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Separation of Variables

3.1 Linearity and Superposition -

Separation of variables is one of the most fundamental techniques for solving PDEs. It
is a method that can by itsell yield solutions to many initial boundary value problems;
in addition, itis the basis for more sophisticated techniques that must be used on more
complicated problems. Separation of variablesis applied to linear PDEs. A PDEis said
to be linear if it is linear in the unknown function and all its derivatives (but not
necessarily in the independent variables). For example, the most general linear second-
order PDE fora function u(x, ) of two independent variables is

*u 0%u o*u du ou
a(x‘y)—&i + bix, ")5;5; + elx, y)g}ﬁ + Alx, y)—é; + B(x, y)g; + Clx, y)u = Fx,p%
(1)

it is a linear combination of 4 and its partial derivatives, the coefficients being func-
tions of only the independent variables x and - All linear PDEs may be represented

symbolically in the form

Lu=F, (2)
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where L is a linear' differential operator. In particular, for PDE (1), L = ad?/dx? +
bt /oxCy + &2y + A@jdx + Bé/iy + C.

When F(x,y) = 0in (1), the PDE is said to be homogeneous; otherwise, it is said to
be nonhomogeneous.

The study of linear ordinary_differential equations is based on the idea of
superposition—that when solufions to a tinear, homogeneous ODE are added
together, new solutions are obtained. These same principles are the basis for separation
of variables in PDEs. We set them forth in the following two theorems.

Theorem 1 (Superposition Principle 1)

i

Hu(j=1,... ,n) are solutions of the same linear, homogeneous PDE, then so also is any linear
combination of the u;,

L]
= .Zl cjuj, ¢; = constants.

Furthermore, if each u; satisfies the same linear, homogeneous boundary and/or initial con-
B ditions, then so also does u.

e

For example, if y,(x,f) and y,(x,t) are solutions of the one-dimensional wave
equation y,, = (t/p)y,. and the boundary conditions y(0,t) = Oand y(L,t) = 0, then for
yx,t) =¢c ¥y +¢ay,,

a2, a2
. i:t}‘ = (%“z(cth + ) =¢ ayzl + 2aaty2
: . 2 2 2
. = ; %xyl +‘Cz:_,%_£;z(cu’l+CzY2)—:—)g—x%
v and Y(0,0) = ¢,y,(0,1) + c,y,(0,1) =
| WL, 0) = ¢, yy(L, 1) + c295(L, ) = O
Thus y(x, t) satisfies the same linear, homogeneous PDE and boundary conditions as y,

and y,.

In short, superposition principle | states that linear combinations of solutions
to linear, homogeneous PDEs and linear, homogeneous subsidiary conditions are
solutions of the same PDE and conditions. Superposition principle 2 addresses non-

homogeneous PDEs. [t states that nonhomogeneous terms in a PDE may be handled
individually, if it is desirable to do so.

Theorem 2 (Superposition Principle 2)

& Hu(j=1.... n) are. respectively, solutions of linear, nonhomogeneous PDEs Lu = F;, then

— = n
u=y". ‘u, is a solution of Lu =) 7 F,.

* An operatar L s linear if for any two functions u(x, vi and v(x, ¥} and any constants C, and C,.

LiCu + Cyry = C(Lu) + Cy(Lo)
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Figure 3.1

Figure 3.2
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For example, if Uy(x,y.1) and U (x,y.1) satisfy the two-dimensional heat con-
duction equations

il lcéig+i(i +k (x, 3,0 au_k___azu+__alu +—k— (. 3, 8)

ot ._Jaxz ooy o p b o \ox* = ay? Gtk
respectively, then Ui—x: y.0) = Ui(x, 3, ) + Uy (x, 3,0) satisfies
ou U U k :
e e e i t )
5 (ax, + ayz>+ =[gu(x,3,0) + g2(x, 521)]

This principle can also be extended to incorporate nonhomogeneous boundary condi-
tions. To illustrate, consider the boundary value problem

Vi N Ll 4
Frar
VO,y) =gy O0<y<lL,
V(L,y)=g,(»), O<y<Ll
V(x,0) = hy(x), 0<x<L,
Vix,L') = hy(x)y O0<x<L,

for potential in the rectangle of Figure 3.1. The solution is the sum of the functions
Vi(x,y), Va(x.y), and V5(x, ), satisfying the PDEs in Figure 3.2 together with the

.
-~

=F(x,y, O<x<L, O<y<L,

1 V = hyx
L 5(x)
Vo= gy V= gy
V=) L x
y y y
vV, =0 V,y = hy(x) 1 Vy =0
L L L
Vi=20 Vi=0 V, =0 vV, =0 Vi = gi(y) Vi = gal
X X L 4
Vi,=20 L vV, =hix) L Vy =0 L
oV v v, @V, v :
7'+67'=F(.t,\‘) a\/1_+av1_=0 a{‘+av{1=0
ax” dy” : ax” Jdy~ ax” oy~

(a) (b» (<)
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indicated boundary conditions. The problem in Figure 3. 2(b) could be further
subdivided into two problems, each of which contained only one nonhomogeneous
boundary condition {as could the problem in Figure 3.2(c)]. In Section 3.2 we show
that this is not necessary.

Exercises 3.1

In Exercises 1-10, determine whether the PDE is linear. Which of the linear equations are
homogeneous and which are nonhomogeneous?

1.

11.
13.

14.

3.2

y %y oy *uU U

Rttty 2. o 3a +U? +¢%x

2y 3y o oy LDy by
ax? %? x Cox? T A ot ox

2 2 2 2
Zx—z+‘;v+gz F(x,y,z)V 6.x%—;+xz—y—z‘i=xy
2Q=xtﬂ+e'ﬂ+t 8. _a_‘(_/_+ kY +61U (2{1_ +a_q)
ot ax? x ot? xdt = 0x? dx ot
a_zg_az_u_—_() 10. ?.z_y+ﬂ+a_v_a_y.=3v V
x?  ay? ax* " dy*  ox By
Prove Theorem |. 12. Prove Theorem 2.

Based on superposition principle 2, how would you subdivide the problem consisting of
Poisson's equation V2V = F(x, y, z)inside thebox0 < x < L,0 <y < L, 0 <z < L", subject to
the following boundary conditions?

V(©0,y,2) = f,(,2), O<y<L, O<z<L"
V(L,y,2) = faly2, O<y<L, O<z<lL,
V(x,0,2) = g,(x,2), O0<x<L, O<z<L",
V(x, L', z) = g,(x, 2), 0<x<lL, O0<z<L®
V(x,y,0) = hy(x,y), O0<x<L, O<y<lL,
Vix,y,L*) = hy(x,y), O<x<L, O<y<L.

(a) Show that u(x,y) = e**” and u,(x, y) = e* "’ are solutions of the nonlinear PDE

ou\? du\? 5
(&) +(G) =

(b) Is u, + u, a solution?

Separation of Variables

Before considering specific initial boundary value problems, we illustrate the basic idea
of separation of variables on the PDE

(3)

— e
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Separation of variables assumes that functions y(x, t) satisfying(3) can be foun(i thatare
functions X{x) of x multiplied by functions T(1) of r; that is, it assumes that there are
functions satisfying (3) that are of the form

. yx, 0 = X()T(Q). (4)
When thlzs-réﬁresemaﬁon for y(x, f) is substituted into the PDE,
dix

dT
E;TT(I) = X(X)}t—.

and division by X (x)T(¢) gives

1 42X 1 dT

X0) dx? T dt ()

The right side of this equation is a function of ¢ only, and the left side is a function of x
only. In other words, variables x and ¢ have been separated from each other. Now, the
only way this equation can hold for a range of values of x and. tis for both sides to be
equal to some constant, say %, which we take as real’; that is, we may write

(D¢ 1. dT
Xdd *TTa ©)
We call this the separation principle.t Equation (6) gives rise to two ordinary differential
equations for X(x) and T(2),

2
%X—)f———ax=0 and %—aT=O. (7)
Thus, by assuming that a function y(x,t) = X (x)T(t) with variables separated satisfies
(3), the PDE is replaced by the two ODEs (7). Boundary and/or initial conditions
accompanying PDE (3) may give rise to subsidiary conditions to accompany ODEs (7).
We shall see these in the examples to follow.

There is no reason to expect a priori that the solution to an initial boundary value
problem should separate in form (4). In fact, separation of variables, by itself, seldom
yields the solution to an initial boundary value problem. However, separated functions
can often be combined to yield the solution to an initial boundary value problem. We
illustrate these ideas with the initial boundary value problem for transverse vibrations
of a taut string with fixed ends (Figure 3.3):

-62 a2
Etfzczgt—";. 0<x<L, t >0, (8a)
J0.0)=0, (>0 ' (8b)

* That x must be real for the problems of this chapter is proved in Exercise 30. That x must always be real is
verified in Chapter 4.
! That the separation principle is valid can also be seen by differentiating (5) with respect to x. The result is

d {1 d*X
e —zl=0
dx\ X dx*

and this implies that (1 X)d2X/dx? must be equal to a numerical constant.



Figure 3.3
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y(L,t)=0, t>0, (8¢)
yx,0) = f(x), O<x<lL, (8d)
y(x,00=0, O<x<lL, (8e)

where ¢? = 1/p. Conditions (8d, ¢) indicate an initial displacement defined by f(x) and
zero Tnitial velocity. We solve this problenrfor three initial displacement functions:
. X . WX, 2mx
(a) 3sin " (b) 3sin = sin A (c) x(L — x).

We begin by searching for separated functions that satisfy the (linear, homogeneous)
PDE, the (linear) iomogeneous boundary conditions (8b, c), and the (linear) homo-
geneous initial condition (8¢). We do not consider initial condition (8d); it is non-
homogeneous. As a general principle, then, separated functions are sought to satisfy
only linear and homogeneous PDEs, boundary conditions, and initial conditions.

y
l{/\lq | )

When we substitute a separated function y(x,t) = X(x)T(¢) into (8a),
Xli Tll

" __ 2y =

XT" =c*X"“T or X S a7

where the ” on X" indicates derivatives with respect to x, whereas on T", it represents
derivatives with respect to t. By the separation principle, we may set each side of this
equation equal to a constant, say a, which is independent of both x and ¢. This results in
two ODE:s for X(x) and T(¢),

X" —aX =0, T —ac®T =0. 9)
Homogeneous boundary condition (8b) implies that
X©0)T@) =0, t>0.

Because T(r) # 0 (why not?), it follows that X(0) = 0. Similarly, homogeneous
boundary condition (8c) and initial condition (8e) require that X (L) = 0 and T'(0) = 0.
Thus, X(x) and T(¢) must satisfy

X" —aX =0, 0<x<L, (10a) T —ac?T=0, t>0, (11a)
X(0) =0, (10b) T'(0) = 0. (11b)

X(L)y=0; (10¢)
Notice once again that we do not consider nonhomogeneous condition (8d) at this time.
For a separated function y(x,t) = X(x)T(¢), it would imply that X (x)T(0) = f(x), but
this would give no information about X(x) and T(¢) separately. This is always the

situation; nonhomogeneous boundary and/or initial conditions are never considered
in conjunction with separation of the PDE.,
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Solutions of ODEs (10) and (11) depend on whether a is positive, zero, or negative.
On purely physical grounds, a positive or zero value can be eliminated, for in these
cases the time dependence of y is given by
T(t) = Ae™™ + Be™* and T(1)= At + B,

respectively, and these certainly do not yield oscillatory motions. Alternatively, for
positive « and zero a, the general solution of (10a) is

X(x) = Ae”™ + Be™™ and X(x)=Ax + B.

But boundary conditions (10b, c) imply that A = B = 0, and this in turn implies that

" y(x,1) = 0. Because « must therefore be negative, we set « = —4% (2> 0) and replace

systems (10) and (11) with
X" 412X =0, O<x<L, (122 T'+c*A*T=0, > 0, (13a)

X(©0)=0, (12b) © T =0. (13b)

XWL) =0 (12¢)
Boundary conditions (12b, ¢) on the general solution

X(x) = Acosix + Béin'}._x
of (12a) yield
0=A4, 0= Bsin L.

Since we cannot set B = 0 [else X(x) = 0], we must therefore set sin AL = 0, and this
implies that AL = nm, n an integer. Thus,

nnx
X(x) = Bsin—.
(x) sin T

Condition (13b) on the general solution

t ) t
T(t) = Fcosﬂg— + Gsmﬁ%c—

of (13a) yields

"G or G=0.
L

We have now determined that the separated function
nmct anx _ hmnct

nnx C .
* = = n—— —_— = —_— —— 14
yx, 1) = X(x)T(0) (Bsm T ><Fcos I ) bsin T cos— (14)

for an arbitrary constant b and any integer n is a solution of the one-dimensional wave
equation (8a) and conditions (8D, c, e). The final condition (8d) requires b and n to
satisfy :

f(x) = bsinﬁ%f, 0<x<L. (15)
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We now consider the three cases for f(x) following equation (8¢), namely,
3sin(nx/L), 3 sin(nx/L) — sin(2nx/L), and x(L — x).
(a) When f(x) = 3sin(nx/L), this condition becomes

) 3sin%;__L;;in"—_,’Zi‘:w 0<x<L.
Obviously, we should choose b = 3 and n = 1, in which case the solution of initial
boundary value problem (8) is

t
y(x,t) = 3sin %cos nTc

This function is drawn for various values of ¢ in Figure 3.4. The string oscillates back

and forth between its initial position and the negative thereof, doing so once every 2L/c
seconds.

=

o EE o
~

We have shown, then, that when the initial position of the string is 3 sin(nx/L),
separation of variables leads to the solution of problem (8).

(b) When f(x) = 3sin(nx/L) — sin(2nx/L), condition (15)is

: dmx
3sm%—sm%x=bsmﬂzj, O<x<L.

[tis not possible to choose values for b and n to satisfy this equation. In other words, the
solution of (8) is not separable when f(x) = 3 sin(zx/L) — sin(2nx/L). Does this mean
that we must abandon separation? Fortunately, the answer is no. Becausz PDE (8a),
boundary conditions (8b, c),; and initial condition (8e) are all linear and homogeneous,

superposition principle 1 states that linear combinations of solutions of (8a, b, c, e) are
also solutions. In particular, the function

(‘ [) b .n nnx nnct + d . nnx mnct
SR = oSin ——COoSs —— Sin ——Co§ ————
) L L L L
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Figure 3.5

Figure 3.6
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satisfies (8a. b, c. e)for arbitrary integers n and m and any constants hand d. If we apply
initial condition (8d) to this function, b, d, n, and m must satisfy

T‘asinn—:»—sin-—l’i—t=b51n?—2—t+dsm%ﬁ. 0<x<L.
Clearly. w-e shouldchoose b =3,d = —~1,n=1, apd m = 2, in which case the solution
of (8) is
ct 2nx 2nct

- 3 . nx T .

y(x,t) = Isin L cos I sin T cos .
This is not a separated solution; it is the sum of two separated functions. The mo-
tion of the string in this case has two terms, called modes. The first term, 3 sin(nx/L} x
cos(nct /L), called the fundamental mode, is shown in Figure 3.4. The second mode,
—sin(2nx/L)cos(2rct/L), is illustrated in Figure 3.5 for the same times. Oscillations of -
this mode occur twice as fast as those for the fundamental mode. The addition of these
two modes gives the position of the string in Figure 3.6.

L
1+ /"—.2-:_ //"'—"-0
L L
< " 8¢ 8¢
r== L
- 4c /1—4c
L X
l: L
2
L L ’=§£
=% 8¢
—lr \l=0 \l__._%
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(c) Finally, we consider the case in which the initial displacement in the string is
parabolic, f(x) = x(L — x). It is definitely impossible to satisfy (15),

. Amx
x(L—x)=bsm—L—, O<x<lL,
for any choice of b and n. Furthermore, for 16 finite linear combination of terms of the

form b sin(nnx/L) can coefficients (b) and integers (n) be chosen to satisfy this condition.
Does this mean the ultimate demise of separation of variables? Again, the answer is no.

- We superpose an infinity of separated functions in the form

nnx cos nnct

L L’
where the constants b, are arbitrary. No advantage is gained by including terms with
negative values of n, for if we had a term in —n (n positive), say

X_(x)=b_, sin<—znx),

y(x, t) = f: b, sin © (16)
=1

we could combine it with
nnx
X = b sin——
(X) = b, sin I
and write
X, + X_, = (b, — b_,,)sinf? = anin%’i,

which is of the same form as X,(x).
Initial condition (8d) requires the b, in (16) to satisfy

nnx
L ’

This equation is satisfied if the b, are chosen as the coefficients in the Fourier sine series

of the odd extension of x(L — x) to a function of period 2L. According to equation
(18b) in Chapter 2,

x(L — x) = i b,sin O<x<lL. 17)

2t . nmx
b,, = Z—f Y(L el X)SlanX,

0
and integration by parts leads to
4L°(1 + (- 1)"*Y
- n’nl

b

(see Exercise 10in Section 2.2). Substitution of these into (16) gives displacements of the
string when the initial position is S(x) = x(L — x):

2 4L+ (~1)"*'] . nnx  nnct
)(x‘t)—n; nin? Sepes T
_8L2 i 1 Sin(2n —ax  (n - Yret
TR PR L i

(18)
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Example 1:

Figure 3.7

Solution:

Chapter 3  Separation of Variables

- Each term in this series is called a mode of vibration of the string. The position of the

string is the sum of an infinite number of modes, lower modes contributing more
significantly than higher ones. We shall have more to say about them in Section 5.2.

You would be wise in questioning whether (18) is really a solution of problem (8).
Certainly it satisfies boundary conditions (8b, c), and, because x(L — x) is continuously
diflerentiablé, our theory of Fourier series implies that initial condition (8d) must also
be satisfied. Conditions (8a) and (8¢) present difficulties, however. First of all, because
(16) is the superposition of an infinity of separated functions, and superposition
principle 1 discusses only finite combinations, an infinite combination must be suspect.
Second, because (18) is an infinite series, there is a question of its convergence. Does it,
for instance, converge for 0 < x < L and t > 0, and do its derivatives satisfy wave
equation (8a) and initial condition (8¢)? Each of these questions must be answered, and
we shall do so, but not at this time. In this chapter, we wish to illustrate the technique of
separation of variables and some of its adaptations to more difficult problems.
Verification that the resulting series are truly solutions of initial boundary value
problems is discussed in Sections 5.6-5.8. To remind us that these series have not yet
been verified as solutions to their respective problems, we call them formal solutions.

The one-dimensional wave equation (8a) is a hyperbolic second-order equation
(see Section 1.8). In the following two examples we show that separation of variables
can be used on parabolic and elliptic equations as well.

Solve the following initial boundary value problem for temperature in a homogeneous,
isotropic rod with insulated sides and no internal heat generation (Figure 3.7):

%l—=k%, O0<x<L, t >0, (19a)
U0,¢) =0, t>0, (19b)
U(L,t) =0, t >0, (19¢)
U(x,0) = x, 0<x<L. (19d)

The ends of the rod are also insulated [conditions (19b, ¢)], and its initial temperature
increases linearly from U =0atx =0to U = Lat x = L.

[nsulation
7 L - /’
.

The assumption of a separated function U(x.1) = X(x)T(r) satisfying (19a) leads to
XT' =kX"T X _r
. = K. or — = ——.

