t>0,
U,(x,O,t)=x;‘¢,, 0<x<L, t>0,
U,(x, L'\t = —x;tp,, 0<x< L, t>0,
U(x, 5,0 =0, 0<x<L, 0<y<lL,

where Uy, Uy, ¢, and ¢, are constants. Interpret the problem physically.

(b) What is the solution when
3. Repeat Exercise 2(a) when Uy,

¢ =2 =0

U,, ¢, and ¢, are functions of time t.
Find a formula for the solution of the general two-dimensional heat conduction problem

ou o U\ | kglx. 1) ‘
—at‘=k(5?‘+73}7>+'_————x , 0<x<L, o<y<L, t>0,
ou
_11_3;+hlu=fl(y,:), x=0, O<y<L, t>0,
oU
oo+ hU = finth  x=L o<y<L, t>0
U ’
_133;+h3U=f3(x,t), y=0, 0<x<L, t>0,
ou
14—5}7 + h4U =f4(xat)9 y= Ll, 0<x< L" t> 0’
Ux,3,0) = [y 0<x<L 0<y<L.

Part B— Vibrations

s. A rectangular membrane of side lengths L and L' has its edges fixed on the xy-plane. If it is

released from rest at a displacement given
membrane if gravity is taken into account.
A square membrane
onthe xy-plane.1fa
in the membrane, find displacemen
positive integers m and n.

7. Repeat Exercise 6 if @0 = \Enc,‘L.
9. Repeat Exercise 6 ifo= \—fy_gnc,-L.

11. Repeat Exercise 6 if =+ 130nc/L.

of side length L, which is
periodic {orce per unit area 4 cos{wt).t > 0(A
ts in the membrane. Assume thatw # 1

by f(x,y) find subsequent displacements of the

initially at rest on the xy-plane, has its edges fixed
a constant) acts atevery point
n? + m?/Lforany

\/ﬁnc/L.

10. Repeat Exercise 6 if w = JT(Snc/L.

8. Repeat Exercise 6if w=
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12. Find a formula for the solution of the general two-dimensional vibration problem

3%z ,{3%  0%z\  Fluyt)
—_— —_— —_— AR AN | 0
a (6x2+ay2)+ FE 0<x<L, O<y<lL, t>0,

) ‘-
—1152""(‘12'—‘.[1()’,‘), x=0‘ :-0<y<u"" t>0'

)
12£+hzz=fz(y,t), x=1L, O<y<l, t>0,

i
dy

a
l‘a—;+h‘z=f‘(x,t), y=L, O<x<L, >0,

—ly—+hyz=fi(xt), y=0, O<x<L, >0

z{x, y,0) = g(x, y), 0<x<L, O<y<lL,
z,(x, y,0) = h(x, y), 0<x<L, O<y<L\.
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Problems on Infinite Spatial Domains

Introduction

In Chapters 2—6 we restricted consideration to problems on bounded spatial domains,
but many important problems take place on infinite or semi-infinite domains. For
example, suppose a rod of infinite length is initially at temperature f(x), —0 <x < 0.

The initial value problem for temperature U(x, t) in the rod when the sides are in-
sulated is

2
%—lf=k%—§, —oc < X < 0, t>0, (1a)
U(x,0) = f(x), —30 < X < . (1b)

It may be argued that there is no such thing as an infinite rod. Physically it must be
finite, and therefore boundary effects must be taken into account. This can be
countered by stating that the rod may be so long that boundary effects are negligibly
small in that part of the rod under consideration. Consequently, if there is a simple
solution to the infinite problem that is an excellent approximation to the Fourier

series solution of the bounded problem, then clearly there is an advantage in consider-
ing the infinite problem.

252
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In this chapter we illustrate that separation of variables on problems with infinite
spatial domains leads to integral representations of the solution called Fourier
integrals. The Fourier integral replaces the Fourier series representation for finite
intervals; it is a direct result of the fact that eigenvalues of the separated equation form
a continuous, rather than discrete, set. When the solution of an infinite spatial problem
is known t@be even of odd, the Fourfer integral takeson a simplified form called the
Fourier cosine ot sine integral. These integrals also arise naturaily in problems on semi-
infinite intervals (0 < x < o0) when the boundary condition at x = 0 is Neumann or
Dirichlet. Generalized Fourier integrals arise when the boundary condition at x = 0is
of Robin type. Associated with each Fourier integral is an integral transform that
provides a convenient alternative to separation of variables. These transforms are as
valuable for homogeneous problems as they are for nonhomogeneous problems (unlike
finite Fourier transforms, which are not normally used on homogeneous problems).

We begin by illustrating the continuous nature of “eigenvalues” for infinite spatial
problems. Separation of variables U(x,1) = X (x)T()in problem (1) yields

X" +aX=0 - T+ ka T=0, « = constant. @)

The solution for T(t) is Ce~**, which clearly indicates that ¢ must be nonnegative. We
therefore set « = A%, in which case )

X(x) = AcosAx + Bsinx. 3)

[Alternatively, we could argue that the ‘solution X(x) of X" + «X =0 must be
bounded as x —+ 100, and this would again imply that « be nonnegative.] Thus, any
function of the form

¢4 cos Ax + Bsin Ax)

for arbitrary 4, B, and 1 satisfies PDE (l1a). For problems on bounded intervals,
boundary conditions determine a discrete set of eigenvalues A, and equations €x-
pressing A and B in terms of 4,. Separated functions are then superposed as infinite
series. For infinite intervals, no boundary conditions exist, and hence 4, B,and A are all
arbitrary. But suppose for the moment that A and B are functions of A It is
straightforward to show that when the integral

U(x,f) = j e [ A(R)cos Ax + B(A)sin Ax]} dA 4)
0

is suitably convergent sO that integrations with respect to A may be interchanged with
differentiations with respect to x and y, such a function satisfies (1a) (see Exercise 2).
This integralisa superposition of separated functions over all values of the parameter
A, and it satisfies (1a) for arbitrary A(4) and B(4). To determine these functions, we
demand that (4) satisfy initial condition (1b):

flx)= j‘m[A(Z)cos ix + B(4)sin Ax]d4, —00 < X < 0. (5)
0

The solution of (1) is therefore defined by improper integral (4), provided we can find
functions A(4) and B(4) satisfying (5). Equation (5) is called the Fourier integral
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representation of f(x); it is the integral analog of the Fourier series of a periodic
function. In Section 7.2 we investigate conditions under which a function hasa Fourier
integral representation, and we determine formulas for A(4) and B(2).

- -l

Exercises 7.1

1. Why does the integral superposition - in equation (4) not extend over the interval —o0 <
A< oo?

2. Show that if partial derivatives of the improper integral in (4) with respect to x and y may be
interchanged with the J-integration, then U{x,t) satisﬁes PDE (la).

7.2 The Fourier Integral Formulas

To state conditions under which the Fourier integral of a function does indeed
represent the function, we require the concept of absolute integrability.

Definition 1
A function f(x) is said to be absolutely integrable on the interval —00 < x < © if

r £l dx

converges.

For example, the functions e~ and (x* + 1)7! are absolutely integrable on
_ o0 < x < 00, but x, sinx, and 1/\/55( are not.

Corresponding to Theorem 2 in Section 2.1 for Fourier series, We have the
following result for Fourier integrals.

Theorem 1

If f(x)is piecewise continuous on every finite interval and absolutely integrable on — <
x < 20, then at every x at which f(x) has a right and left derivative,

_f_(fi)_;_ﬂfj = S.r [A(4)cos ix + B(A)sin ix]dA (6a)
0

0

f(x)cos Ax dx, i) = 1; j‘ f(x)sin Ax dx. (6b)

when A(2) = l; S

Equation (6)is called the Fourier integral formulafor the function f(x). Itis proved
in Appendix B. Since functions that are piecewise smooth must have right and left
derivatives, we may state the following corollary to Theorem L.
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Zorollary .
If f{x) is absolutely integrable on —% < x < o and is piecewise smooth on every finite interval,
then f(x) can be expressed in Fourier integral form (6).
One of the most important functions that wg gncounter in this chapter is contained
in the following example. .
ixample 1: Find the Fourier integral representation of the Gaussian fx)=e* k>0 a
constant. _
Solution: Since this function and its derivative are continuous, and the function is absolutely

integrable, we may write

e = J [A(A) cos Ax + B()sin Ax] dx,
(4]

° U= e
where  A(4) = %J. e™**cosAxdx and B(}) = ;j- e sin Ax dx.

- -

To evaluate A(4), we note that the presence of the exponential e™*** permits differ-
entiation under the integral to obtain

A 1 {® .
a _ —J — xe *"sin Ax dx.
Integration by parts now gives

dA 1 fe7™ S B Ao
H=;{751n)x} ——j‘ T Acosixdx———ﬁfi(ﬂ)-

e T )-n
In other words, A(4) must satisfy the ODE

d4A A

T + ﬁA = (.
An initial condition for this differential equation is

(see Exercise 24 for the value of this integral). The solution of this problem is

A() = o™,

Jkn

Because e~ “**sin /ix is an odd function, we quickly conclude that B(%) = 0. We may

therefore write
' 0 - il(4k
et = j‘ cos Ax dA.
o Jkn

v

An alternative derivation of A(4) using complex contour integrals is given in Exer-
cise 25. "

_ J
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When a function f(x) satisfying the conditions of Theorem 1 {or its corollary) is
even, it is obvious that

A(2) = % f S{(x)cos ixdx, B(4) =0, (7b)
- - . 0
in which case )
M;—ﬂf—-—) = J A(A)cos Ax dA. (7a)
0

This result is called the Fourier cosine integral formula. The function e in Exam-
ple 1 is represented in the form of a Fourier cosine integral.

Example 2: Find an integral representation for the function
k(L — |x})/L x| < L
Jix) = {0 x|> L
Solution: Because f(x) is even (Figure 7.1), it has a cosine integral representation, where

L2 (> 2 [tk
A(A) = . f(x)cos Axdx = E(L — x)cos Ax dx
°

nJo

2k {L— i L 2k
=;E{ 7 tsin).x—-?cosi.x}o =;[—17(1 —cos AL).
Since f(x) is continuous, we may write
» 2k =1 — AL \
f(x) = L nil‘l;—z(l — cos AL)cos ix d/ =T j-o —:S—lcos AxdAi.

v

Figure 7.1 -k ‘ L -

When f(x)is an odd function, coefficient A(2) = 0,and f(x) may be represented by
the Fourier sine integral formula

Jx+) + fe—) _ \ J

.  B() sin ix d (8a)

0

7 X
where B(#) = i j f{x)sin Axdx. {8b)
o




aple 3:

ution:

.igure 7.2
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Find an integral representation for the function

e x>0
nx)e " = .
(sgn x}e {—e" x <0

Because (sgn x)e” ¥ is odd (Figure 7.2),ithasa sine integral representation, where

2 (™ L 2( —e™™ . . ® A
B(/.)=;j e"sm,txdx=—{ ¢ 2(sm,‘.x-i-,lcosbc)} 2
0

1+ 2 o m(l+ A
© 22
Hence, (sgnx)e-lxl = L rran Az)sin/lxdl, .

provided the function is assigned the value zero at x = 0.

y

-1

The Fourier sine and cosine integral formulas also provide integral representations
for functions that are defined only for 0 < x < . Indeed, when f(x) is absolutely
integrable on 0 <x <, and f(x) is piecewise smooth on every finite interval
0 < x < X, integrals (7) and (8) converge to [ flx+)+ f(x—)}/2forx > 0.Forx <0,
they converge to the even and odd extensions of f(x), respectively. At x = 0, the Fourier
cosine integral converges to f(0+),and the sine integral yields the value zero.

Theorem 1 would seem to eliminate many functions that we might wish to
represent in the form of a Fourier integral. For instance, it would be quite reasonable to
have a sinusoidal initial temperature distribution f(x) in problem (1). But such a
function is not absolutely integrable on —0 < X < oo; absolutely integrable functions
must necessarily have limit zero as x — £ . Thus, Fourier integrals cannot presently
be used to solve problem (1) when f(x) is sinusoidal. “Generalized functions,” the class
of functions that contain the Dirac delta functionas a special case {see Chapter 1i)can
be used to weaken the condition of absolute integrability. In this chapter, however, W€
shall maintain this restriction unless otherwise specified and concentrate our attention
on how Fourier integrals and Fourier transforms are used to solve problems, rather
than attempt to enlarge the class of problems to which the techniques can be applied.

Fourier integral formula (6) can be used, in conjunction with separation of vari-
ables, to solve problems with spatial domain — 0 <X <®© (see Example 4). In
many of these problems, Fourier integral (6) reduces to the cosine or sine integral (7)ot
(8). Additionaily, sine and cosine integrals are useful for problems on the semi-infinite
domain 0 < x < oc when the boundary condition at x = 0 is homoegeneous and of
Dirichlet or Neumann type. We illustrate this in Examples 5 and 6.
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Example 4:

Solution:

Example 5:

Solution:

Chapter 7 Problems on Infinite Spatial Domains

Solve heat conduction problem {1) when

ﬂﬂ={AL—ﬂ 0<xsL

0 otherwise

Separationd ~variables and superposition lead to solution (4),
Ulx,t) = L:D e~ A(4)cos ix + B(A)sin ix]d2,
where boundary condition (1b) requires (5):
f(x)y= jw {A(4)cos Ax + B(4)sin Ax]d4, —0 < X < 00.

Consequently, A(%) and B(J) are coefficients in the Fourier integral representation of
f(x), defined by (6b): .

0 L
AR = ;[— j. f(x)cos ixdx = l; j x(L — x)cos2Ax dx
. -0 [+]

1 (x(L - ) L—-
=—{u51n).x +
n

i il

2x 2 Lt
cos Ax + —/,—,sm Ax

—-L ) 2sin AL
=—.7(1+c05/.L)+ =
n/. A

bl L
B() = 1; j f(x)sinxdx = 1; E x(L — x)sin Ax dx
-0 0

= ! x_(f———[:lcoslx +VL - sin AX -z—cositx ’
T n 2 22 ’ 23

[

L. .., 2
=—n—i—z‘Sln/-L+;tz§(l —cosAL).

w kAl

Thus, U(x,0) = j %173—([-/1(1 + cos AL) + 2sin L] cos Ax

(1]
+ [—ALsin L + 2(1 — cos AL)] sin Ax)d2. : "

This particular representation is of little practical use. With the Fourier transform of

Section 7.3, we derive a simpler representation in Section 7.4. (See-also Exercise 5 in
this section.)

A taut string of semi-infinite length is given an initial displacement f(x), x > 0, but no
initial velocity. If the end x = Q is free to move vertically for t >0, find an integral
representation for subsequent displacements of points on the string.

The initial boundary value problem for displacements y(x, ) 1S

N2

T =
{

[
R

‘\2‘
Zﬁé, >0, >0, (9a)

ol

[a?]

¢
1, (0,00 =0, t >0, (9b)

e
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yx,0) = f(x) x>0, (9¢)

y(x,00=0, x>0 (9d)
Separation of variables y(x, t) = X(x)T(t) on (9a, b, d) leads to the ODEs'

_X"+ X =0, x>0, T+ T =0, t>0,
X'0) =0; T'(0)=0.
These yield X(x) = Acos Ax and T(f) = D coscAt. Superposition of separated func-
tions in integral form gives
y(x,t) = J A(A)cos Ax cos cAtdA. (10)
0

Initial condition (9¢) requires A(4) to satisfy

f(x)= J A(A)cos AxdA; (11
o
that is, A(%) is the coefficient in the Fourier cosine integral representation of f(x),
2 a
A(A) =— j f(x)cos Axdx.
nt Jo

If we replace the variable of integration by u and substitute into (10), the solution of
problem (9) is

yix,t) = J ‘ (—21; J f(u)cos Au du) cos Ax coscAtdi
° 0

=£j J f(u)cos Aucos AxcoscAt dudA. (12)
T Jo Jo )

This is not a particularly useful representation for y(x, t). If we return to equation (10),
we can obtain the solution in closed form:

plx, t) = Jm A(/l)(%)(cos Mx + ct) + cos i(x — ct))dA
0

a

= lj‘ A(A)cosi(x + ct)}di + % J- A(A) cos A{x — ct)dA.

2 0 o
But if equation (11) is a representation of f(x), these integrals must represent f(x + ct)
and f(x — ct). In other words,

Yo ) = S0fx + et + flx = et} (13)

Although f(x) is defined only for x > 0, the fact that it has been represented in cosine
integral form requires that for this solution, it must be extended as an even function.
This form for y(x,t) is d’Alembert’s representation on the interval x > 0. It can be
interpreted in exactly the same way as d’Alembert’s solution for the finite string in
Section 1.7. Geometrically, the position of the string at any given time ¢ is the algebraic
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sum of one-half the original displacement f(x), —% < X < 0, shifted ¢t units to
the right, [ f(x — ¢0)]/2, and one-half the same curve shifted ct units to the left,
[f(x + ct)}/2. From a physical standpoint, initial displacement f(x), 0 < x <0,
separates into two equal disturbances f(x)/2, one of which travels with speed ¢
- to the right, [ f& <%)]/2, and the other of which travels with speed ¢ to the left,
[ f(x + ct)]/2. The left-traveling wave is reflected at x = 0 (with no reversal in sign)
and combines with what remains of this same wave. A specific example is discussed
in Exercise 8. In Exercise 9, the motion of individual particles is examined. .

Example 6: Find an integral representation for electrostatic potential in the sourcc-frf:e region
0 < x < L,y > 0(Figure 7.3) when potential along y = 0 is zero and potentials along
x = 0 and x = L are arbitrarily specified functions.

y
V= fi(y) V = fyy)
— X
Figure 7.3 v=20
Solution: The boundary value problem for ¥(x, y) is
‘ oV 3

'a—)c—z‘*':a?z‘:o, 0<x<L, y>0, (14a)
Vo) =iy,  y>0, (14b)
ViLy) = (. y>0, (14c)
V(x,0) =0, 0<x<L. (14d)

Separation of variables V(x,y) = X (x)Y(y) on (14a, d) leads to the ODEs
X" —-22X =0, 0O<x<lL; YY + 2y =0, y >0,
Y({0) =0.

Solutions of these are X(x) = Acosh Ax + Bsinh Ax and Y(y) = Dsinly, which we
superpose in integral form:

Vix,y) = j’ [A(A)cosh Ax + B(#)sinh Ax]sin Ay dA. (15)
(4]
Boundary conditions (14b,‘ c) require that
Ly = j. A(%)sin AydZ, (16a)
[+]
fly) = j [A(#)cosh AL + B(4)sinh AL] sin Ay d4. (16b)
o .
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e integral representations of f,(y)and f>(»); hence, by (8b),

These are Fourier sin
o2 .
Alz) == j Sily)sin Ay dy,
nJo

-4(4)cosh AL+ B(#)sinh a= % j [ sin Ay dy.
o
When these are solved for A(4) and B(%) and substituted into (15), the solution of

problem (1 4)is
V(ix,y) = EM fi{u)sin Audu + 2 anh Ax f(u)sin Audu
° rsinh AL Jo

n 0

2sinh Axcosh AL
nsinh AL

2 (= sindy @ . . .
-7 - | L
J’ T ( L _[f,(u)(cosh Ax sinh AL — sinh Ax cosh AL)

f1(u)sin Au du) sin Ay dA

0

+ fy(u)sinh Ax} sin Au du) di _
17
2 {® sindy @ L. . . . a7
1 — fy(uysinh A(L— x) + f>(W) sinh Ax |sin 2u }di.
0

0

=7 |, sinhAL

When the nonhomogeneit
x = L, Fourier integrals are 00

along y=0 instead of x =

y in Example 6 is
strated in the next example.

t needed. This is illu

Solve the boundary value problem

e 7:
%%CKZ+%2:‘,VT= , 0<x<L, y >0, (18a)
vo,n =0 y >0, (18b)
V(L) =0, y >0, (18¢)
V(x,0) = f(x) 0<x<L. (18d)
2y ions Separation of variables V(x,y) = X(x)Y(y)on (18a—<) leads to
y" - Y =0, y>0.

xepax =0 0<x<L
X(0) = 0= X(L)
tions of the Sturm-Liouville system 2
ns for Y(y)are
Y(y) = Ae "l 4+ Be

re X, (x)= J2/L sin(nnx/L), and the

Eigenfunc
corresponding solutio

axy:L
o remain bounded for large y, We must set B=0, in which case

For the solution t
tions gives

- superposition of separated func

Vix.y) = Z‘ Ao "X (%) (19)
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The boundary condition along y = 0 requires that

flx)= Y AKXk 0<x<L,
. a=1
and therefore=" e

L )
A, = s‘ f(x)X,(x)dx. ™
0

Exefcises 7.2

Do the exercises in Part D first.

Part A— Heat Conduction

1. Solve Exgmple 4if the rod occupies only the region x = 0and theend x = 0of therod is held at
temperature 2ero-

2. Solve Exercise 1 if the end x =0 of the rod is insulated.

3. Repeat Example 4 if f(x) = e a>90 constant.

4. (a) Show that the solution of problem (1) can be expressed in the form

o0

U(x,t) = }1; S Sm e ¥ (u)cos Mu — x)du di.
1] -

(b) Formally interchange orders of integration and use the result of Example 1 to replace this
iterated integral with the single integral .

1 o
Ux,t) =7~ g (u)e’(“""l“‘“‘“ du.
) 2/ knt f

-

5. Usethe result of Exercise 4 to simplify the solution t0 Example 4.

6. Usethe technique of Exercise 4 to solve problem (1)on the semi-infinite interval x 2 0if theend
x =0of the rod is held at temperature 0°C.

7. Repeat Exercise 6 if the end x =01is insulated.

Part B— Vibratibns

8. Suppose the initial displacement of the string in Example 5 is

ﬂx)={l(<)——k\x—a\/e Ix—als¢

\x—a\>s’

where a. £ and k are positive constants with a > e

(a) Use the geometric interpretation of solution (13) as the superposition of f(x){2 shifted ct
units to the left and right to draw the position of the string for the following times:

() &2 (i} &/c (i) (2a — £)/(2¢)
@iv) ajc (v) Qa + £)/(2¢) (vi) (a + g)/c.
Describe the position of the string for t > (a + gY/c

-
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(b) What difference to the analysis in (a) occurs if the physical interpretation of left- and right-
traveling waves is used?
9. (a) Discuss the motion of the end of the string in Example 5.
(b) Discuss the motion of other points on the string.
10. {a) Repeat Example 5if end x = 0 of the string jyheld fixed on the x-axis.
(b} Discuss the motion of points on the string. . -

11. Repeat Exercise 10(a) if the string has no initial displacement but is given an initial velocity g(x),
where ¢{(0) = 0.