X kT

The separation principle implies that both sides of the last equation must be equaltoa
constant, say x. in which case

X" —aX =0, T — xkT =0.
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Homogeneous boundary conditions (19b, ¢) imply that X'(0) =0 = X'(L), so that
X(x) and T(r) must satisfy

X" —aX =0, O<x<L, (200 T —akT=0. (21)
X©0=0, |, (20b)
- XWw=0"-" - o

For positive «, the general solution of (20a) is
X(x) = AeV** + Be™V*,
and boundary conditions (20b, c) require that
0=A—B, 0=dAe’™ —Be /T,

From these, A = B =0, and therefore a cannot be positive. For a = 0, we obtain
X(x) = Ax + B, and the boundary conditions imply that A = 0. Thus when « =0,
solutions of (20) and (21) are e

- X(x) = B = constant and T(f) = D = constant.

What we have shown, then, is that U(x, t) = X{(x)T(t) = constant satisfies PDE (19a)
and boundary conditions (19b, c). ‘

« When o is negative, for convenience we set & = — A2 (1 > 0), in which case (20) and
(21) are replaced by

- X"+ 43X =0, 0<x<L, (22a) T + kA*T=0, t>0. (23)
% X'(0) =0, (22b)

X{(L) = 0; (22¢)

Boundary conditions (22b, c) on the general solution

X(x) = Acos Ax + BsinAx

S

of (22a) require that
0 =B, 0 = 2Asin L.

, Since we cannot set A = 0 [else X(x) = 0], we must therefore set sin AL = 0, and this
implies that AL = nm, n an integer. Thus,

| nnx
X(x) = Acos—.
i (x) cos T

The general sotution of (23} is

T(1) = De™™*IL?,

Consequently, besides constant functions, we also have separated functions,

X(x)T(t) = (A cos n_f]i)(De-n‘xlk:;Ll) — ge-minikuL? COSE%(—'

which satisfy (19a—c) for integers n > 0 and arbitrary a. Notice that when n = 0, this
function reduces to the constant function corresponding to a = 0. In other words, all
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separated functions satisfying (19a—c) can be expressed in the form

—nlxlkL? nnx
ae” "I cog — | n=>0.

L

(It is not recessary to jﬂclude n < 0, since a is arbitrary.) Initial condition (19d) would
require a separated function to satisfy

nrnx .
x=acosT, 0<x<L,

an impossibility. But because the heat equation and boundary conditions are linear
and homogeneous, we superpose separated functions and take

a > = nnx
U(x,t) = —2°- + Y ae ninlhe/L? cos——
a=1 3 .

with arbitrary constants a,. Initial condition (19d) requires the a, to satisfy

n
Xx=+ ), a,C05~7 0<x<L.

This equation is satisfied if the a, are chosen as the coefficients in the Fourier cosine

series of the even extension of the function f(x) = x to a function of period 2L.
According to equation (17b) in Chapter 2,

2 (t nmx
a,=— | xcos—dx,
L], L
and integration gives

_aLf(-1r =1

n>0.
nin?

ag = L, a,

The formal solution of heat conduction problem (19) is therefore

L o LI(=1) — 1] _2eraqer nmx
U 1) == joodd. 5 S S-S nixdkt/L 08 ——
(x.) 2 + ,.Z‘l n’n? ¢ cosT
L 4L 2 -1 (2n - 1)2R2kIL? (2n — )nx
—_ RN — n " — 24
T L 1P cos— @24

An interesting feature of this solution is its limit as time ¢ becomes very large:

. L

lim U(x,t) = 7

1= x
In other words, for large times, the temperature of the rod becomes constant through-
out. But this is exactly what we should expect. Because the rod is totally insulated after
t = 0, the original amount of heat in the rod will redistribute itself until a steady-state
situation is achieved, the steady-state temperature being a constant value equal to the
average of the initial temperature distribution. Since initially the temperature varies
linearly from U = O atoneend to U = L at the other, its average value is L/2, precisely
that predicted by the above limit. "
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Figure 3.8

Example 2:

Figure 3.9
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For a copper rod of length | m and diffusivity k = 114 x 107® m?/s, (24) becomes
4= 1
n? Z. @n — 1)

—114 x 10 " %(2n ~ l)ln’lcos(zn _ l)nx

1
U(x,t) = 5~
This function is plotted in Figure 3.8 for various values of ¢ to illustrate the transition
from' initial temperature U(x;0)'= x to final temperature 1/2. These curves indicate
that U(x, t) is always an increasing function of x, and therefore heat always flows from
right to left. Notice also that each curve is horizontal at x = 0 and x = 1. This reflects
boundary conditions (19b, c).

U

1} U(x, 0)
U(x, 60)

U(x, 600)

U(x, 6000)

-

[N i

Solve the following boundary value problem for potential in the rectangular plate of
Figure 3.9 when the sides are maintained at the potentials shown:

I 7 E 4 )
W+_5F=O’ O<x<L, O<y<L, (25a)
V(0,y) =0, 0<y<lL, (25b)
V(L,y)=0, O<y<L, (25¢)
Vix,L)=0, O<x<L, (25d)
Vix,00=1, 0O<x<lL. (25¢)
'\.
!
! / —
R ! 4]
X
V=1 L
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When we assume that a function with variables separated, V(x,y) = X(x)Y(y), satis-
fies (25a),
X ve
vy Y =0 S __r
X'Y+ X or ¥ 7
The separatioﬁ p.rirxciplé réquires X /X and — Y"/Y both to equal a constant a, so that
X'—aX =0, Y'+aY =0.

Homogeneous boundary conditions (25b—d) imply that X (0) = X(L) = Y(L') = 0,and
therefore X(x) and Y(y) must satisfy

X" —aX =0, 0<x<L, (26a) Y'+aY =0, 0<y< L, (27a)
X(0) =0, (26b) Y(L)=0. (27b)
X(L)=0; (26¢)
System (26) is identical to (10); nontrivial solutions exist only when a is negative. If we
seta = — A2 (1 > 0), then A = nn/L, and the solution of (26) is
. nmx
X(x) = Bsm—L—

for arbitrary B and n an integer. With a = —1% = —n2n?/L?, the general solution of
(27a) is

Y(y)= DcoshEZ—y + Esinhit—z—y,

"and (27b) requires that

nnlL! nrL
=D — sinh ~———.
0 cosh T + Esinh 3

We solve this for E in terms of D, in which case

nny cosh(nrL'/L) .,  nmy
Y(y) = Dcosh—- — D—————sinh—=
(y) = Deosh = sinh(el /L) L

D Ll 1
(sinh i cosh iy _ cosh Ti‘— sinh ﬂ)

= sinh(nﬂL'/L) L L L L
R nr(L' — y) — b
= Fsinh——=—=, = SnheL' /L)

We have now determined that separated functions

na(L' — ¥)

X()Y(y) = bsinﬁ’z—x—sinh 3

(b = BF)

for any constant b and any integer n are solutions of Laplace’s equation (25a) and
boundary conditions (25b-d). Since these conditions and this PDE are linear and
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homogeneous, we superpose separated functions and take

Viey) = 3 busin™™ sinh L =) 28)
n={ L L

with arbitrary constants b,. Boundary condition (25¢) requires the b, to satisfy

© L :

=3 b,sin%sinh% =3 c,,sin%, 0<x<lL,
where C, = b, sinh(anL'/L). But this equation is satisfied if the numbers C, are chosen
as the coefficients in the Fourier sine series of the odd extension of the function f(x) = 1
to a function of period 2L. Hence

. nrlt 2 (Y | onmx 2L + (=1t
C, = b,,smh—L— —E_[.o (l)sm——L—dx = ——

nn
Formal solution (28) of potential problem (25) is therefore
R 2+ (=) . nrx . am(L —y)
Vix,y) = ; T sm—L—smh—L—-—-
nnsinh——
L
@, -1 - L' —
_4 $ 1 sin(2n yrx sinh(2n Hn( y). 29)
A= . . (2n—=)rL! L L
2n - l)smh———L—— .

These three examples have illustrated the essentials of the method of separation of
variables and Fourier series for boundary value and initial boundary value problems,
Ineach, functions with variables separated are found to satisfy the linear, homogeneous
PDE and the linear, homogeneous boundary and/or initial conditions. These
separated functions invariably involve an arbitrary multiplicative constant and an
integer parameter. To satisfy the one nonhomogeneous boundary or initial condition,
these functions are superposed into an infinite series.

Our next example illustrates that separation of variables is not restricted to
second-order PDEs.

Transverse vibrations of a uniform beam with simply supported ends (Figure 3.10) are
described by the initial boundary value problem

?+czgi—{=0, 0<x<lL, t>0, (30a)
¥(0,1) =0, t >0, (30b)

WLy =0, >0, (309
Pa0,00=0, >0, " (30d)
V(Lo t) = 0, t>0, . (30e)
y(x,0) = xsin n_: O<x<lL, (30f)

y(x,0) =0, 0<x<lL, (30g)
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Solution:

Chapter 3 Separation of Variables

where ¢? = EI/p. The force of gravity on the beam has been assumed negligible relative
to internal forces (see Section 1.5). Conditions (30f, g) indicate an initial displacement
xsin(nx/L) and zero initial velocity. Solve this problem.

L

Substitution of a function y(x,t) = X(x)T(t) with variables separated into (30a) gives

" - X " — Tl’
XT'+c*X"'T=0 or ~ =

The separation principle implies that
X" —¢X =0 and T +ac’T=0
for some constant o. When 2 < 0 and « = 0, general solutions for T(¢) are
T(t) = Acoshc\/—_at + Bsinhcy —at aﬁd‘ T(t) = At + B,

respectively. Because the motion of the beam must be oscillatory, and neither of these
functions displays this characteristic, we conclude that « must be positive. [The same
conclusion can be obtained from the ODE X' — «X =0 in conjunction with
boundary conditions (30b—e), but not so easily.] When we set x = A* (% > 0) and use
separation on homogeneous boundary conditions (30b-e¢) and initial condition (30g),
X(x) and T(r) must satisfy the systems

X" —i*X =0, 0<x <L, (31a) T" 4+ c22*T =0, t>0, (32a)

X(0) =0, (31b) T'0) = 0. (32b)
X(L)=0, (31¢) '

X"0)=0, (31d)

X“(Ly="90; (31e)

Boundary conditions (31b~e¢) on the general solution
X(x) = Acos ix + Bsin/ix + Ccosh Ax + Dsinh Ax
of (3ta) yield
0=A+C,
0 = Acosil + BsinilL + Ccosh AL + Dsinh AL,
0= —i%+ 7%,
0= —sYcosil — A®BsiniL + #*Ccosh AL + 2*Dsinh iL.

The first and third of these imply that A = C = 0, while the second and fourth require
that

Bsin AL =0, Dsinh AL = 0.
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Since 4 > 0, we must set D = 0, in which case B # 0. It follows, then, that AL = nn,nan
integer, and

nmnx
X(x) = Bsin—.
(x) sin 3

Condition (32b) on the genefal 8lution —

: n*nict . nrict
T(t) = Ecos I + Fsin I
of (32a) yields
n3nic
0= I3 F,

from which F = 0. We have now determined that separated functions
. nmx  ninict
| X(x)T(@) = bsmTcosT— .
for an arbitrary constant b and any integer n are solutions of PDE (30a), its boundary
conditions (30b—e), and initial condition (30g). Since the PDE and these conditions are
linear and homogeneous, we superpose separated functions-and take
nax n?nict
L L?

yix,t) = i b, sin
n=1

with arbitrary constants b,. Condition (30f) requires the b, to satisfy

& nnx
T

nx
in— = i 0<x<L.
xsin-— ‘_b,,sm 3 x

The b, are therefore the coefficients in the Fourier sine series of the odd extension of
x sin(nx/L) to a function of period 2L. Hence,
2 (* mX . nmx
. b, == 1 xsin—sin—-dx,
"L j‘o L L
and integration leads to

_L _ —4nL{1 +(=1)"]
bl-—z, b, = w1t n> 1.

Transverse vibrations of the beam are therefore described formally by

L  nx nwic & —4nL[t +(=1)"] . nnx  n'rnict
yx,t) = 5 sin—T-cos 5 + ngl =1 sin——cos —
2

L sin™ cos™ ct  16L i n Innx  4n’mict
= —Sin—COS — — —5~ cos
IS T T @i %

(33)
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Exercises 3.2

Part A— Heat Conduction

1.
- 2.

Determine U(x,!) in Example 1 if the initial temperature is constant throughout.

A cylindri&l, ivmogeneaus, isotropic rod with insulated sides has temperature f(x),0 S x < L,
at time ¢ = 0. For time t > 0, its ends (at x =0 and x = L) are held at temperature 0°C.Finda
formula for the temperature U(x, t) in the rodfor0<x < Landt >0

. (a) Use the result in Exercise 2 to find U(x, 1} when

x 0<x<L/2
fx)= :
L—x L2<x<sL
(b) The amount of heat per unit area per unit time flowing from left to right across the cross
section of the rod at position x and time ¢ is the x-component of the heat flux vector (this

being the only component) g(x, t} = —xdU/dx (see Section 1.2). Find the heat flow rate for
cross sections at positions x = 0, x = L/2, and x = L by calculating

. L .
lim g{(x,¢), q(—, t), lim q(x,¢).
x—0* 2 x—-L-
{(c) Calcﬂlé,t;c}limits of the heat flows in (b) as t — 0%Yand t — 00.
Repeat parts (a), (b), and (c) of Exercise 3if f(x)=10,0<x < L.In addition,
(d) Calculate

lim U(x,0) and lim U(@O,1).

x—0* 1~0*
(e} V:Sketch what you feel U(x, ) would look like as a function of x for various fixed values of t.
(a) Find the rate of flow of heat across the cross section at position x = L/2 for the rod in

Example 1.

(b) What is the limit of your answer in(a)ast—+0%?
A cylindrical, homogeneous, isotropic rod with insulated sides has temperature L —Xx,
0 < x < L, at time t = 0. For time ¢ > 0, its right end, x = L, is held at temperature zero and its
left end, x = 0, is insulated. Use the result of Exercise 22 in Section 2.2 to find the temperature
U(x, ) in the rod for 0 < x < Landt>0.

Part B— Vibrations

7.

10.

Ataut string hasitsends fixedatx =0 and x = Lon the x-axis. Itis givenan initial displacement

_ _§x/5 0gx<L/2
Jl) = {(L—x)/S L2<x<L

at time ¢ = 0, but no initial velocity. Find its displacement for t > 0 and 0 < x < L.

. A taut string has its ends fixed at x =0 and x = L on the x-axis. [t is given an initial velocity

glx) = x(L — x)1.0 < x < Lattimet = 0. but no initial displacement. Find its displacement for
({>0and 0 < x < L. .

If the string in Exercises 7and 8 is given both the initial displacement f(x}and the initial velocity
g(x) at time ¢ = 0, what is its displacement fort >0and 0 < x < L?

A taut string has its ends fixed at x =10 and v = L on the x-axis. If it is given an initial
displacement f(x) and an initial velocity g(x) at time t =0, find a formula for its subsequent
displacement in terms of integrals of f(x) and g{x).
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Solve Exercise 10 if an external force (per unit x-length) F = —ky (k > 0) acts at each point in
the string.

. Solve Exercise 11 if the external force F = —ky is replaced by F = —fdy/ot. Assume that

B < 2pnc/L.

A taut string is given an initial digpJacement (at time ¢ = 0) of f{(x),0 < x < L and initial velocity

g(x;0 < x < L. If the ends x =0 and x = L™o¥ the string are frec to slide vertically without
friction, find y(x, t).

. (a) What is the solution in Exercise 10 when g(x) = 0?

(b) Show that the series solution in (a) can be expressed in the form

¥ 0) = 50f(x +ct) + f(x = et)],
provided f(x) is extended outside the interval 0 < x < L as an odd function of period 2L.
3 Is this the result predicted by d'Alembert’s formula [(119)] in Section 1.7?
¥ 15. (a) What is the solution in Exercise 10 when f(x) = 0?
* (b) Show that the solution in (a) can be expressed in the form
bt l x+ct
i 2¢ )y-u g
provided g(x) is extended outside the interval 0 < x < L as an odd function of period 2L.
¥ Is this the result predicted by d’Alembert’s formula.f(119)] in Section 1.7?
}? 16. A circular bar of natural length L is clamped at both ends and stretched until its length is L*. At
- time ¢ = O the left end of the bar is at position x = 0 and the clamps are removed. If horizoatal
vibrations occur along a frictionless surface, find displacements of cross sections of the bar.
T |
i Part C— Potential, Steady-State Heat Conduction,
Static Deflections of Membranes
17. Aregion A (in the xy-plane) is bounded by the lines x = 0,y = 0,x = L,and y = L'. If the edges
& y=0,y=L'and x = L are held at potential zero, and x = 0 is at potential equal to 100, find
the potential in 4.
2 18. Solve Exercise 17if edges x = 0and y = Qare at potential 100, while x = Land y = L'areat zero

19.

20.

21.

oF

potential. (Hint: See the extension of superposition principle 2 in Figure 3.2.)

Solve Exercise 17 if edges x = 0and x = L are at potential 100 whiley = Oand y = L'are at zero
potential.

Solve Exercise 17 if the condition V(0, y) = 100 along x = 0 is replaced by dV(0, y)/dx = 100,
O<y<L.

Solve Exercise 17 if the boundary conditions are

cv(0,y)
=100, 0 L.
Jx =rs
¢V(L.y) '
et 100, 0<y<lL, ‘
v XL
(Y‘o)___aV(v.L):O, 0<x<L.
Sy dy

Is the solution unique? What is the solution if V(L/2,L'/2) = 0?
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22,

23.

24,

25,

26.

27.

28.
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Can Exercise 21 be solved if the condition along x = L is d¥(L,y)/éx = —100,0 <y < L
Explain.

A thin rectangular plate occupies the region described by 0 < x < L,0<y< L. Its top and
bottom surfaces are insulated. If edges x = 0and x = L are held at temperature 0°C, whiley =0
and y = L' haye temperatures x(L — x) and —x{L — x), respectively, what is the steady-state
temperature of the plate?-

Solve Exercise 23 if edges x = 0, x = L, and y = L' are held at temperature 0°C while heat is
added along the edge y = 0 at a constant rate q W/m?,

Solve Exercise 24 if heat is added to both edges y=0and y = L' at rate q W/m? while edges
x = 0and x = L are held at temperature 10°C.

A membrane is stretched tightly over the rectangle 0 < x < L, 0 <y < L' Its edges are given
deflections déscribed by the following boundary conditions:
z(0,y) = kL(y — L)/L, O<y<lL,
ALy)=0, 0<y<lL,
2(x,0) = k(x — L), 0<x<L,
z{x,L') =0, 0<x<L
(k > 0a constant). Find static deflections of the membrane when all external forces are negligible
compared with tensions in the membrane.
Find a formula for the solution of Laplace’s equation inside therectangle0 < x < L,0 <y < L'
of Figure 3.1 when _
@  g,(y) =ga(y) = hy(x}=0; (b) g\(y) = ga(y) = h(x)=0;
© g =g.00=0 @) hy(x) = hy(x) = 0.
Solve Exercise 23 if edges x = 0and y = L' are insulated, x = L is held at temperature 0°C, and
y = 0 has temperature (L — x)%,0 < x < L. (Hint: Use Exercise 22 in Section 2.2.}

Part D—- General Results

29.

30.

3.3

Prove that a second-order, linear, homogeneous PDE in two independent variables with
constant coefficients is always separable. (A more general result is proved in Exercise 10 of
Section 4.3))

Verify that we cannot have a.complex separation constant « for the two problems (10) and (20).

Nonhomogeneities and Eigenfunction Expansions

In Section 3.2 we stressed the fact that separation of variables is carried out on linear,
homogeneous PDEs and linear, homogeneous boundary and/or initial conditions.
Separated functions are then superposed in order to satisfy nonhomogeneous
conditions. When nonhomogeneities are present in PDE, or in the boundary
conditions of time-dependent problems, separation by itself fails. To illustrate, we
reconsider vibration problem (8) for displacement of a taut string with fixed end points,
but take gravity into account:

&ty ety

T =c —a-x—erg. 0<x<L, t>0, (g = —9.81), (34a)
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y(0,1) =0, t>0, (34b)
wL,t) =0, t>0, (34¢)
y(x,0) = f(x), 0<x<lL, (34d)
_ X_‘(x.,_(.)’) =0, O<x<L. (34e)

Only the partial differential equation is affected; it becomes nonhomogeneous.
The boundary conditions remain homogeneous. Substitution of a separated function
y(x,t) = X(x)T(z) into (34a) gives

XT"=c*X"T +g.

Our usual procedure of dividing by X (x)T (t) would not lead to a separated équation; in
fact, this equation cannot be separated. Likewise, were (34b) not homogeneous, say
¥(0,1) = f(t), in which case the left end of the string would be forced to undergo specific
motion, substitution of y(x,t) = X(x)T(¢) would not lead to information about X(x)
and T(¢) separately.

In this section we illustrate two methods for handling nonhomogeneities. The
first method uses steady-state solutions for heat conduction problems and static
deflections for vibration problems. It applies; however, only to time-independent
nonhomogeneities. The second method is called eigenfunction expansion; it applies to
time-dependent as well as time-independent nonhomogeneities.

Time-Independent Nonhomogeneities

Partial differential equation (34a) has a time-independent nonhomogeneity (it is also
independent of x, but that is immaterial). To solve this problem, we define a new
dependent variable z(x, t) according to

y(x! t) = z(x, t) + 'l’(x)o (35)
where {/(x) is the solution of the corresponding static-deflection problem
42
0=c? d—¢+g, O0<x<L, (36a)
36b
WO =0, ()= (seb)

Differential equation (36a) implies that
|l/(x) —x + Ax + B,
and boundary conditions (36b) require that

0=8B  0=—JL 4 AL+ B.
2c

‘From these we obtain the position of the string were it to hang motlonless under

gravity:

9, gL _ 9%, _
Y(x) = o7 +2CZX~2CZ(L Xx). 37)
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We expect that the string will vibrate about this position and that z(x, ) represents
displacements from this position. A PDE satisficd by z(x.1) can be found by sub-
stituting (35) into (34a):

(‘/:2
5 [2060) + ¢Y(x)] +g.
X

o i+ ] =
e Gt v =

This equation simplifies to the following homogeneous PDE when we note that Y(x) is
only a function of x that satisfies (36a):

oz ,0%

Ez—=c paey 0<x<L, t>0. (38a)

Boundary conditions for z(x,t) are obtained by setting x =0 and x = L in (35) and
using (34b, ¢): )

20,0) = p(0,8) — $(0) =0, >0, (38b)
AL, = p(L,0) — (L) =0, >0 (38¢)

Finally, by setting t = 0in (35) and its partial derivative with respect to t, and using
(34d, e), we obtain initial conditions for z(x, ¢):

2(x,0) = p(x,0) — ¥(x) = f(x) — %(L ~x, 0<x<lL, (38d)

260 = p0) =0, O0<x<L. (38e)
We have therefore replaced problem (34), which has a nonhomogeneous PDE, with
(38), which has a homogeneous PDE. We have complicated one of the initial
conditions, but this is a small price to pay. As for problem (8), if a function with
variables separated is to satisfy PDE (38a), boundary conditions (38b, c), and initial
condition (38¢), it must be of the form

i

bsin 1X cos et
L L’
for arbitrary b and n an integer. Because PDE (38a) and conditions (38b, c, €) are linear
and homogeneous, we superpose these functions and take

&2 Hmx nmnct
H(x, 1) = b,sin—cos —. 39
{x. 1) "gl sin——cos —- (39)
Initial condition (38d) requires the constants b, to satisfy

nnx
L )

f(x)—yx (L—-x)= Zb,,sin 0<x<L.
n=1

20

Consequently, the b, are coefficients in the Fourier sine series of the odd extension of
f{x) — gx(L — x):(2c?) to a function of period 2L; that is,

2 (L gx . hnx
b, = Zj (f(x) — (L~ x))sdex. (40)

0 ~C
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The {ormal solution of vibration problem (34) is therefore

nmx nnct

—L——COST, (41)

yx, t) = gfz—(L —x)+ Y b,sin
2c a=1
where the b, are given by (40}, - .
~This tcchmque of separiting off static deflections can be apphcd to any non-
homogeneity that is only a function of position, be it in the PDE or in a boundary
condition. We illustrate nonhomogeneities in boundary conditions in the following
example.

Solve the initial boundary value problem for temperature in a homogeneous, isotropic
rod with insulated sides when the ends of the rod are held at constant nonzero
temperatures

%‘%:k%l—(f, O<x<lL, t>0, (42a)
UQ©,) = Uy, >0, | " (a2b)
ULy =U, >0, @20
Ux,00=f(x), O0<x<L.  @2d)
We define a new dependent variable V(x,t) by
U(x,t) = V(x,t) + ¥(x), (43)
where Y(x) is the solution of the associated steady-state problem
0= kd'ﬁl, 0<x<L, (44a)
¥(0) = U, (44b)
Y(L)=U;. (44¢)
Differential equation (44a) implies that
Y(x) = Ax + B,

and boundary conditions (44b, c) require that
U0=B. UL=AL+B
From these, we obtain the steady-state solution

b9 = Uy + =Dl s)

(the temperature in the rod after a very long time). With this choice for lﬁ(t) the PDE
for V(x,t) can be found by substltutmg (43) into (42a):

b;[V(x,t) +Y()] = kg;z-[V(-t 1) + ¢(x)].
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Because y(x) is only a function of x that has a vanishing second derivative, this
equation simplifies to

. %ti= i%/ O<x<L, t>0. (46a)
Boundary conditions forV'(x, ) are obtained from (43) and (42b, c):
V(0,8 = UQ,0) —¢(©0) = Up — Uy =0, >0, (46b)
V(L,t)= UL, t) —y(L)=U, — U, =0, >0 (460)
_ Finally, ¥(x, t) must satisfy the initial condition
V(x,0) = U(x,0) — ¢(x) = f(x) — Uy — (E'—“—_Tl-jg)—x, 0<x<L. . (46d)

Separation of variables V(x,t) = X(x) T(f) on (46a~c)leads to the ordinary differential
equations
X"+A2X =0, 0O<x<L (47 T +kA’T=0, t>0. (48)
X(0)=X(L)=0, (47b)
These give separated functions

nnx

be "KL 5in

for arbitrary b and n an integer. To satisfy the initial condition, we superpose separated
functions and take
&, . hnx .
Vix,0) = Y b,e " sin - (49)
n=1

Initial condition (46d) requires the constants b, to satisfy

— U, @©
fo)— Uy~ e YoX _ $ G o<x<L.
L = L
Consequently, the b, are the coefficients in the Fourier sine series of the odd extension
of f(x) — Uy — (U, — Uy)x/L to a function of period 2L:

2 (L (U, = Up)x\ . nax
= _y, - =20 ——dx. 50
b, L L (f(x) U, L sm‘ T dx (50)
The formal solution of (42) is therefore
U, — Up)
Ul,0) = V(x,t) + Uy + g—l“-z—(ﬁ(‘, (51)
where V(x, 1) is given by (49) and b, by (50). "

It is interesting and informative to analyze solution (51) further for two specific
initial temperature distributions f{(x). First, suppose that the initial temperature of the
rod is 0°C throughout; that is, f(x) = 0. In this case, equations (49)~-(51) yield, for the
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temperature in the rod,

U0y = Up + e Xy § p pmetettnt in 25,
L a1 L
2 [t . x\ . nnx -2 .
where b, = L L ("Uo - (U:«-:-UO)E)SJ_Qde = ';l;[uo + (-]

This function is plotted for various fixed values of ¢ in Figure 3.11 (using a diffusivity of
k = 12.4 x 10~®m?/s). What is important to notice is the smooth transition from
initial temperature 0°C to final (steady-state) temperature at every point in the rod
except for its ends, x = 0and x = L. Here the transition is instantaneous, as is dictated
by problem (42) when f(x) is chosen to vanish identically. Physically, this is an
impossibility, but the mathematics required to describe a very quick but smooth
change in temperature from 0°Cat x = 0and x = Lto U and U, would complicate the
problem enormously. In practice, then, we are willing to live with the anomaly of the
solution at time ¢ = 0for x = 0and x = L in order to avoid these added complications.
This anomaly is manifested in the heat transfer across the ends of the rod at time ¢t = 0.
According to equation (13) in Section 1.2, the amount of heat flowing left to right
through any cross section of the rod is
U, — U nmx

A — ou _ T & —n2x2kefL2
‘I(x,‘l)—-. i —-K( T ';l r.tb,,e cos

= {-(Uo -U +2 Z [Uy + (— 1)+ lUL]e_"l"z"‘/Lz COS%>.
a=1

The series in this expression diverges (to infinity) when x = 0 and t = 0. In other words,
the instantaneous temperature change at time ¢t = 0 from 0°C to U,"C is predicated
on an infinite heat flux at that time. A similar situation occurs at the end x = L.

U

U,

U(x, 60,000)

[F1 el o
~

The second initial temperature function we consider is f(x) = Up(l — x?/L?) +
U.x L. a distribution that does not give rise to abrupt temperature changes at time
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t =0 since f(0) = U, and S(L) = U_. In this case, coefficients b, in (50) are
4Us[1 + (= 1)"*"}/(n*x3), and '

_ (UL — Ug)x 8U, = 1 ~2n~ ey . (20 — D)mx

U(X,()—Uo'f'—?“f‘?":lme sm—-—-?

As shown in Figure 3.12, the transition from initial to steady-state temperatu.
sméothforall 0% x < L. Supporting this is the heat flux vector

. K 8U, & 1 —(2n- 1jtx (2n — I)nx
. 4x 0= Z(Uo - U = Lo 2n-12 ”‘""’cosﬁ—l‘ .
The series herein converges uniformly for 0 < x < L and ¢ > 0. If we take limit
X 0*and - 0*, we find the initial heat flux across the end x = 0,

K 8U, & 1
10+04) = 7 (v~ - =L ety

K 8Up (m*\] . U,
"z{‘fo“ft‘?‘(?)]—‘T

[since 3> 1/(2n — 1)? = n?/8], Perhaps unexpectedly, we find that the directior
heat flow across x = 0 a¢ time ¢ = 0 is completely dictated by the sign of U,. W’
U, < 0, heat flows into the rod, and when U, > 0, heat flows out. This is most ea
seen by calculating the derivative of the initial temperature distribution in the roc
x=0, [(0)=U/L.If U. <0, points in the rod near x = 0 have temperature less tt
those in the end x = 0, and heat flows into the rod; if U, > 0, points near x = Qare ¢
higher temperature than those at x =0, and heat flows out of the rod.

U

Uf Utx, 0~

U(x, 6000)

f

tw

Time-Dependent Nonhomogeneities

When the nonhomogeneity in a PDE is time dependent, it is necessary to adopt
different approach. The technique used resembles the method of variation ¢
parameters for ODEs. Because variation of parameters for ODEs is used in a forr
perhaps different from that which many readers might have seen, and because it lead

into the method of eigenfunction expansion for PDEs, we digress to review th
technique quickly. Consider the ODE
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Yty = f(x) (52a)

where f(x) is as yet an unspecified function. The general solution of the associated
homogeneous equation y“ + y =0 is y(x) = Acosx + Bsinx, to which must be
added a particular solution of (52a). When f(x) is a polynomial, an exponential, a
sine, a cosine, or a combination-of these, various techniques (such as undetermined
coefficients, or operators) yield this particular solution. Variation of parameters also
gives a particular solution in these cases, but it realizes its true potential when f(x) is
not one of these, or when a general solution is required for arbitrary f(x). The method
assumes that a general solution of (52a) can be found in the form Acosx + Bsinx,
but where 4 and B are functions of x; that is, it assumes that the general solution of
the nonhomogeneous equation is y(x) = A(x)cos x + B(x)sin x. To obtain A(x) and
B(x), this function is substituted into the differential equation. Because this imposes
only one condition on two functions A(x) and B(x), the opportunity is taken to impose
a second condition, and this condition is always taken as A'(x)cos x + B'(x)sinx = 0.
The result is the following system of linear equations in A'(x) and B'(x):

A'(x)cos x + B'(x)sinx = 0, (53a)
v —A'(x)sinx + B'(x)cos x = f(x). (53b)
These can be solved for
A(x) = —f(x)sinx and B'(x) = f(x)cosx,
from which ' .

A(x) = —jf(x)sinxdx +C;, and B(x)= ~]‘f(x)cosxdx + C,,
where C, and C, are constants of integration. The general solution of (52a) is therefore

y(x) = (Cl - If(x) sinxdx)cosx + (Cz + Jf(x)cos xdx) sin x. (54)

(If C, and C, are omitted, this is a particular solution of the differential equation.) A
simplified form results if we express the antiderivatives as definite integrals:

y(x)=Clcosx+Czsin.x—cost f(t)sintdt+sinxj f({t)costdt
0 Q

= C,cosx + C,sinx + J S(t)sin(x — e)dt. (55)
o .

In this form, any initial conditions
y(©0) =y, and y'(0) = yj, (52b)
that might accompany ODE (52a) are easily incorporated. They require that
Yo=Ci  yo=0Cy,

and therefore the final solution of differential equation (52a) subject to initial
conditions (52b) is

Mx) = ygcosx + ygsinx + J f(t)sin(x — 1) dr. (56)
0
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We now develop the analogous method for solving initial boundary value prob-
lems that have time-dependent nonhomogeneities in their PDEs. The one-dimensional
vibration problem for displacements of a taut string with a time-dependent forcing
function F(x,t) = e " is a convenient vehicle:

e ’%:'—i—,=czg—};+%', 0<x<L, t>0, (57a)
¥(0,t) =0, t>0, - (57b)
yL,t)=0, t >0, (57¢)

yx,0 = f(x), O<x<L, ' (57d)

y(x,0) =0, 0<x<L. ~ (57e)

We have taken a forcing function that does not depend on x to simplify calculations,
but the technique works when the forcing function is a function of x as well as ¢. If the
forcing term were absent, the PDE would be homogeneous, and, according to our

- solution of problem (8), separation of variables on (57a, b, c, ¢) would lead to a super-

posed solution of the form

2, . nax nnct
(x,t) = C,sin—cos—,
¥(x,1) n; wsin— T
where the C, are arbitrary constants {see equation (16)]. To incorporate a nonzero
forcing term, we use a method called eigenfunction expansion. (In Chapter 5, when
we consider more general problems, we learn the significance of this name.) This
method is much like variation of parameters for ODEs; we attempt to find a solution
in this form, but where C, = C,(t) are functions of ¢,
2 . hmx nrnct
y(x,0) =Y Cit)sin—cos——. (58)
n=1 L L
Because at this point C,(t) is an unknown function, it is more convenient, and no less
general, to group C,(t) and cos(nrct/L) together as the unknown function, say d,(t) =
C,(t)cos (nnct/L). In other words, we replace (58) with

yx, t) = i dn(l)sin%. (59)
n=1

It is this series that is called an eigenfunction expansion. The sin(nmx/L) are the
eigenfunctions, and d,(1) are coefficients in the expansion of y(x,t) in terms of these
eigenfunctions.

For any choice of d,(t) whatsoever, the representation in (59) satisfies boundary
conditions (57b, c). To satisfy initial condition {57¢), we must have

y d;(O)sin% =0, O0O<x<L.
n=1

This requires the unknown functions d,({) to have vanishing first derivatives at t '= 0,
d.(0) = 0.
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To determine whether a function of form (59) can satisfy (57a), we substitute (59)
into (57a) and formally diflerentiate term by term:
7. Z 2 nrx —l
Z d; (l)sm—— = Z —-d (t)sm—L— + —p— (60)
In ils present form, this cquauon is intractable, but the fact that two of the terms are
series in sin(nx/L) suggests that the function e™'/p be expressed in this way also; that is,
we should write

Z Fsin——. (61a)

We have seen cquatlons of this form before; they are Fourier sine series representations
for the function on the left. However, should not the function on the left be a function of
x, not ¢? Indeed it should, but e™/p is trivially a function of x, and in addition itis a
function of t. [n other words, it is not that e™/p is afunction of the wrong variable;itisa
function of both x and r, and we wish to express this function of x and ¢ as a Fourier sine
series in x for any given 1. Clearly, this can happen only if coefficients are functxons of t;

that is, we really want toexpress e"‘/p in the form

i (t) sin —E ' (61b)

For each fixed t, (61b) is the Fourier sine series of the odd, 2L- periodic extension of the
constant function (of x) e™/p. According to equation (18b) in Section 2.2, then,

2 Ll t _qy+t
F,,(t)=——J- L pmegin™ g 2 20 DT
Ljep L nnp

and therefore

et _ 2e ! > [l + (_l)n+l] . nnx
p o ..; n sin—— (62)
If (62) is now substituted into (60), the result is
3 nlnzcl nox  2e”t @ [+ (=1 . nnx
d” t)si n A e [+ (=01 . nrx
Z ) Z, ()smL +pn,.=1 - sin”T
3 Inlc? —t _yntt
> Z(“"“’*' e dm—z"’ [ T)n e -0
et prn L

But for each fixed t. the series on the left of this equation is the Fourier sine series of the
function on the right, the function that is identically zero. [t follows that all coefficients
must be zero; that is,

ninc? el + (-1t Y]

L? dilt) = nmp

di(n + =0.

In other words, cach unknown function d,{t) must satisfy the differential -equation
dd, N ninier 2L+ (=11

d =
de? L nnp
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The general solution of this equation is

L) = b nmet gin L LML 4+ (=) tte
= —_— a — N
lt) = bacos—p " L nrnp(L? + n’nc?)

where a,angd b, are constants. The condition d.(0) = 0 implies that
2L +(—1)"* Y]
ninlpc(L? + n*nic?)

a, =

and therefore
anct  2LA[1 +(—1)"*"] _ . nnct
d(t) = b,,cos—L~ + nTrpo(L? £ ninied) nnce™ + LsmT .

Substitution of this expression into (59) gives

0 2 )ttt
yx ) =Y [b,,cos'—‘fit+ L7 + (=117 <mtce" + LsinnnTa)]sinﬂ.

o= L n?rlpc(L? + n’nic?) L
_ ' (63)
Initial condition (57d) requires that
£ 2L + (=" 1T . nnx
= —_ <L,
() n;l(b,. + wp (L2 & ninie) sin——, 0<x
from which ,
L + (=) 2 [* . nmx
" arp(LE + ninic?) L J, fx) S‘“de' 64)

The formal solution of (57) is now complete; it is (63) with the b, defined by (64).

Perhaps a summary of the eigenfunction expansion technique would be valu-
able at this juncture. When a PDE has a nonhomogeneity, the method proceeds as
follows:

(1) Find separated functions satisfying the homogeneous boundary conditions
(and homogeneous initial conditions) and the corresponding homogeneous PDE.
Suppose we denote the functions of x by X,(x). [X,(x) = sin(nnx/L) in our pre-
vious problem.]

(2) Represent the unknown function in a series of the form
Y, d.(0X(x)
a=1

with unknown coefficients d,(t).