Part C— Potential, Steady-State Heat Conduction,
Static Deflections of Membranes

12. Solve Example 6 if the boundary condition along y = 0 is homogeneous Neumann.
13. (a) Prove thatfor0<r <1, '

o 2n—-1

"Zl 2n—1

. 1 . 2rsiné
sm(2n~1)6—§Tan (l—-r’)'

(b) Use this result to find a closed-form solution to Example 7 when f(x) = ¥, = constant.

Part D— General Results

In Exercises 14-18, find the Fourier integral representation of the function. Sketch agraph of the
Junction to which the integral converges.

14. f(x)=e "l a > 0 constant
15. f(x) = H(x -- a) — H(x — b), b > a constants. H(x — a) is the Heaviside unit step function,
defined as :

0 x<a
H(x——a):{l x>a

= {(b/a)(a —ixl)}  Ixi<a

1 .
0 Ix| > a

-]

a > 0, b > 0 constants

h 2 _ ..2 142 3
17. [{x}= (a <l <l < a’ a > 0, b > 0 constants
0 x| >a

18. f(x) = e “*H(x),a > 0 constant

19. What is the Fourier cosine integral for the function f(x) = e~%** (k > 0), defined only for x = 0? L
In Exercises 20-23, f(x) is defined only for x 2 0. Find its Fourier sine and cosine integral

representations. To what does each integral converge at x =07

20. f(x) = H{x — a) — H{x — b}, b > a > 0 constants

(b/a)(d —|x =} Ix —¢l<a

21. f(xi:{

. a, b. and ¢ all positive constants with ¢ > ¢ > 0
0 Ix —¢l>a

22, f(x)=e¢ “‘coshx.a>0, h > 0 constants

23. f(x) = e **sinhx.a > 0, b > 0 constants
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24. To evaluate

| = j e~ dx = ZJ‘ e  dx,
-® 0
el
4 o o

and transform the double integral into polar coordinates. Show that [ = Ju/k.

.

wewrite =777 o~

25. In this exercise we use complex contour integrals to evaluate A() in Example L

(a) Transform the complex combination of real inte

a0
I= J e " et dx
by means of z = x — i2/(2k) into the contour integral

[ = e—;.lluk)j‘ e M dz
c

along the line Im(2) = —iA/2k).
(b) Use the contour integral

- 2
4; e dz,
-

where C' is the rectangle in Figure 7.4,to find [.

y = Im(z)

. o

il \ C!
Figure 7.4 : Tk

(¢) Take real and imaginary parts of I to find A(+) and B(A).

7.3 Fourier Transforms

In Section 7.2 we used separation of variables to solv
infinite and semi-infinite intervals. In this section we develop Fourier tran
order to handle nonhomogeneities. We shall also find that t
solutions to homogeneous problems that are often simpler t
separation of variables. We begin with the transform a
(6)for a function f(x)absolutely integrable on —o0 < X < .

Kx2 4y dy dx

grals

—+ x = Re(2)

¢ homogeneous problems on

he transforms yield
han those ob
d with Fourier integral
To obtain the transform,
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we express integral (6a) in complex form, reminiscent of the complex form for Fourier
series (see Exercise 27 in Section 2.1):

(o ix —idx idx _ ,—iAx
[ ) [M(e* ‘e *)+Bw(e e )}M

Jo 8 2i

J0 2 2

_ ’wem(A(A)—iBu)> i+ J"""em(d(—/l)+i8(—/1))(_ di)

Jo 2 0 2
= " cayer=da + r C)e**di = I  cyeda,
Jo —® -
_(LA() — iB(®]/2 1>0
where A = {[A(—).) +iB(=N]2  A<0

But using (6b), we may write, for 4 > 0,

CA) = 711; J‘m f(x)cos Axdx — J—J

® i 1 ® —iix
. o f(x)sinAxdx = 3. J‘_m f(x)e™"**dx,

-0

-

and for 4 <0,

®

C().)='21—n'J‘— f(x)cos(—lx)dx +%J‘f f(x)sin(—}_x)dx

l ® —iAx
=2—n-j‘_;nf(x)e Ax dx.

If, as has been our custom, we define, ot redefine if necessary, f(x) as the average value
of left- and right-hand limits at any point of discontinuity, we have shown that Fourier
integral (6) may be expressed in the complex form

f(x)= Jm C()e**da, (20a)

-

where C(d) =21_n J flx)e **dx. (20b)

A somewhat more critical analysis of the improper integrals leading to (20a) indicates
that the integral should be taken in the sense of Cauchy’s principal value,

R
f(x) = lim I C(Ae***dx (20¢)

R—=x= J-R

(see Exercise 23). We shall continue to write (20a) for brevity, but if convergence
difficulties arise, we shall replace (20a) with (20c).
It is clear that by redefining C(2), we could also write

f(x) = ZI_HJ C(l)e**dA, (21a)




e
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where C(#)= g f(x)e"*‘ dx, (21b)
or ; f(x) ! j'n C(r)e'** d2 (22a)
- -, = — . , a
- —’" V) 2n J-»o
1 i 2
with Cli)=—T7=— j (x)e dx. (22b)
\/ 2n J-» f )

" Any of the pairs (20), 0, or (22) can be used to define the Fourier transform; we pick
(21) simply because itinvolves the factor 21 only in the latter stages of applications. Itis
customary to us¢ @ in place of A for Fourier transforms.

Definition 2
The Fourier transform of a function f(x) is defined as :

f(x)e™wx dx. , (23a)

FLY = F@) = g

The associated inverse transform is

Flo)e™* do. (23b)

F Y f(o) =.f(x)=§‘;g

The transform of f(x) exists if the function is piecewise smooth on every finite
interval and absolutely integrable on —® < x < o0. Once again, we point out that

(23b) should be interpreted as Cauchy’s principal value,
1 RO
f(x) =757 lim S flw)e* dw. (230

2% R—+w J-R

Definition 2 should be compared with equation (3) in Chapter 6 for the finite
Fourier transform. Finite Fourier transforms are associated with Sturm-Liouvil\c sys-
tems. When (4. ydx)} are eigenpairs of Sturm-Liouville system (3) in Chapter 4, the
finite Fourier transform of a function f(x) defined on 0 < x < L,is

- L
fla) = S p(x) £ (x)ya(x) X,
0
and the inverse transform is
flxy= Zl J{VATRES

The finite Fourier (ransform is a sequence of numbers {f(/'.“)}‘ or a discrete function

defined only for integers n; the inverse transform is a superposition over all eigen-
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integral definitions when solving (initial) boundary value problems. This makes it
much simpler to apply Fourier transforms.

We shall state elementary properties of the Fourier transforms, leaving veri-
fications to the exercises, and concentrate on those aspects that are crucial to our
discussions of PDEs. All three Fourier gransforms and their inverses are linear
operators. For example, T -

Flefilx) + c2 f2()} = aF{filx)} + o F{ (¥}, (26)

and similar results apply to #c and F and their inverses (see Exercise 1).
When a is a real constant

F{ (@) =|—'Jf{f(x>}.w,, (27a)

and F Y flaw)} =|—il-f“{f'(w)}|x,. (27b)

(see Exercise 2). Similar properties hold for %5 and %, but in these cases a > 0, since
f(x) is not defined for x <O.

Translation of a function f(x) along the x-axis by an amount a results in its Fourier
transform being multiplied by e

F{f(x —a)} = e F{f()}, (28a)

F- e @) = F {f@}e-a (28b)

(see Exercise 3). Properties similar to (28a) hold for # and Fs in the case in which
a > 0, provided f(x — a) is multiplied by the Heaviside function H(x — a):

F{f(x — a)H(x — a)} = (cos aw)F{ f(x)} + (sin aw)F:{ f(x)} (28¢)

Fol fix — H(x — @)} = (cosa)F{ ()} — Gina)Fs{ S} @28d)

[Once again, the presence of H(x — a) is attributable to the fact that f(x) need not be
defined for x < 0.]

Multiplication of a function f(x) by an exponential ™ (a > 0) results in a
“translation” of its Fourier transform,

Flef(x)} = flo — ai) (29)

(see Exercise 4). No such property holds for the sine and cosine transforms.
The following theorem and its corollary eliminate much of the work when Fourier
transforms are applied to (initial) boundary value problems.

Suppose f{x) is continuous for —oo < x < oo and f'(x) is piecewise continuous on every finite
interval. If both functions are absolutely integrable on — o0 < x <, '

F{f'(x)} = iwZ { ()}, (30a)

7 Yiof(w)} = :—x(f«*'“{f(w)}). ~ (30b)
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Proof: When integration by parts is used on the definition of F {f ()t

f{f'(t)} — gn f’(x)e—iwx dx = (f(x)e""’"}’?,, _ g— f(x)(—-iw)e"""" dx

T - in “Fixyeerdx = iwZ { S} .
tis straighlforward to extend this result to second derivétives (see the corollary
: _bclow) and highcr-order derivatives (se¢ Exercise S)-
Corollary
b Suppose J(x) and f'(x)are continuous for —0 <X <P and f7(x}is p'\ecewisc continuous on
! every finite intecval. If all three functions are absolutely integrable on —00 < X <00,
. FER = — o F O} (31a)
i _ _ 2 o
f“{-—wzf(w)} =—J;;(9'“‘{f(w)}). a (31b)
_ Results corresponding to (30a) and (31a) for the sine and cosine transforms are
7c{f'(x)} = oF SOV fO+) (310)
FAS 0N = TV SO+ (31d)
F S0} = —0F{ SN (31e)
F{ S0} = _ )} + ofOF) (316)

The limits in (31c, d, f)allow for the possibi\'\ty of f(x) being undefined at X = 0(butits
right—hand limit must exist).

In applications of Fouriet transforms to initial boundary yalue problems, itis often
necessary to find the inverse transform of the product of two functions f (w)~and g(w)
both of whose inverse transforms are known; that is, W€ require & -uf (w)g'(w)},
knowing that F S (}=1 (x)and F! {g’;’(w)} =g(x). In Theorem 3 it is shown that

7 {f@ge) = § S lyglx — Wy

This integral, called the convolution of the functions f (x) and g(x), is often given the
notation f * ¢

fxy* g(x) =S | fnglx — u)du. (a2)

Theorem 3
theoter =~ — e — —
ise continuous o1 every On

Suppose that fix and g{x) and their first derivatives ar¢ piecew n ite
interval and that f(x) and g{x)are absolutely integrableon — oo < X <X If either f(w)of Gleoyis
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absolutely integrable on — 0 < w < 0, then

F Hf(jw)} =f*g= j m f()g(x — u)du. (33)

Let us assume that J(w) is absolutely integrable. [The proof is similar if f(w) is absolutely
integrable.] By definition (23b),

e = [ T do

and when we substitute the integral definition of f (w),

a0

1

F Y f(@)jw)} = ——f

5 ( J . fw)e i du) Jlw)e'* dw.

—®

The fact that f(x) and §(w) are both absolutely integrable permits us to interchange the order of

_ integration and write

—a0

F Y f@i) = J i (ﬁ j " fw)eion=u dw)f(“)du

= I_ f()g(x — u)du. "

The simplicity of the proof of Theorem 3 is a direct result of the assumption that
g(w) is absolutely integrable. This condition can be weakened, but because functions
that we encounter satisfy this condition, we pursue the discussion no further.

By making a change of variable of integration in (32), it is easily shown that
convolutions are symmetric; that is, f * g = g * f. Other properties of convolutions

are discussed in Exercise 7. An example of convolutions that we encounter in heat
conduction problems is

F- l(f(w)e—szl),

where f(w) is the transform of an initial temperature distribution, k is thermal
diffusivity, and ¢ is time. According to Example 8, # ~'(e **™) = [1/(2/knt)]e 14k,
and hence convolutions yield

,__‘ s — ke © l
74 Floe ") = L““’zﬁ“

nt

e—(x ~u)2{(4kt) du

l 0
=— (u)e ™ (x —u k0 gy
2\/ knt Jl © f )

The following convolution properties for sine and cosine transforms are verified in
Exercise 8.
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When f(x) = Fc't F(w)} and g(x) = F Mgl

- 1=
F{flwglo) =3 [ fafglx — W+ glx + w)ldu (34a)

0

- - - N ‘ E
=5 L g(u)[f(x —uwy+ flx+ u)} du, (34b)

provided f(x) and g(x) ar¢ extended as even functions for x < 0.
- When fx)=7F Pyl (@)} and glx)=% E‘{J(w)} [note that Glw) is a Fourier
cosine transform], .

- 1 {®
F{f i)} =3 g fylgle — 4 — glx + wldy, (340)
i 0
= 15 Sn g flx — u) + flx + u)] du, (34d)
0

provided f(x) and g(x), respectively, are extended as odd and even functions for
x < 0.

In Section 7.4 we make use of these propertics when Fourier transforms are
applied to (initial) boundary value problems.

Exercises 7.3

Verify that the Fourier transforms and their inverses are linear operators.
Verify properties (27)yand similar properties for the sine and cosine transforms.
Verify properties 28).

Verify property (29).

(a) Extend the result of Theorem 1 to nth derivatives.

(b) Verify the transforms in (31).

@ (a) Verify thatforn 2 i,

@ s DT

— "
Fixfay =1 d’&;;ﬁ (S (35a)
FoUf ") = (—ix)"f“{f(w)}. (35b)

/(5) What are the results corresponding 10 (35a) for Fs and Fcwhennn = tand n =27

/7. Merily the following properties for convolution (A2

@ f*g=9<S (36a)
by [ *kg) = kfy*yg = K(f*aghk= constant (36b)
(<) (f*g)*h=f*(g*hl (36¢)

@ frigam=frgrfeh (36d)

8. (a) Verify convolution propenies (34a. b) for the Fourier cosine transform.
(b Verify convolution properties (34c. d) for the Fourier sine transform.
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9. (a) Prove that when f(x) is an even function with a Fourier transform,

FU)} =27 (0)). (37a)
(b) Prove that when f(x) is an odd function with a Fourier transform,
- F{S ()} S=HFLS (). (37b)
@ (a) Show that when f(w) = F{f(x)},
FJx) = 22f (—w). (38)

(b) What are corresponding results for Fourier sine and cosine transforms?
11. (a) Show that

= [ flw)
=23 39
./—(J:mf(u)du> P (39a)
provided the integral does have a transform, and
F-1 (f(w)> = iJ S(u)du. (39b)

{b) What are corresponding results for the sine and cosine transforms?

In Exercises 1217, find the Fourier transform of the function.
12. f(x) = ", a > 0 constant

13. f(x) = x"e¢"**H(x), a > 0 constant, n > 0 an integer

14. f(x) = H(x — a) — H(x — b}, b > a constants

15. f(x) = su;ax’ a > 0 constant. (Hint: Use Exercises 10 and 14.)
G/afa—|x]) Ixl<a
16. = ) ]
6. f(x) {0 x| > a a >0, b > 0constants
b(a® - x?)/a? Ix{ < a
7. =
17. f{x) {0 . K>a 27 0, b > 0 constants

In Exercises 18~20, find the Fourier sine and cosine transforms of the function.
18. f(x) = e~°*’, a > 0 constant. (Hint: See Exercises 24 and 25 in Section 7.2)
19. f(x) = H(x —a) — H(x — b), b > a > 0 constants

[0 = {(b/a)(a —{x—c)) Ix-—cl<a

20. a, b, and ¢ all positive constants with ¢ > a

0 x—c|>d
21. The error function, erf(x), is defined as

2 [ _.,
erf(x) =———J e " du.
Jr Jo

Because this function is increasing for x > 0 and lim, . erf(x) = 1, it does not have Fourier
transforms. The complementary error function, erfc(x), defined by

2 0
erffe(x) =1 —erf(x) = —= | e “du,
NEBP
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does have Fourier transforms. Use properties (31)and Exercise 18 to derive the following results:
(a) Flerle(ax)} =1 — e~/ a > 0 constant
(by Flaxerfclax) — (/Jme ) =@/} (—1 + o-«'4e’) g > 0 constant
- 22. Verify formallg l;ach of the following results, often called Parseval’s relations:

@ f fag(x)dx =[ f(x)g (x)dx (40a)

() 2n j f()glx)dx = J f@)g(-w)dw (40b)

(@ 2n J' £/ dx =I i) do (400)

; 23. Verify that improper integral (20a) should be taken in the sense of Cauchy's principal
value (20¢).

24. When the boundary condition at x = Ofor an initial boundary value problemon the semi-infinite
interval x > 0 is of Robin type, separation of variables leads to the system

X" +wX =0 x>0,
. —IX'+hX =0, x=0,
' X(x) bounded as x — 0.

Eigenfunctions of this system are

h
(cos wx + —sin wx) (41)

1
X (x) = — e
o) J1 + [h/(wh])? ol

for arbitrary w, which we take as positive. Associated therewith is a generalized Fourier integral

e , formula that states that a function {(x)satisfying the conditions of Theorem 1 can be represented
in the form ’
x+)+ fix— 2 (>
L(——)——‘L(———) =— j Glw) X (x)dw, (42a)
2 T )o
where G(w) = j‘ f(x) X, (x)dx. (42b)
0
Erom this formula we define a generalized Fourier transform,
k)
flw)=9{/(x} = y F()X(x) dx, (43a)
0
and an inverse transform,
- e
f(x) = g flw)} = - jA f(w) X, (x)dw. (43b)
¢ ] .

Find transforms of the following functions:
@@ fixy=e " a> 0 constant
by [ix)=H(x —a)— H{x — b}, b > a > 0 constants
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The following exercises should be attempted only by readers who are already familiar with the
Laplace transform. In these exercises £{ f(x)} denotes the Laplace transform of a function f(x).

25. (a) Show that when f(x)is absolutely integrable on 0 < x < w0, and f(x) =0 for x <0,

FUW) = LU emion (44a)
Fs{ S} = —Im(L{f(j=ia): (44b)
Fe{f(0)} = Re(L{f()}s = iw)- (44c¢)
(b) Use the results in (a) to calculate Fourier transforms for the following:
(i) f(x)in Exercise 14. ) (i) f(x)in Exercise 13.
(c) Use the results in (a) to calculate Fourier sine and cosine transforms for the following:
(i) f(x)in Exercise 19. (ii} f(x)in Exercise 20.

26. (a) Theinverse result of (44a)can be stated as follows: Suppose that when win afunction f (w)is
replaced by —is, the function f(—is) has no poles on the imaginary s-axis or in the right half-
plane. If f(—is) has an inverse Laplace transform, this is also the inverse Fourier transform

of f(w),
Ed —‘ ~—"
9“%ﬂw»={f U=is) « i:g s)

Use (45) to find inverse Fourier transforms for the following:
(@) flw) = 1/@8 + iw)®
(i) f(w) = (b/a)[(1 — e~ *)/w? — ia/w], a > 0, b > 0 constants
(b) Can the result in (45) be used to find & ~'{(i/w)e~*“}?
27. (a) Show that when f(x) is absolutely integrable on —c0 < x < 0, and f(x) =0 for x > 0,

f{f(x)} = ’g’{f(_x)}ls=—iw' (46)
(b) Use (46) to find Fourier transforms for the following:
. _Jx(x+ L) ~-L<x<0
@ S = {0 otherwise

() f(x)=e*[H(x —a)—- H(x ~b)}, a<b<0, c>0

28. (a) Let f(x)be afunction that has a Fourier transform. Denote by f*(x)and f ~(x) the right and
left halves respectively, of f(x):

0 x<0 X x <0
f“”={ﬂn x>0 fx”={§) x>0
Show that
FU0} =F{f T} + F{f ()}
(b) Use the resultin(a)in conjunction with the results of (44a) and (46) to find Fourier transforms
for the following:

(i) f(x)in Exercise 16.
(it) f{x) =sin(ax)[H(x + 2rn/a) — H(x — 2an/a}], n > 0 an integer, a > 0.
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7.4 Applications of Fourier Transforms
to Initial Boundary Value Problems
Fourier transform (23) is an alternative to separation of variables in problems over

R infinite intervals. We begin withrheat conduction problem (1). When we apply Fourier
: transform (23) to PDE (1a),

° aU —iwx ® aZU —-iwx |
j. —BTe dx-kj‘ 6xze dx.

-o -~

When we interchange the operations of integration with respect to x and differentiation
with respect to ¢ on the left, and use property (31a) for the transform on the right,

dU iy
- —ka?U(w,1)-

. We should not forget that use of (31a) assumes that U, dU/dx, and 92U/ox* are
all absolutely integrable, that U and dU/dx are continuous, and that 82U/ox? is

piecewise continuous on every finite interval. The general solution of this ODE in
& U (w, l) is
i Tw,1) = Ce™™.

The Fourier transform of initial condition (1b) is U(w,0) = f (w), and this condition

& requires that C = f(w). Thus,
' (.1 = Fl@)ee™”
E. and U(x,t) = 1 fi (w)e ™ e'" dw. (47a)
! 2t ) -

A much more useful form of the solution, which expresses U(x,t)as a real integral
involving f(x), rather than a complex integral in f(w), can be obtained with
E convolutions. Because the inverse transform of e ke is l/(2J-Ic7t—t)e“”(‘*" (see
A Example 8), convolution property (33) yields

: © 1

) U(x,t) = § (u)—————e“"'“’z"‘“"’ du

{;I_;p —:nf 2\[ knt

- g f(uye™ = du, (a7b)
E’: 2 knt J-w

u This form of the solution clearly indicates the dependence of U(x,t) on the initial

temperature distribution f(x). It also has another advantage. Because (47b) does not
contain the Fourier transform of f(x), it may represent a solution to (1)even when f(x)
has no Fourier transform. Indeed, provided f(x) is picce\ﬁ'iée continuous on some
bounded interval, and continuous and bounded outside this interval, it can be shown
that U(x,1) so defined satisfies (1). This is illustrated in the first two special cases

that foilow on the next page.
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Case 1: f(x) = U,, a constant.
In this case, we would expect that U(x, t) = U, for all x and ¢. That (47b) gives this result
is easily demonstrated by setting v = (x — u)/(2/kt) and dv = —du/(2/ke):

Uo f—w —p2 Uo jm —p2
Ux,t) = e (=2Vktdv) = — e dv="U
(1) 2Jknt Jwo ( ) Jr J-w °

(see Exercise 24 in Section 7.2 for the value of this integral). Thus, integral (47b) has
given the correct solution in spite of the fact that the function f(x) U, doesnothavea .
Fourier transform., '

Case 2: f(x) = UgH(x).