(3) Substitute the eigenfunction expansion of step (2) into the PDE, at the same
time expanding the nonhomogeneity in terms of the functions X, (x).

{4) Obtain and solve ordinary differential equations for the d,(t).

(5) Use initial conditions on the PDE to determine any constants of integration in
step (4).




Example 5:

Solution:

%
e

b
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When time-dependent nonhomogeneities are present in boundary conditions, they
are transformed into nonhomogeneities in the PDE. They can then be handled by an
eigenfunction expansion. This is illustrated in the following example.

Solve the following initial boundary value problem for temperature in a homogeneous,
isotropic rod with insulated sides:--

%?:k%%—, O0<x<lL, t>0, (65a)
U(0,1) = ¢o(t), t >0, (65b)
U(L,t) = (1), t>0, ap (65¢)
U(x,0) = f(x), 0<x<L. (65d)

The rod is free of internal heat generation, and its ends are kept at prescribed
temperatures.

We define a new dependent variable V(x,t) according to
Ux, 1) = V(x,t) + Y(x,1); (66)

where /(x, 1) is to be chosen so that V(x,t) will satisfy homogeneous boundary con-
ditions. Boundary conditions (65b, c) require that

V(0,1) = dolt) — ¥(0,1) and V(L,t) = ¢ (t) — ¥(L,0).
Consequently, V{x, t) will satisfy homogeneous boundary conditions
V{({Q,t) =0, t >0, (67a)
V(L,t) =0, t>0 (67b)

if Y(x,t)is chosen so that

V0,0 = do(0),  WL,1) = b0,

These are accommodated if ¥(x, t)is chosen as
V(50 = dolt) + TLA(0) =~ do0) (68)
This is not the only choice for Y(x, t), but it is perhaps the simplest. With this choice,
Ul = V6, + dolt) + 7 (60 = o] (69)
The PDE for V(x,) can be obtained by substituting (69) into (65a):

it

¢ ) ¢l X
(V(x.n + o(0) + T[4u(0) - ¢0(,)]) - ki—;(l/(x, )+ dolt) + T(8L(0 - ¢o(r>])

b

a2
or a\v = kg—z, + G{x,1), (67¢)
) ét cx”
where Glx.1) = —dilt) — %m(r) — $un)]. (67d)
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Initial condition (65d) yields the initial condition for V(x, t),

V(x.0) = f(x) — $ol0) — X 40) ~ o0 0<x<L. (67e)

Our pr.o.blcm now is ‘to solve PDE (67c, d) subject to homogeneous boundary

conditions {67a, b)and initial condition (67¢); that is, V{(x, 1) must satisfy

av oV
= k— 70
a k 37 + G, 0<x< L, >0 (70a)
V0,t) = 0, t>0, (70b)
viL,y=0 t>0 ' (700)
V(x,0) = f(x) — $o(0) — waL(o) _ o1, O0<x<L (70d)
where Gloat) = — d6(0) — T [#10) = #60) (70¢)

What we have done is transform the nonhomogeneities in boundary conditions (65b,¢)
into PDE (70a). But this presents no difficulty; eigenfunction expansions handle non-
homogeneous PDEs. Were G(x,t) not present, separation of variables would lead to
a solution in the form

2 _ . hnx
Vit = 3, Cee nilk/L? sin——
a=1

We therefore assume 2 solution for nonhomogeneous problem (70) in the form
Vit = 3, Co)sin % @1
n=1

where the exponential has been absorbed into the unknown function C.(0)- This
function satisfies boundary conditions (700, €) and will satisfy PDE (70a) if
nmx _

o« © 2.2
§ cunsin 3 - %C,(z) sin'%’f + G(x. 0. 72)
n=1 n=1

To simplify this equation, we extend G{x,t)asan odd, 2L-periodic function and expand
it in a Fourier sine series

G =Y, G,,(t)sin"—ng, (73a)
a=1l
2 (*t . onnx
where G0 = T G{x.t)sin - dx. (73b)
[\]

Substitution of this series into (72) gives

nin nrx

¥ , zk .
“Z:‘(Cu(l) * L} Gty =~ Gn(‘)\> SmT = 0.
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But for each fixed t, the series on the left of this equation is the Fourier sine series of the

function on the right, the function that is identically zero. It follows that all coefficients
must vanish; that is,
, nlnik
C{) + N C.(t) = G(t).

The general solution of this linear, first-order ODE is

Cy(t) = b e~"=kit? 4 J“G,,(u)enz'zk(“ﬂ"u du,

[}
where b, is a constant. Substitution of this into (71) gives

3 ~nix2ke/L? ! n2rlk(u—t)/L2 . hnx
Vix,t)= Y (b,e + | G, we du sin——. (74)

n=1 o

To satisfy initial condition (70d), we must have

J09 = $o0) = 7[640) = 6s0)] = §: busin™,  0<x<L,

and this implies that

b = % LL (f(x) = 90(0) ~ T[40 ¢o(0)]) sin - dx. (75)

The formal solution of (65) is therefore

Ule,t) = V(x,1) + dol0) + T {80 — do(0)]

with V(x, t) given by (74), (75), and (73b). .
Let us summarize the techniques for handling nonhomogeneities.

(1) When nonhomogeneous boundary conditions are associated with Laplace’s
equation, all that is needed is superposition principle 2. The problem is divided into
two or more subproblems, each of which can be solved by separation of variables,
and the solutions of these subproblems are then added together. [For example,
when F(x, y) = 0 in the problem of Figure 3.1, V(x,y) is the sum of V,(x,y) and
Va(x, y).] Nonhomogeneities that turn Laplace’s equation into Poisson’s equation
require eigenfunction expansions (see Exercise 20).

(2) When- time-independent nonhomogeneities occur in initial boundary value
problems (be they in the boundary conditions or in the PDE), it is advantageous to
separate out steady-state or static solutions. The remaining part of the solution
then satisfies a homogeneous PDE and homogeneous boundary conditions.

(3) When nonhomogeneities in boundary conditions of initial boundary value
problems are time dependent, they can be transformed into time-dependent
nonhomogeneities in the PDE. [See, for example, transformation (69) in Exam-

-ple 5.] Eigenfunction expansions then take care of time-dependent nonhomo-
geneities in PDEs.
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Because time-independent nonhomogeneities [in technique (2)] are trivially
functions of time, it is natural to ask whether technique (2) is necessary now that we
have technique (3). To answer this question, we use technique (3) on problem (34).
Separation of variables on (34a, b, ¢, ¢)in the absence of the nonhomogeneity leads to a
supcrpgsjtion of separated functions in the form

nnx o nnct
L L’

yix,t) = Y. C,sin
a=1
Eigenfunction expansions suggest a solution of (34) (with g now present) in the form

nmnx

y(x,8) = 21 d,(t)sin T

When this solution is pursued, the result obtained is

2, ¢ 2gL*[1 — )t t ,
yix, 1) = Z[a,cosﬂt—g—+ oLl ,+§ 5 ) ](l —cos%)]smﬂ;—?, (76a)
1

= L n'n’c
where
2 L
4 =7 J'O f(x) sin%dx. (76b)
This does not appear to be the same as solution (41) of (34),
gx(L — x) 2 . nmx nmct
Gt = ——cos——, 1
Y, 1) S+ "; b,sin oS 41)
2 (L gx(L — x)\ . nnx
where b, = I J.o (f(x) - T) sm—z—dx. (40)

They do, however, represent the same function as we now show. Integration by parts
gives

2 (L . nmx 2 (Lgx(L—x) . nnx
bn =—l—‘—j‘o f(X)SlanX —Zj‘o ———2CT—SIHde
BT (R Cl
= G PSP

and therefore (41) may be expressed as

gx(L—x) 2 2L+ (=11 nmct . Amx
Yooty ==—=5—+ ,.; <a,| - 33 cos

sin—-.
L L
If we divide the summation in (76a) into two parts, this function may be written in the
form

= 2gL*1 —1yt b
y(x,l)=2 g [j_gz) ]sinm

a=1 n"m-c

-gLZ‘ l + (“‘ l)n ! l nnct nmnx
+ a“ — _—
"_‘< 332 COS sSin

N"m¢
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These expressions are indeed identical, since the first series in the latter equation is the
Fourier sine series of the odd, 2L-periodic extension of gx(L — x)/(2c?),

2L +(— )"”] o X

L_
gx( X _ Z 33 n—r, O0s<x<L.

n"mw c

Although this example illusirates that eigénfunction expansions can also be used to
solve problems when nonhomogeneities are time independent, we would not suggest
abandoning technique (2). There is a definite advantage to solution (41) over (76).
Contained in (41) is a closed-form part, gx(L — x)/(2c?). This is also a part of (76a), but
itis in the form of a Fourier sine series. This is the advantage of technique (2); it always
separates out, in closed form, a steady-state or static part of the solution. Technique (3)
does not; it delivers steady-state or static parts in series form. Given only the Fourier
series for steady-state and static solutions, it could be very difficult to recognize their
closed forms.

In Sections 3.2 and 3.3 we have shown how the method of separation of variables
leads to the use of Fourier series in the solution of various initial boundary value
problems. We have considered problems with one and more than one nonhomoge-
neous condition, many second-order equations, and one fourth-order equation. All
equations contained two independent variables in order that the method not be ob-
scured by overly complicated calculations. Certainly, however, the method can, and
will, be used for problems in several independent variables.

We do not yet know whether we have solved any of the initial boundary value
problems in these sections; we have found only what we call formal solutions. They
are formal because of the questionable validity of superposing an infinity of separated
functions. Each formal solution must therefore be verified as a valid solution to its
initial boundary value problem. We do this in Sections 5.6-5.8 when we take up
detailed analyses of convergence properties of formal solutions.

In problems (8), (25), (34), (42), (57), and (65), separation of variables led to the
system

X" + AXX =0, 0<x<L,
X(0)=0=X(L)
and in problem (19) to the system

X"+iX =0, O<x<lL,
X'(0) =0 = X'(L).

Each of these problems is a special case of a general mathematical system called a
Sturm-Liouville system. It consists of an ordinary differential equation

%(f(x)j—i) + {4p(x) ~ q(x)}y =0 (77a)

on some interval a < x < b, together with two boundary conditions
—Ly'(a) + hyy(a) = 0, (77b)
Ly'(b) + hyy(b) =0, (77¢)

where 4 is a parameter and hy, h,, [,, and [, are constants.
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Bessel functions and Legendre functions,
Finally, it is obvious that the steps in the solutions of boundary value an.
boundary valye problems in Sections 3.2 and 3.3,and even the wording of the st
-almost identical. Surely, then, we should be able to devise a method that
‘eliminate the tedious repetition of these steps in every problem. Indeed, finite
transforms associated with Sturm-Liouville systems can be used for this purpos
are discussed in Chapter 6.

Exercises 3.3

Part A— Heat Conduction

1.

A cylindrical, homogeneous, isotropic rod with insulated sides has temperature 20°C throy
O<x<L)attimer =0 For t > 0, a constant electric current 1 is passed along the len
the rod, creating heat generation 9(x.t) = I?/(A2%q), where ¢ is the electrical conductivity
rod and A4 is its cross-sectional area (see Exercise 32in Section 1.2).1f the ends of the rod a
at temperature zero for ¢ > 0, find the temperature in the rod for ¢ > 0 and0 < x < L.

- Repeat Exercise 1 if the ends of the rod are held at temperature 100°C for ¢ > 0,
- Repeat Exercise | if the ends x =0 and x = [. are held at constant temperatures U, ar

respectively, for 1 > 0.

- Repeat Exercise 1 if the electric current is a function of time f = ¢~
- A cylindrical, homogeneous, isotropic rod with insulated sides has temperature 100°C thre

out(0 <x < L)at time ¢ = 0. For ¢ > 0, its left end (x =0) is held at temperature zero a;
right end has temperature 100e™". Find the temperature in the rod for ¢ > 0and 0 < x
Assume that k # L¥/(n*n?) for any integer n,

- Repeat Exercise 1 if the ends of the rod are insulated for ¢ > Q.

7. Repeat Exercise 1 if the ends of the rod are insulated and [ = ¢~

10.

- A cylindrical, homogeneous, isotropic rod with insulated sides is initially at temperature

throughout (0 < x < L). For time ¢ > 0, its ends x =0 and x = L continue to be hel
temperature zero, and heat generation at each point of the rod is described by g(x,
e sin(mnx/L), where x > () and m is a positive integer. Find the temperature in the rod
function of x and ¢.

Repeat Exercise § if g(x,) = e ™ x>0, and the initial temperature in the rod is 10°C throu
out. Assume that x # nng2k/[2 for any integer n.

The general one-dimensional heat conduction problem for a homogencous, isotropic rod v
insulated sides is

all Uk
;=k%, T+ —glx. 1), O<x<L, t >0,
(&) X K

~

cU

-1, T + U = f,@), x =0, >0,
ox




11.

12.
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v

I (;\, +hU=fi, x=L (>0,

Ux,00= f(x), O<x<lL.

Show that when the nonhomogeneities g(x, 1), f,(t), and f,(t) are independent of time, the change
of dependent variable U(x, () = V(&) F44(x), where y(x) is the solution of the corresponding
steady-state problem, leads to an initial boundary value problem in V(x,t) that has a
homogeneous PDE and homogeneous boundary conditions.
Explain how to solve Exercise 1 if the current is turned on for only 100 s beginning at time t = 0.
Do not solve the problem; just explain the steps you would take to solve it.
Suppose that heat generation in the thin wire of Exercise 31 in Section 1.2 is caused by an electric
current /. When the temperature of the material surrounding the wire is a constant 0°C and ¢ is
the electrical conductivity of the material in the wire, temperature at points in the wire must
satis(ly the PDE
cUu U ki?
—:—=k———‘hu+_‘, 0<X<L, t>0
ct ox? koA?
(see Exercise 32 in Section 1.2).

{a} Assuming that the ends of the wire are held at temperature 0°C and the initial temperature in
the wire at time ¢ = 0 is also 0°C, show that when U(x, f) is separated into steady-state and
transient parts. U(x,t) = V(x,t) + ¢(x):

kI? sinh/h/kx + sinh Vh/k(L — x)
Y(x) = {1 — - .
xha A sinh /h/kL

(b) Find V(x,t) and hence U(x, ).

Part B— Vibrations

13.

14.

15.

A taut string has itsends fixed at x = 0and x = L on the x-axis. Itis given an initial displacement
attime t = 0 of f(x),0 < x < L, and an initial velocity g(x), 0 < x < L. If an external force per
unit length of constant magnitude acts vertically downward at every point on the string, find
displacements in the string for t > 0and 0 < x < L.

A taut string has an end at x = 0 fixed on the x-axis, but the end at x = L is removed a small
amount y, away from the x-axis and kept at this position. If it has initial position f(x) and
velocity g(x) (at time t = 0), find displacements fort >0 and 0 < x < L.

A horizontal cylindrical bar is originally at rest and unstrained along the x-axis between x = 0
and x = L. For time > 0, the left end is fixed and the right end is subjected to a constant
elongating force per unit area F parallel to the bar. Displacements y(x, 1) of cross sections then
satisfy the initial boundary value problem

a2 2,
C:f: 2?—"7, 0O<x<L, >0
it
30,1y =0, t >0,
1.L’
XD _ o,
X

¥, 0) = y(x,0) = 0, O<x<L.
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16.

17.
18.

Chapter 3 Separation of Variables

(a) Can this problem be solved by separation { y(x.{) = X (x)T(1)} and superposition? It has o
one nonhomogeneous condition.

(b) Reptace this initial boundary value problem by one in 2(x, 1) in which y(x,1) = 20, 1) + ¢
and y(x) is the solution of the associated static deflection problem.

() If separation of variables and superposition are used on the problem for z(x,1), what fc
dBas-tie seriestake? Finish the problem using the resuit of Exercise 21 in Section 2.2.

A beam of uniform cross section and length L has its ends simply supported at x = Oand x =
The beam has constant density p (in kilograms per meter) and is subjected to an additio
uniform loading of kkg/m. If the beamiis released from rest at a horizontal position at time ¢ =
find subsequent displacements.

Repeat Exercise 16 if the beam is at rest at time t = 0 with displacement f(x),0 < x < L.
Repeat Exercise 10 for the general one-dimensional vibration problem
d? Aty F(x,t
_.__{. = cl -——%}- + ( )’
at 0x P

O<x<L, t >0,

d
0, phy =10 x=0 >0,

! ox
dy
L=+ hy=10, x=L >0,
ox
px,0 = fx), O0<x<L,

yx,0) = g(x), 0<x<L.

Part C— Potential, Steady-State Heat Conduction,
Static Deflections of Membranes

19.

20.

21.

Find a formula for the solution of Laplace’s equation inside the rectangle0 < x < L,0<y:

when the boundary conditions are as indicated in Figure 3.1

Nonhomogeneities in Laplace's equation V2V =0 convert it into Poisson’s equation.

example, suppose a charge distribution with density o(x, y) coulombs per cubic meter occu

the volume R in space bounded by the planes x = 0,y=0,x=L,and y = L'

{a) If the bounding planes are maintained at zero potential, what is the boundary value prob
for potential in R? ’

(b) Use eigenfunction expansions to solve the boundary value problem in (a) when o is const
Find two series, one in terms of sin(nax/L) and the other is terms of sin(nmy/L'). Is ei
series preferred?

(d) Solve the problem in (a) when ¢ is constant by setting V(x,¥) = U{x,y) + ¢(x), where «

satisfies
d*y -—a¢
W = Z. 0<x< L.
Y(0) = Y{L)=0.

{s this the same solution as in (b)?
(d) If @ = a(x) is a function of x only, which type of expansion in (b) is preferred? Find
potential in this case.

(e) Find the potential when ¢ = xy.

Solve Exercise 28 in Section 3.2 if heat is generated at a constant rate at every point in the pl.
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Sturm-Liouville Systems
e

4.1 Eigenvalues and Eigenfunctions

In Chapter 3, separation of variables on linear (initial) boundary value problems led to

what are called Sturm-Liouville systems. In particular, we obtained two Sturm-
Liouville systems,

2
‘—;%+12X=0, O<x<L, (1a)
X(0) =0, (1b)
X(L) =0; , (10)
2
and ‘:ii_x)é +43X =0, O<x<lL, (2a)
X'(0) =0, {2b)
X'(L) = 0. (2¢)

In this chapter we undertake a general study of Sturm-Liouville systems. The results
obtained are then applied to Sturm-Liouville systems that arise from more difficult
problems associated with the (initial) boundary value problems of Chapter 1.
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Theorem 1

Chapter 4 Sturm-Liouville Systems

Nontrivial solutions of Sturm-Liouville systems (1) and {2) do not exist for arbi-
trary A. On the contrary, only for specific values of 4, namely 4 = nn/L, do nontrivial
solutions exist, and to each such value there corresponds a solution (unique to a mul-
tiplicative constant). Because the solution depends on the value of A chosen, it is cus-
tomary to indicate this dependence by writing X (4, x) instead of X(x). For system (l)
the sohrtion is X(é.x) = Csin ix, and for system (2), it is X (4, x) = Ccos Ax, C an
arbitrary constant.

In general, a Sturm-Liouville system consists of a second-order, homogeneous
differential equation of the following form, together with two linear, homogeneous
boundary conditions for an unknown function y(4, x):

d _
( () 4 "’) + {Ap( — g(Nyhx) =0, a<x<b, (3a)
"-llyl('{’ a) + h‘y(i.,a) = 0‘ (Sb)
Ly'(4,b) + hyy(A,b) = 0. (3¢)

The constants h,, h,, Il, and [, are real and independent of the parameter . When the
functions p, ¢, r, and r' are real and continuous fora < x < b, and p > Oand r > O for
a < x < b, the Sturm-Liouville system is said to be regular. The negative signs in (3a, b)
are chosen simply as a matter of convenience for applications.

No matter what the value of 4, the trivial function y(4, x) = 0 always satisfies (3),
but for certain values of 4, called eigenvalues, the system has nontrivial solutions. We
shall see that there is always a countable (but infinite) number of such eigenvalues,
which we denote by 4, (1 = 1,2,...). A solution of (3) corresponding to an eigenvalue An
is called an eigenfunction and is dcnoted by

Ya(X) = y(4,, x). (4)

Eigenfunctions are to satisfy the usual conditions for solutions of second-order
differential equations, namely that y, and dy,/dx be continuous for a < x < b.

When 4 = Ois an eigenvalue of a Sturm-Liouville system, it is customary to denote
it by 45 = 0. Such is the case for system (2).

The eigenfunctions sin(nnx/L) of system (1) form the basis for Fourier sine series,
and in Chapter 2 we saw that they were orthogonal on the interval 0 < x < L. The
eigenfunctions cos(nmx/L) of system (2) are also orthogonal on this interval. This is not
coincidence; the following theorem verifies orthogonality for eigenfunctions of every
regular Sturm- Liouville system.

All eigenvalues of a regular Sturm-Liouville system are real, and eigenfunctions corresponding
to distinct eigenvalues are orthogonal with respect to the weight function p(x),

b
J‘ XV (X (x)dx = 0. (5)

{See equation (6) in Sccuon 2.1 for the definition of orthogonality of a sequence of functions.}




Proof:

Section 4.1 Eigenvalues and Eigenfunctions 143

If [4,. ya(x)} and [4,,, y.(x)] are eigenpairs of Sturm-Liouville system (3), where 4, # },,, then

(ryn) = —(24p — Dyn,  (ryn) = —(Aul — QY.

Multiplication of the first by y,, and of the second by y,, and subtraction of the two equations,
eliminates g: .

-
- -

Ymlr¥a) = YarVe). = ~2DYnVm + AmPYmVa
or (Au - )'m)pynym = (",V;n)'}’n - (",V:-)'.Vm

The expression on the right can be expressed as a total derivative if we simultaneously add and
subtract the term ry,, y.:

(e = 20)2Yaym = [(ry2) ya + (ryR)ya] = [ry2) Yo + (rye)ym]
= (rymya) — (rynym)
=(rYmYn = IVYm)-
Integration of this equation with respect to x from x = a to x = b gives
b - b d .
L (A = 2 )PYaYmdx = f 2 YnVa = rYaYm) 4% = {rYya = 1V1Ym}a-
The right side of this result may be expressed as the difference in the values of two determinants:
Yalb)  ym(b)
yulb)  yu(b)
Since y,(x) and y,(x) both satisfy boundary condition (3b),

Ya(@)  ymla)

~ra e v

b
('ln - ;'M)J‘ pynymdx = r(b)

—Ily;l(a) + hlyn(a) = 01
—liym(@) + hyya(a) =0.
Because at least one of h, and [, is not zero, these equations (regarded as homogeneous, linear

equations in [, and h,) must have nontrivial solutions. Consequently, the determinant of their
coefficients must vanish:

yia) @] _
Yl@) yala) "

A similar discussion with boundary condition (3c) indicates that

v vl _
Yal) yal®)|

It follows now that

b
(A, — i.,,,)J‘ Py (X)yu(xydx = 0,

and, because 4, # 2, (5) has been established.

To prove that eigenvalues are real, we assume that 4 = % + if (B #0)is a complex
eigenvalue with eigenfunction y(4, x). This eigenfunction could be complex, but il it is, it is a
complex-valued function of the real variable x. If we divide (4, x) into real and imaginary parts,
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34 x) = wA x) + (4 x), the complex conjugate of dy/dx is
dy d du dv du dv . y
= — ';=——+(——=—-—'-——=-— — ) = —.
dx dx (u +i6) dx dx dx "ax T dx (u = iv) dx
- With this r.e§ult_, it is straightforward to take complex conjugates of (3). Because the functions
r(x), p(x), and g(x) are aik-real, as are the constants hy. hy, 1;, and I,, we find that 4 and ¥4, x)
must satis{y
Y+ Op-ay=0
1L,y a) + hy(ha)=0,  LyAb) +hyy(4,b)=0.
These imply that y(4, x)isan eigenfunction of (3) corresponding to the eigenvalue 1.Since 4 # 4,
y(x, 4) and y(x, A) must therefore be orthogonal; that is,
b ———
J p(x)y(4, x)y(4, x)dx = 0.
a
But this is impossible because p(x)> 0 for a<x<b, and p(4,x)y(4 x) = |¥(4, )2 =0.
Consequently, 4 cannot be complex. ™
It is evident from the above proof that Theorem 1 is also valid under the
circumstances in the following corollary.
Corollary
The results of Theorem 1 are valid when
(1) r(a) = 0 [boundary condition (3b) then being unnecessary].
(2) r(b) = 0 [boundary condition (3¢) then being unnecessary];
(3) r(a) = r(b) il boundary conditions (3b, c) are replaced by the periodic conditions
y(@) = yb),  y(@=yb) (6)
A Sturm-Liouville system is said to be singular if either or both of its boundary condi-
tions is absent; it is said to be periodic if r(a) =r(b) and boundary conditions (3b,c) are
replaced by periodic conditions (6). Theorem 1 and its corollary state that eigen-
functions of regular and periodic Sturm-Liouville systems are always orthogonal.
They are also orthogonal for singular systems when boundary conditions(3b) or (3¢) or
both are absent, provided either r(a) = 0 or r(b) = 0, or both, respectively. We consider
only regularand periodic Sturm-Liouville systems in this chapter; singular systems are
discussed in Chapter 8.
Example 1: Find eigenvalues and eigenfunctions of the Sturm-Liouville system
X" +2X =0, 0<x<lL,
X(0)=0= X'(L)
Solution: When # < 0, the general solution of the differential equation is

X(x) =_Ae‘:_:" + Be %,




Example 2:

Solution:
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The boundary conditions require that

0=X(@0)=4 + B, 0=X()= A\/_—).eJ'—-_AL_B\/'__Ie-V'__gL,

the only solution of whichis 4 = B =0.

When 4 = 0, X(x) = Ax + B, and the boundary conditions once again imply that
A=B=0. T

Thus, eigenvalues of the Sturm-Liouville system must be positive, and when 2 > 0,
the boundary conditions require constants A and B in the general solution X(x) =
Acos ﬁx + Bsin ﬁx of the differential equation to satisfy

0=X(0) =4, 0=X'(L)=—AJAsinJAL + BJZcos/iL.

With A vanishing, the second condition reduces to B\/Z cos /A L = 0. Since neither B
nor A can vanish, cos /1 L must be zero. Hence, ﬁL must be equal to —n/2 plus an
integer multiple of =; that is, permissible values of A are 4, where \/A_,, L =nn —n/2,
n an integer. Corresponding functions are

(2n — )nx
2L )
But the set of functions for n < 0 is identical to that for n > 0. In other words, eigen-

values of the Sturm-Liouville system are A, = (2n — 1)2n2/(4L?), n > 1, with cor-
responding eigenfunctions X,(x) = Bsin{{2n — 1)nx/(2L)]}. .

Xo(x) = Bsin ﬁ:x = Bsin

Discuss the periodic Sturm-Liouville system

y'+ Ay =0, —-L<x<L, (7a)
y(—L) = y(L), (7b)
y(—L) = y(L). (7c)

If 1 > 0, the general solution of (7a) is
y(4,x) = Acos\/—)._x + Bsinﬁx.
Conditions (7b, c) require that
AcosﬁL — BsinﬁL = AcosﬁL + BsinJiL,

ﬁAsinﬁL + ﬁBcosﬁL = —\/ZAsin\/ZL + ﬁBcosﬁL.

These equations require that sinﬁL =, and this implies that ﬁL = nn. In other
words, eigenvalues of the Sturm-Liouville system are 2, = n’n?/L?, where n is an
integer that we take as positive. Corresponding to these eigenvalues are the
eigenfunctions
. nnx . nmx
Valx) = y(4,,X) = Acos— + Bsin—.
YalX) = y(4,, X) T sin~-
‘When 4 =0, »(0,x) = A + Bx, and the boundary conditions require that B = 0.
Thus, corresponding to the eigenvalue 44 = 0, we have the eigenfunction yo(x) = A.
The only solution of (7) when 4 < 0 is the trivial solution.
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Theorem 1 guarantees that for nonncgative integers m and n (m # n), the
eigenfunctions

mnx

‘,v,,(x) = Acos’lF + Bsinn—z'—t and y,(x}= Ccosin% + Dsin T

are or_thégonalev?f’the interval — L < x < L. It is true, however, that all functions in

the set
1. cos nnx si nnx
, €08 —, sin——
L L

are orthogonal. These are precisely the “eigenfunctions” found in the Fourier series
expansion of a function of period 2L. We shall return to this point in Section 4.2.

Because differential equation (3a) and boundary conditions (3b, ¢) are homo
geneous, if [4,,y,(x)] is an eigenpair for a Sturm-Liouville system, then so also it
[4s. cya(x)] for any constant ¢ # 0. In other words, eigenfunctions are not unique; if
¥a(x) is an eigenfunction corresponding to an eigenvalue 4,, then any constant time:
Ya(x) is also an eigenfunction corresponding to the same A,. This fact is reflected i
Example 1, where eigenfunctions were determined only to multiplicative constants. I
this example, there is, except for the multiplicative constant, only one eigenfunction
sin[(2n — )=x/(2L)], corresponding to each eigenvalue. This is not the case it
Example 2. Corresponding to each positive eigenvalue in Example 2 there are tw
linearly independent eigenfunctions, sin(nnx/L) and cos(nnx/L). The difference is tha
in Example 1 the Sturm-Liouville system is regular, but in Example 2 it is periodic. I
can be shown (see Exercise 12) thatin a regular Sturm-Liouville system, there cannot b
two linearly independent eigenfunctions corresponding to the same eigenvalue.

In regular Sturm-Liouville systems, it is customary to single out one of the
eigenfunctions y,(x) corresponding to an eigenvalue as special and refer all othe
eigenfunctions to it. The one that is chosen is an eigenfunction with “length” unity, tha
is, an eigenfunction y,(x) satisfying

b
[Hya(ll = \/ J ) ya(x)]%dx = 1.

Normalized eigenfunctions can always be found by dividing nonnormalized eigen
functions by their lengths. Consider, for example, Sturm-Liouville system (1). Sinc
sin(nnx/L) is an eigenfunction of this system corresponding to the eigenvalue A2 =
n*n?/L2 so also is ¢ sin(nmx/L) for any constant ¢ # 0. The normalized eigenfunctio
corresponding to this eigenvalue is

sin(nrx;/L)
lIsin(nrx/L)||’

2 L
. nmx ., hnX L
where sm—L— = J. sin? ——dx = =,




Example 3:

Solution:
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Thus, with each eigenvalue 42 = n’n?/L? of the Sturm-Liouville system, we associate
the normalized eigenfunction

. X,(x):\/%sin%i.

All other eigenfunctions for 12 are then cXI,(x).
Similarly, normalized eigenfunctions for Sturm-Liouville system (2) are

1
Xo(x) = ﬁ corresponding to 13 =0

2
and X, (x) = \/; cosf'—Z—’5 corresponding to A2 = n?n?/L?, n>0.

In general, if y,(x) is an eigenfunction of Sturm-Liouville system (3), we replace it
by the normalized eigenfunction

%y,,(x) (8a)

b

where N =y, (al? = j P()[ya(x)]* dx. (8b)

The complete set of normalized eigenfunctions, one for each eigenvalue, then
constitutes a set of orthonormal eigenfunctions for the Sturm-Liouville system. Unless
otherwise stated, we shall always regard y,(x) as normalized eigenfunctions of a Sturm-
Liouville system. Notice that any number of the y,(x) could be replaced by — y,(x), and
the new set would also be orthonormal. In other words, orthonormal eigenfunctions
are determined only to a factor of +1.

Find eigenvalues and normalized eigenfunctions of the Sturm-Liouville system

d? d
F“;+£+Ay=0, 0O<x<l,

¥(0) =0 = y(1).
Roots of the auxiliary equation m? + m + 1 = 0 associated with the differential equa-
tion are m = (—1 4 /1 — 41)/2. When 4 < 1/4, these roots are real; denote them by
w; =(—1 ++1 —-44)/2 and w; = (-1 — /1 — 44)/2. The general solution of the

differential equation in this case is y(x) = Ae“'* + Be“**, and the boundary conditions
require that

0=A + B, 0 = Ae”“' + Be“:.

The only solution of these equations is A = B = 0, leading to the trivial solution

yx)=0.

When 4 = 1/4, the auxiliary equation has equal roots, and y(x) = (4 + Bx)e™*2,
Once again, the boundary conditions require that A = B = 0.

Consequently, A must be greater than 1/4, in which case we set m = —1/2 + iw,
where @ = V44 — 1/2. The boundary conditions require constants A and B in the
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general solution y(x) = e *'%(4 cos wx + Bsinwx) to satisfy

0=4, O=e¢ Y} Acosw + Bsinw).
With vanishing A, the second condition requires that sinw = 0, that is, that w = nn
n an integer. In other words, eigenvalues of the Sturm-Liouville system are give
by /44, — 1/2 =T#, or

1
A.,, = z + nznz.

Except for the multiplicative constant B, corresponding eigenfunctions ar
e”*%sinnnx. Clearly, we need only take n > 0. To normalize these functions, w
express the differential equation in standard Sturm-Liouville form (3a). This can b
done by multiplying by e* (see Exercise 1}):

Ay o dy A Ldy .
O0=e p"'e ;1;"'48}’—?‘;83; +ley.
With the weight function now identified as p(x) = e*, we calculate lengths of th

eigenfunctions:

1 1 i

e*(e *?sin nnx)?dx = j sin? nexdx = <.

{le™ 2 sin nxx||* =
0 2

[}

Normalized eigenfunctions are therefore

yu(x) = 2 e **sinnnx.

Exercises 4.1

1. (a) Show that when the differential equation
d?* d
a0 5 + BRI + 00 + 48y =0, a<x<b,

is multiplied by the “integrating factor”

r(x) = eIB(X)/a(x)dx’

it can immediately be expressed in standard Sturm-Liouville form (3a). Notice that «(x) mu
not vanishfora < x < b.
(b) In view of Example 3, what is the importance of this resuit?

In Exercises 2-9 find eigenvalues and orthonormal eigenfunctions for the given Sturm-Liouvili
system.

2

d
2. d—“z+/".y=0. 0<x<3 y0) =0=yQ3)
X
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dy . . .
.F+/,y=0, O<x<4, y(0)=0=y(4)
%y
. -d}—z-f-:{y:o, 0<x<9. y(0)=0=y'(9)

.

d*y <= .

L2 Xy =0, 0<x<1, yO 0=y

dx?
dy

. m+i.y=0. O<x<L, y(0)=0=yL)

dYy

S At =0 1<x<10, y(1)=0=y10)

(Do this directly and also by making the change of independent variable z = x — 1.)
d’y dy

. — — 2 =0, <1, =0=yl

8 ype dx+).y 0, 0<x<l, y0) y(1)
d’y dy , ,

9. dx—z+E+ly=0, l<x<3, y(l)=0=y(5)

(Hint: Use the change of variable z = x — 1.)

10. Find eigenvalues and eigenfunctions of the periodic Sturm-Liouville system
y'+ Ay =0, 0<x<2L,
¥(0) = y(2L),
y'(0) = y'(2L).
11. Consider the Sturm-Liouville system
d*y
—5 + 4y =0, O0<x<lL,
dx? ¥
y(©0) =0 = y(L).

We could regard this system as one with eigenvalues 1 and weight function p(x) = 4, or,

alternatively, as one with cigenvalues 44 and weight function p(x) = 1. Is there a difference as far

as normalized eigenfunctions are concerned?
12. In this exercise we prove that a regular Sturm-Liouville system cannot have two linearly
independent eigenfunctions corresponding to the same eigenvalue.

(a) Suppose that y(x) and z(x) are eigenfunctions of (3) corresponding to the same eigenvalue 2.
Show that w(x) = y'(a)z(x) — z'(a)y(x) satisfies (3a) and that w{a) = w'(a) = 0. This implies
that w(x) =0 [and therefore that y(x) and z(x) are linearly dependent] unless y'(a) =
z'(a) = 0.

(b) 1f y'(a) = z'(a) = 0, then h, = 0. Define w(x} = p(a)z(x) — z(a)y(x) to show once again that
w(x}) = 0.

13. Use the result of Exercise 12 to show that up to a multiplicative constant, eigenfunctions of
regular Sturm-Liouville systems are real.
14. In Exercises 7and 9 we suggested the change of variable z = x — 1 in order to find eigenfunctions

of the Sturm-Liouvilie system. Does it make any difference whether normialization is carried out
in the z-variable or in the x-variable?
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Eigenfunction Expansions

In Chapters 2 and 3 we learned how to express functions f(x), which are piecewist
smooth on the interval 0 < x < L, in the form of Fourier sine series

T f(x)= i b,sinﬂ{, : (9a
a=1 L
L
where b, = %—L f (x)sinil-z—xdx. 9b

We regard the Fourier coefficients b, as the components of the function f(x) witl
respect to the basis functions {sin(nnx/L)}. In Section 4.1 we discovered that th
sin{nnx/L) are eigenfunctions of Sturm-Liouville system (1), and it has becom
our practice to replace eigenfunctions with normalized eigenfunctions, namel
J2/Lsin(nnx/L). Representation (9) can easily be replaced by an equivalent expressio
in terms of these normalized eigenfunctions:

f(x) = ..21 c,,(\/—-lzgsinﬁ?), (10.
h = L/() 2 sin™\ 4 (10!
where ¢y = \ x SN X.

Coefficients ¢, are components of f(x) with respect to the orthonormal bas
{\/i/—l.-, sin(nnx/L)}. Equation (9) should be compared with equation (3) in Section 2.
together with the fact that the length of sin(nax/L)is v/ L/2. Equation (10} is analogo!
to equation (1) in Section 2.1.

The same function f(x) can be represented by a Fourier cosine series in terms
normalized eigenfunctions of system )

f(x) = % + ..; c(\/% cos'—’{f> (11
where

Co = j: f(x)(—ﬁ)dx and ¢, = j: f(x)(\/—zg cos%) dx, n>0. (11

A natural question to ask now is the following: Given a function f(x), defined
the interval a < x < b, and given a Sturm-Licuville system on the same interval, i
always possible to express f(x) in terms of the orthonormal eigenfunctions of
Sturm-Liouville system? It is still not clear that every Sturm-Liouville system has
infinity of eigenfunctions, but, as we shall see, this is indeed the case. We wish then
investigate the possibility of finding coefficients c, such thatona < x <b

fl)= 2 CaYalX) C

where y,(x) are the orthonormal eigenfunctions of Sturm-Liouville syﬁtem 3).
formally multiply equation(12) by p(x)y.(x), and integrate term by term between x =
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and x = b,
b P b
J PO} (x)ym{x)dx = ; Ca I P(X)YalX) y(x) dx.