In this case, we set v = (x — u) /(2\/_—) and dv = —du/(2\/_

Us —(x— )2
e (e u2iakn du
2 A/ kTCl 0

U(x,t) =

to obtain

Ulx, 1)

- v (—2./ktd
2\/kn L/(N‘) ( \/_ )

U x/(2Vkt) ~
=2 e " dy

NG

-0

o s x/(2Vki) )
J e v dv +j e’ dv)
-~ (4]

-5l (-4 ()]

2% .,
where erf(x) =—= 1 e du (48)
, )

is the error function. This solution indicates how heat that is concentrated in one-half L
of a rod diffuses into the other half. It indicates, in particular, that temperature at every

point in the left half of the rod (x < 0)is positive for every t > 0. This substantiates our

claim in Section 5.6 that heat propagates with infinite speed.

Case 3: f(x) = x(L — x), 0 < x < L, and vanishes otherwise.

_This is the initial temperature distribution in Example 4. In this case, (47b).gives

Ulx,t) =

u(L — u)e™ W@k gy,

1
2knt Jo

an integral representation that is preferable to that in Example 4, principally because it
-is not improper.

In the following example, heat is generated over the interval —x, < x < x5 ata
constant rate.
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Example 10:

Solution:
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Solve the heat conduction problem

oU  d*U  k
== ko + ;[H(x + xo) — H(x — Xo)J,

U(x,0) = f(x), —00 < X < 0. (49b)

When we take Fourier transforms of the PDE [and use (31a) and Exercise 14 in
Saction 7.3], ‘

—00 < X < 0, t>0, (49a)

dU ~ 2k .
—d?- = _kaU + —’zzo"sln XoW. (50a)

The transform U(w, t) must satisfy this ODE subject to the transform of (49b),
U(w,0) = f() | (50b)
The general solution of (50a) is

~ _ 2 .
U = Ce ™" 4+ —5sin X0,
Kw

and condition (50b) requires that

~ 2 .
flwy=C+ 3 sin xo 0.

- - 2 . e 2
Thus, Ulw,?) = (f(w) — ,-C—a—)gsm xow>e ko®t 4 Wsm X,

and U(x,t) is the inverse transform thereof. According to (33), the inverse transform of
f(w)e ™ can be expressed ass. -

1 @ 2
(u)e""‘"’ 14kD dy,
2'\/ kﬂt _[—oo f

and therefore

Ux,t) = ___1__ J f(u)e—(x~u)2/(4kt)_ du

2Jknt J -
-;ijf%u_

KT | o @

e oM)sin xo0 e X do. . .m (51

Fourier sine and cosine transforms are used to solve problems on the semi-infinit
interval x > 0 in Examples 11 and 12. The sine transform is applied to problems with:
Dirichiet boundary condition at x = 0. This is because separation of variables on suc.

a problem leads to the ODE
X"+ w?X =0, x>0, (52i
X0)=0, (521
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and the only bounded solution of this equation is sin ex, Similarly, on Neumann
problems, we use the cosine transform, since separation leads to

t>0, (49a) X"+ wlX =, x>0, (53a)
(49b) X'(0) =0, (53b)
o 14 , the bounded solution of which is cos wx.
rcise n ;
xe Example 11: Solve the vibration problem
[ Py LYy
(s02) | =57 x>0, s (54a)
- (49b) ‘ Y0.0= /i), t>o, (54b)
(@0 1 Y0 =f(x), x>0, (54¢)
(s0b) | Y0 =g(x), x>0, (54d)
for displacement of a semi-infinite bar (or string) with prescribed motion at jts one end,
x =0, ' :
Solution: We apply the Fourier sine transform to the PDE and use property (31f) for the
’ transform of 92y/9x2;
dxy
ﬁ) = -’ Jw,1) + wc?f(t).
Thus, the Fourier sine transform Vw,t) of y(x,t) must satisfy the ODE
. Zi
PTE] + 60202_)7 = a)czfl(t) (55a)
> transform of subject to transforms of initial conditions (540}'(1):
V@,0) = f(w), (55b)
V(@,0) = §(w). (55¢)
Variation of parameters leads to the following general solution of ODE (55a):
t
J(w,t) = A cos cot + Bsincor + cf Si(@)sin cao(t — u)du.
. [} .
i
, Initial conditions (55b, ¢) require the constants 4.and B to satisfy *
n (51) @24 jw)-con
Hence,
e semi-infinite - i) .
oblems with a @,t) = f(w)cos cort + ——=sincwt + cf Ji(w) sin caor(r — u)du, (56)
iables on such ca 0
and y(x, ¢) is the inverse transform of this function:
2 _ 2 [
(52a) yx, == P, £) sin wx dow. (57)
(52b) _ 7T Jo
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The first term in this integral is

2 (® = - 2 (1 . o

2| f(w)coscwtsinwx do = - Ef(w)(sm w(x — ct) +sm w(x + ct))dw
V]

T Jo

- 12 [fx — e+ flx + ey

provided f (x)is extended as an odd function.

According to Exercise 19 in Section 7.3, the
H(x) — Hx — ct) is (sin cot)/w. Consequently, convolution i
the inverse sine transform of [§(w)/(ce] sin cot is

b r [H() — Hlu — c)]lgkx + W) + glx — uyldu

2¢ Jo
1 ct ct
=——<s g(x+u)du+j g(x-u)du),
2¢\Jo 0

x<O.Whenwesetv=x+uand

Fourier cosine transform " of
dentity (34d) implies that

d as an odd function for
n these integrals, the result is

provided g(x) is extende
— x — u, respectively, i
x+ct

| ’ Al ,k- 1 xtct x—ct 1

W 1 ‘\ v \ Z(j g(v)dv + L g(v)(—dv)) =5 L_" g(v)dv.
|
\

x
The inverse transform of the integral term in §(w, t)can also be expressed in closed form

if wesetv=c(t— u):

t 0 ,
Cj fiu)sinco(t — uydu = CE f1<t - E> sinka—ég>
Y ct 4 [
.= j‘“ fl(t — E)sinwvdv.

0 C

the function

But this is the Fourier sine transform of

f1<t——zcc—> x <ct

0 4 x> ct

0 t < xfc x x
: o _ fl(t - x) > x/e - f1<t ~E)H(t —E> _

c

/

The solution is therefore

Yoo ) = %[f(x ety + fx + ct] +§12 r gl du + f1<t - %)H(t — %) (58)

tute the d’Alembert part of the solution (see also Section 1.7).

The first two terms consti
he nonhomogeneity at the end x = 0; it can be interpreted

The last term is due to t
physically, and this is most easily done when f(x) = g(x)=0.In this case, the complete




asform of
nplies that

= x + u and

closed form

—%.ww
(¢

Section 1.7).
» interpreted
the complete

Example 12:

Solution:
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solution is

X X
y(x,t)=fl<t ——g)H(t ——z)

A point x on the string remains at rest until time ¢ = x/c, when it begins to execute the
same motion astheend x = 0. The time x/c taken by the disturbance to reach x is called
retarded time. The disturbance fityat x=0 therefore travels down the string with
velocity c.

The solution of the original provlein is a superposition of the d’Alembert
displacement and the displacement due to the end effect at x = 0. -

The temperature of a semi-infinite rod at time t = O1s f(x),x = 0. For time t > 0, heat
is added to the rod uniformly over the end x = O at a variable rate fin W/ m?2. Find the
temperature in the rod.

The initial boundary value problem for temperature U(x,1) in the rod is

oU o%U _

-—a—t—'= kg)—c—z“, x>0, t>0, (59a)
U0, = —kfie), >0, (59b)
U(x,0) = f(x), x> 0. (59¢)

When we apply the Fourier cosine transform to the PDE and use property (31d),

%¥=—mﬁm@0+f%m

Thus, the Fourier cosine transform U(w, t) of U(x, ) must satisfy the ODE

dU .
&2 4 kU=« 10 (60a)
dt 5

subject to the transform of (59¢),
¥(w,0) = f(®). (60b)

The general solution of (60a) is

. , L[t
T(w,f) = Ce™" + f ¢, () du,

0

and condition (60b) requires that f (w) =1C. Consequently, 7
" | | 7 s 2, 1 ! 2 |
O(w,1) = flw)e™" +— J e ke =0, (u) du, (61)
0

and the required temperature is the inverse transform of U(w,t),

[re]

U(x,t) = % j U(w, t)cos wx dw. (62)

0

The first term in this integral is the inverse cosine transform of f~ (a))e"’““z‘. According to
Exercise 18 in Section 7.3, the Fourier cosine transform of e~ is (1/2)V/n/a g~ A,
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Example 13:

Solution:
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Fourier cosine transform of e —ke®t g 1 /(J et )e XAk,

a) therefore gives the inverse cosine transform of f (a))e"“‘”‘

or, conversely, the inverse
Convolution property (34a

as
S f(u) —(x —~u)2[{4kt) e—(x + u)2/(4kl)) du
\/ kn
= 1 S f(u)(e—(x — )24k 4 e—(x +u)2/(4kt)) du.
24/ kmt
Finally, \

U(x, t) = 1 Sw f(u)(e—(x—u)zl(‘tkr) + e—(x+u)1/(4|u)) du

2. knt Jo
2 o0 t N
+— S (S ek 0f (1) du) cos wx dw. u (63)
Solve Laplace’s equation for the quarter-plane x>0,y>0
prv 0
5—24.5;2—.—_0, x>0, y >0, (64a)
subject 10 the boundary conditions
v,y =90% V7 0, (64b)
(64¢)

V,(x,0) = 1(x) x > 0.
Superposmon can be used to express V(x,y) as the sum of functions Vi, ) and
V, (X, ¥) satisfying
v, 0, o, 0 4%
0" 25 =0, x>0, y>0 (65a) ’—6le+ 6y22=0’ x>0, ¥y>0 (66a)

8X2 ay g,
V,0,) =90 ¥~ 0, (65b) v,00n=0 y>% (66b)
0
,/a"lé’;’ ) _o, x>0 (650 -alvlé’;/’(& ), x>0 e

To find Vi(%, y), we apply Fourier cosine transform (24a) (with respect to y) to PDE .

(652) and use property (31d):
v -
—d;%—wzyl(foc,w)=0, x> 0.

' (674)

This transform function 7,(x, ) 18 also subject to
(67b)

7,(0,0) = §(®@)-

The general solution of (67a) is

7y(x,0) = Ae®* + Be™
For V,(x, w)to remain pounded as x = % A must be zero, and the poundary condition
7,0,0) = jlw) then 1mphes that B = §(o). Hence,

Vi(x, 0) = glw)e™ (68)

wx
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ot )e " x4k, To invert this transform, we first recall from Example 9 that the Fourier cosine

of f(w) o kot transform of e is a/(w? + a2). The result of Exercise 10(b) in Section 7.3 implies,
then, that the Fourier cosine transform of a/( y2 + a?)is (n/2)e”**. In other words, the
inverse cosine transform of e™“* is (2/m)x/(y* + x2). Convolution property (34b) now

gives
1 [ X x
Vl(x:y) = J‘ g(“)( )((y — u)z + x2 (y n u)2 + x2>du

b (w) : + : d (69
T Ogu x4+ (y—uw? x4 (y+u? “ ' )

Taking Fourier sine transforms with respect to x in order to find V(x, y) leads to a
nonhomogeneous ODE in ¥;(w, y) that is more difficult to solve.

= (63) To find V,(x, y), we apply Fourier sine transform (25a) (with respect to x) to PDE
(66a) and use property (31f):
~ d2V
—w*,(w,y) + -d—‘:—z = 0. (70a)
(64a) Y
The transform of (66¢) requires that
dVy(w,0)
(64b) ~""§— = f(w). (70b)
y .
64 .
640) The general solution of (70a) is
i s and ~ .
Vi(x, y) Va(w, y) = Ae®? + Be™ %,
For Vz(a) ) to remain bounded asy — o0, A must be zero, and the boundary condition
y>0, (66a) on ¥, then implies that B = — flw)/o. Hence
66b) : ~
( Valw,y) = — ———fio ) g (71)
(66¢) 5 [ ,..(
and Va(x,y) =— j — f—c—ole“"’ sin wx dw. ' (72)
to y) to PDE T Jo w
The final solution is therefore V(x, y) = ¥,(x, y) + V,(x, y). .
(67a) i
Exercises 7.4
(67b) Part A— Heat Conduction
1. (a) Use a Fourier transform to find an integral representation for the solution of the heat
conduction problem
lary condition ou U k

"kt g(x, 1), —0<x<o, t>0,

(68) ‘ U(x,0) = f(x), —00 < X < 00,
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(b) Simplify the solution in (a) in the case that g(x,0) =0 and
. 1 Ixi<a, . _ o Ix| < a
) St = {0 x> (i) f0) = ii x>
2. (a) Usethe Fourier sine transform to find an integral represemation for the solution of the heat
conduction problem

=k x >0, t >0,

U@, = 0 = constant, t 30,
U(x,0) = 0, x > 0.
(Hint: See Exercise 21 in Section 7.3 when inverting the transform.)

(b) Comment O the possibility of using the transformation w=U-
homogeneity from the boundary condition.

3. Usethe Fourier cosine transform to find an integral representatio
conduction problem

{ to remove the non-

n for the solution of the heat

=k x >0, t>0,

U,(0,1) = _x~1Q, = constant, t>0,
U(x,0)=0, x > 0.

(Hint: See Exercise 21 in Section 7.3 when inverting the transform.)
4. (@) Usea Fowier transform to find an integral representation for the solution of the heat
conduction problem

ou 22U k
—_— k.————-— —_—
T e + - g(x,t) x>0, t>0,

U@©,8) = 110, t>0,
U(x,0) = f(x) x > 0.

(b) Simplify the solution in (a) when glx,0) = 0, fin =0 and f(x) = Uo = constant.

(@ Simplify the solution in (a) when g(x,t) = 0, f(x)=0 and fi(H) = { = constant. Is it the
solution of Exercise 27

5. (a) Use a Fourier transform to fmds an integral representation for the solution of the heat

conduction problem
oU 92U k '
""'—‘—k'—‘"‘"i'—' X,t, >0, t>0’
ot ox?r K 90,) *
U(0,t) = k), t> 0,
U(x,0) = f(x)s x > 0.
(b) Simplify the solution in (a) when g(x,) =0, f (1) =0, and f(x) = Uo = constant.
© Simplify the solution in (a) when g(x,0) = 0, fx)=0, and fi()= Qo= constant. Is it th
solution of Exercise 37 :
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6. MUse the Fourier transform of Exercise 24 in Section 7.3 to find an integral representation for the
solution of the heat conduction problem
ou U
k

= =k x>0, t>0,

—xé(];:(c)’ Dy #UQ,1) = pU, = constant, >0,
Ux0=0 x>0

7. Use the Fourier transform of Exercise 24 in Section 7.3 to find an integral representation for the
solution of the heat conduction problem

ou U k
L =k — >0, t>0,
G~ ko Tiee X
au(o,¢ '
—~K a(x ) +IlU(0,t)=ﬂf1(t), t >0’
Ux,0)=f(x), x>0.
Part B— Vibrations
p Repeat Example 11 if the Dirichlet boundary condition at x = 0 is replaced by the Neumann
condition

y.(0,8) = — 7Y, (0), T = constant.

Part C— Potential, Steady-State Heat Conduction,
Static Deflection of Membranes

9. Solve Example 6 in Section 7.2 using Fourier transforms.

10. (a) Solve the boundary value problem for potential in the semi-infinite strip0 <y < L', x>0
when

(i) potential on y = 0 and y = L' is zero and that on x = 0 is f(y).
(ii) potential on x = 0 and y = 0 is zero and that on y = L' is g(x).
(iii) potential on'x = O and y = L' is zero and that on y = 0is g(x).
(iv) potentials on x =0, y = 0, and y = L' are f(y), g,(x), and g,(x), respectively. [Hint:
Superpose solutions of the types in (i), (ii), and (iii).]
(b) Try to solve the problem in (iv) by using
(i) a Fourier sine transform on x. (ii) a finite Fourier transform on y.

11. A thin plate has edges alongy = 0,y = L',and x = 0for 0 < y < L'. The other edge is so far to
the right that its effect may be considered negligible. Assuming no heat flow in the z-direction,
find the steady-state temperature inside the plate (for x > 0,0 < y < L')if side y = 0 is held at
temperature 0°C, side y = L' is insulated, and, along x = 0,

{a) temperature is held at a constant U,°C.

{b) heatis added to the plate at a constant rate Q, > 0 W/m? over the interval 0 < y < L'/2 and
extracted at the same rate for L'/2 < y < L,

(c) heat is transferred to a medium at constant temperature U, according to Newton’s law of
cooling.
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12. What are the solutions to Exercise {tifedgey=0is insulated instead of held at temperature

0°C?
13. Does the function
: ) —Qox/x 0<y< L/2
U =
(x:7) { Qox/K Lp<y<l

satisfy the PDE and the boundary conditionson x = 0,y =0,andy = L' in Exercise 11(b)? Why
is this not the solution?
rm charge distribution of density o coulombs per cubic meter occupies the region
0,y =0,andx = L(y = O).If the planes x = Oand y = Oarekept
d at a constant potential ¥, find the potential

14. (a)v A unifo
bounded by the planes x =
at zero potential and x = L is maintaine

between the planes using

(i) a finite Fourier transform.
(i) a transformation to remove the consta

(b) Can we apply a Fourier sine transform with respect to y?
ution in Exercise 14 is a function of ¥, a(¥)

at nonhomogeneities & and V.

15. If the charge distrib = ¢, find the potential between

the plates.
16. Solve Exercise 15 when ¥, = 0, using
(a) a finite Fourier transform.

7.)(a) Show that the Fourier sine tra
problem

(b) the Fourier sine transform.

nsform with respect to x of the solution of the boundary value

%Zx—vz—+(—3a—z;‘:—=0, x >0, y >0,
V(0,y) = 0, y >0,
V0 =03, x>0
Vi, y) = fl@e ™.

It of Exercise 10(b) in Section 7.3 to show that

is

(b} Use Example 9 and the resu

y T .
Fl——"]7% wy 0.
C(x’ + y") 7€ y=

(c) Now use convolution property (34c) to show that

I Y (L S
V(X',\’) - T SO f(u)(x . u)?. + yl (X + u)?. + y2>du'

(d) Simplify the solution in (¢) when flxy= 1
17 to solve Laplace’s equation for the upper half-plane subject

18. (a) Use the technique of Exercise
(x). Theresultis called Poisson’s integral formula for the half-

to the condition that V(x,0)= f
plane.
(b) What s the solution when f(x) = H(x)?
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Special Functions

boundary value

8.1 Introduction

In Chapters 37, discussions have been cenﬁned to (initial) boundary value problems
expressed in Cartesian coordinates (with the exception of Laplace’s equation in polar
coordinates in Section 5.3). When separation of variables, finite Fourier transforms,
and Laplace transforms are applied to initial boundary value problems in polar,
cylindrical, and spherical coordinates, new functions arise, namely, Bessel functions
and Legendre functions. In Sections 8.3 and 8.5, we introduce these functions as
solutions of ordinary differential equations, as this is how they arise in the context of
PDEs. Bessel's differential equation and Legendre’s differential equation are homo-
. geneous, second-order, linear diﬁerenti?l_ equations with variable coefficients. The

most general form of such an equation is

. d? d ’
Jalf-plane subject P(x)-—dx}; + Q(x)% + R()y = 0. (1)
-mula for the half-

A point X, i8 said to be an ordinary point of this differential equation when the
functions Q(x)/P(x) and R(x)/P(x) have convergent Taylor series about xo; other-
wise, x, is called a singular point. When X, is an ordinary point of (1), there exist two

287
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independent solutions y(x) and y,(x), both with Taylor series convergent in some
interval |x — xo| < é. A general solution of the differential equation valid in this
interval is ¢, y;(x) + ¢, y2(x), where ¢, and ¢, are constants.

When x, is a singular point of (1), independent solutions in the form of power
series Y'2_, a,(x — X,)" about x, may not exist. In this case, it is customary to search for
solutions in the form

o0 29
(x = xo) Z ay(x — Xo)' = Z a,(x — xo)" "', (2)
n=0 n=0
called Frobenius solutions. Solutions of this type may or may not exist, depending on
the severity of the singularity. A singular point x, is said to be regular if

R
(x — "0)%&% and (x — xo)zp—g—;

both have Taylor series expansions about X. Otherwise, x, is said to be an irregular
singular point. _

When x,, is a regular singular point of (1), a Frobenius solution (2) always leadsto a
quadratic equation for the unknown index r. Depending on the nature of the roots of
this quadratic, called the indicial equation, three situations arise; they are summarized

in the following theorem.

Let r, and r, be the indicial roots for a Frobenius solution of (1) about a regular singular point
Xo. To find linearly independent solutions of (1), it is necessary to consider the cases in which the
difference r, — r, is not an integer, is zero, or is a positive integer.

Case 1: r, # rp and ry — r, # integer.
In this case, two linearly independent solutions,
A%

y1(x) = (x — Xo)" Y, au(x — Xo)' with ao = 1 (3a)
n=0

and y,(x) = (x — x0) Y. bulx — xo)"  with by = 1, (3b)
n=0

always exist.

Case 2: ry=r, =1 i
In this case, one Frobenius solution,

y1(%) = (x — xo) Y, an(x — xo)" with ao =1, (4a)
n=0 .
is obtained. A second (independent) solution exists in the form

12(8) = PN — xg) + (x = xof 3, Adfx = %)y %> Xo.
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Case 3: r—n= positive integer.
In this case, one Frobenius solution can always be obtained from the larger root ry:

yalx) = (x — Xo)* X, dalX — xo) withao = 1. (5a)
n=0_°

- -

The smaller root r, may yield no solution, one solution, or 2 general solution. In the event that it
yields no solution, a second (independent) solution can always be found in the form

y,(x) = Ay (x}inlx — Xo) + (x — Xo)” Y, Adlx - xo)t Wwith Ag =1,x> Xo- (5b)
. a=0 :

In all cases, a general solution of the differential equation is

. ) = caya(¥) + €2y}

8.2 Gamma Function

The gamma functionisa generalization of the factorial operation to noninteger values.
Forv > 0,itis defined by the convergent improper integral

)

Integration by parts yields the recursive formula
v+ 1)=vI) v>0. (73)

With this formula, and the fact that the gamma function is well tabulated in many
references! for 1t v < 2, T(v) can be calculated quickly for all v > 0. We note, in
particular, that

ra= g e *dx =1, (8)
0
and hence forva positive integer,
T(v+1)=v. (9)
~mple 1: Evaluate ['(4.2).
¢ lution: With recursive formula (7a),

r@4.2) = 32r3.2) = (3.22.207(2.2)
= (3.2)(2.2)(1.2)F(1.2).

* Gee. for example. M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions (New York: Dover,
1965).
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Figure 8.1

Example 2:

Solution:
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But from tables, [(1.2) = 0.918169, and therefore
r4.2)= (3.2)(2.2)(1.2)(0.918169) = 7.7567. ™

If v < 0, the improper integral in (1) diverges (at x = 0), so the integral cannot be
used to define ['(¥] for v < 0.-Iastead we reverse recursive formula (7a),
r 1 .
rw =2, (7b)

v

and iterate to define
B (v + k)
T+ v+ 2 v+ k-1’

I'(v) (10)

where k is chosen such that | <v + k < 2. With {10) as the definition of I'(v)forv < 1,
[(v) is now defined for all v except v = 0,—1,—2,...,and its graph is as shown in
Figure 8.1. .

Evaluate ['(—2.3).

We use (7b) to write

r(_m_r(—u)_ r-03» TN
13 = =53 T(Oaa— i (—23(= 103
r(1.7)

= I3 = 13— 0.30.7Y

E—
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But from tables, [(1.7) = 0.908639, and therefore

0.908639

= - = —1.4471. a
{(—2.3)(— 1.3} —0.3)0.7)

r(-23)

- T -

Exercises 8.2

1. Use tables for the gamma function, or otherwise, to evaluate the following:

(a) I'(6) (b) T(3.4) (¢) I'(4.16)
(d) I'(-0.8) (e) N(—3.2) (f) I'(—2.44)
2. Show that
* I 1
‘( x"e""dx:—(v—v;r—), v>—1, a>0.
° o

3. By definition,

Set x = y? to show that

. | °
r{z)=2] e
(5)-2) 7

and use the result of Exercise 24 in Section 7.2 to obtain I'(1/2) = \/;

4. Prove that for n a positive integer,
ofna] @
2] 22

8.3 Bessel Functions

Bessel functions arise when éepﬁtion of variables is applied to initial boundary value
problems expressed in polar, cylindrical, and spherical coordinates. They are solutions
of the linear, homogeneous, second-order ODE

2 :
x2%+x%+(x2*vz)y=0, vz0, a0

called Bessel's differential equation of order v. When we assume a Frobenius solution
yx) =¥ _,a,x"""(x = 0 being a regular singular point for the differential equation),
we obtain the indicial equation

r?—vi=0, (12a)

and from the remaining coefficients,
a,[(r + 1)> = v?] =0, (12b)
a[(n+n*—-vl+a,_,=0 n=2. (12¢)
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rootr = v, W€ must choose a1 = 0, and iteration of (12¢)

For the nonnegative indicial

yields, for n > 0,

Apast = 0, (13a)
L

(—1"a0 (13b)

- -y

a3 = 31y + D + D0V F )

= {2 Tiv + 1)}, the partic
1 rootr = vis de

ular solution of Bessel's differential

if we choose do
noted by

equation corresponding 10 the indicia

(14)

Bessel function of the first kind of order V- The ratio test shows that this
for all x, and hence J(x)isa solution of Bessel's differential equation
d, of course, that x" is defined).

onnegative integer, the gamma

and is called the
series converges

for all x (provide
When visan

factorial:
x v » (__1)n X 2
== A L =0,1,2,...
Jx) (2\) ,.Z‘o nt(n + v)!(?.) oY

n Figure 8.2.

function can be expressed as 2

(15)

Graphs of Jyx)forv= 0,1,2 are shown i

tial equation, three

Figure 8.2
orvisa positive

tion of Bessel's differen
ninteger,Vv is zero,

second independent solu

To obtain 2
different cases arise,
i integer.

Case 1:
We could iterate re
Exercise th but there is 2
function obtained by replacing v

_ i -V (__‘)ﬂ (’_t_ in
J- ) (2) Tt - v+ D\2 ' (1)

depending on whether visnota

= —v(see

ndicial roctr
mine the

th the negative i
lution. We exa

to the same SO

v is not an integer.
cursive relation (12¢) wi

more direct route
by —vin JAx):
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It is clear that this function also satisfies Bessel's differential equation (since the
differential equation involves only v?). Further, itisindependent of J,(x),since J©)=0
and lim, _q+ J-{x) = ©- Thus, if v is not an integer, @ general solution of Bessel's
differential equation is ’

- Jx) = ATAG+ BI-9), 17)

which certainly is valid for x > 0(and may or may not be valid for x < 0, depending on
the value of v). In the special case that v is one-half an odd integer (1/2, 3/2,5/2, etc.),
the indicial roots differ by an integef, and this general solution is generated by the
negative indicial root alone. The solutions in this case are called spherical Bessel
functions (see Exercise 6).

Case 2: v=0.
When v = 0, the indicial roots are equal,anda sotution of Bessel’s differential equation
of order zero,

d?y  dy

T e —— = 18
X977 + Ix +xy=0, (18)
. ' ® (_l)n x 2n

independent of Jo(x) = "Z:o @ (5 , (19

can be found in the form

y(x) = Jo(x)inx + Z‘l Ax"

(see Case 2 of Theorem 1 in Section 8.1). Substitution of this solution into Bessel's
differential equation leads to

2xJg + i‘ n(n — DAX" + i nA,x" + i‘ Ax"t2=0.
n= n=1 n=

When Jo(x)is calculated from (19) and the remaining three summations are combined,
the result is

. © (=1
n no__
At 44,x7 + ,.2‘3(”2/1" + An-2) ,.Z‘, nt{(n — 1)‘.22"-2xz =0

Evidently, 4, = 0, and if 1 is odd, the recursive formula
nzA,‘ + A,,..z =0

yields A3q+1 =0 for n > 0. From the terms in x. A, = 1/4, and from those in x*"
n=2,

(-
24, Ay s = 0. 20}
(2") In + n-2 + “‘.(” _ 1)!2211—_

Iteration of this result gives

_ln+l 1 ] 1
Az,.=(-——)““<‘+—+’+"‘+’>- nz L (21)
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With the notation

LI |
¢(n) = Z‘ o (22)

we obtain lheﬁit;dépendem_,s_olution

£ _‘n+l 2n
y(x) = Jo(x)}Inx + 2_:‘ (——()F?ﬂp—)(-;> , (23)

called Neumann's Bessel function (of the second kind) of :order zero. The series in (23)
converges for all x, but the logarithm term restricts the function to x > 0. Any linear
combination of this solution and Jo(x)

aJo(x) + by(x),

constitutes a general solution of Bessel's differential equation of order zero. Often
taken are

2B 2
a=A+=—( —mn2), b=-8B,
n r
where 7 is Euler’s constant, defined by
v = lim l+1+l+ +1 Inn (24)
=M TS n '

and 4 and B are arbitrary constants. In this case, the general solution of Bessel's

- differential equation of order zero is

y(x) = AJo(x) + B Yo (x), (25a)

where

0 _1n+l n
Yolx) = %{Jo(x)[lnG) + 7] + n;( In!)zd’(n) (%) H (25b)

The solution Y,(x) is called Weber's Bessel function (of the second kind) of order zero.

Case 3: vis a positive integer.
When v is a positive integer, the indicial roots differ by an integer, and we find thatr =
— v once again yields J,(x) (see Exercise 2). A second solution can be found in the form

yx) = AL () Inx + S AX"TY ‘ (26)
n=0

(sce Case 3 in Theorem | of Section 8.1). Substitution of this series into Bessel's
differential equation (11) gives

24T, + z (n—v)n—v—DAX"""+ Y (n—v)Ax""" +(x2=v}) ) Ax"" =0,
n=0 n=0 n=0
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and, if this equation is multiplied by x* and the summations are combined,

3 z  (—1)"AQ2n + v
(1 - 2\')/1[.’( + Z {n(" — 2v)A4, +/‘1.._1].‘(" + Z ( )"A(2n v)
n=2

2n+2v _ 0
Sonl(n+ v)i22nre-t

Evidcdtly, Ay =0, and if nis odd, the recuisiye formula

nn—2v)A,+ A,.; =0
requires that A,,,, = 0 for n > 0. Since this recursive formula is also valid for even n
and 0 < n < 2v, iteration gives
_Agv—n—1)!

A, =
T Ty — 1

O<n<v. 27)

From the coefficient of x,

Av

Azv-2 + T T

=0’

which can be solved for

'—AO

AT

(28)

From the terms in x2"*2* n > 0,

(=1)"A@2n + v)

2n(2n + V) Ay, 45, + Agpige-2 + i+ o) =0.
Iteration of this result gives
_ (=)L) + d(n + v)]
A = T >0, (292)
provided we make the choice
—Ad(v)
Az = —Soer (29b)

Finally, then, the solution is

v Ve § — | 2n .
v(x) = AJ{x)Inx + .\'"'( Zl Aol —n— )7 (i> m x 2

Lo ontv—1)r \2/) 2o

= (_1)"+lA[¢(n)+¢'(n+v)] In+ 2w
xenTevy, 30
+,.gl ni(n 4 vjr2intvel g 30
The particular solution obtained by setting Ay = —2*~'(v — 1)!is
L/x\ 72t (v —n = ) /x )\
Wy=JA)lnxy — <= PN A
F0 = Al 2(2) T (2)
O\ & (= 1D)"[d(m) + dn + v)] [x\ 2"
— = - 31
2(2) ..Zo nt(n + vj! 2/ 30
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where we have adopted the convention that $(0) = 0. This solution is called Neumann's
Bessel function ( of the second kind) of orderv. Any linear combination of this solution
and J{x)

. al (x) + by(x),

- .

constitutes general solution of Bessel’s differential equation of order v, v a positive
integer. Often takenarca and b, asin the v = (O case, in which case the gcneral solution
of Bessel's differential equation of positive integer order v is

y(x) = AL + BY/(x), (32a)

1fx vot(v—n— (X 2n
7] - 5(5) P (5)
(-1l + d(n + V)] (xY’}

nl(n + v)! 2

where

2

(32b)

The solution Y(x)is called Weber's Bessel function ( of the second kind) of order v.
Notice that in the special case that v=0, Y,(x) reduces to Yo(x) providcd we
stipulate that the first sum vanish. Graphs of Yo(x)and Y,(x) are shown in Figure 8.3.

Figure 8.3

For nonnegative integer values of v, a general solution of Bessel's differential
equation has been obtained in the form y(x) = AJ () + BY,(x) and, for poninteger v, ‘
the solution is yx) = AJ(x) + BJ_ (). This situation is not completely satisfactory
because the second solution is defined differently, depending on whether v is an integer-
To provide uniformity of formalism and numerical tabulation, a form of the second
solution valid for all orders is sometimes preferable. Such a form is contained in

1

Y,(x) = ———{Jdx)cos v —~ J_ L) v # integer, (33a)
sin VR .

Y,(x) = lim Y{x) n = integer. " (33b)

If vis not an integer. Y{x)is simply a linear combination of J(x)and J_Jx).and since
J(x)and Y,(x) must therefore be independent,

AJx) + BY.(X) (34)

A
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is a general solution of Bessel's differential equation. It can be shown that as v
approaches n, Y,(x)is also given by (25b) or (32b). Consequently, 2 general solution of
Bessel's differential equation (11)is (34), where J,(x)is given by (14)and Y,(x)is given by
(33). When vis an integer, Y,(x)1s also given by (25b) or (32b).

- —

Recurrence Relations

Bessel functions of lower orders are well tabulated.! With recurrence relations, it is then
possible to evaluate Bessel functions of higher orders. We now develop some of these
relations.

Using series (14),

- T‘l(v_)G)" + nilﬁﬁ"%%%ﬁ(—(" )+ n)(xiym_l
=l___(;"Tﬁ<%>"‘ N "Z“Fr%l’)%—ng)zuv-;

_ 0 (—'1)"\’ X 2a4+v—1
- ,;, nT(n+v+ 1)(5)

__z‘i 0 (__1)1! X 2n+v——%i (x)
=% LonlTin+ v+ D\2 T

s

Thus, we have the recurrence relation
2v
Jis Wx) = —;Jv(x) - J,- 1(x)’ v 1, (35)
which allows evaluation of Bessel functions of higher order by means of Bessel
functions of lower orders.

In addition to this functional relation, there exist many relationships among the
Bessel functions and their derivatives. A derivation similar to the above yields

2le(x) = "v—- l(x) - ‘lv+ l(x)l vz 1a (36)

(see Exercise 5). This result combines with recurrence relation (35) to give

Jix) = — %J\.(x) w0, vzl
. v
and Jx) = < (x) = Jo (X v=0.

! ibid.
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Further, multiplication of these equations by x" and x ", respectively, implies that

d
E;(x"Jv(.\')) = x*J,_(x), v> 1, 39)

TT -

ol
and 2-;(-"_'1»(-“)) = —x""J, 41 (XD v=>0. (40)

The results in (35)-(40) are also valid for Y,(x).

Zeros of Bessel Functions

Zeros of Bessel functions play an important role in Sturm-Liouville systems involving
Bessel's differential equation (see Section 8.4). We shall show that J,(x) has an infinite
number of positive zeros and that these zeros cannot be contained in an interval of
finite length; that is, there must be arbitrarily large zeros of J,(x). {The results will also
be valid for Y,(x), but our interest is in J,(x), and we shall therefore deal directly with
J(x).] We begin by changing dependent variables in Bessel's differential equation (11)
according to R = \/r;c y(x) for x > O (see Exercise 7). The result is

4R 1/4 = v?
W+(1+L;TL>R=O‘ X>07 (41)

and R(x) = \/F.;J‘.(x) is a solution of this equation. When 0 < & < 1, the differential
equation

d*R

-— + e2R =0, x>0, (42)

dx
has general solution R(x) = Asin(ex + ¢), where A and ¢ (0 < ¢ < m) are arbitrary
constants, and this solution has an infinity of positive zeros, x = (nm — ¢)/e(n>0).

According to the Sturm comparison theorem in Section 4.3,if 1 +(1/4 — v2)/xtis

greater than or equal to &2, every solution of (41) has a zero between every consecutive
pair of zeros of Asin(ex + ¢). But

1/4 — v?
14-—/——2—"—>:a2 (43)
X
if, and only if,
ool
1 — ¢~

When 0 < v < 1/2, this is valid for all x > 0. When v > 1/2, this is valid for all x > X
if xg =v (v - 1/4)(1 - ¢?). In other words, it is always possible to find an interval
x> Xo = 0 on which inequality (43) is valid. On this interval, then, R(x), and therefore
J.(x), has at least one 2¢ro between every consecutive pair of zeros of Asin(ex + ¢}
Since the zeros x = (nm — ¢d)/¢ of Asin(ex + ¢) become indefinitely large with
increasing n, it follows that J,(x) must also have arbitrarily large zeros. The first five

zeros of Jo(x) and J,(x) are shown in Figure 8.2.
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Exercises 8.3

1. Show that when v is not an integer, solution (16) of Bessel's differential equation can be obtained
from the negative indicial root.

2. Show that when v is a positive integer, the sofution obtained from the negative indicial root r =

- v is J,(x).
3. Use series (15) to find values of the following, correct to four decimals.
(@) Jo(0.4) (b) Jo(1.3) (c) J,(0.8) d) J,(3.6)
(e) J,(3.6) (f) J4(6.2) () Ji(4.1) (h) J,(29)
4. Calculate the following, using recurrence relation (35) and tabulated values of Jyand J;:
@ J,(3.6) (b) J,(6.2) © J;4.1) ) J,29)

s. Verify identity (36).
6. Bessel functions of the first kind of order +(n + 1/2), na nonnegative integer, are called spherical
Bessel functions. They can be expressed in terms of sines and cosines.

(a) Use series (14) and the result of Exercise 4 in Section 8.2 to show that

/2 . ' /2
Jia(x) = asm X, Joyp(x) = Ecosx.

(b) Use (39) and (40) to show that

Ld\ i a-ven
(;E) (x %) = (= 1)"x 77, alX)
L dy
and .(; "&) (X" (3) = "y

where the left sides mean to apply the operator x~'d/dx successively n times.
". (o) Provethatforn=90,12,...,

2 1 d n :
Jn+1/z(x)=(_1)n\/;xu+\[2<; Ix') (S_ll;_){)y
J”z"‘(x)=\/~§-x""“2(l .d_)n(sinx).

n x dx

7. Show that the change of dependent variable R(x) = \/; y{x) transforms Bessel's differential
equation into equation (41).
8. Show that the function e**~ 2 can be expressed as the product of the series

= (5 G RE )

and that the product can be rearranged into the [orm
e Tt = Jo(x) + Y ()™ + (= ()]
m=1

Because of this, e*“ ™' " js said to be a generating function for J (x). m a nonnegative integer.
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9. Use integration by parts and the facts that d{xJ,(x)}/dx = xJo(x) and dJo(x)/dx = —Jy(x) [see
identities (39) and (38)] to derive the reduction formula

s

Jx"lo(x)d.y = x"Jy(x) + (n — Dx" " Up(x) — (n — 1)? j‘-x"_‘_z.lo(x)dx, nx2.

10. (a) The differential equation

2
x2%+x%—-(x2+vz)y=0, v>0,
is called Bessel's modified differential equation of order v. Show that the change of in-
dependent variable z = ix reduces it to Bessel's differential equation of order v.

(b) Verify that the function /,{x) = i"*J(ix), called the modified Bessel function of the first kind of
order v, is a solution of Bessel's modified differential equation. Find the Maclaurin series for
1,(x) to illustrate why the factor i”” is included in its definition. )

(c) Sketch graphs of Io(x) and I(x) for x > 0.

(d) A second (linearly independent) solution of the modified equation is called the modified
Bessel function of the second kind of order v. Its definition is analogous to definition (33) for
Y, (x):

n

K/x)=

——[I_,(x) - [(¥)], v #integer,
2sinvx

K, (x) = lim K (x), n = integer.

ven

It can be shown that this definition leads to the following expressions for K,(x) when vis an
integer:

0 ) 2n
Ko(x) = —Io(x)[ln (;) + y] +Y 3(,';2 (;) ,

= vl x 1 x vl (=1)'(v —n — I} x 2n
Kix) =(=1) "(x)[l"(:z)”}'z(z) Z nl (2)

+ %<~ %) i [o(n) + ¢(n + v)] (%)2", v 0.

o ni(v + nj!

Express K,(x) in terms of J(ix) and Y,(ix) when v is an integer.
(e) Show that K,(x) is unbounded near x = 0 when v is an integer.

8.4 Sturm-Liouville Systems and Bessel’s Differential Equation

When separation of variables is applied to initial boundary value problems in polar
and cylindrical coordinates (and we shall do this in Chapter 9), both regular and
singular Sturm-Liouville systems in the radial coordinate r occur. Regular systems take

the form
d [ dR .3 v .
J;(’jﬁ)Jf(" r—T>R=O, O<r, <r<ry, (44a)
—I,R(r)) + hR(r) =0, (44b)
1,R(ry) + hyR(ry) = 0; (44c)




Section 8.4 Sturm-Liouville Systems and Bessel’s Differential Equation 301

singular systems appear as

d 2
— r.d_li + izr_—y-—- R-:-_O‘ O0<r<ry, (453)
dr\ dr r

0

- LR'(ry) + hiR(3) =0, — (4sb)

where l,, 3, hy, hy,and vare nonnegative constants. Eigenvalues have been represented
as A2, since (44) is a proper Sturm-Liouville system (the eigenvalues of which must be
nonnegative). ’

Properties of system (44)arca straightforward application of the general theory in
Section 4.1. Although we make limited use of the results, we include a brief discussion
for two reasons. First, it affords us the opportunity to review the theory of Sturm-
Liouville systems; second, the notation introduced and some of the results obtained are
useful in the discussion of singular system (45).

We begin by making a change of independent variable x = Ar in (44a). Since
d/dr = Ad/dx, the resulting differential equation is

d{ dR Aoy
la}'()‘l*g}') +().X —’;V >R —Os
2
or xzdrxlz + x%:- +(x2—v)R =0, @6)

Bessel's differential equation of order v. According to equation (34), the general
solution of this equation is

R = AJ,(x) + BY,(x), (47)

where 4 and B are arbitrary constants and J,and Y, are Bessel functions of the first and
second kind of order v. Consequently, the general solution of (44a) is

R(A,r) = AJ(Ar) + B Y, (Ar). (48)

If we let J', denote the derivative of J, with respect to its argument, that is, if

d
Jx) = = 4x),

then %J,,(lr) = A (Ar).
With this notation, boundary conditions (44b, c) require that
— A[AS ) + BY'(Ar)] + hL4J,(4ry) + BY,(ir)1=0, (49a)
1,a[AT (4ry) + BY'(ir,)] + hy[AJ,(Ar;) + BY,(4r;)] = 0. (49b)

From (49b),
Ay Jy(0ry) + hyJu(Ars)
B= Al v )
My Yiiry) + hy Y,(Ars)
which, substituted into (49a), yields

L) + har) A YA F h, Y, (3r,)

= o ——— 50
LT + hadArg) ALYl + Iy V(1) 50)
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This is the cigenvalue equation, the equation defining eigenvalues of Sturm-Liouville
system (44). Because values of 7 will depend on the vatue of vin differential equation
(44a), we denote cigenvalues of (50) by A (n = 1,2,..) [although, in fact, (4,,)* are the
eigenvalues, of the Sturm-Liouville system]. Corresponding eigenfunctions can be
expressedin e form—.

1 S aa?) _ Yo(Aun?) )
N ;'vnll‘,lv(;'wer) + hZ"v(}‘vurl) A'vnlz Ylv(lvnrl) + h2 Yv()‘\mrl) !
(51a)

R (r) = R(An:1) =

where the normalizing factor N~ ' is given by

r2 J(%sal) Y,(Ayat) 2
2 _ v\ v . vi/tvn d‘
N j ’(2\4"121a.</‘.\.,r2)+thvu.\.,rz) z\.,tzvz().v,rznhzw.v,rz)> r. (518)

This integral is evaluated in Exercise 1. We end our discussion of system (44) by noting
that according to Theorem 7 in Section 4.2, functions of r can be expressed in terms of
the orthonormal eigenfunctions R, (r). Indeed, when f(r) is piecewise smooth for
rySrsr;,we find that at any point in the open interval ry <7r <ry,

fen e fes) 5, caRul (52a)
where Cy = j 2 rf(r)R(r)dr. (52b)

This is often called the Fourier-Bessel series for f(r). Ttis important to remember that v
has been fixed throughout this discussion; that is, for a fixed value of v = 0, there isa
sequence Of eigenvalues (23} of (44) together with corresponding orthonormal
eigenfunctions R,.(r) and an eigenfunction expansion (52). Changing the value of v
results in another set of eigenpairs and a new eigenfunction expansion.