Because of the orthogonality:o'f.ei_genfung_tj_pns, only the mth term in the series does not
vanish, and therefore

b
J. P(X)f(x)yn(x)dx = cp,. (13)
This has been strictly a formal procedure. It has illustrated that if f(x) can be rep-
resented in form (12), and if the series is suitably convergent, coefficients ¢, must
be calculated according to (13). What we must answer is the converse question: if
coefficients ¢, are calculated according to (13), where y,(x) are orthonormal eigen-
functions of a Sturm-Liouville system, does series (12) converge to f(x)? This ques-
tion is answered in the following theorem.

Let p, g, r, r', and (pr)” be real and continuous functions of x for a < x < b, and let p> 0
and r > Ofora < x < b. Let i, l;, h, and h, be real constants independent of A. Then Sturm-
Liouville system (3) has a countable infinity of eigenvalues 4, < 4, < 4, < ---(all real), not more
than a finite number of which are negative, and lim, . 4, = . Corresponding orthonormal
eigenfunctions y,(x) are such that y,(x) and y,(x) are continuous and {y,(x)| and |A; 3y’ (x)| are

. uniformly bounded with respect to x and n. If f(x)is piecewise smoothona < x < b, then for any

xina<x<b,

I(x_-‘-):;fi__) = i c,.y,.(x), (143)
a=1
where Cy = J. l,p(x) (x)ya(x)dx. =« (14b)

Series (14a) is called the generalized Fourier series for f(x) with respect to the
eigenfunctions y,(x), and the c, are the generalized Fourier coefficients. They are the
components of f(x) with respect to the orthonormal basis of eigenfunctions { ya(x)}.
Notice the similarity between this theorem and Theorem 2 in Section 2.1 for Fourier
series. Both guarantee pointwise convergence of Fourier series for a piecewise smooth
function to the value of the function at a point of continuity of the function, and to
average values of right- and left-hand limits at a point of discontinuity. Because the
eigenfunctions in Theorem 2 of Section 2.1 are periodic, convergence is also assured at
the end points of the interval 0 < x < 2L. This is not the case in Theorem 2 above.
Eigenfunctions are not generally periodic, and convergence at x = a and x = b is not

-guaranteed. [t should be clear, however, that when I, = 0 {in which case y,(a) = 0]

convergence of (14a) at x = a can be expected only if f(a) = 0 also. A similar statement
can be made at x = b,

When a regular Sturm-Liouville system satisfies the conditions of this theorem as
well as the conditions that q(x) > 0,a < x < b,and [, h, > 0,1,h, > 0, itis said to be a
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proper Sturm-Lioucille system. For such a system we shall take {;. I, h,, and h, al
nonnegative, in which case we can prove the following corollary.

Corollary

All eig8iivalaes of a_proper Sturm-Liouville system are nonnegative. Furthermore, zero is a
eigenvalue of a proper Sturm-Liouville system only when ¢(x) =0 and hy = h, =0.

Proof: Let A and y(4, x) be an eigenpair of a regular Sturm-Liouville system. Multiplication of (3a)b
y(4, x) and integration from x = a to x = b gives

a a a

b b b
lj p()y* (L x)dx = J- q(x)y*(4, x}dx — j. YA, ) [r(x)y'(4, )] dx

b
= J q(x)y* (A x)dx — {r(x)y(d,x)y' (. x}}a

b
+j‘ r()[y'(4, x)]* dx.

When we solve boundary conditions (3b, c)for y'(4, b)and y'(A, a) and substitute into the secor
term on the right, we obtain

b b b
AJ p(x)y}(4, x)dx = j q(x)y*(A, x)dx + J r(x)[y'(2,x)}* dx

+ ’%r(b) y2(4,b) + 'I’—‘r(a)yz(l, a).
2 1

When the Sturm-Liouville system is proper, every term on the right is nonnegative, as is t
integral on the left, and therefore 2 > 0. (If either [, = O or I, = 0, the corresponding terms int
above equation are absent and the result is the same.)

Furthermore, if 4 = 0 is an eigenvalue, then each of the four terms on the right side of t
above equation must vanish separately. The first fequires that q(x) = 0 and the second th

y'(4, x) = 0. But the fact that y(4, x} is constant implies that the last two terms can vanish only
hy=h,=0.

Since eigenvalues of a proper Sturm-Liouville system must be nonnegative, \
may replace 4 by 4% in differential equation (3a) whenever it is convenient to do ¢

df a3y 32 — =
i (r(x) dx) + [A%p(x) — q(x)]y =0, a<x<bh

This often has the advantage of eliminating unnecessary square roots in calculatio:

Example 4: Expand the function f(x) = L — xinterms of normalized eigenfunctions of the Stun

Liouville system of Example L.

Solution: According to Example 1, eigenfunctions of this system are sin{[(2n — 1)nx/(2L

Because
C2n — Dnx |i? L (2n— Drx\? L
sin =1, sin 3L dx = 3

2L
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normalized eigenfunctions are X,(x) = V2/L sin[(2n — Vnx/(2L)]. The generalized
Fourier series for f(x) = L — x in terms of these eigenfunctions is

. L—x= i C,X,(X),
=1

e hL eI, 243 @ A
where C, = J‘O(L - x)\/—;—sm 3L dx = 3 T +(2n —1 )"

32 : gy 3 y
Thes,  L-x =22k Z( R, A= )ﬁ_sin(zn s

2 W\2n—1 (2n—1) 2L

Theorem 2 guarantees convergence of the series to L — x for 0 < x < L. It obviously
does not converge to L — x at x =0, but it does converge to L — x at x = L. This
follows from the facts that

© (1) n © 1 n?
CO7 T ad Y g =
A -1 8 ™ L8 "

In Chapter 3, when separation of variables was applied to (initial) boundary value
problems, all boundary conditions in a given problem were either of Dirichlet type or
of Neumann type. These led to Fourier sine and cosine series, series that we now know
are eigenfunction expansions in terms of eigenfunctions of Sturm-Liouville systems 4]
and (2). We did not consider problems with Robin conditions, nor did we mix Dirichlet
and Neumann conditions. That would have led to series expansions for which we
would have had no backup theory. With our results on Sturm- Liouville systems, we are
now well prepared to tackle these expansions. A proper Sturm-Liouville system that
arises repeatedly in our discussions is '

2
d——)§+A’X=0, 0<x<L, (15a)

dx
L X' +hX=0, x =0, (15b)
sz' + th = 0, xX = L. (ISC)

[Systems (1) and (2) are special cases of (15) when |, =1, =0 and h, =h, = 0,
respectively. Examples 1 and 4 contain the special case of [, =h; =0 and I, =
h, = 1.] We consider here the most general case, in which hyhylil, # 0; special cases
in which one or two of hy, h,,1,, and [, vanish are tabulated later. In the general case
when h h,l,l; #0, we could divide (15b) by either I, or . This would lead to a
boundary condition with only one arbitrary constant (hy/1, or 1,/h,). Likewise, we
could divide (15¢) by I, or h, and express this boundary condition in terms of the
ratio h,/l, or the ratio [,/h,. However, when this is done, it is not quite so transparent
how to specialize the results we obtain here in the cases in which one or two of hy,
+,, 1,,and [, vanish. For this reason, we prefer to leave (15b, c) in their present forms.

We are justified in representing the eigenvalues of system (15) by A? rather than /,
because all eigenvalues of a proper Sturm-Liouville system are noanegative. The
general sotution of differential equation (15a) is

X(4,x) = Acos ix + Bsinix, (16)
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and when we impose boundary conditions (15b, ¢),
~1,AB + hjA =0, (17a)
I,(— Aisin AL + BAcos AL) + hy(Acos AL + BsinAL) = 0. (17b)
We solvee('i%.-) for B = h,A/(l,4) and substitute into (17b). After rearrangement, we

obtain
(:02)
tan AL = —1—27.

hohy
}.2 _ 17%2
I,

the equation that must be satisfied by . We denote by 4,(n = 1,.. ) the eigenvalues of
this transcendéntal equation, although, in fact, A2 are the eigenvalues of the Sturm-
Liouville system. Corresponding to these eigenvalues are the orthonormal eigen-
functions

(18)

1 , hy . .
X, (x) = X(4,,x) = N(COS AnX + Fu sin A,,x), (19a)
L h 2
where N2 = J <cos A,X + ——sin /1,,x> dx. (19b)
0 x'n’l

In Exercise 1, integration is shown to lead to

hy \2 hy/l h,/l
2 1 2/°%2 1 1. 19
N [1 +(M) ][L+ e /mz]* ) 190

Of the nine possible combinations of boundary conditions at x = Oand x = L, we
have considered only one, the most general in which none of h,, h,, 1,,and [, vanishes.
Results for the remaining eight cases can be obtained from (18) and (19), ot by similar
analyses; they are tabulated in Table 4.1.

Each eigenvalue equation in Table 4.1 is unchanged if 4is replaced by — 4, so that
for every positive solution A of the equation, —4 is also a solution. Since NX, is
invariant (up to a sign change) by the substitution of —A, for 4,, it is necessary only to
consider the nonnegative solutions of the eigenvalue equations. This agrees with the
fact that the eigenvalues of the Sturm-Liouville system are 22 and that there cannot
be two linearly independent eigenfunctions corresponding to the same eigenvalue.
Table 4.1 givés the eigenvalues explicitly in only four of the nine cases. The eigenvalues
in the remaining five cases are illustrated geometrically below and on the following
pages.

If hyh, 1,1, # O, eigenvalues are illustrated graphically in Figure 4.1 as points of
intersection of the curves

. Ayl + hy/ly)
y=taniL, y == .
A2 = [(hh)/L )]
[t might appear that 4 = O is an eigenvalue in this case. However, the corollary to

Theorem 2 indicates that zero is an eigenvalue only when i, = h, = 0. Thiscanalso be
verified using conditions (17), which led to the eigenvalue equation (see Exercise 3).
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Table 4.1 Eigenpairs for the Sturm-Liouville System X" 4+ A*X =0,0 <x <L,
—1,X°(0) + hyX(0) = 0, I;X'(L) + hy X(L) = o.
Condition Condition Eigenvalue
atx=0 atx=1 Equation NX, 2N?
- A(L;l‘”{;lj T il (b )2
hi, #0 hyly, #0 tan AL = —2 17 cos A, x ‘,‘[1+_( ‘)]
i h a [ a
11, + i sin 4,x <L+ hy/l, i
A2+ (ﬁ)
L
hy = h cos A, (L — x) N\ Ayl
hd, #0 2 tanAL = —* —_— L LA
o # =1 BT cosA,L "[l * (1,11) o
l,=0 h, sin A, (L — x) R\ Rl
= —_— L|t
bl #0 (hy=1) cotdl = - sn AL ) 1T
hy = 2 hay/ly
0 AL =— 2
a4 =1 hyl, # tan A cos A,x L+ FERTTRE
hy = hy=0 sinAL =0 L(n#0)
t =1) (=1 i = ﬁL’i cos A x 2L (n = 0)
n=20,1,2,
hy = 1,=0 cosAL =0 cos 4, x L
2n ~ [\n
(=1 (hy=1) A= (T)E'
n=12...
Il = 0 hz . hz/lz
hyl, #0 tAL=—~—~ L
(hy = 1) e # 0 A, sin A P oY
i, = hy= cosil =0 sin'x,,x L
2n—\n
hy =1 =1 Ay = | —=— | —
( 1 ) ( 2 ) An ( 2 >L'
n=1.2,...
=0 I, = sinAL =10 sin 4,x L
. nm
(hy = 1) (hy = 1) Ay = —,
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Figure 4.1
If h,l, #0 and h, = 0 (in which case we set I, = 1), eigenvalues are illustrated
graphically (Figure 4.2) as points of intersection of the curves
=tan AL and = hy
y= T
A similar situation arises when h,l; # O and h, = 0.
: A
o ud in i
Figure 4.2 i L aL L

If hyl, #0 and I, = 0 (in which case we set h, = 1), eigenvalues are illustrated
graphically (Figure 4.3) as points of intersection of

l
y=cotiL and y= —,l—l.
Al

A similar situation arises when h,l, # 0and [, =0.



Figure 4.3

Example 5:

Solution:
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X
2L

Theorem 2 states that when a function f(x) is piecewise smooth on the interval
0< x < L,wemaywriteforO <x <L

[ = 2‘ CaX(x) (20a)

L
where Cy = I F(x) X, (x)dx. (20b)
0

Expand the function f(x)=2x—1, 0<x<4 in terms of the orthonormal
eigenfunctions of the Sturm-Liouville system

X+ 22X =0, 0<x<4,
X'(0) = 0 = X(4).

When we set L = 4 in line 6 of Table 4.1, normalized eigenfunctions of the Sturm-
Liouville system are

X(x) = 1 (2n - )nx

—— €O ——————,
2 8

For 0 < x < 4, we may write

n=12,....

2x — 1 = i Ca X (%),
n=1

4
where ¢, = J‘ (2x — 1) X, (x)dx

0
_ 1 f8(2x— 1)Sin(2n — )nx . 128 cos(zn - N)nx)*
T2 l@en— 8 (2n — 1)2a? 8 o

_ =816 +7(=1)"(@n — n]
- J2@n — 1)2n? '

5 _8[16+7(—102n—Ur] 1 (n— nx
nZl J2@2n = 1)2r? TZ—COS#T—

42 2 16 +7(-1)"2n— ) 1 (2n — Vnx
— Z c

Thus, 2x — 1

nl e 2n — 1) N A T

0<x<4. .
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Periodic Sturm-Liouville systems do not come under the purview of Theorem 2. In
particular, this theorem does not guarantee expansions in terms of normalized
eigenfunctions of periodic Sturm-Liouville systems. For instance, eigenvalues for the
periodic Sturm-Liouville system of Example 2 are 4, = n?n2/L? (n =0, 1,...), with
correspog@ix_lg eigenfunctions

; . nmx nux
Ao e 1, Ao sin T cos—L— (n > 0).

Normalized eigenfunctions are

{ 1
in 17X L cosﬂ (n>0).

Ao & ——, Ay —=sin —, —
e T T

Theorem 2 does not ensure the expansion of a function f(x) in terms of these
eigenfunctions, but our theory of ordinary Fourier series does. These are precisely the
basis functions for ordinary Fourier series, except for normalizing factors, so we may
write
> mtx I | nnx
f(x) = + Z (a ——=cos— + b ——sm——), (21a)

VL T

where

L 1 L 1
ap = J‘—Lf()()<\/i>dx’ a, = J‘—LI(X)<_\/——Z cos >dx, (21b)
b, = fl f (x)(ﬁ sin n_zx_) dx. (21c)

Exercises 4.2

1. Obtain expression (19c) for 2N? by direct integration of (19b). Hint: Show that

Ny (hl )
sini, L = 12 P
2 _2
[(l 12)(’ %)
(_l)n+l</‘2 hh>
. " N
and cos A, L = . h i X
2 UM 2
. / 12 %n 12

2. For each Sturm-Liouville system in Table 4.1. find expressions for sin 4L and cos 4,L that
involve only h,, h,, |, I,. and/or /. These should be tabulated and auachcd to Table 4.1 for
future refcrcnce
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Use equations (17) to verify that 4 = O s an eigenvalue of Sturm-Liouville system (15) only when
hy=h,=0.

In Exercises 4—9, express the function f(x) = x, 0 < x < L, in terms of orthonormal eigen-
Sunctions of the Sturm-Liouville system.

4.
6.
8.
9.
10.

X" +i%X =0, X(0)=X(L)=0 7. X"+ 22X =0, X'0)=X(L)=
X'+ X =0, X(©0) =0, LX'(L)+h,X(L)= ’
X"+ i3X =0, X(0)=0, LX'(L)+hX(L)=

Express the function f(x) = x2, 0 < x < L, in terms of orthonormal eigenfunctions of the
Sturm-Liouville system

X' +iX =0, XO=X(L)=Q-.. . _5 X"+2%X=0, X(0)=X'(L)=

X"+ =0, O<x<lL,
X(©0)=0= X'(L).

In Exercises 11-13, find eigenvalues and orthonormal eigenfunctions of the proper Sturm-
Liouville system.

11

12.

13.

14.

d? dy

d’,’+2d—+12y 0, 0<x<L, y(0)=0=y(L)

dy 2 .

s +ﬁ +l y=0, 0<x < L(f#0agivenconstant), y(0)=0= y(L)

d .

P “2’ + ﬁ——— + A2y =0, 0<x<L(B+#0agivenconstant), y'(0)=0=y'(L}

(a) Find eigenvalues and (nonnormalized) eigenlunctions for the proper Sturm-Liouville system

y'+ Al =0, ~L<x<lL,
y(=L)=0=y'(L)
(b) Show that the eigenfunctions in (a) can be expressed in the compact form

cos{nn(x + L)/{(2L)},n=0,1,2,....
(¢) Normalize the eigenfunctions.

15. (a) Show that the transformation x = e* replaces the Sturm-Liouville system

d’y dy
2 ay 2,
xdx2+xdx+/1y 0, l<x<L,
y(1) =0 = y(L)
in y(x) with the system
dz
d—z{+22y_=0, O<z<lInL,

y0)=0=y(nL)

in y(z). If we use Table 4.1, what are the normalized eigenfunctions y,(z)? Replace zbyIn x to
obtain eigenfunctions y,(x).

(b} Repeat (a) with the transformation x = L*.
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16. Find eigenvalues and orthonormal eigenfunctions of the Sturm-Liouville system

d{ dy e
(K(xg;>+—x—y—0, 1 <x<b,
e y(b) =0 = y'(1).

In Exercises 1 7-—1 9, find approximations for the four smallest eigenvalues of the Sturm-Liouville
system.

17. X“+i2X =0, 0<x<1, —200X'(0)+ 400,000X(0)=0, X(1)=0

18. X"+ A3 =0, 0<x<1, X(©0) =0, 150X'(1)+ 100,000X(1)=0

19. X" 4+A2X =0, 0<x<1, —200X'(0)+400X(0)=0, 200X'(1)+ 100X(1)=0

20. (a) Expand the function

_ i 0<x<L/2
f(")"{—l L2<x<L

in terms of the normalized eigenfunctions‘of Sturm-Liouville system (2).
(b) What does the series converge to at x = L/2? [s this to be expected?
(c) What does the series converge to at x = 0 and x = L? Are these to be expected?
21. Repeat Exercise 20 with the cigenfunctions of Sturm-Liouville system (1).

22. In Exercise 11 of Section 4.1, we suggested two ways of interpreting the 4 in the differentiai
equation. Does it make a difference as far as eigenfunction expansions are concerned?

23. The initial boundary value problem for transverse vibrations y(x, 1) of a beam simply supported .
at one end (x = L) and horizontally built in at the other end (x = 0) when gravity is negligible
compared with internal forces is

%+clgl—{=0, O<x<L, >0,
y0,0) =y,0,6) =0, t>0,
WL, 1) =y, ) =0, >0,
yx,0 = filx) O<x<lL,
wx,0)=g(x)) O<x<L.
(a) Show that by assuming that y(x, t) = X(x)T'(1), eigenfunctions

1 . 1
X, (x)= i (L — x) — ————sinh 4 —
) cos £, L SIn Ay ) cosh 4,L sinh 4,(L = x)

are obtained. where eigenvalues 4, must satisfy
tan 2L = tanh AL.

(b) Prove that these eigenfunctions are orthogonal on the interval 0 < x < L with respect t
the weight function p(x) = 1. [Hint: Use the differential equation defining X,(x) and :
construction like that in Theorem 1.]

24. Does the Sturm-Liouville system in line 6 of Table 4.1 give rise to the expansion in Exercise 2.
of Section 2.2 for even and odd-harmonic functions?



»

Theorem 3

25.

26.