More important for our discussions is singular Sturm-Liouville system (45), we
consider it in detail. The system is singular because no boundary condition exists at
r = 0. Notice also that q(r) = — v2/ris not continuous at r =0

We are not really justified in denoting eigenvalues of a singular system by 42, since
we cannot yet be sure that eigenvalues are nonnegative, However, because we shal!
show shortly that all eigenvalues must indeed be nonnegative, and because use of i
has the immediate advantage of avoiding square roots in subsequent discussions, it i
convenieat to adopt this notation. Since the coefficient function of R'(r) vanishes 2
r = 0. the corollary to Theorem 1 in Section 4.1 indicates that a poundary conditio!
at r = 0 is unnecessary for that theorem. Examination of the proof of the theorer
also indicates that continuity of g{rjatr = 0 is unnecessary. Consequently, eigenvalue
of this singular system are real and corresponding cigenfunctions are orthogonal. A
in the discussion of system (44), the change in independent variable x = Ar leads to th
general solution

R = AJ{/r) + BYJ{.r) (s:

of (45a). Because YArr)is unbounded near r = 0, B must be set equal to zero, and »
take

R = AJ{4r). (5¢
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Boundary condition (45b) yields the eigenvalue equation
1y (irg) + hyd (iry) =0, (55)

where once again the prime in the first term indicates differentiation of J, with respect
to its arguiment. =T

Because the Sturm-Liouville system is singular, we cannot quote the results of
Theorem 2 in Section 4.2; we must verify that the theorem is indeed valid for this
system. We first show that there is an infinity of eigenvalues, all of which are positive
(except when v = h, =0, in which case zero is also an eigenvalue). We subdivide our
discussion into three cases, depending on whether I, =0, hy, =0,0t hyl, #0.

Case 1: [, =0.
In this case, we set h, = 1, and from equation (55) eigenvalues are defined by

J(Ary) =0; "SSG)

that is, eigenvalues are the zeros of Bessel function J,(x) divided by r,. In Section 8.3 we
verified that Bessel functions have an infinity of positive zeros. :

Case 2: hy, =0.
In this case, we set [, = 1, and eigenvalues are defined by the equation

Ji(Ary) = 0: (57)

that is, eigenvalues are critical values of Bessel function J,(x) divided by r,. Since J,(x)
has a continuous first derivative, Rolle’s theorem from elementary calculus indicates
that between every:pair of zeros of J(x), there is at least one point at which its
derivative vanishes. Hence, (57) has an infinity of positive solutions. [The first few
positive critical values of Jo(x) and J,(x) are shown in Figure 8.2.]

Case 3: h, #0. _

In this case, eigenvalues are defined by (55). If we set x = Ar,, eigenvalues are roots of
the equation

rahy

Ox) = xJ (x) + TJ"(X) =0 (58)

2
divided by r,. When x; and x;,, are consecutive positive zeros of J(x), Q(x) has one
sign at x;and the opposite signat x;, ;. Because Q(x) is continuous, it must have at least
one zero between x; and X;, . It follows, therefore, that equation (58) must have an
infinity of positive solutions.

We have shown that each of the eigenvalue equations (55), (56), and (57) has an
infinity of positive solutions 4. These solutions define positive eigenvalues +% of the
singular Sturm-Liouville system. To show that the system can have no negative
cigenvalues, we set 4 = i@ (¢ real and not equal to zero). Equation (55) with 4= i¢ then
reads

ilypd ' {idry) + hyJdigrs) = 0.

If we replace J, by J, and J, ., according to equation (38), this equation becomes

frahy + v, 1 (idr;) — iprylyd, ligry) = 0.
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We now express J(i¢r,) and J,, (i¢r,) in terms of their power series; the result is

- igry\' 3 —'———1_-—— 2’2 )
0= T) (""" ) T iy 1)( 2 )

+ ¢2r§l, i 1 . (?2-)2")
7 SonTn+v+2)\ 2
Because ryhy + vi; 20 and I, > 0, and both series contain only positive terms, there
can be no solution ¢. Thus, all eigenvalues of (55) must be nonnegative.

We now show that 1 =0 is an eigenvalue only when h, = v = 0. Since the
eigenfunction corresponding to an eigenvalue A4 is always J(4r), it is clear that the
eigenfunction will be identically zero if A = Oisan eigenvalue, except when v = 0 [when
v = 0, the eigenfunction corresponding to 1 =0 is Jo(0) = 1]. Because Jo(0) # 0 and
J5(0) = 0, it follows that 1 = 0is an eigenvalue of equation (57) but not of (55) or (56).
Thus, there is only one possibility for a zero eigenvalue—both h, and v must be equal
to zero.

Only one last point remains to be cleared up. If v is such that J, is defined for
negative arguments, then for every positive solution 4 of (55),(56),and (57), —Aisalsoa
solution. However, the power series expansion for J, clearly indicates that the
eigenfunction J,(— 4r) is, except for a multiplicative constant, identical to J,(Ar). Thus,
negative solutions of the cigenvalue equations lead to the same eigenvalues A? of the
Sturm-Liouville system and the same eigenfunctions.

We have now shown that singular Sturm-Liouville system (45) has an infinity of
eigenvalues, all of which are positive (except when v = h, = 0,in which case zero isalso
an eigenvalue). If we denote these eigenvalues by A, (n=1,2,...), then from (54),
corresponding orthonormal eigenfunctions are

Rolr) = Rlao) = 5 Wl (59
where N? = j ’ r{J.(A..N1* dr. (59b)
o

To avoid direct integration of J,, we note that any function R satisfying differential
equation (45) also satisfies

2
0 = 2rR'(rR") + (lzr — Yr—> 2rRR’
d d
= (rR)* + (A% — v2)—(R?).
dr dr
Integration of this equation with respect to s from r = 0 to r = r, gives
r:

0 = {(rR)? — V’R*}G + A’J

[]

d
2 2
r2 (R dr

2
= {(rR')* — VIR + A{r’R*}¢ — /'.ZJ‘ 2rR% dr,
0
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and when this is solved for the remaining integral,

r:
‘wf rRYdr = {(rR}? — vR? + A*r'RP}5.
o +

If we now rcpla::e A with 4,, and R with tl;e correspon?ﬁhg solution J(4,,r) of (45a),
r2
213.J {0 (Anr)) dr = 321 (Aur)]? + (A2r = vIA(Ar2)]?
(4]
from which

IN? = 2f rCA(A,.1)]2 dr

0

2
= r%["'v(l\mrl)]z + (r§ - liz") [Jv(lvan)]z

A\ L]

-yt g () Jeucaaran:
2 h 2
= ri[l - (—[“7) + ( A“’,Z) ][Jvuv,m]'.

Summarizing our results, orthonormal eigenfunctions of singular Sturm-Liouville
system (45) are

Ral) = 1 hhu) (602
where IN? =31 — (2 : + LAY (Aar2))? {60b)
? /Iw-"z lulz e

and eigenvalues 1, are defined by the equation
LAT(Ar3) + hyJ(Ary) = 0. (60¢)

There are three possible boundary conditions at r = r,, depending on whether !, = 0,
hy = 0, or I, h, # 0. The results for all three cases are listed in Table 8.1.

2 8.1 Eigenpairs for Sturm-Liouville System (¢R’) 4+ (A2r — v} [)R = 0,0 <r < r,,
g 13R(ry) + h3R(r;) = 0
‘ondition Eigenvalue
“atr=r, Equation NR,, 2N?
- 2 h \?
Thyly # 0 L,AJ () + Hyd(iry) = 0 J(Ar) =) + () HARar)?
A2 '{\-nIZ
i P
h, =0 Jary) =0 JAAur) f§{1 - <} : ) }[Jv(l\-..fz)]z
= val 2
L =0 J(3ry) =0 JAr) ) = B3 iGhara)}?
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orem, piccewise smooth functions of r can be

these eigenfunctions.

then for each rin 0 <r <ry,

If a function f(r) is piccewise smoot

where

h on the interval 0 Sr <13,

L)L) 2§ e R, €1

Co = I" rf(NR,(r)dr. (61b)
]

Example 3:
(4S)whenr, = 1,1,

Solution: Orthonormal eigen

\l/\

are

where eigenvalues

where

To evaluate this integral, we first set x =

Cn

We now use ther

J2

T,

Ca

ELYAVS)

_J20i-9
Ll

Expand the function f(r)

({x’J‘(x) + 2x o) e — 4 Yn xJo(x) dx)
1]

= r¥in terms of the eigenfunctions of Sturm-Liouville system

=0,h2=1,andv=0.

functions of

df dRY , , '
E(r-g;_—)-{-er—-O, 0<r<l’
R(1)=0
R () = Y2olher)
Jl('ln)

A, are solutions of Jo(4) = 0. The eigenfunction expansion of rtis

=5 R0
n=1

1 2 1
c, = L riR(r)dr = 7:{—)—?3 L r¥o(Ar)dr.

A,r, in which case

= 2 (XY dx 2 2a
T2 L (}:) ‘IO(x)’l::mL x3Jo(x) dx.

eduction formula in Exercise 9 of Section 8.3:

An d .
<A,3‘Jl(/l,,) - 4j E;[x.l,(x)] dx> (see identity (39) with v = 1]
[4]

(A:Jl()‘n) - 41!1‘,1(1"))
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Consequently,
~ -5 f(12—4) V2 Jola1)
<4 Ji(4,)
) 0 1.
B Z 13-’1(1.)]0(1 aTh <r< .

Exercises 8.4

1. Use the following argument to evaluate the normalizing factor N™! in (51b).
(a) Show that any solution of (44a) also satisfies

d ona 2,2 34 o2 _
a(rR) + (A%t —v )drR =0.
(b) Integrate this equation from r, to r, to obtain
r2
. 2).2J. rR?dr = {(rR)* + (A*r* — v})R2}12.

ri

(c) Use boundary conditions (44b, c) to write this expression in the form

i wr rR*dr = [rzR(rz)]z[lz - (1)2 + (f’lﬂ
- r r; Iz
=) ()]
ry ly

_ (d) Substitute 1 = 4,, and R = R,, [from (51a), without the normalizing factor N~!] to obtain

an expression for N7t

2.. Expand the function r* (v > 1} in terms of the eigenfunctions of Sturm-Liouville system (45)
when (a) !, =0 and (b) h, = 0.

3. Expand the function f(r) = 1 in terms of the eigenfunctions of Sturm-Liouville system (45) when
v=0

4. Show that cigenpairs for the singular Sturm-Liouville system

d( dR ., V2
;<r7d-r—)+<}. r—-—r—>R—-O, 0<r<r,, v>0,

[,R(ry) — hyR(ry) = 0

where {, > 0 and h, > 0, are also given in the first line of Table 8.1 (with 4, replaced by —h,).
5. The singular Sturm-Liouville system

d( ,dR 122
- dr<r H—r—)+4rR—0, 0<r<r,,
R(r)) =

arises when separation of variables is applied to heat conduction problems in a sphere, when
temperature is a function of only radial distance r and time.
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(a) Use a Frobenius series to obtain the general solution
1 .
R(r) = ~r-(A cos Ar + Bsin Ar)

of the differential equation.
(b) Find cigenvalues and normalized eigenfunctions of the Sturm-Liouville system.

(c) Analternative way to find eigenfunctions of this Sturm-Liouville system is to make a change
of dependent variable Z(r) = \/;R(r). Show that this leads to the differential equation

d{ dZ .. /4y _
;(rd’_)+(ir— r)Z—O, 0<r<r,,

and the solutions R(r) = (4 cos r + Bsin Ar)/r.

(a) Show that when the boundary condition in Exercise 5 is R'(r;) = 0, eigenvalues are non-
negative solutions of

tanlrz = Iirz.

(b) Find normalized eigenfunctions.
(a) Show that when the boundary condition in Exercise 5 is [, R(r;) + hyR(ry) = 0, eigenvalues

are positive solutions of
hyr
(1 - —il) tan Ar, = Ar,.

2

{b) Find normalized eigenfunctions when h,r,/l; > L
Use the technique of Exercise 5(c) to find normalized eigenfunctions of the singular Sturm-
Liouville system

d{ ,dR

af an 2.2 _ - )
dr(r dr)+(l rP—mm+1)R=0, 0O<r<ry,

1,R(r;) + hyR(r;) =0,

where m > Ois an integer and [, > Oand h, 2 0. Tabulate the results for the three cases [; = 0,
h, =0,and [,h; #0.

Legendre Functions

Legendre functions arise when separation of variables is applied to (initial) boundary
value problems expressed in spherical coordinates. They are solutions of the linear,
homogeneous, second-order differential equation

d? d
(1 -—xz)zc—};——-2xd—i+n(n+ 1)y =0, 62)
called Legendre's differential equation. If we assume a power series solution y(x) =

f=0a,‘x" (x = 0 being an ordinary point of the differential equation), we obtain
arbitrary aq and a, and the recurrence relation

_(n—k+2)(n+k—l)

. 63
Ktk —1) Qg - 2» k=2 (63)

a, =
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Iteration of this result leads to the general solution

o 2%+ (n—2 n +3)-(n + 2k — 1
y(x)=ao<1+k‘=;l(—1)*(" + 2 (n = Anln + Din + 3l )x")

k!
= (n—2k +1)(n = 3)(n— n + 2n +4)-(n + 2k) m,)
+a (" 2,0 @+ 1)1 =)
(64)

which converges for |x| < 1.

When n is a nonnegative integer, one of these series reduces to a polynomial while
the other remains an infinite series. In particular, if n is an even integer, all terms in
the first series vanish for 2k > n, and if n is odd, all terms in the second series vanish
for 2k + 1 > n. Thus, in either case, the solution defines a polynomial of degree n. To
express these polynomials compactly, we reverse (63) to write

k(k — 1) .
T—k+dm+k—1)"F

-2 =
and iterate to obtain

(= *n(n — )(n — 2)---(n — 2k + 1)

= . 65
T = i an—)2n—3) - Cn—-2k+ )" (65)
When we choose a, = (2n)!/[2"(n!)?], (65) becomes
— 1)k — 1
ay gy = 1V 'n — 2K)! k=1,2....0n/2], (66)

2%1(n — 2)1(n — k)’

where ([n/2] denotes the integer part of n/2. With this choice for ag, the particular
polynomial solution of (62) is called the Legendre polynomial of degree n, denoted by

81 (Z1)(2n — 24)!
B0 = X ktn — 20100 ot

n— lk_ (67)

The first five Legendre polynomials are

3x2 -1
Py(x) = 1, P(x) = x, Py(x) = 7
5x3 — 3x 35x* —30x2 + 3
Py(x) = — Py(x) = — s

The remaining solution of (62) for n a nonnegative integer is in the form of

an infinite series valid for |x] < 1. When n is even, and a, is chosen as

(= 1)"*2"([(n/2)']*/n!, the series solution is denoted by
(—1)"22°[(n/2)1]?

nl!

Qulx) =

2k + Dt

. (H S (= 1*n — 2k + 1)+~ (n — 3)n — 1)(n+2)(n+4)~-~(n+2k)x2k“)'
k=1

(68a)

T
B e e

e
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When 1 is odd, and a, is set equal to (- Qe 2 Y([(n — 1)/2]")*/n!, the series
solution is

(= D22 Y{(n — 1)/211)?
n!

x (1 Y E R L G tyn 3 (n ot 2% - "x"‘).
& (2k)!

Q.(x) =

(68b)

These solutions are called Legendre functions of the second kind of ordern. Closedéform
representations are discussed in Exercise 10; they are unbounded near x = £ 1.
In summary, the general solution of Legendre's differential equation (62) for n a

nonnegative integer is
y(x) = AP(x) + BQ,(x), (69)

where 4 and B are arbitrary constants. Legendre polynomials Py(x) are given by (67),
and Legendre functions Q,(x) of the second kind are defined by (68). Our discussions
concentrate on Legendre polynomials.

Generating Function for Legendre Polynomials

When the binomial expansion is applied to the function (1 — 2xt + t3)77?,
1 o (1/23/2) (12 +m=1) ,
= 2xt — t*)7,
1= 2xt + )72 b+ 2 m @xt — 1)

and the binomial theorem is then used on (2xt — tH)™

1 l+ i;l (1)(3)(5)(2m - 1) i(_l)k(';:)(zx)m—ktnn-k‘

-2 + )7 27m! o

Terms in t" occur when k + m = n, and since k ranges from 0 to m, it follows that the
coefficient of t" is

n OO @m =) e e
) (=1 (n_m)(zx)l :

m=(a+ 112} 2™"m!

If we set k = n — m in this summation, the coefficient of t" is
o (HBYS) - (2n — 2k — 1) ,‘(n - k) ok
-1 2x)" 7,
k=n—(n+112) 2" *(n — k)! (=1 k (2]
and this immediately reduces to
ma (=DFEn =2 o
k=0 2"’(‘.("— 2k)‘(n —-k)‘ ’

that is,

1 o (w2 (—1FQn—2000 o
P N " ", 70
(1= 2xt + )17 ,:o(m Sl — 2R — kL t (70)
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The coefficient of ¢" is P,(x), and we say that (1 — 2xt + t2)” "2 is a generating function
for P(x):

1

Tgare &0 .

Recurrence Relations

When we differentiate (71) with respect to ¢,

(1= 2xt + )P — ) = 3 nP(e)en, (72)
a=0

from which
(x—1) i Px)t" = (1 — 2xt + £%) ¥ nP(x)e"" L.
a=0 n=0

Equating coefficients of like poweré of ¢ gives the recurrence relation
(n + Py y(x) = 2n + DxPy(x) + nP,_(x) =0, n21, (73)

which permits evaluation of Legendre polynomials of higher orders in terms of those
of lower orders. Useful relations among the derivatives of Legendre polynomials also
exist. Differentiation of (71) with respect to x gives

t ©
¥ P,
: (l — 2xt + t2)3’2 ,,Zo “(X)

which, together with (72), implies that

¢ ionP,,(x)t"“ =(x—1) io Pl(x)e". (74)
Equating coefficients yields
xPy(x) — P,_(x) — nP(x) =0, n> 1. (75)
Differentiation of (73) gives
(n+ DPL(x) = 2n + DP(x) ~ (20 + )xP'(x) + nP,_(x) =0, n>1(76)
Elimination of P;(x) between (75) and (76) yields
Pivi¥) =P () =Q2n+ )P(x), n=1 (77)
and, in addition,
PLii(x) = xPy(x) = (n + 1)P(x), n > 0. (78)
We ndw show that P,(x)is a constant multiple of d"{(x? — 1)"]/dx". We first note

that

d 2 no__ 2 n-1
dx(x = 1)"=2nx(x? - 1)
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Thus, 4 = 1/(2"n!), and we obtain Rodrigues’ formula,

Chapter 8 Special Functions

d
or (x* = 1)—(x*=1)"= Inx(x? — 1)
dx
Differentiation of this equation n + 1 times with Leibniz's rule! gives

et fmp 0\ dE,  dvEt gt ) dh T,
5 (" et g == DT g g

k=0 k=0

"

but only the first three terms on the left and the first two terms on the right do not
vanish. When these terms are written out and rearranged,
n

2 n L] .
- xz)szx—z(ddx" (x*— 1)") - 2x—;;(:x"(x2 - l)") + n(n + 1)(;x" (x* - l)") =0.

This equation indicates that the function d"[(x? — 1)"]/dx" satisfies Legendre's
differential equation (62). Since the function is a polynomial in x, it follows that

d'l

P(x)=A

() = A5

To obtain the constant A, we equate coefficients of x" on each side:
2n)!

2"(n!)?

(x* -1

= AQn)@2n = 1)--(n + 1). 8 3

—(x? = )" (79)

Rodrigues’ formula is useful in the evaluation of definite integrals involving Legendre's
polynomials. In addition, it quickly yields values for P,(+ 1). With x? — 1 in factored
form, Leibniz's rule gives

n

1 d 2 u
P(£1)= ﬁ(dx"(x - 1) )lx=tl
1 a /n\ d dr
= FE(.‘;(QIF(X = )um'

The only term in this summation that does not involve x — 1 occurs when k =0, and

therefore n
(D)o
P(l) =~t——=1

2"n!

(80a)

' Leibniz’s rule for the nth derivative of a product is

dr o (m\[ & =
dx,,[f(x)g(xn = .;,()[Z?ﬂx)][ x,_,g(X)}
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Similarly, because k = n is the only term without a factor x + I,

(:)n!(—Z)"
B(=1) =~ — = (-1 (80b)

Associated Legendre Functions

Legendre’s associated differential equation is

dy dy m?
—xy L — — =0, 81
a x)dx2 2xdx+ nin + 1) =2/ (81)
where m is some given nonnegative integer. When m = 0, it reduces to Legendre's
differential equation (62). It is straightforward to show (see Exercise 9) that when y(x) is
a solution of (62), (1 — x2)™2d™y/dx™ is a solution of (81). This means that a general
solution of (81) is

dx™ dx™ (82)

where P,(x) are Legendre polynomials and Q,(x) are Legendre functions of the second
kind. The functions

) = (1 — xz)m,z< PN Bd"‘Q..(x)),

Pan(t) = (1 — 2y 200 (832)
and _ Qon(x) = (1 — xH)m™2 d—‘:tg—':sf—) (83b)

are called associated Legendre functions of degree n and order m of the first and second
kind. Since P,(x)is a polynomial of degree n, it follows that P, (x) is nonvanishing only
whenn > m.

Exercises 8.5

Ll A S

Calculate the first seven Legendre polynomials, using (a) equation (79); (b) equation (67).
Show that Legendre polynomials P,(x) are even when n is even and odd when n is odd.

Use Py(x) = 1, P,(x) = x,and recurrence relation (73) to obtain P,(x), Py(x), Py(x), Ps(x), and Py(x).
Prove the following:

(=1)"(2n)!

(a) PZA+ 1(0) = 0 (b) Pln(o) = —_Z—ZW
s , (—=1)"2n + 1t
(C) Pln(O) = 0 (d) P2u+ 1(0) = ——W
-1
@ pn="00 @ py-y="L 0D




314 Chapter 8 Special Functions

./t £ e

5. Verify the following identities for Legendre's polynomials:

(a) nP,_y(x) — Pu(x) + xP,_((x) =0, n> 0
Hint: Show that the generating function for P,(x) satisfies

d t ) 1
t— + (tx — l)———(——-—————)=0.
a‘(\/l—th-t-tz) ( 0x \\J1 — 2xt + t*

() (1 = x2)PY{x) = nP,_(x) — nxPy(x), n>0

(© nPx) =nxP,_(x) + (x? = )Py_1(x), n> 0
6. Verify that when f(x) has continuous derivatives of orders up to and including n,
—-i)
2"n!

4
!
2
\

3

i

1

1 ( rt
J. SX)P(x)dx = J SO (x? — 1)"dx.
-1 -1

7. Verify the following resuits:

! 2 n=20
(a) J_‘ P(x)dx = {0 "0

i
(b) J‘ PP dx = ° ) n#m
-1

n+1
(Hint: Use Exercise 6.)

! , 2n
(@ J ‘xP,,(x)P,.(x)dx =il n=0

@ [ xPP._ (x)dx = 2, n>0
Il el ol i

1
(e) J P(x)P,s(x)dx =2, n>0
-1

0 m<n
2-&1('1!)2
@n + 1) m=n
1 0 - 0is odd
© j‘ <P (x) dx = m-n>0iso
. e (m + n)
2" 'm! 5 !
m—n > 0iseven
m-—n
+ i !
(m+n+1) ( 3 >
(Hint: Use Exercise 6.)
8. Verify that
1 =0
. n > 0even
(a) j P(x)dx = (=1 Win — odd

)
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0 n > 3odd
1/2 n=20
! 1/3 n=1
(b) J; XPn(x)dX = (_ [)("‘1’/2(” _ 2)!

2
N n—2'n+2' n=2even
2 ) 2 )

. Verify that when y(x) is a solution of Legendre’s differential equation (62), (1 — x2)™3d™y/dx™is a

solution of Legendre’s associated equation (81).
(a) Use series (68a, b) to show that

Qo) = Tanh ™' x = %ln (:%) and  Q,(x) = xQo(x) — L.

(b) Assuming that the Q,(x) also satisfy recurrence relation (73), express Q,(x), Q;{(x), and Q,(x)
in terms of Q,(x).

(c) Express Q,(x)(n = 2,3,4) in terms o_f Qo(x) and P(x).
Prove the following recurrence relations for P, (x):
@ Preynwer(®) = Puoia-i(x) =@2n + )1 = x2 P, (x)

(b) XP,,H..I_'(X) - anl-l.u—l(x) = (” - m)V ‘ - xzpnm(x)
© (m—m+ 1P, .+ 1(x) —(2n + DxP,(x) + (n + mpb, . (x}=0

8.6 Sturm-Liouville Systems and Legendre’s Differential Equation

When separation of variables is applied to (initial) boundary value problems expressed
in spherical coordinates, the following singular Sturm-Liouville system often results:

2
%(sin¢j—$)+(lsin¢—s:‘¢)¢=0, O<¢p<m, _ (84)
where m is some given nonnegative integer. The system is singular because there are no
boundary conditions and also because g(¢) = —m?/sin ¢ is not continuous at ¢ = 0
and ¢ = n. Because the coefficient sin ¢ of d®/d¢ vanishes at ¢ = 0 and ¢ = &, the
corollary to Theorem | of Section 4.1 indicates that boundary conditions at ¢ = 0 and
¢ = mare unnecessary for that theorem.Examination of the proof of the theorem also
indicates that continuity of q(¢) at ¢ = 0 and ¢ = = is not necessary. Consequently,
eigenvalues of this singular system are real, and corresponding eigenfunctions are
orthogonal.

If we make the change of independent variable u =cos¢, then d/du =
~(sin ¢)"'d/d¢ and (84) is replaced by

d 5, d® m?
(=g (1)

d’® do m?
l— )5 - 2u—+ (A ——m— O = -1 1, 85
or ( #)d,uz ,ud#+< 1—112)(]) 0, <pu< (85)
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Legendre's associated differential equation. When 1 is set equal to n(n + 1), where
n > m is an integer, this equation has general solution

® = AP, (1) + BQual(n), (86)

where A and B are arbitrary constants and P,, and Q,, are associated Legendre
functions of degree n and order m of the first and seccad kind. Since Q,..(4) is
unbounded near y = + 1, bounded solutions are

® = AP, (1) | (87)

In other words, 4, = n(n + 1), where n > m, are eigenvalues of this singular Sturm-
Liouville system, with corresponding orthonormal eigenfunctions

Onsd) = Ol §) = 37 Prlc05 ), (68

1]
To evaluate N, we proceed as follows. Since

where N?= J‘sind’[Pm(cos #))2do = j ‘ (P01 du. (88b)

dm
— g 2ym/2
Pmu(“) - (‘ 124 ) ! d[lm Pn(“)’

where P,(u) is the Legendre polynomial of degree n, differentiation with respect to y
" yields

m4+ 1

PR P

d ™ d

—-—P — l__ 2ym(2 -1 P _ p2ymi2

i () pm(l — p*) i () + (1= p%)
Multiplication of this result by (1 — u%)'/? gives

d _#m(l _ #Z)MIZ am dm+t
gy PR ol S oA 2\ m1N2
(l un ) d[t Pmn(#) (l . #2)112 dﬂ.m Pn(l") + (1 H ) d[l"'+l Pu(”')

=T= 7 Pt} + P i, alB4)-
When this equation is solved for P,, .y ,(1), squared, and ir{tcgrated between the limits
p=*1,
1 | d 2 1 d 1 #2
J. (Pm*l.n)zd.uzj‘ (l _uz)<—Pmn> d#+2mj' #Pmn_Pmnd#'*_mzj. z(Pmn)zdp"
-1 -1 du -1 du al—n

Integration by parts on the first two integrals on the right gives

! dP 1 t d dP
Pm+ n)zdl:‘{(l — lz)-———- "} —J‘ P"m__<1 2 mn)d
j_l( 1.a)" dl n= . R (1—u )——d# 7

mn P
"
1 1 . 1 2
+ 2m {‘i(pm)l} — ZmJ (P du + mZJ. _‘#_E(Pmﬂ)z du
2 1 -12 s
d
d

1=
1
S
-1

1
dP, 2
— 1 = puH="")—mP,, + mE 5 Pra {14,
u du 1 —pu
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since P, (£ 1) = 0for m > 0; Po,(1) = P(1) = 1;and Py(—1) = P(~1) = (—1)". Now,

using Legendre’s associated differential equation (81), we obtain

1 C_m?
f Prsy o) du= J P,,,,,[( s +n(n + l))P,,‘,l —mP,,
-1 -1 l—u
+ (1 T;l - mz) P,,,]du
= J.l (P,,,)z(n(n +1)—m-— mz)du
-1

or Jl (Pmn)zd#— J. (Pm+lll) d“‘
-1

(n— m)(n+m+l)

Iteration of this result on m from m to n gives

. (n _(tm
J (Pra)? due Y J_l(ﬂ.)zdu.

== 2p = = (s -1y
(1 _ z)n/z dz.
2"n!
and substitution of this into (89) yields
1 - 1 1
f (e - ,:)','?Zn). 2(22.'3,.])2 f (1 — 2y dp.
In elementary calculus [see also Exercise 7(a) in Section 8.5], it is shown that

1 . _»22n+l(n!)2
J'_l(l — u)du =i

Now,

n_ (2n)! "
g = " = e —

and therefore

(n+m!  [(2n)!1]% 22**'(n!)?
(n — m)12n)! 22°(n)? (2n + 1))

1
N?= f P (] dt =

_(nt+m! 2
Tn—m)! 2+ 1
Summarizing our results, orthonormal eigenfunctions of (84) are
(2n + 1)(n —
D,..(@) = 2+ )! ,,,,,(cos ®),

(89)

(90)

(91)

corresponding to eigenvalues 4,,, = n(n + 1), where nisan integer greater than or equal

to m.

Because the Sturm-Liouville system is singular, we cannot quote the results of
Theorem 2 in Section 4.2. We have already shown that there is an infinite number of




318 Chapter 8 Special Functions

eigenvalues, all of which are positive, except whenm = 0, in which case 4 = Oisalso an
eigenvalue. According to the following theorem, piecewise smooth functions can be
expanded in terms of these eigenfunctions.

Theorem 3

If a function f(@) is piccewise smooth on the interval 0 < ¢ < =, then for cach ¢ in 0 < ¢<n,

f@+) + [(9-) _
2

where Co= ‘r sin @ f(P) O (@) dd. (92b)
0

z @@ (92a)

Example 4: Expand the function
i 0<¢p<m/2

f(@)=10 ¢ =mn/2
-1 nf2<dp<nm

in terms of the eigenfunctions of Sturm-Liouville system (84) when m = 0.

Solution: Orthonormal eigenfunctions of

d{.  ,do .
E(s:n¢E>+lsm¢<b—O, O<¢p<m,

are Legendre polynomials

Ooid) = [P Bicos ), 2O

The eigenfunction expansion of f (@) is

1@# = ¥, c0ud)

o
R

where ¢ = j siné 1(#)Pon() d9.
. 0

;S

When we set g = cos @,

2 -1
a1l L ST P (—dp)

il

o ~ 1
- j P(udp + j P() dp
-1 0
0 n even

- 1
2j P(u)du n odd
0
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0 . neven
(=102 — 1)

acrfn 1\ (n— 1),
2 ( 2 >'< 2 ’ I
(see Exercise 8 in Section 8.5). Consequently, 18

4n ZT(=1)"t@n—2)!
22" 2u1(p — 1)}

amd @)= [T (2,," o 12)’,' [ P eosd) i

n odd

Coan—1 =

. o (—1)*"12n — 2)!1(4n — 1) . l
; Ttni o Cosd) - i
; [
- Exercises 8.6 1
; In Exercises 1-4, expand the function in terms of the orthonormal eigenfunctions of Sturm- .: '-'..:-
Liouville system (84) when m = 0. g h_ b
Y
- o 0<¢<n2 s
1. f(¢)—{0 W2<b<n ' 3
2. f($) =cos*¢ B
cos¢ 0<¢p<n/2 : ok
3 J@)= { R2<és<n hi
_ cos ¢ 0<p<n/2 ; 19
4 J9)= {-—cosq& nf2<¢<n :

=

Find eigenvalues and orthonormal eigenfunctions of the Sturm-Liouville system

i(smd) ¢)+Asin¢<b=0, 0<¢<n/2,

6. Repeat Exercise 5 if the boundary condition is <D’(7t/ 2) =
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Example 1:

EORDGOD

N I N E

Problems in Polar, Cylindrical,
and Spherical Coordinates

Homogeneous Problems in Polar, Cylindrical,
and Spherical Coordinates

In Section 5.3, separation of variables was used to solve homogeneous boundary value
problems expressed in polar coordinates. With the results of Chapter 8, we are ina
position to tackle boundary value problems in cylindrical and spherical coordinates
and initial boundary value problems in all three coordinate systems. Homogeneous
problems are discussed in this section; nonhomogeneous problems are discussed in
Section 9.2.

We begin with the following heat conduction problem.

An infinitely long cylinder of radius r, is initially at temperature f(r) = r: —r? andfor
time ¢ > 0, the boundary r = r, is insulated. Find the temperature in the cylinder for
t>0.

320




B Solution:

Section 9.1 Homogeneous Problems in Other Coordinates 321

The initial boundary value problem for U(r, 1) is

U o 18U
E=k<'-ér—’+;5r~>’ O<r<r,, t>0, (1a)
cU(r,y,t) -0, >0, (1b)
or
Ur0)=ri—-r3 O<r<r,. {1c)

When a function U(r,t) = R(r)T(t) with variables separated is substituted into PDE
(1a) and the equation is divided by kRT, there results

TI RII Rl
e — = = i f d ¢
iT - R + R constant independent of r an
This equation and boundary condition (1b) yield the Sturm-Liouville system
(rR'Y —arR =0, O<r<r,, (2a)
R'(ry) =0. (2b).
This singular system was discussed in Section 8.4 (see Table 8.1 with v =0). If we
set a = —A?, eigenvalues are defined by the equation Jy(Ar,) = 0, and normalized
eigenfunctions are
R (r) = M > 0. 3)

] nz
rydo(dars)” .

(For simplicity of notation, we have dropped the zero subscript on R, and 4,,.)
The differential equation

T' + kAT =0 ' (4)
has general solution
T() = Ce™ ™, (5)

In order to satisfy initial condition (lc), we superpose separated functions and
take

U = 3 Ce™ ¥ Ry0 ©)

where the C, are constants. Condition (ic) requires these constants to satisfy
N kel
ry—ri=3% C,R,r) 0<r<r,. (7)
n=0

Thus, the C, are coefficients in the Fourier Bessel series of r3 — r2, and, according'to
equation (61b) in Chapter 8,

C = J’I r(r; — r})R(r)dr = __\/E_J” r(r3 = r*)Jo(4.r) dr.

0 rydo (4ar2) Jo




322

Example 2:

Solution:
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To evaluate this integral when n > 0, we set u = 4,r, in which case

2 darz fp2y 3 d
c.=——f——j (.’ —;;)Jo(u)—

u
rz-’o(ln"z) 0 Ay “n 4

2 Anr2
= -———)‘rz}{’;) - )J‘o (r2A2u — ud)Jy(u) du.
i at2

For the term involving u?, we use the reduction formula in Exercise 9 of Section 8.3:

ﬁ 232 Anra 3 Anr2
C,, = m rz,l,, . u.lo(u) du — {ll Jl(ll)}o

Anr

— (2uYy)} + 4 f quo(u)du).

[¢)

If we recall the eigenvalue equation Jy(Ar,) = 0, and equation (39) in Section 8.3 with
v = 1, we may write

. V2 2.2 232 1 d
C,= m =22,r3Jo(Aar2) + (r3A; + 4) L d"‘u[“-ln(“)] du
2 . .
= %(—Zl:ri.’o(ln'}) + (r%ﬁ.,? + 4){1&[1(“)}(""”
nf 270! 2
—~2\/§rz

When n = 0, Ro(r) = /2/r), and
2 2,2 4\ry 3
Co= J r(ry — r’)Ro(r)dr = %—2_(’_2_"_ _ r_> - \/5’2.
0
The solution of problem (1) is therefore
3 o _
U(r,t) = \/2—'-2 \/—2 + z 2\/257‘2 e—kz,{:ﬁ*’o(ln")
) A Fadoldra)
e Jo(2ar)

1 ';-,% JO(/"an).

2

(8)

Notice that for large ¢, the limit of this solution is r3/2. and this is the average value of

r2 —rtover the circle r <r,. "

In the following heat conduction problem, we add angular dependence to the
temperature function.

An infinitely long rod with semicircular cross section is initially (r = 0) at a constant
nonzero temperature throughout. For t > 0, its flat side is held at temperature 0°C
while its round side is insulated. Find temperature in the rod for ¢ > 0.

Temperature in that half of the rod for which x < 0in Figure 9.1 is identical to that in
the half for which x > 0; no heat crosses the x = 0 plane. As a result, the temperature
function U(r,0,1) (and it is independent of z) must satisfy the initial boundary value
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problem
ou o 19U 1 éW n
U _ (U 1oU 17U 0 z 0, ©
P k(ar2+rar+r2662>‘ 0<r<r,, <(9<2 t> (9a)
U(r,0,t) =0, O0<r<r,, t>0, (9b)
U,(r, g—, t) =0, O<r<r,, t>0, (9¢)
U(r,.0.0=0, 0<@< % >0, (9d)
Ur,6,0)=U,, O<r<r,, 0<8<=. (9e)

2

[In Exercise 4, the problem is solved for 0 < 8 < = with the condition U(r, =, 1) =0in
place of (9¢).]

When a function with variables separated, U(r,8,t) = R(r)H(8)T(t), is substituted
into PDE (9a),

RHT = k(R“HT + r"'"R'HT + r*RH"T)
H" rR" R rT

or - _rr_ ) |
H R + R T « = constant independent of r, 8, and ¢

When boundary conditions (9b, ¢) are imposed on the separated function, a Sturm-
Liouville system in H(8) results:

H" + «H =0, 0<0<%, (10a)

H(0) =0 = H(%) (10b) ..
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This system was discussed in Section 4.2. If we set « = v, then, according to Table 4.1,
eigenvalues are v2 = (2m — 1)? (m = 1,2,...), with orthonormal eigenfunctions

H.(0) = 2 sin@m - 1)6. (11)

Jr
Continued separation of the equation in R(r) and T (¢) gives
R'+r 'R v} T

R — == f = constant independent of r and ¢.
Boundary condition (9d) leads to the Sturm-Liouville system
— 1)
(rR')'+(—Br—(2—m—r——)>R =0, O<r<r,, (12a)
R'(ry) = 0. (12b)
This is Sturm-Liouville system (45) of Section 8.4. If we set 8 = — 12, cigenvalues are
defined by the equation
m-1(4r) =0 (13)
with corresponding eigenfunctions
i
Rmn(r) = N‘llm— l(Amnr)’ (14a)
2m — 1\?
where 2N? = rﬁ[l -—( ;n , ) ][Jz,,,_l(,l,,,,,rz)]z‘ (14b)
. mn' 2
The differential equation
T = —ki2,T : (15)
has general solution
T(t) = Ce "3, (16)
To satisfy initial condition (9¢), we superpose separated functions and take
U8, =3 Y Cune ™R, (r)H,(0), (17)
m=1n=1

where c,,, are constants. Initial condition (9¢) requires these constants to satisfy

UO = mzl "ZI Cmanu(r)Hm(e)y 0<r<r, 0<b< g (18)

If we multiply this equation by H{8) and integrate with respect to § from 6 = 0 to
6 = /2, orthogonality of the eigenfunctions in 8 gives

3 CuRi(r) = f
n=1

0

/2 /2

UpHi(6)d8 = U, J —2—sin(2i —1)0d6

o Vr

W, [ —1 */2
=—°{ cos(zi-l)e} —

Jr 2i -1 o Qi-Jn
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But this equation implies that the C,, are Fourier Bessel coefficients for the function
2U,/[(2i — 1)y/x], that s,

Cin = J —ZU—orR,-,,(r) dr.
o 2i—1)Jn
Thus, the solution of (9) for 0 < 8 < n/2 is (17), where
oW [
@m—1)Jn Jo

For an angle 6 between #n/2 and n. we should evaluate U(r, n — 8, t). Since

"rR_.(r)dr. (19)

H(t—-8)= isin(2m ~Nr—0)= isin(2m - 1)8,
T

Jr Ju
it follows that U(r, n — 0, t) = U(r, 0, t). Hence, solution (17) is validfor0 <0 < n.

Our next example is a vibration problem.

* Solve the initial boundary value problem

g%=cz<g;-§-+%z—i+;l—zg;>, O<r<r,, —n<f<n t>0, (20a)
z2(r,,0,t) =0, ~-n<@<m, t>0, (20b)
z(r,8,0) = f(r, 8), O0<r<r,, —-n<@<mn, (20¢)
2,(r,0,0) = 0, O<r<r,, —-n<@ < (20d)

Physically described is a membrane stretched over the circle r < r, that has an initial
displacement f(r, 0) and zero initial velocity. Boundary condition (20b) states that the
edge of the membrane is fixed on the xy-plane.

When a function z(r, 6, ), separated in the form z(r, 8, t) = R(r)H(8)T(t), is substituted
into PDE (20a),

RHT" = ¢*R"“HT + r"'R'HT + r"*RH"T)
HII Z(R" + r—-[Rl Tu
or ——=r* —u-—-

H

R — ﬁ) = gy = constant infiependent of r,0,and t.

Since the solution and its first derivative with respect to 8 must be 2n-periodic in 8, it
follows that H(8) must satisfy the periodic Sturm-Liouville system

H" + aH = 0, —n<0<mn, (21a)
H(—nr) = H(n), (21b)
H'(—n) = H'(n). (21¢0)

This system was discussed in Chapter 4 [Example 2 and equation (21)]. The eigen-
values are « = m?, m a nonnegative integer, with orthonormal eigenfunctions

1 1
. —=sinm@, —cos mf, (22)
V2r \/; ﬁ
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Continued separation of the equation in R(r) and T'(t) gives

R"+r 'R m?* T .
—%—— T =T < B = constant independent of r and .

When boundary condition (20b) is imposed on the separated function, a Sturm-
Liouville system in R(r) results:

, .
(rR')'+(—ﬂf—ﬂr">R=0, 0<r<r, (23a)
R(ry)=0. (23b) §
This is, once again, singular system (45) in Section 8.4. If we set § = — A2, eigenvalues 3
Amn are defined by
Jm()'rz) = 01 (24)
with corresponding orthonormal eigenfunctions
2J.(4 '
R,.(r) = _‘[_L(ﬂi (25)

r2‘]m+ l('lman)

(see Table 8.1).
The differential equation

T + (cAna)’T =0 (26)
has general solution
T(t) = dcos cApt + bsincd,,t, (27)
where d and b are constants. Initial condition (20d) implies that b = 0, and hence
T(t) = d cos cAp,t. (28)

In order to satisfy the final initial condition (20c), we superpose separated functions
and take

z(r,0,1) = ; dy, If;%(_;) COS CAgat
2 & cosmg sinmf
+ Rmn(r)<dmn'_—_ + Jomn _——‘) COs C}‘mnt» (29)
mgl n;l ﬁ f \/_7;

where d,,, and f,,, are constants. Condition (20c) requires these constants to satisfy

Ron(r) . i i R,,m(r)<d,,,,, cosgz@ s sia m()) 30)

Var RS Jr Vu

forO <r <r,, —n < 0 < = If we multiply this equation by(l/\/r—t)cos i and integrate
with respect to 8 from 8 = —n to 8 = r, orthogonality of the eigenfunctions in 0 gives

1r.0) = 3 do,

cos i

" .0 =3 d.R.(r).
| se0 0 = 3 dRule)
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Multiplication of this equation by 7R, (r) and integration with respect to rfrom r = 0 to
r = r, yields (because of orthogonallty of the R;; for fixed i)

e cosifl
rf(r,0)R; dfdr = d;
J; J‘—l f( ) d \/; !

that is, d,, = I f PR, 2250 f(r. 0)dr do. (31a)
~x JO \/_
Similarly, fon = f J PR, SNM0 o 6)drdo (31b)
-x JO \/—
and dy, = '[ j rRO,,(r)Mdrd(). (310)
~-x JO ﬁ’;
The solution of (20} is therefore (29), where d,,, and f,,, are defined by (31). .

Coefficients d,,, and f,,, in this example were calculated by first using orthogonality
of the trigonometric eigenfunctions and then using orthogonality of the R, (r). An
alternative procedure is to determine the multidimensional eigenfunctions for problem
(20). This approach is discussed in Exercise 23.

Our final example on separation is a potential problem.

Find the electrostatic potential interior to a sphere when the potential is given on the
sphere.