4.3
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Does the Sturm-Liouville system in line 8 of Table 4.1 give rise to the expansion in Exercise 21 of -

Section 2.2 for odd and odd-harmonic functions?
Show that the Sturm-Liouville system
dx
?—+/1X=0. 0<x<lL,
= x}a .
X'0) =
LX'(L)y - h,X(L) =9, (,>0,h,>0)

has exactly one negative eigenvalue. What is the corresponding eigenfunction?

Further Properties of Sturm-Liouville Systems

When f(x) is a piecewise smooth function, its Fourier series converges to [ f(x+) +
f(x—)1/2. When f(x) is continuous, the Fourier series converges absolutely and
uniformly (see Theorem 10 in Section 2.3). The counterpart of the latter result for
generalized Fourier series is contained in the following theorem.

Suppose that f(x) is continuous and f(x) is piecewise continuous on a < x < b. If f(x) satisfies
the boundary conditions of a proper Sturm-Liouville system on a < x < b, then the generalized
Fourier series (/4) for f(x) converges uniformly to f(x)fora < x < b.

For example, when the function x(L— x) is expanded in terms of the eigen-
functions of Sturm-Liouville system (1), the result is

512 o 1yt
x(L—x)=2\/12:£‘ > chal Sk \ﬁ%—sinﬁfE

n=1 nJ L

8L = 1 (2n — )nx
= <x< L.
,.5_:,(2"—1)3 n—p— O=x

Because x(L — x) satisfies conditions (1b, ¢), convergence is uniform. This could also be
verified with the Weierstrass M-test (see Section 2.3).

Exercise 4 in Section 2.3 contains special cases of this resuit.

Expansions of functions as generalized Fourier series are very different from power
series expansions. A function can be represented in a Taylor series on an interval only if
the function and all of its derivatives are continuous throughout the interval, and even
these conditions may not be sufficient to guarantee convergence of the series to the
function. Eigenfunction expansions, however, are valid even though a function and its
first derivative may each possess a finite number of finite discontinuities.

On the other hand, whereas Taylor series expansions may be differentiated term

"by term inside the interval of convergence of the series, such may not be the case

for generalized Fourier series. The following result is analogous to Theorem 3 in
Section 2.1.
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Suppose that f{x) is continuous and [(x) and f"(x) are piecewise continuous on a < x < b. If
[(x) satisfies the boundary conditions of a proper Sturm-Liouville system, then for any x in
a < x < b, series {14) may be differentiated term by term with the resulting series converging (o

{f{x+) +__{_’(..r_;)]/2;

We now prove the Sturm comparison theorem, a result that has implications when
we study singular Sturm-Liouville systems in Chapter 8.

Theorem 5 (Sturm Comparison Theorem)

Proof:

Let r(x) be a function ihat is positive on the interval @ < x < b and has a continuous first
derivative for a < x < b. Suppose that s,(x) and s,(x) are continuous functions fora< x < b
such that s,(x) > s,(x) thereon. If y,(x) and y,(x) satisfy

d d
E(r(x)%) + 5:(x)y, =0 (22a)
d dy

and z{-( (x)—d—;z-> + 5,(x)y; =0 (22b)

there is at least one zero of y,(x) between every consecutive pair of zeros of yix)ina<x<b

Let a and § be any two consecutive zeros of y(x}ina < x < b, and suppose that y,(x) has no
zero between o and B. We assume, without loss in generality, that y,(x) > 0 and y,(x) > 0 on
x < x < f. [If this were not true, we would work with — y,(x) and —y,(x).] When (22a) and
(22b) are multiplied by y, and y,, respectively, and the results are subtracted,

_ d [ dy, d { dy,
O—Y1[dx(’dx)+sz}'2] ,Vz[d—;(’j&‘ + 50 |-

Integration of this equation from « to § gives

I

¥ ]
J (52 — sy1yadx

x

']
f [ry 1) ya — (ry2)'yi ] dx

i

8
j' (ry\y, — ryay) dx

x

il

(r(y297 — Yivle
r(B)[.Vz(ﬁ).\"1(m — v RyaP] — ra) Ly () yi(a) — Y1(“)ylz(°‘)]
HBVB)y (B — r(a)y () vy (=)

since y,(2) = y,(f) = 0. Because y,(x) > 0for z < x < f.it follows that ¢ (%) > O and y,(f) < 0.
Furthermore, because r(x). r{fil. ¥,(x), and y,(f}) are all positive, we must have

r(Bv2 (B () — r(2)ya(x)yy (=) < 0.

il
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But this contradicts the fact that

8
I [52(x) — 5,(x)]y2(x)yi(x)dx > O,

since 5, > 5, on x < x < B. Consequently, y,(x) must have a zero between z and B. s

To see the implication of this theorem in ‘Sturm-Liouville theory, we set 5,(x) =
Ap(x) — q(x) and s,(x) = A,p(x) — q(x), where 1, > A, are eigenvalues of system (3).
It then follows that between every pair of zeros of the eigenfunction y,(x) correspond-
ing to 4, there is at least one zero of the eigenfunction y,(x) associated with 1,. Fig-
ure 4.4 illustrates the situation for eigenfunction X,(x) and X,(x) of Sturm-Liouville
system (1).

X (x)
.3 . dmx
/Xg(x) = sin % /X4(x) = sin %
Pay N\ N 7\
\ / FRRY / \
\ ! \ { \
Yh—f—£3 Mff et x
\ 5/ \ N I \ *
Vo2 \/ \\// 2 \//

There is a “<" between every pair of “x's.”

As a final consideration in this chapter, we show that the Sturm-Liouville systems
in Table 4.1 arise when separation of variables is applied to (initial) boundary value
problems having second-order PDEs expressed in Cartesian coordinates. To illustrate
this, we apply separation of variables to the rather general second-order PDE

kA’ oV
VW =p— —_— V, 2
pat2+qat+s, (23)

where p, g, and s are constants and ¢ is time. We consider this PDE because it includes as
special cases many of those in Chapter 1. In particular,

W if V=V(@1), p=s5s=0, and q = k™", then (23) is the one-, two-, or three-
dimensional heat conduction equation;

(2)if V= V(r.1), and p = p/t (or p/E), then (23) is the one-, two-, or three-
dimensional wave equation;

(3)if ¥ = V(). p=gq=s=0, then (23) is the one-, two-, or three-dimensional
Laplace equation.

Thus, the results obtained here are valid for heat conduction, vibration, and potential
problems.

When (23) is to be solved in some finite region, boundary conditions and possibly
initial conditions are associated with the PDE. If this region is a rectangular
parallelopiped (box)in space, Cartesian coordinates can be chosen to specify the region
intheform0 < x < L.0< y < L',0 <z < L" (Figure 4.5). Boundary conditions must

.
o
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then be specified on the six faces x =0, y=0,z=0, x = L,y=L,and z= L.
Suppose, for example, that the following homogeneous Dirichlet, Neumann, and
Robin conditions accompany (23):

. o av
- - -, 2_= ——— — V
: VV_g_.at2+qat+s.

0<x<L, O<y<L, O<z<L% t>0, (24a)
V=0, x=0, O<y<UL, 0<z< Ll t>0, {(24b)
%—V—=0, x=1L, O<y<lL, 0<z< L' t>0, (240
X .
v ‘ .
—13—a—y—+h,V=0, y=0, 0<x<L, 0<z<L" t>0, (24d)

V=0 y =L, 0<x<L, O0<z< L t>0, (24¢)

-‘—37=0, z=0, 0<x<lL, O0<y<l, t>0, (24f)
14
16’3;+h5V=0, z=1L", 0<x<L, o0<y<lL, t>0, (24g)

' Initial conditions, if applicable. (24h)

Figure 4.5
If we assume that a function with variables separated, V(x,y,z, t) =
X(x)Y(»)Z(2)T(2), satisfies (24a),
X“YZT+ XY"ZT+ XYZ"'T=pXYZT" + gXYZT + sXYZT

Division by X YZT gives

£+Y"+£_pT"+qT'+sT
X Y  Z T
x* y* Z' pT"+qT +sT
or e = .
X Y Z T

The separation principle (see Section 3.1} implies that each side of this equation must be
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equal to a constant, say a:
X!( _ Yll + le pTlI + qT’ + ST
X Y Z T '
Thus X(x) must satisfy the OYE. X" + «X =0, 0 < x < L. When the separated
function is substituted into boundary conditions (24b, c), there results

XO)Y(»)Z(T() =0, X' (L)Y(»)Z(z)T() =0.
From these, X(0) = 0 = X'(L), and hence X(x) must satisfy
X"+aX =0, O<x<lL, " (26a)
X(©0)=0=X'(L). (26b)

This is proper Sturm-Liouville system (15) with [, = h, =0and h, =/, = 1. When we
set a = A2, eigenvalues 42 and orthonormal eigenfunctions X,(x) are then as given in
line 8 of Table 4.1:

2n — 1)*n? 2 . (2n— nx
2 _ — - —_ ————
A= iz [AT)

(25)

Further separation of (25) gives

where f is a constant. Boundary conditions (24d, €) imply that Y(y) must satisfy
Y"+ BY =0, O<y<lL, (28a)
—=1I3Y(0) + h, Y(0) = 0, (28b)
Y(L)=0. (28¢)

This is Sturm-Liouville system (15) with y's replacing x's, with k5, [, and L replacing
hy,ly,and L,and withl, = 0,h, = 1. When we set § = u2, the eigenvalue equation and
orthonormal eigenfunctions are as found in line 3 of Table 4.1:

h 1
tL'=__3_’ NY. = si le_ ,
cot ul, m(Y) gL A (L'—y)
2
where AN = L'[l +( hy ) ]+ h3/213~
dumll Um
Continued separation of (27) yields
Zu an + qT' + ST . ,
- =y o= - - _ 29
Z / T An Homs (29)

where 7 15 a constant. When this is combined with boundary conditions (24, g), Z{z)
must satisfy the Sturm-Liouville system

Z" +v9Z =0, O<z<L", (30a)
Z(0) =20, (30b)
1 Z(L") + hgZ(L") = 0. - {300)
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With changes in notation, this is the Sturm-Liouville system in line 4 of Table 4.1.
Eigenvalues y = v? are defined by

h
. tanvL" = -5,
- . vl

with orthonormal eigenfunctions N ~!cos v;z where
he/l
IN? = L' + oo
T (hefle)?
The time-dependent part T(t) of V(x,y,21t)is obtained by solving the ODE
pT" +qT' +sT=—(A3 + u + vHT. (31)

In summary, separation of variables on (initial) boundary value problem (24) has
led to the Sturm-Liouville systems in lines 3, 4, and 8 of Table 4.1. Other choices for

boundary conditions led to the remaining five Sturm-Liouville systems in Table 4.1
(see _Excrcises 7-9).

Exercises 4.3

1.

Theorem 4 indicates that generalized Fourier series from proper Sturm-Liouville systems
may be differentiated term by term when f(x) is continuous, f'(x) and f"(x) are piecewise
continuous, and f{x) satisfies the boundary conditions of the system. We illustrate with two
examples.

(a) Find the eigenfunction expansion for

_ix 0<x<L/2
f(x)—{L—x L2<x<L

in terms of the normalized eigenfunctions of Sturm-Liouville system (1). Show graphicaily
that f(x) is continuous, and f'(x) and f“(x) are piecewise continuous, on 0 < x < L. Since
() = f(L) =0, Theorem 4 guarantees that term-by-term differentiation of the cigen-
function expansion for f(x) yields a series that converges to [ f'(x+)+ f (x—)}/2 for
0 < x < L. Verify that this is indeed true, but do so without using Theorem 4.

(b) Find the eigenfunction expansion forg(x)=1,0 < x < L,interms of the eigenfunctions of
(1). Show that term-by-term differentiation of this series gives a series that converges only for
x = L/2. Which of the conditions in Theorem 4 are violated by g(x)?

Prove Bessel's inequality for eigenfunction expansions: If f(x)isa piecewise continuous functior
on a< x<bh. and y,(x) are the eigenfunctions of a proper Sturm-Liouville system, the
generalized Fourier coefficients of f(x)satisfy the inequality

£ b
5 s j oI £ dx.

This result is extended to an equality in Exercise 3.

Parseval's theorem states that when f(x)is a piecewise continuous function on a < x < b, an
v.(x) are the eigenfunctions of a proper Sturm-Liouville system, the generalized Fourie
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coefficients of f(x) satisly the equality
£ b
i = [ poarsenax

Verify this in the case that f(x) is g)_ntjnuous. has a piecewise continuous first derivative, and
satisfies the boundary conditions of the Sturm-Ltouville system.

4. In Exercise 6 of Section 2.3, it was shown that the partial sums of the Fourier series of a function

f(x) are the best trigonometric approximation of the function in the mean square sense. In this
exercise we show that generalized Fourier series are also best approximations in the mean square
sense. A piecewise continuous function f(x) is to be approximated by a sum of the form

5.0 = ¥ o)

where o, are constants and y,(x) are normalized eigenfunctions of Sturm-Liouville system 3).
One measure of the accuracy of this approximation is the quantity

b
-En = j p(X)[f(X) - S,(x)]zdx,

called the mean square error with respect to the weight function p(x).
{a) Show that E, can be expressed in the form

b n ]
E,= j POLS ) dx + 3 e =2 ) i,

where ¢, are the generalized Fourier coefficients of f(x).

(b) Regarding E, as a function of n variables «;, ..., «,, show that E, is minimized when the a, are
chosen as ¢;.

The generalized Fourier series of f(x) in terms of the eigenfunctions of Sturm-Liouville system
(3) is said to converge in the mean to f(x)ona < x < bif

b
lim j P[SH(x) ~ f(x)}?dx =0,

where S,(x) is the nth partial sum
n
S = 3. enl)

b
and Ck = J‘ p(x)f (x)yi(x)dx.

a

Use the results of Exercises 3 and 4 to show that this is indeed the case when f(x} is continuous
and f(x) is piecewise continuous.

6. {(a) Show that an eigenvalue /, of a regular Sturm-Liouville system can be expressed in terms of

. its corresponding normalized eigenfunction y,(x) according to
b .
by = J (FCLyL(01? + g ¥a(x)]1%)dx — {r(.vs)y"(x)_\v;(x)}z.

(b} What form does the expression in (a) take when both boundary conditions are Dirichlet?
When both are Neumann?
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In Exercises 7-9.determineall Sturm-Liouville systems that result when separationof variables is
used to solve the problem. Do not solve the problem, simply find the Sturm-Liouville systems. Find
eigenvalues (or eigenvalue equations) for each Sturm-Liouville system and orthonormal eigen-

Sfunctions. Give a physical interpretation of each problem.

& e, ¢u

SV 2 9<x<L, O<y<L, (>0 UQyn=0 0<y<L, t>0
éx év ct

6U(L,y.1)/c‘x+200U(L.y,t)=0. o<y<l, t>0; aU(x,0,8)/dy = 0, 0<x<L,
(>0 fU L, 0ey =9, O<x<L, >0 U{x, y,0) = f(x,y) 0<x<L,

7.

O<y<lt
8 aty 2
8. El%:clg-}z—ﬂ%, bex<L. (>0, —tdy00/dx +ky©@0 =0, >0 yL=0
(>0, ¥(x,0)= flx) 0<x<L: y(x0)=0, 0<x<L
v v oW
9 3 LV o 0<x<L, 0<y<L, 0<z<Li VOy2=0 o<y<lL,

) 8xz+5_y—f oz?

0<z<lh éViL,y2féx=0, O<y<l, 0<z<LY V(x,0,2) =0, 0<x<L,
0<z< L V(x,L',2) =0, 0O<x<L, O0<z<L" V(x, y,0) = f{x,y) 0<x<lL,
O0<y<Li Vix.y, L) =0, O<x<L, O0<y<l

10. {(a) Show that the homogeneous PDE
Ju d%u d%u du du
h _— — =3 = r ) =0
a a7 + b(x, y)axay + ¢(x, y) 3 +d(x, ) 5= :+ e(x,y) 3y + f(x.y)u

is SCparable if a(X.Y) = a(x)c b(x, .V) = constant, C(xv ,V) = C(.V), d(x' )’) = d(x)s e(xv }') = e(Y)i
and f(x,y) = [,0) + f3())-

(b) Are the conditions in (a) necessary for separability?
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Solution of Homogeneous Problems
by Separation of Variables

Introduction

In Chapter 1 we developed boundary value and initial boundary value problems to
describe physical phenomena such as heat conduction, vibrations, and electrostatic
potentials. In Chapter 2 we introduced ordinary Fourier series, which we then used in
Chapter 3, in conjunction with separation of variables, to solve very simple problems.
These straightforward examples led to consideration of Sturm-Liouville systems in
Chapter 4. We are now ready to apply these results in more complex homogeneous
problems. In Chapter 6 we introduce finite Fourier transforms to solve nonhomo-
geneous problems.

A great variety of homogeneous problems could be considered—heat conduction,
vibration, or potential; one-, two-, or three-dimensional; time dependent or steady-
state. Because we cannot hope to consider all of these problems, we select a few
straightforward examples to illustrate the technique; this puts us in a position to
consider quite general PDEs, such as

o oV
VIV =p— —_ 1
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Figure 5.1
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where p, q, and s are constants. We pointed out in Section 4.3 that this PDE contains
many of the PDEs in Chapter | [see equation (23) in Chapter 4]. It follows that initial
boundary value problems associated with PDE (1) contain as special cases many of the
(initial) baundary value problems of Chapter 1. In fact, when we solve (1) subject to
Robin b3iindary conditions, we obtain general formulas that may be specialized to give
solutions to many problems. We begin in Sections 5.2 and 5.3 with problems in two
independent variables. In Section 5.4 we generalize to problems in higher dimensions.

Homogeneous Initial Boundary Value Problems in Two Variables

We begin this section by using separation of variables to solve two initial boundary
value problems, one in heat conduction and the other in vibrations. What we learn
from these examples will prepare us for separation of variables in more general prob-
lems. The heat conduction problem is

eU U
hl A 2
5 "ax” O<x<lL, t >0, (2a)
U,(O, t)=0, t>0, (2b)
LD vy =0, >0, @2c)
Ox
U{x,0) = f(x), O0<x<L. v (2d)

Physically described is a rod of uniform cross section and insulated sides that at time
t = 0 has temperature f(x) (Figure 5.1). For time t > 0, the end x = 0 is also insulated.
and heat is exchanged at the other end with an environment at temperature 0°C. The
problem is said to be homogeneous because PDE (2a) and boundary conditions (2b, ¢
are homogeneous.