The boundary value problem for the potential ¥(r,8, ¢) is

vV 29V ! d v 1 av
w3t t sinpg— |+ 55+ 57=0,

ot T ror  rising d¢ 2¢ r?sin?¢ 902
0<r<r,, —n<f<n, 0<¢<nm, (32a)
V(r,,0,¢) = (9, ), —n<0<m, 0<¢d<n (32b)

When a function with variables separated, V(r,8, ¢) = R(r)H(6)®(¢), is substituted
into (32a),

2 1 RH”CD
R"HO® + - RH(D+ sing RHY') + 5——— =0
g 2N s’
: R" 2R’ 1 H"
SR Y L T
or r?sin ¢><R + R +r smd)(I)qu(smd)q))) 7

= x = constant independent of r, ¢, and 8.

Because V(r, 8, ) must be 2n-periodic in 6, as must its first derivative with respect to 0,
it follows that H(() must satisfy the periodic Sturm-Liouville system

H" +«H =0, —n <8 <m, (33a)
H(—r) = H(n), (33b)
H'(—n) = H'(n). (330)

-

e e aate e
i p
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This is Sturm-Liouville system (21) with eigenvalues @ = m?* and orthonormal
eigenfunctions

L and l cos mb L sin mf
Van oo e
Continued separation of the equation in R(r) and ®(¢) gives
r’R" + 2rR" m? 1

R R sin’¢ Q@sing d¢

(sm ¢ @') = B = constant independent of r and ¢.

Thus, ®(¢) must satisfy the singular Sturm-Liouville system

d i m Yoo, 0 6 < (34)
d¢ sm¢d¢ ﬂsm¢—sin¢ =0, < .

According to the results of Section 8.6, eigenvalues are § = n(n + 1), wheren > mis an
integer, with orthonormal eigenfunctions

Out) = [F I P fcos ). o5)

The remaining differential equation,
r’R” + 2rR’ — n(n + DR =0, (36)

is a Cauchy-Euler equation that can be solved by setting R(r) = r%, s an unknown
constant, This results in the general solution

R(") = ..(i T+ Ar. (37)

For R(r) to remain bounded as r approaches zero, we must set C = 0. Superposition of
separated functions now yields

Ve6.9= 3, = dartoer+ 3 3 ¢ ST O

where A4, and B, are constants. Boundary condition (32b) requires these constants to
satisfy

f18.¢) =

u[\l]g

i N cosmf sin m@
e Ao Do (@) + r10, ()| Ay + By  (39)
\/—2‘;[‘ On’ 2750 (d)) -...Zl nzm 2 (¢)< \/-]; \/—7—': >

for —m<8<n 0<¢<n Because of orthogonality of eigenfunctions in 0

and ¢, multiplication by (1/\/—7r)sm¢<1)0,(¢ and integration with respect to 0
and ¢ give

1 x x 1 -
Ag; = ) L J_KI(G, qS)Esind)(Doj(dJ)de de. (40a)
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Similarly,
=i. f f 10,85 in 6 0,.,(9) d8.d (40b)
3 Jr
and i. f f 1.6~ SO 0§ O $)dOdp. (400)
2

Notice that the potential at the center of the sphere is

V(0,6,8) = —— Aoo®oold)

J2n |
1 L 1
- o —=si d0d¢ ) ®oo(0).
\/E(J; f_.f(0,¢)551n¢¢m(¢) ¢) oo(6)
Since Poo(¢) = 1/1/2,

0.0~ " [ re.oripa0as

. l L4 X .
X =Gf_§,[o f_xf(f), ¢)risin ¢ d6 do,

and this is the average value of /{6, ¢) over the sphere.

Exercises 9.1

b Part A— Heat Conduction

1. (a) Theinitial temperature of an infinitely long cylinder of radius ryis f(r). If, for time ¢t > 0, the
outer surface is held at 0°C, find the temperature in the cylinder.

(b) Simplify the solution in (a) when f(r) is a constant U,.
{c) Find the solution when f(r) = r3 — r2.

A long cylinder of radius r, is initially at temperature f(r} and, for time ¢ > O, the boundary
r =r, is insulated.

(a) Find the temperature U(r,1) in the cylinder.
(b) What is the limit of U(r,?) for large ¢?

Gov v
e v ey oy

e e+ o e

. . A thin circular plate of radius r, is insulated top and bottom. At time ¢ = 0 its temperature is
% J{r,8). If the temperature of its edge is held at 0°C for ¢ > 0, find its interior temperature fort > 0.

Solve Example 2 using the boundary condition U(r, n.t) = 0 in place of ¢U(r,n/2,0):¢0 = 0.

. A flat plate is in the form of a sector of a circle of radius { and angle x. At time ¢ = 0, the
temperature of the plate increases linearly from 0°C at r = Qto a constant value U atr = 1 {(and is
therefore independent of 8).If, for ¢ > 0, the rounded edge is insulated and the straight edges are

held at temperature 0°C, find the temperature in the plate fort > 0. Prove that heat never crosses
the line 8 = a/2.

P e T
w——
s e

: Find the temperature in the plate of Exercise 5 if the initial temperature is f(r), the straight sides
} are insulated, and the curved edge is held at temperature 0°C.
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e}

Repeat Exercise 6 if the initial temperature is a function of r and 8, f(r,9).

8. A cylinder occupies the region r <r,,0 < z < L. It has temperature f(r,2) at time ¢ = 0, For
t > 0, its end z = 0 is insulated, and the remaining two surfaces are held at temperature 0°C,
Find the temperature in the cylinder.

9. Solve Exercise 1(a), (b) if heatis transferred at r = r, according to Newton's law of cooling to an
environment at temperature zero. '

10. (a} A sphereof radiusr, isinitially at temperature f(r) and, for time ¢ > 0, the boundaryr = r, is
held at temperature zero. Find the temperature in the sphere for ¢ > 0. (You will need the
results of Exercise 5 in Section 8.4.)

{b) Simplify the solution when f{(r) = U,, a constant.

11. Repeat Exercise 10if the surface of the sphere is insulated. (See Exercise 6 in Section 8.4.) What is
the temperature for large ¢?

12. Repeat Exercise 10if the surface transfers heat to an environment at temperature zero according
to Newton's law of cooling; that is, take as boundary condition

K&U(rz,t)
or

(Assurﬁe that ur, > k and see Exercise 7 in Section 8.4.)

13. Repeat Exercise 10(a) if the initial temperature is also a function of ¢.(You will need the results
: of Exercise 8 in Section 8.4.)

+uU(ry ) =0, t>0.

14. (a) Repeat Exercise [0(a) if the initial temperature is also a function of ¢ and the surface of the
sphere is insulated. (You will need the results of Exercise 8 in Section 8.4.)

(b) What is the limit of the solution for large ¢?

15. The result of this exercise is analogous to that in Exercise 9 of Section 5.4. Show that the solution
of the homogeneous heat conduction problem

2 2 .
6_(]____ (aU Lou au) O<r<r,, O0<z<lL, t>0,

at ot Tror L azt )
ou
~I‘5?+h‘U=0’ 2=0, O0<r<r, >0
cU
12.874_;,2(/:0. z=1L, 0<r<r,, t>0,
cU

l3~g+h,U=0‘ r=ry, O<z< L, t>0,

Ur,z,0) = f(rig(z)y O<r<r,, 0<z<lL,

where the initial temperature is the product of a function of r and a function of z,is the product of
the solutions of the problems

—_— ——+—_
ct or? r cr

cU U 1 é&u
¢ =k< ¢ >, O<r<r,, t >0,

cU \
135-—(6{'-2—2'*‘]13(]0'2.!):0, t>0,

Ur,0) = f(r), O<r<r,

e —————s e g
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ou U
and ok L 0,
5 k prx 0<z<lL, >
IaU(Ot)+hU(0t)— ¢ >0,
6U L,t
; )+h2U(Lt)— t>0,

U(z,0) = g(2), O<z<lL.
16. Solve the heat conduction problem
%—?: (%;_12]4_:%[’]_‘_%2(;1), O<r<r,, O<z<lL, t>0,
U,(r,0,t) =0, O<r<r,y, t>0,
U(r,L,t) =0, O<r<r,, t>0,
Ufry,z,t) =0, O0<z<L, t>0,
Ur,z,0)=(@3—-r})}L—2z, O<r<r,, 0O<z<lL,

(a) by using the results of Exercise 15 and Example 1 in this section and that of Exercise 1(a) in
Section 5.2

(b) by separation of variables.

Part B— Vibrations

17. (a) A vibrating circular membrane of radius r, is given an initial displacement that is a function
only of r, namely, f(r), 0 <r <r,, and zero initial velocity. Show that subsequent
displacements of the membrane, if its edge r = r, is fixed on the xy-plane, are of the form

J2 2  JolRar)
z(r,t) = — A,cC
8 = rs nzl Jl(l ra)
What is 4,? ’
(b) The first termin the seriesin (a), called the fundamental mode of vibration for the membrane, is
2 A
H(rt)*\/—Acos JoAyr)

r: Jl()ﬂ'z)

Simplify and describe this mode when r, = 1. Does H,(r,t) have nodal curves?
(c) Repeat part (b) for the second mode of vibration.
(d) Are frequencies of modes of vibration for a circular membrane integer multiples of the
frequency of the fundamental mode? Were they for a vibrating string with fixed ends?
A circular membrane of radius r, has its edge fixed on the xy-plane. In addition, a clamp holds
the membrane on the xy-plane along a radial line {rom the center to the circumference. If the
membrane is released [rom rest at a displacement f(r, 0), find subsequent displacements. [For
consistency, we would require f{r,0) to vanish along the clamped radial line.]
19. Simplify the solution in part (a) of Exercise 17 when f(r) = r3 — r*.(See Example 1))

18.

i
A4
e
by

;
'
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20. All points in a circular membrane of radius r, are given the same initial velocity vg but no initial
displacement (except points on the edge). If its edge is, fixed on the xy-plane, find subsequent
displacements of points in the membrane.

21. Equation (29) with coefficients defined in (31) describes displacements of a circular membrane
with fixed edge when oscillations are initiated from rest at some prescribed displacement. In this
exercise we examine nodal curves for various modes of vibration.
(a) The first mode of vibration is the term (doy/ \/fr—t)ROl(r) €0s CAgyt. Show that this mode has no

nodal curves.

(b) Show that the mode (doz/\ﬁr_t)Roz(r) 0s cAgyt has one nodal curve, a circle.

(0 Show that the mode (do,/\/2—n)Ro,(r)cos Aoyt has two circular nodal curves.

(d) On the basis of (a), (b), and (c), what are the nodal curves for the mode
(dou/2T)Rou{r) cOS Chont?

(e) Correspondington =m=1 there are two modes of vibration, (du/\/l_t)R"(r) cos cAytcost
and (fy, /\/1_r)R“(r) cos ¢4y ¢ sin 6. Show that each of these modes has only one nodal curve, a
straight line.

(f) Find nodal curves for the modes (d2/VT) Ry, (r) cos cAptcos @ and
(fia/NE)R a(r) cos ciyt sin 6.

(g) Find nodal curves for the modes (dn/\/;r-)Ru(r)cos ¢y,t cos 26 and
(faa/ TR 12(r) cos et sin 20.

(h) On the basis of (e}, (f), and (g), what are the nodal curves for the modes
(dual \/;t)R,,,,,(r) €08 cA,qt cos mO and ( o/ ﬁ)Rm(r) COS Ayt SN MO?

22. The initial boundary value problem for small horizontal displacements of a suspended cable
when gravity is the only force acting on the cable is

%j—{=—ga—a;(xg%>, 0<x<L, t>0,
w(L,t) =0, t>0,

yx,0=f(x)y O0<x<L,

y(x,0) = h(x), O<x<L

(see Exercise 20 in Section 1.3).
(a) Show that when a new independent variable z = J —4x/g is introduced, y(z, t) must satisfy

a3y 1o oy
Yo~ 2 0<z<M
at? z@z(zaz)' <z<M t>0,
y(M,1) =0, t >0,

4(2,0) = f(—_—i—z—) 0<z<M,

_gzz
y((Z,O) = h("—4_>, O <z < A’l,

where M = \,"' —4L/g.
(b) Solve this problem by separation of variables, and hence find y(x, ).
23. Multidimensional eigenfunctions for problem (20) are solutions of the two-dimensional

AT

G

_A
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eigenvalue problem

____62W+law L azW+,12W—0 0 <0<
arz r or +r2 601 =, <r<r,, ki T,
W(r,,0) =0, -n<f<n

(a) Find eigenfunctions (normalized with respect to the unit weight function over the circle
rs rz).

{b) Use the cigenfunctions in (a) to solve pfoblem (20).

Part C— Potential, Steady-State Heat Conduction,
Static Deflections of Membranes

24. (a) Solve the following boundary value problem associated with the Helmholtz equation on a

25.

26.

27.

28.

29.

30.

31.

32.

circle

VIV +k2V =0, 0O<r<r,, —n<8<n (k>0aconstant)
V(r,0) = f(0), —n<f<m

(b) Is V(0,8) the average value of f @ onr =ry?
(c) What is the solution when f(8) = 1?
Solve the following problem for potential in a cylinder:
v tav v
et - —+—-—==0, O<r<r,, 0<z<L,
art " r or @ 0z? 2
V(r,,z) =0, O0<z<L,
V(r,0) =0, O<r<r,,
Vir,L) = f(r), O<r<r,.
Find the potential inside a cylinder of length L and radius r, when potential on the curved
surface is zero and potentials on the flat ends are nonzero.

(a) Find the steady-state temperature in a cylinder of radius r, and length L if theend z = O is
maintained at temperature f(r), the end z = L is kept at temperature zero, and heat is
transferred on r = r, to a medium at temperature zero according to Newton's law of cooling.

(b) Simplify the solution when f(r) = U,, a constant.

Find the potential inside a hemisphere r < r,, z > 0 when the potential on z = 0is zero and that
onr = r, is a function of ¢ only. (Hint: See the results of Exercise 5 in Section 8.6.)

Find the potential interior to a sphere of radius r, when the potential on the upper half is a
constant ¥, and the potential on the lower half is zero.

Use the result of Exercise 29 to find the potential inside a sphere of radius r, when potentials on
the top and bottom halves are constant values V, and V,, respectively.

Find the potential in the region between two concentric spheres when the potential on each
sphere is a function only of ¢.

What is the potential exterior to a sphere when the potential is given on the sphere, if the
potential must vanish at infinity?
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Figure 9.2

33.

34.
3s.
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Consider the following boundary value problem for steady-state temperature inside a cylinder of
length L and radius r, when temperatures of its ends are zero:
%27(;]- %%-{-%:. 0<r<r,, O0<z<lL,
U(r,0) = 0, O0<r<r,,
U@r,L)=0, 0<r<r,,
U(ry,2) = f(2), 0<z< L.

{a) Verify that separation of variables U(r,z) = R(r)Z(z) leads to a Sturm-Liouville system in
Z(z) and the following differential equation in R(r):

d*R dR
I'-E"—z'-i'-zr‘—ler:O, 0<r<r,.
(b) Show that the change of variable x = Ar leads to Bessel's modified differential equation of
order zero,
d*R  dR
X—=s +-—— xR =0.
dx® = dx

(See Exercise 10 in Section 8.3) ‘

() Find functions R,(r) corresponding to eigenvalues 4,, and use superposition to solve the
boundary value problem.

(d) Simplify the solution in (c) in the case that f(z) is a constant value Us.

Solve the boundary value problem in Exercise 33 if the ends of the cylinder are insulated.

{a) A charge Q is distributed uniformly around a thin ring of radius a in the xy-plane with center
at the origin (Figure 9.2). Show that the potential at every point on the z-axis due to this

charge is
V= Q

B 4negJa* + rt

¥

(b) The potential at other points in space must be independent of the spherical coordinate 9.

Show that V(r, $) must be of the form

Vi) = ZO(A"’" +r—3—> AL picosd)

What does this result predict for potential at points on the positive z-axis?

&

sl
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(c) Equate expressions from (a) and (b) for V' on the positive z-axis and expand 1/y/a? +r?in
powers of r/a and a/r to find V(r, $).

36. Repeat Exercise 35 in the case that charge Q is distributed uniformly over a disc of radius a in

the xy-plane with center at the origin (Figure 9.3).

Nonhomogeneous Problems in Polar, Cylindrical,
and Spherical Coordinates

Nonhomogeneities in problems expressed in polar, cylindrical, or spherical coor-
dinates can be treated in the same way that they were treated in Cartesian
coordinates—separate off “steady-state” or “static deflection” solutions, or use
eigenfunction expansions or finite Fourier transforms. We begin our discussions with
finite Fourier transforms.

With each of the Sturm-Liouville systems in Sections 8.4 and 8.6 we associate a
finite Fourier transform. In particular, for the singular system

2
(rR') + (lzr - v—r—>R =0, O<r<r,, (41a)
LR'(ry) + hyR(ry) = 0, (41b)
with eigenvalues and eigenfunctions in Table 8.1, we define the transform
f(da) = f Ff (R (1) dr, (42a)
0

called the finite Hankel transform. It associates with a function Sf{r), the sequence
{f(%.4)} of coefficients in the eigenfunction expansion of f(r) in ternis of the R, (r). The
inverse transform of (42a) is this eigenfunction expansion,

SO =¥ FoIRa(.  O<r<r, (42b)
a=1

[provided, of course, that f(r) is defined as the average of right and left limits at
any point of discontinuity]. The finite Hankel transform is used to eliminate the

r-variable from initial boundary value problems in polar, cylindrical, and spherical
coordinates.
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With the singular Sturm-Liouville system

. . . om B
{sing ®) +(}.sm¢ sin¢>¢_0’ O<dp<nm (43)

(m = 0 an integer) is associated the Legendre transform,

Sim,n) = ‘r sin ¢ £ ($)Pna($) 0, (44a)
[ ]

where eigenvalues are Ay, = nn+ 1) (n=m an integer), and ®,,, are normalized

associated Legendre functions of the first kind [see equation (91) in Section 8.6]. The

inverse transform is
@)= 3 Finn®u(®) (@ab)

This transform removes the ¢-variable from problems in spherical coordinates.
To complete the set of finite Fourier transforms, we associate a transform with the

periodic Sturm-Liouville system

H*+ A H=0, -—n<f@<m (45a)
H(—n) = H(n), (45b)
H{(~m) = H'(®) (450

which arises in so many of our problems. Eigenvalues of this system are Ai=m*ma
nonnegative integer, with orthonormal eigenfunctions

(Y A e e TP

1 | S
2y =0; ———cosmf, —=sinmd— Ams m> 0.

Jan NE: NE:

Periodic functions f(6) may be expressed in terms of these eigenfunctions as ordinary
trigonometric Fourier series:

a @ cosmb sinmf
) = —= + (a,,, +b,,.-——>, (46a)
fO ==t L\ :
* f(8) j’" cos mf
where ag = ——d#, a, = 6 de,
0 j—n \/ 2n —uf ) ﬁ
sinmf

bm=J‘t 1(6) N 4e.

The complex representation of this series in Exercise 27 of Section 2.1 provides the
finite Fourier transform. We may rewrite (46) in the form

Sisg

(46b)

x

i .
[0 =5- )y Cae™, (47a)

where C,= j f(B)e ™ do. (47b)

A
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[We took the liberty in Exercise 27 of Section 2.1 of incorporating the 2z-factor into
the series rather than the coefficient C,,. The series representation of f(8) is the same in

either case.] Associated with this representation is the finite Fourier transform of
2n-periodic functions

flm) = J. S(@)e ™ do (48a)

and its inverse,
1 & = imd
= img 48b
SO =5 3. Jime (48b)

[The exponentials in equations (48) could be interchanged to give an alternative
transform; this uses the complex representation of equation (16) in Section 2.1.] The
similarity between this finite Fourier transform and Fourier transform (23) in Chapter 7
is unmistakable. ‘

The following examples illustrate how these transforms facilitate the solution of
(initial) boundary value problems that are nonhomogeneous.

A circular plate of radius r, is insulated at its top and bottom. At time ¢ = 0, its
temperature is 0°C throughout. If, for t > 0, all points on the edge of the plate have the
same temperature U, find the temperature in the plate for ¢t > 0.

The initial boundary value problem for U(r,¢) is

U - (o*U 13aU

=kl - — 49

5 <ar2+rar>' O<r<r,, >0, (49a)
U, =0, >0, (49b)

U(r,0) =0, O<r<r,. (49¢)

To eliminate r from the probl;m, we use the finite Hankel transform
-~ 2
f() = j rf (R, (r)dr, (50)
Q

where R,,(r)=ﬁJO(/'.,,r)/{r2J,(/‘.,,r2)] are eigenfunctions of the Sturm-Liouville
system

(rR'Y + AZrR =0, 0O0<r<r,, (51a)
R(r;) =0. (51b)

(This is the system that would result were separation of variables applied to the
corresponding homogeneous problem.) Application of the transform to PDE (49a)

gives
Tou 2 (32U teU
—_— = — + - — | R, dr.
L i R, dr kj0 r(&r’ + 6r> Ldr
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An interchange of differentiation with respect to and integration with respect tor on
the left, and integration by parts on the right, yield

ou ou ou
E_—k{ ar ,,} +kJ’ E'—<—d—;(rR")+R")dr

i =—kJ r%lin dr [because of (51b)]
4]

= —k{UrR:,} +k J U(rR,Y dr (by a second integration by parts)
o

= —kr,Ri(r,)U + kj. U[—A2rR,]dr [from (49b) and (51a)]

= —kOr,Ri(ry) — kA2U0.

we obtain

Thus, J(A,, t) must satisfy the ODE 5

"‘i;_j"f' k}»zﬁ = ""kUrzR;(rz) (52a) { "

subject to the transform of initial condition (49c¢), ;
- L.y

U(4,,0) = 0. (52b) }

Since the solution of (52) is i 1
U(,,0) = 2%({—(@(— 1+ e"‘“‘>, (53) g%

8

Ul = Y G0 0R()
& Ury V24,04, rz)( ik >fJo(A 1)

T ryJi(4, "2)3- raJi(Aar2)

20 & —dhra) (ke
= L LG (" k l)"’“"')

20 < 1 —kAlt
_fu; /1,.J‘(/1,,r2)<1 —€ >J°()'"’)' (54)

Ma

PTNEPINPCPRY R DO L) b

The limit of this temperature function for large ¢ is

lim U{r, 1) ==—l£ i Jolar)

1t~ Ty as1 A AV "2)

The transform 1 of the function f(r) = 1 is

.l._‘[” J2Jo(4n r) J2 Rarz 1y J du
= | ey = o )\
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lqrx
m f [qu(u)] du [see identity (39) in Section 8.3 with v = 1]

_ \/—2- Anl2
= Tm{“’}

1]

Ay
Consequently,
- § Y220 2 5 o) _ (55)
o=t Ay raJi(Aera) 1y aS Jl('1 r))’
and it follows that
lim U(r,t) = U,
{t—w
as expected. Furthermore, this suggests that we write U(r, t) in the form
[] «
ur)=0 — w L p-wa Jo(Ar). (56)

ry a=1 AJy(4, "2)

Because the nonhomogeneity in boundary condition (49b) is indepcndent of time,
we could have begun by separating off the steady-state solution; that is, we could set
U(r,t) = V(r, 1) + y(r), where y(r) is the solution of

2
%+:j¢ =0, O<r<r,, (57a)
Yir)=U. (57b)

The only bounded solution of this system is y(r) = U. With this steady-state solution,
V(r, t) must satisfy the homogeneous problem

av i N W1 4

Ty k(@r +-r-a—r>, O<r<r,, t>0, (58a)
V(ry,t) =0, t>0, (58b)
Vir,0)= -0, O<r<r,. (58¢)

Separation V(r,t) = R(r)T(t) leads to Sturm-Liouville system (51) in R(r) and the ODE
T 4+ ki*T =0, t>0. (59)

Eigenvalues are defined by Jo(/ir,) = 0, and normalized eigenfunctions are R,(r) =
ﬁjo(/ r}/[r2Ji(4.r;)]. Corresponding solutions of (59) are

T(1) = Ce™ 4, (60)

Superposition of separated functions yields

Vir,) = ; Coe ™ R (r), 61)
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and initial condition (58c) requires that

U= Y CR,). (62)
a=1
The C, are therefore Fourier coefficients in the eigenfunction expansion of the func-

tion — U; that is,

LI  [2doAt) , =20
C,= J-o r(—U)R(r)dr = —UJ.o rer‘(l,,rz) dr = PR

(This integral was evaluated in the above transform solution.) Consequently,

V20 v/24o0r)
2,

Urg=0+ 5 =

a=1 r2J1(4,r3)
_ 20 & 1 3
=0-"2Y ——e ™ Jy(4,1),
YW R
the same solution as that obtained by finite Fourier transforms. .

Our next example is a vibration problem.

A circular membrane of radius r, has an initial displacement at time ¢t = 0 described by
the function f(r,8),0 < r < r,, —n < 0 < =, but no initial velocity. For time t > 0, its
edge r =r, is forced to undergo periodic oscillations described by Asinwt, 4 a

constant. [For consistency, we assume that f(r,,6) = 0.] Find its displacement as a
function of r, 9, and ¢.

The initial boundary value problem for z(r, 6, ¢) is
%z z(azz 10z | 622)

at_2=c 5;2—+;5+?5§7 , O<r<r,, —m<b<sm t>0, (63a)
2(r,,0,t) = Asinwt, -n< <, t>0, (63b)
2(r,0,0) = f(r,0), 0<r<r,, —-nt<8<m, (63¢)
z,(r,0,0) =0, 0<r<r,, —n<f<sm (63d)

To remove 8 from the problem, we apply transform (48a) to PDE (63a):

" 0%z i S " (0% 1oz 1 022\ _ino 4a .
j‘_n—at—ze dod =c J-x 'ar—z'*';g":"'ﬁafoz‘)e de.

Integrations with respect to @ and differentiations with respect to ¢ and r may be
interchanged, with the result that

2z Lf3*7 107\ (" 3z i
o (F*?E) ‘TZLW‘? 4.
Integration by parts on the remaining integral gives
"0’ i 0z il f0Z g
J—wwe d()-—{éae _,‘+ IM@Q do

_ oz(r, =, t) az(r, — m, t)
=2 cos(—mmn) — 0

* 0 )
cosmm + imj a—;e’""" de.

3 AT g EA DS S S oA Epn Ty e o i el O R AR
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Because 0z/¢0 must be 2r-periodic, it follows that dz(r, n, t)/06 = dz(r, — n,1)/36, and
therefore

x 2 x
J‘ %e’“""d():imj g—;e“"'"de

_imo}l'l

x
= im{ze + imf imze™ ™ 4
-x

= im(z(r, n, t) cos(—mm) — z(r, — 7, ¢)cos ma) — m? j ze” ™0 49

-%

= —mzf‘

since z(r, 6, t) must also be 2n-periodic. Consequently, Z(r, m, £) must satisfy the PDE

9% (0% 107 m?
= — e F 64
ol C(6r2+r6r rzz), O<r<ry, t>0 (64a)
subject to the transforms of (63b-d),
#Hry,mt) = Asinwt 1, >0, (64b)
Hr,m,0) = f(r, m), O<r<r,, (640)
7 (r,m,0) =0, O<r<r,, (64d)
- LA 2n m=90
h 1= ~im@ — . 64
where Jlte de {0 m#0 (64e)
To eliminate r from ‘problem (64), we use the finite Hankel transform
~ ra
S ) = J rf ()R nalr) dr, (65)
o
where R,,,(r) are the orthonormal eigenfunctions of the Sturm-Liouville system
mZ
(rRY + (Azr — T) R =0, 0<r<ry, (66a)
R(ry)=0 (66b)

[the system that would result were separation performed on problem (64) with the
homogeneous version of (64b)]. Application of {(65) to (64a) and integration by parts

give
&’z {7 (e 187 m?_ R d
5,2 =C N3 +t-——352 r
ét? o \Crt rér r? "

Il
a

mZ
- Tz”R,,,,,) dr [since R, (ry) = 0]

i

0

r2 mZ
cX{—rzR,}3 + CZJ‘ (z"(rR:,,,,)’ - ———ZR,,",> dr
r




T e —

- 342

Chapter 9 Problems in Polar, Cylindrical, and Spherical Coordinates

I

r 2
—ryc’Asinwt TR (ry) + ¢? j Z((TR:“)' - mT Rmn) dr [by (64b)]
o

I

—r, AR (ry)sinwt + c? I F(— Apa2r)Radr  [by (662)]
0

= —ryATR L (ry)sin ot — A%

Thus, 5(A,.., m, t) must satisfy the ODE

2-
‘; = + cz, 7= —ryc 241R’ (ry)sinwt (67a)
subject to
Fhnns1,0) = [ (Aoras ), (67b)
Z(Arnym,0) = 0. (67¢)
The general solution of (672) is
2 4R, i
_ By, €OS CAgyt + DoaSin CAgqt + o€ °"(; z)zsm ot m=0
s, 1) = w® = c*an (68)
B,.,COS CAmnt + D SIN €Al m#0

provided w # ciq, for any n. Discussion of this special case is given in Exercise 18.
Initial conditions (67b, c) yield

. 2nAr,cRo(r2) . )
) = f (Aon, 0) COS CAgat + 1——(———;———02—13@10, sin wt — @ sin cAg,t) m=0
f (Amn> M) COS CAat m#0
(69)
The inverse transform now yields
Q x 5
2(r,8,t) = —1—— Y ¥ fRmem )R (r)e™
m=-woa=1
2 Ar,cRo,(r3)

1 o
= . z ( (Ao, Q)cOS CAgut + (cAgsSin wt — wsin c).o,,t)) Rg.(r)

A’Ou(wz - Cz}'(z)n)

1 2 o = -
+'Z£ z Z f(}vm,., m) cos C)‘Mn[ Rm"(r)exme' 70)

m=-ona=1
mzQ

We can reduce the second double summation by noting that A en = Pmny Romall) =

R,.(r), and f(/_,,m, —m) = f(/,,,,,,m) [the complex conjugate of f(/l,,m,m)] Then

2(r0, :)_-— Z (f(/o,,,O)cosch,,t+—2ﬁﬁf2—C—Rﬂ(—2—)—

@ —cl (chg,sinwt — wsin c).(,,,t)> Roa(r}

m=1n=1

51— i Z (f(,lm,,,m)e"’“’ + f(/",,,,.. ""“")cosc/l,,,,‘tR,,,,,(r)
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or
0 /= 2 ‘
2(r,6,1) = L Y | f(Aoms O)cos A b + __fﬁ"_zz_fMLz_)_ (cAgn Sin wt — wsin c).o,,t)) Ry (1)
2 a=1 AOn(w A)
+ El; Y i 2 Re[fz(/l,,,,,, m)e™ ] cos ci, t R,,,,,(r). s (71)
m=1na=1

Our final example is a potential problem.

Find the potential inside a sphere if the potential on the sphere is only a function g(¢) of
angle ¢ and the region contains a constant charge with density a.

The boundary value problem is

v 29V 1 i) g o
- — —{sing— )= —— s O<dp<m (72
e +r6r +r’sin¢6¢(sm¢a¢) = O<r<r, ¢ <m (72a)

Vir,¢)=9g(¢), 0O0<¢<n (72b)
To remove ¢ from the problem, we use the Legendre transform

Sy =J sin @ £(¢)0,(¢)d, (73)
0
where ®@,(¢) = /(2n + 1)/2P,(cos @) are orthonormal eigenfunctions of the Sturm-
Liouville system
(singp @Y + n(n + 1)singp ® =0, O<¢<mn (74)

[the system that would result were separation of variables applied to the homogeneous
version of (72a)]. Application of (73) to (72a) and intcgration by parts give

2~ —
AL RURE Ao

" l({smq&(w } - ju m¢ 3 (D’ dd))
({smcp Vo, } —J V(sin ¢ @) d¢>

= —lj Vi—nn+1) sm¢®,.] do [by (74)]
n(n + 1) 7
r?
Thus, P(r, n) must satisfy the ODE
/ AW 24V nn+1) .  o-
crL2Yr =27 75
drt ' r dr r? v e’ (752)

- " 2 n=0
= i = ! 75b
where 1 L sin O, d¢ {0 n>0 (75b)
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subject to
l./'(rz’n) = {j(n) (75¢)
The general solution of (75a) is

A+ B, +2ar? n=0

JPIEC I AL =

7(r,n) = r 6 . (76)
Art + "_T:—f’ n>0

The only bounded solution satisfying (75¢) is

J2¢

GO +¥2 - =0
V=1 . ° : (77)
g-(l)-r" n>0
"
and therefore
Vind) = 3, 7n)09)
- . e\
- g—(ﬁ) ted=r)+ Y (;’;) G ®,(9)
“le-m+ g (}) G0)0,(9). (78)

In retrospect, notice that o(r} — r?)/(6e) satisfies (72a) and a homogeneous (72b), while
the series part of V(r, ¢) satisfies (72b) and a homogeneous (72a). -

Exercises 9.2

Part A— Heat Conduction

1. Solve Example § if the temperature of the edge r = r, is a function f(t) of time.

2. (a) Solve Example S if heatis transferred to the plate alongits edger = ryata rate f,(t) W/m?
equally all around.

(b) Simplify the solution when f{ty = Q, a constant.
3. (a) A verylongcylinderof radiusr, is initially at temperature f(r). Fortimet > Q,itsedger =r,

is held at 0°C. If heat generation within the cylinder is g(r,th find the temperature for
0<r<ryandt>0.

(b} Simplify the solution in (a) when f(r) = 0 and g(r,) is constant.
{c) Solve the problem in (b) by separating off the steady-state solution.
4. Repeat Exercise 3(a) and (b) if the boundary r = r; is insulated.

5. Repeat Exercise 3 if heat is transferred at r = r, to a medium at constant temperature U,
according to Newton's law of cooling.

O Rt o

o R A
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6. (a) A sphere of radius r, is initially at temperature f(r). For ¢ > 0, its surface is held at
temperature f(¢), and heat is generated at a rate g{r,t). Find the temperature in the sphere.
(See Exercise 5 in Section 8.4 for the appropriate finite Fourier transform.)

(b} Simplify the solution when f(r) = 0, f,{t) = 0, and g(r. ) is constant. :
() Simplify the solution when f(r) = 0, g(r,t) = 0, and f,(1) is constant. ‘
7. (a) Asphereof radiusr, isinitially at temperature f(r). For t > 0, heatis added to its surface at a !

rate f,(r) W/m?, and heat is generated at a rate g(r,t) W/m3. Find the temperature in the
sphere. (See Exercise 6 in Section 8.4 for the appropriate finite Fourier transform.) '

(b) Simplify the solution when f(r) = 0, g(r,£) = 0, and f,(¢) is constant.
8. A cylinder of length L and radius r, is initially at temperature f(r,2),0 <r <r,,0 <z < L.For

time ¢ > 0, the face z = Ois insulated, face z = L has a time-dependent temperature f,(t), and the
round surface r = r, has temperature f;(¢). Find the temperature of the cylinder for t > 0.

9. A hemisphere x? + y* + 22 < r}, z > 0, is initially at temperature zero throughout. For time
t > 0, its base z = 0 continues to be held at temperature zero, but the surface of the hemisphere
has a time-dependent temperature f,(t). Find a series representation for temperature inside
the hemisphere. (Hint: You will need the eigenfunctions from Exercise 8 in Section 8.4}

10. Solve Example 5 if the constant temperature on r = r, is replaced by f(8) = sin 6.
11. (a) Solve Example 5 when the initial temperature of the plate is f(r, ).

(b) Does the solution reduce to that of Example 5 when f(r, ) = 0?
12. Solve Exercise 2 when the initial temperathrc of the plate is f(r,6).

G metca's et m Fad Ao’

e

At

et e e b pey kit

13. Solve Example 5 if heat is exchanged with a constant-temperature environment along the edge
r =r, according to Newton's law of cooling and the initial temperature of the plate is f(r,6).

Part B— Vibrations

14. (a) Find the displacement of a circular membrane of radius r, that isinitially (¢ = 0) at rest but is
displaced according to f{(r, ), the boundary of which is displaced permanently according to
Li(®).
(b) Simplify the solution when f(r,0) and f,(0) are independent of 8.
15. Solve the following nonhomogeneous version of Exercise 22 in Section 9.1:
92 d( o F(x,t
ot d0x p

, 0<x<L, t >0,
0x

y(L,)=0, >0,
w0 = flx), O0<x<lL,
Wx0) =h(x), 0<x<L.
16. A circular membrane of radius r, is initially at rest on the xy-plane. For time ¢ > 0, its ed'gé is

forced to undergo periodic oscillations described by A sinwt, A a constant. Use finite Fourier
transforms to find its displacement as a function of r and t. Include a discussion of resonance.

17. A circular membrane of radius r, is initially at rest on the xy-plane. For time ¢ > 0, a‘periddic
vertical force per unit area A sin wt (A a constant) acts at every point in the membrane. If its edge
r = r, is fixed on the xy-plane, find its displacement.

18. Discuss the solution of Example 6 when w = cig, for some k.
19. Do the solutions of Example 6 and Exercise 18 reduce to those of Exercise 16 when f(r,0) = 0?
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Part C— Potential, Steady-State Heat Conduction,
and Static Deflections of Membranes

20.

21.

22.

A solid cylinder is bounded by the planes 0 =0 and 6 = § and the curved surface r =r,
(0 < 0 < fi). A constant charge density o exists inside the cylinder. If the three bounding surfaces
are all held at potential zero, find the potential interior to the cylinder. Special consideration is
required for the cases § = n/2, n, and 3n/2.

An infinite cylirider of radius r, has charge density kr", k > O and n > O constants. If the surface
of the cylinder has potential [(0), what is the interior potential?

A hemlsphcre x? + y? + 22 < r}, z 2 0, has a constant charge ¢ throughout. If potentials on the

. rounded and flat surfaces are both specified constants, but different ones, find the potential

23,

9.3

inside. (You will need the results of Exeicise 5 in Section 8.6 and Exercise 8 in Section 8.5.)

A thin plate is in the shape of a sector of a circle bounded by the lines 6 = 0 and 0=p<nand

thearcr =r,,0 < 8 < . Edge @ = Bisinsulated, as are the top and bottom of the plate. Heat is

removed from the plate along the edge 8 = O at a constant rate ¢ > 0 W/m?2, Along the curved
edger = r,,heatisalso removed ata constantrate Q > 0 W/m?2. Heat is being generated at each
point in the plate at a uniform rate of g W/m?>,

(a) Formulate the boundary value problem for steady-state temperature in the plate. (See
Exercise$ 16 and 17 in Section 1.2 for the boundary conditions along § = O and r = r,.) What
condition must ¢, Q, and g satisfy?

(b) Solve the problem in (a).

Hankel Transforms

Fourier transforms have been used to remove Cartesian coordinates on infinite inter-
vals from (initial) boundary value problems; Fourier sine and cosine transforms are
applicable to Cartesian coordinates on semi-infinite intervals. For problems in polar
and cylindrical coordinates wherein the radial coordinate has range r > 0, the Hankel
transform is prominent. It is based on Bessel’s differential equation

2
("R),L(lz,_”_);g:o, r>0, v>0. (79)
dr r

We have already seen that solutions of this differential equation that are bounded near
r = 0 are multiples of

R(r) = J(4r). (80)

In order to associate a transform with J,(Ar), we must be aware of the behavior of Bessel
functions for large r. It is shown in the theory of asymptotics that J,(r) may be
approximated for large r by

J(r) = \/%COS (r — g — g), (81)

the approximation being better the larger the value of r. This means that for large r, J.(r)
is oscillatory with an amplitude that decays at the same rate as l/ﬁ.

Corresponding to the corollary of Theorem 1 in Section 7.2, we have the following
Hankel integral formula.

o r— Ty e g

o bty AR 1

D }ﬁ""‘-d—ti‘_

.
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heorem 1
If Jrf(r) is absolutely integrable on 0 < r < co, and S(r} is piecewise smooth on every finite
interval, then for0 < r < 0,
ﬂi);_ﬂ’;) - f AAN)J, () dA (82a)
)
a
where AQQ) = f rf(r)J(Ar)dr. (82b)
o :
In view of the asymptotic behavior of J,(r) in expression (81), it is clear that absolute
integrability of \/;f(r) guarantees convergence of (82b). Associated with this integral
formula is the Hankel transform J/(4) of a function f(r),
fd = f rf(r)J,(Ar) dr, (83a) 1,
0 3
and its inverse, . :".;’
-] . f H
S = f AT (3r) da, (83b) :
0 B
where it is understood in (83b) that f(r)is defined as the average of left and right limits
at points of discontinuity. We place a subscript v on f£,(4) to remind ourselves that the A
Hankel transform is dependent on the choice of v in (79); changing v changes the . 1
transform. . i
)'xample 8: Find the Hankel transform f(A) of ' :!
' - fiB
' 0<r<a :'11&_
= f(')"{o r>a ) ‘i
Solution: By definition (83a), il
e
i) = J‘ rY U Ar)dr = J L (Ar) dr. o
0 0 N

If we set u = ir, then

- ia v+l ia
= j () Mo 1 f U () d
4 A4 o

0

Aa
= .vlu J di[u” "Jo«(w)]du  [see equation (39) in Section 8.3]
0 u

a* ", . (i)

Nl — N

The inverse Hankel transform (83b) then gives

© (1
f ).(za”'Jm(za))Jv().r)dz= a'/2  r=a,

0
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and from this we obtain the following useful integration formula:

o 1(-{) O<r<a
J‘ a\a
a

Jv+, l("'a)"v('lr) d'l =

0 1/(2a) r=a.
0 r>a
Exvample 9: Use the Hankel transform to find an integral representation for the solution of the heat
conduction problem
ou 32U 1aUu
=kl — - — 0 4
5 k(3r2+r6r)' r>09, t>0, (84a)
U(r,0) = f(n, r>0. ' (84b)
Solution: Because the Bessel function J,(r) results when separation of variables is performed on

the PDE, we apply the Hankel transform associated with Jo(r), namely,

iy = j: () o(Ar) dr,

where we have suppressed the zero subscript on f (A). Application of this transform to

the PDE gives
% = kf r(%’; + % %—[’{—)Jo(lr)dr
= k{r%g.lo().r)}: —k J:o %:—(g}- [rJo(an)] — Jo(lr)> dr
=—k f ‘;—lrjrzd;uo(ar)] dr (provided lim Jr % = o)

~ d ® «© d dJo('lr)
- —k{Urz;[Jo(l')]}o +’<f Uz;(’—rr )d’

0

r—w

=.kj U(—a2rJo(Ar)) dr (provided lim JrU = o>
0

= —ka?U.
Thus, U(4, t) must satisfy the ODE

ag ., -
I + kiU =0 (85a)

subject to the transform of (84b),

0(1,0) = f(A) = r rf (N Jo(Ar) dr. (85b)
o

R L L a LT 'ﬁmﬂ*“o')-m;a
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The solution of this problem is

(4, 1) = fla)e ™, (86)
and therefore

U@r,t) = fm Af (R)ekae Jo(Ar)dA. «  (87)
o

Exercises 9.3

Part A-—Heat Conduction

1. Heat is generated at a constant rate ¢ W/m? inside the cylinder 0 < r < g for time ¢t > 0. If the
temperature of space is zero at time ¢ = 0, find the temperature at all points fort > 0.

2. Aninfinite wedge is bounded by the straight edges 0 = 0and 8 = a(0 < a < 27). Attimet = 0, its
temperature is zero throughout, and for ¢ > 0, its edges 6 = 0 and @ = « are held at constant
temperature U. Find the temperature in the wedge for ¢ > 0. Hint: Apply a finite Fourier
transform with respect to 0 and a Hankel transform with respect to r. You will need the result that

f @dx =1.
x v

0

Part B— Vibrations

3. (a) A verylarge membrane is given an initial displacement that is only a function f(r) of distance
r from some fixed point but has no initial velocity. Find an integral representation for its
subsequent displacement.

(b) Use the result that

® 1
~ald
e Jo(An)dd = ——e—
Jo 0 Vrt 4+ a?
to simplify the solution when f(r) = A/ /1 + {r/a)?, a and A positive constants, to
z(r,t) = aAJ e cos cAt Jo(Ar) dA.
0

{c) By expressing cos cAt as the real part of e**, show that the solution can be expressed in the
form

(rn) = adJ/ i +al — c2t?)? + 4ach + (rP + a’ — c2t?)

V2V + a2 - ctt?)? 4+ 4a?c?

4. Repeat part (a) of Exercise 3 when f(r} is the initial velocity of the membrane and it has no initial
displacement.
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Part C— Potential, Steady-State Heat Conduction,
and Static Deflections of Membranes
Adisc0 < r < ain the xy-plane emits heat into the region z > 0 at a constant rate Q W/m2.If the
remainder (r > a) of the plane is insulated, the steady-state temperature in z > 0 must satisfy
U 14U oW
o ror  0z°
au(r,0) _ {—Q/x 0<r<a
az |0 r>a

5.

=0, r>90, z>0,

~ Find U(r, 2).
6. Repeat Exercise S if the discis held at constant temperature U and the remainder of the xy-plane

is held at temperature zero.
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