Insulation

— x

.r/= / L

=]

If we assume that a function U(x,1), separated in the form U(x,t) = X(x)T(
satisfies PDE (2a), then

XT =kX"T,
or Xt = T = x = constant.
X kT
When this is combined with boundary conditions (2b, c), X{(x) must satisfy the syste:
X" —aX =0, O<x <L, 3
X'(0)=0, 3
KX'(L)+ uX(L)=0 3
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and T() must satisfy the ODE
T —2kT = 0, t>0. (4)

System (3)isa special case of proper Sturm-Liouvil\e system (1 5)in Section 4.2 Since
eigenvalues (—a) must be positiye, We set —0 = A2, in which case line 4 in Table 4.1

defin€s eigenvalues as solutions of the cqﬁaﬁb“n

U
tanAL =—3
2 KA

and orthonormal eigenfunctions as Xu(x) = N~1cos A%, where the pormalizing factor
N~V is given by
[k

NP L
aN? = L+ e’

For these eigcnvalués, the gencral solution of @) is Tt = ce ¥, where ¢ is an
arbitrary constant. It follows that separated functions

ce MR X (x)

for any constant € and any eigenvalue 2, satisfy PDE (23) and boundary conditions
(2b,0).To satisfy initial condition (2d), we superpose separated functions (the pDE and
boundary conditions being linear and homogeneo_us) and take

U, = Y c,.e"“’"X,,(X), 5)
=1
where the ¢, ar¢ constants. Condition (2d) now implies that

()= Y, caXalx) 0<x<L. 6)
n=1

But this equation states that the ¢, arc the Fouriet coefficients in the generalizcd

Fourier serics of f(x)in terms of X.(¥) and are defined according t0 equation (20b) in

Section 4.2 by

L 1 L
Cu = f(x)X,,(x) dx =+ S f(x)cos Agxdx. (7a)
0 N o
The final formal solution of problem Q)is therefore
U(x,t) = Y c"e’“i‘N‘ 1 cos A X (7b)
n=1

where the ¢, ar€ defined in (7a)- To see how the boundary conditions affect temperature
in the rod, we consider 2 specific initial temperature distribution. Suppose, for example,
that the rod is tm long and that f(x) = 100(1 — x)}- Furthermore. suppose that
the conductivity ¥ and diffusivity k of the material in the rod are 48 w/mK and
12 % 107°¢ m?/s and that the heat transfer coefficient at X = Lis =96 W/m?*K.
With these physical attributes, eigenvalues are defined by

tan)—z
T
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1 ! . 100
= _ﬁj 100(1 — x)cos A,x dx = NA,Z,“ — cos Ap)-

0
-12% 10-61£1N—1 cos A%
L]

© 100
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Ux, 0)
Utx, 600)

Ulx, 3600) - Lo
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Our second illustrative example is concerned with displacements of the taut string

around a vertical support and can move thereon without

Py _ a2
o2
y:0,8) = 0, t>0,
y(L,t) =0, t>0,

0<x<L,

y(x,0) = x(L — x), 0<x<L,
yx,0 =0, 0<x< L.
y
L

When a separated function y(x,t) = X(x)T() is substituted into PDE (8a),
boundary conditions (8b, c),and initial condition (8e),a Sturm-Liouville system in X(x)

results
X"+ 42X =0,
X'©0=0= X(L),

in Figure 5.4. The end at x = L is fixed on the x-axis, while the end at x = 0 is looped
friction. If the position of the
string is initially parabolic, x(L — x),and itis motionless, subsequent displacements are

described by the homogeneous initial boundary value problem

0<x<L, (9a)

t>0, (8a)
(8b)
(8¢)
(8d)
(8e)

(9b)

—
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and an ODE in Tk
T + c2::T=0, t>0, (10a)
T'(0) = 0. (10b)

According 10 line 6in T able 4.1, cigenvalues of the Sturm-Liouvi\le system are 1=
@n— 1)2n? J@ALY) (nz 1), with orthonormal cigenfunctions X (x)= \/'ZX/T cos A, x. For
these eigenvalues, the solution of (10) is T(t) = ACOS cAqt, Where Ais an arbitrary
constant. We have shown, therefore, that separated functions A c0S cA t Xa(X) for any
constant A and any eigcnvalues An satisfy PDE (8a), poundary conditions (80, ), and
initial condition (8e). To satisfy initial condition (8d), W€ superpose separated functions
and take

yx, 0 = Y A, COS CAqt X %) (an
n=1
where the A, ar¢ constants. Condition (8d) now requires that
(L —x)= Y A X (), 0<x<L. (12)
n=1

Consequently, the A, are Fourier coefficients in the gcnera\ized Fourier series of
x(L — x); that is,

L L 7 (2n— X
= — = —_— -— e
A, go x(L x)X,(%) dx go x(L — x) J;cos 3L dx
‘6ﬁLSIZ(__‘)n+\ B 4ﬁL5IZ

2n— 1’ @2n - TR

When these are substituted into (11), the formal solution is

gLt e @n-rt a1y @n— et (20— X
/COS/COS/.

_—— 13
Jo=—7" 2 @n- L L as

Each termin(}l 3)iscalleda normal mode of vibration of the string. The first term, let
us denote it by
_gLn— 4 et TX X

bt
oS ——COS =T = 0.22L% cos =7 €OS7T

Hiet) = ——35 ,
L e oL 2L 5L 2L

is called the fundamental mode or first harmonic. As 3 separated function, Hy(x, 0
satisfies (82, b, c, e} at time ¢ = 0, it reduces tO 0.22L* cos[nx j@LY) 1n other words,
H,(x.1) describes displacements of a string identical to that in problem (8), except that
the initial displacement is 0.22L2 cos{nx. (LY instead of x(L — x)- Positions of this
string for various valuesof 1are shown in Figure 5.5. Thestring vibrates back and forth
petween the enveloping Curves + 0.22L* cos{nx /LY always maintaining the shape
of a cosine.
The second harmonic is the second term in (13%

. \ Inct Inx
Hylx.) = —0.13L cosE—Ecos—?‘,’:,
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it represents displacements of the same string were (he initial displacement
—0.13L2 cos[3nx/(2L)]. Positions of this string for various values of t are shown in

Figure 5.6. The point at x = L/3 in the string remains motionless; it is called a node of
H,{x, 1)

Figure 5.5
Figure 5.6
The third harmonic,
Snct Snx
x, 1) = —0.024L% cos = COS 57>
H,(x,0) ‘ cos cos 5
is shown in Figure 5.7. It has two nodes, one at x = L/S and the other at x = 3L/5.
v
t
:" H ( -?-'-l:-) L
ALTH Hilx, 0)\\ ‘// 3\ X T5¢ /_ HS(“ _5_c>
. X
N / 4L
- ALl N ab
\' H‘(.t.Z—L> H"‘(I‘ ‘55)
Figure 5.7 "\ 5S¢
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Sotution (13) of problem 8)1s the sum of all its harmonics. Because Aa decreases
rapidly with increasing fower parmonics are more significant than higher ones
We are now in a position t0 consider the general homogencous initial boundary
value problepy

—5 = /+q—/+sV. 0<x<L, t >0, (14a)

oV
""é§+h‘v=0’ <=0 t>0 (14b)
1
12?——+h2V=0, X = L, t>0, . (14(:)
dx
V(x,0) = f(x) 0<x<L (14d)
V(x,0) = g(x), 0<x<L. (14e)

It is said to be homogeneous because the PDE and poundary conditions areé
homogeneous. problem (14) includes as special cases the following problems from
Chapter |

@I Vixn= U thp=5= 0,and 4 = k-, then (14) is the one-dimcnsiona\
heat conduction problem with no internal heat generation but with heat transfer at
endsx =0 and x = Linto of from media at temperaturé zero. In this casé, initial
condition (14e) would be absent.

@) If Vix.0) = VERIN B pt” ! lor pE ' )Na= prts ands = Kkt }, then (14) is the
one-dimensiona\ vibration problem witha damping force proport'\onal to velocity
and a restoring force proportiona\ to displacement.

When a function separated in the form Vix,t) = X(x)T() is substituted into (14a).

Xx'T = pXT" + gXT' + sXT

x - pT" + T +sT .
or ~ = L,,—%f’ti’ — o = constant independent of x and t.

This separation, together with boundary conditions {14b, <), leadstoa Sturm—Liouvi\k
system in X (x),

X"—1X=0, 0<x<L, (15a
—I‘X’-&-IHX:O‘ x=0, (15%
LX + h,X = 0. x = L, (15¢

and an ODE in Tt
pT" + qT' + (s — T =0, ¢t > 0. (16
System(\S) is precise\y Sturm—Liouvi\\e system (15)in Chapter 4. Whenwe setx = — /

{~ = 0) (since eigenvalues of a proper S\urm-L'\ouvi\\e system must be nonnegative
eigenvalues 7., and orthonorma\ eigen(unctions X x) = X (/g X) BT€ as listed U
Table 4.1.
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Whenp =0, ODE (16) has general solution

TRy =ce ** Axda, (17
where cis a constant. We have shown, therefore, that separated functions
Vi, ) = XET =72 XL,

for any constant &, and any eigenvalue 4, are solutions of PDE (14a) and boundary
conditions (14b, c). There is but one initial condition when p = 0, namely (14d),and to
satisfy it, we superpose separated functions (the PDE and boundary conditions being
linear and homogeneous) and take :

L]
V)= 2 c,x,(x)e‘““i"“, (18)
=1
where the ¢, ar¢ constants. Initial condition (14d) now implies that the ¢, must satisfy

f(x) = i Ca X (%) 0<x<L. - (19)
a=1

The constants ¢, are therefore Fourier coefficients in the generalized Fourier series

of f(x)h )
= S F()X(x)dx. (20)
1]

The formal solution of (14) forp=0is therefore (18) with the ¢, defined by (20).
When p # 0, ODE (16) has general solution v

T(t) = ch(0) + do,(0), 1)

where ¢,(t) and ¢, (t) are independent solutions of (16) and ¢ and d are arbitrary
constants. In this case, separated functions

Vix,0) = X()TO = X (xHedi(t) + (1)}

for any constants ¢ and d and any eigenvalue A, A1 solutions of PDE (14a) and
boundary conditions (14b, c). To satisfy the initial conditions, We superpose separated
functions and take

Ve = 5 Xeai (0 + a0 a2

where ¢, and d, are constants. Initial conditions (14d, €) now imply that the ¢, and d,
must satis{y

f) = 3, Xenb @)+ dad2 O 0<x<L (233)
and s = 5 Xedi0 + 3O O <X S L. (23b)
a=1

If we multiply (23a) by ¢5(0) multiply (23b) by ¢,(0),and subtract,

x

#4500/ (x) — $200g(x) = 2; 1,090 — ¢1(0)$2(0)} Xo(x)- (24)
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This equation implies that c,,{qb,(O)d)'z(O) - ¢',(0)¢z(0)} must be the Fourier coefficients
in the generalized Fourier series of ¢3(0)f(x)— $,(0)g(x) In terms of X,(x) and are
therefore defined by equation (20b) of Chapter 4

. L
{30920 —4(01:(0)} = L {9201/ — $,(0)g(x)} Xo(x)dx- (25)

[Equation (25)can also be obtained by multiplying (24) by X,(x)and integrating with
respect to x from x = 0to x = L.] Thus,

1 L
— T A (Y 50 — ¢,(0 X, (x)dx.
Cy ¢1(0)¢’2(0) _ ¢'1(0)¢2(0) s‘o {¢ 2( )f(x) d)l( )g(x)} n(x) X (26)

Similarly, it can be shown that

3 _—____”__—l”/‘ L ’ —

4 = 57016:0) - $:10850) SO {10/ (x) $,(0)g(x)} X (x) dx. 27)
The formal solution of (14)for p £ Ois therefore {22), where cq and d,are defined by (26)
and (27).

We have demonstrated that separation of variables can be used to solve initial
boundary value problems of form (14) and therefore, as special cases, problems (1)and
(2) following (14). In fact, (18)and (22) represent formulas for solutions of many of these
problems. For example, to solve heat conduction problem (19)in Section 3.2, we could

setp=s=h = h, =0l = l,=1andq= k- in (14), delete initial condition (14e),

~ and set f(x) = x. According to (18), the solution is

U(X, t) = Z‘ Cne_k).'z“xu(x)o

L
where Cp = S F(x) X% dx.

0o

Figenpairs are found in line 5 of Table 4.1:

. 1 2
ho =0 Xolx) =7 ).,‘="—Z—«—v Ecos%.
Wwith these,
Lo L R ) (Gl Vil
o= x7__—d. =— =1 X ——cos——dx=___._—————""2 5 ,
o L 2 ° L L nin

\

L
i (2n — nx

- _yinlkeil?
e (2n 1)¥rikt:L cos R

y (2n — 1)? L

L o L1 = 1] et [2 ;
Ulx.t) =3 ——,:>+ P J [(2 2) 1 g-anat \[Ecosr—lif

This is solution (24) of problem (19)in Section 3.2.
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We are not in the habit of recommending that you use results such as (18)and 22)
as formulas. Formulas ar¢ fine for those who have mastered fundamentals and are now
looking for shortcuts in solving large classes of problems. We prefer (0 regard our
analysis of equation (14)asan illustration of the fact thatany problem of this form can
be solved by separation of variables.éic’-prooedggg leading from problem (14)to either
solution (18)or solution (22) should be used asa guideline for solving other problems—
separate variables, obtain the appropriate Sturm-Liouville system, solve the system
(perhaps by quoting Table 4.1), solve the ODE in T (t), superpose separated functions,

and apply the nonhomogeneous initial condition(s).

Exercises 5 2

Part A— Heat Conduction

1. @ A homogeneous, isotropic rod with insulated sides has temperature fx}= L—x
0<x<L,at timet = 0. If, for timet > 0,theend x = 0isinsulated andtheend x = Lis held
at temperature 0°C, find the temperature in the rod. ’

(b) Findan expression (inseries form) for the amount of heat leaving theend X = L of therod as
a function of tirpe .
(¢) Sketcha graph of the function in )il k= 48 W/mK, k = 12 x 107¢ m?/s,and L = im.

2. What is the solution to Exercise 1(a) for an arbitrary initial temperature £0)?

5. Let U(x,) denote temperature in the thin-wire problem (see Exercise 31 in Section 1.2) of a thin
wire of length L lying along the x-axis. When the temperature of the surrounding medium is zero
and thereis no heat generation. U(x, t) must satisfy the PDE

U W
U _ 1% —h o<x<L t>0
o ox U, * i

where h > 0isa constant.

(a) If the ends of the wire are insulated and the initial temperature distribution is denoted by
some function f(x) find and solve the initial poundary value problem for U(x. 1)

(b) Compare the solution in (a) with that obtained when the lateral sides arc also insulated.

4. Exercise 3 suggests the following result. The general homogeneous thin-wire problem (see
Exercise 31 in Section 1.2} is
ou U ‘
0Y _ k—=75 — hU, 0<x<L, t>0,
ot ox*

U
"‘I"aa’x"“hlU:o, x=0, t>0,

)
[2%';‘*"12”:0’ x=L«. r>0,

U(x,0) = f(x), 0<x<L.

(Homogeneily requires an environmental temperature identically zero. Nonzero environmental
temperatures and other nonhomogeneitics are considered in the exercises in Section 6.2.) Show
that the sotution of this problem is always ¢~™ times that of the corresponding problem when no
heat transfer takes place over the surface of the wire. .
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Figure 5.8
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Part B— Vibrations

5. (a) A taut string is given an initial displacement (at time { = 0) of f(xh o<x<L, and initial
velocity g(x),0 < x < L.1f the endsx =0 andx = Lof the string are fixed on the x-axis, find
displacemem_sb[-poims in _q\'e string thereafter.

(b) As functions of time, what are the amplitudes of the first, second, and third harmonics?
Sketch graphs of these harmonics for various fixed values of t. Are {requencies of higher
harmonics integer multiples of the frequency of the fundamental mode?

(o The nodes of a normal mode of vibration aré those points that remain motionless for that
mode. What are the nodes for the first three harmonics?

6. (a) A taut string is given an initial displacement {at time ¢ = 0) of f(x) o<x<L, and initial
velocity g(x10 £ X < L.The end x =01is fixed on the «-axis, while theend x = L. is looped
around a vertical support and can move thereon without friction. Find displacements in the
string for 0 < X < Landt> 0.

(b) Specialize the result in (@) when

_ x/10 0<x < L/2 _
6= {(L—- X1 L2sx <L g(x) =0

(c) Repeat by for f =0 and g(x} = x(L — x).
7. (a) Repeat Exercise 5(2) if an external force (per unit x-length) F=—kytk> 0) acts at each
point in the string.

(b) Compare the normal modes of vibration with those in Exercise S.

8. Repeat Exercise 5(2) if an external force (per unit x-length) F = —paylat 0<p< 2npc/L) acts
at every point on the string

9. A taut string is given a displacement bx,ba constant, 0 < X < L, and zeto initial velocity. The
end x =0is fixed on the ¢-axis, and the right end moves vertically but is restrained by 3 spring
(constant k) that is unstretched on the x-axis (Figure 5.8).

{a) Show that subsequent displacements of points on the string can be expressed in the form

kL + T) & (222 + KA)sin 2L o
A COS Chgl SN AnXs

s = /
yexa) — L ILGaM At 5y + kTl

where 4, are the positive solutions of the equation
. —k
cotAL ="
172
1 is the constant Lension in the string, and c? = t/p, where p is the constant density of the
string.

e =
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(b) Reduce the expression in (a) to
0 at+l 2 292
_ (=1 iVk + t2A; : rsin

y(x, 1) = 2b(kL + 1) ﬂgl '//X,,(L(kz Sy ) COS CAntsin A,X.

10. A bar of uniform cross section and length [=ties Aong the x:axis. Its left end is fixed at x = 0,and
its right end is attached to a spring with constant k thatis unstretched when the bar is unstrained.
(Figure 5.9). If at time ¢ = O the bar is pulled to the right so that cross sections are displaced .

according to f(x) = x/100, then released from rest at this position, find subsequent displace-
ments of Cross sections. )

I /2

x=0 L

Equations ( 14a—e) describe displacements of ataut string whenp # 0. Separation leads to a solu- '
tion in form (22) with coefficients C, and d, given by (26) and (27). The normal modes of this
solution are

H,(x. 1) = X,(X)[C,(ﬁl(l) + d-¢z(‘)‘»

where X.(x) are the eigenfunctions in Table 4.1. Nodes of H,(x.?) are points that remain

motionless for all t. They are the zeros of X (x)- In Exercises 11-1 6, we show that the number of

nodes of the nth mode is exactly n — 1 (except when both ends of the string are looped around
vertical supports and move freely without friction).

11. Show that when both ends are fixed on the x-axis, the distance-between successive nodes is L/n,
and hence there are 1 — 1 equally spaced nodes between x = 0and x = L.

12. Show that when the end x =0 is fixed on the x-axis and theend x =L is looped around a
vertical support and moves without friction thereon (2 free end), there are 1 — 1 nodes between
x=0andx=L.A similar result holds when the left end is free and the right end is fixed.

13. Verify that when both ends are free, the nth mode has n nodes.

14. (a) Verify that when the end x =0 is fixed on the x-axis and the end x = L satisfies 2
homogeneous Robin condition, nodes of the nth mode occur for X, = mn/A,, m >0 an
integer.

(b} Use Figure 43 to establish that eigenvalues A, satisfy
(n— Dn nw

ALY S )
L L

Use this to verify the existence of exactly n — 1 nodes. A similar result holds when the right
end is fixed and the left end satisfies a homogeneous Robin condition.

15. (a) Verify that when end x = Qs free andend x =L satisfies a homogeneous Robin condition,
nodes of the nth mode occur for x,, = (2m — Ny/(24,), m >0 an integer.
(b) Establish the inequality
n—1 -1
(/)n < A, < @n— )% )
2L

for this case, and use it to verify that there are exactly n — | nodes. A similar result holds when
the right end is free and the left end satisfies a homogeneous Robin condition.
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16. The final case is when both ends of the string satisfy homogeneous Robin conditions, in which
case X, (x) is given in line { of Table 4.1.

(a) Show that zeros of X (x) occur for

. mn .
- - Xp =~ P> m an integer,
n

where ¢, = 47! Tan™"(4,{/h,).
(b) Establish the inequality in Exercise 15(b) and the fact that the difference between successive
nodes is n/4,. .
{c) Use the results in (b} to verify that there are exactly n — 1 nodes between x = 0 and x = L.

5.3 Homogeneous Boundary Value Problems in Two Variables

The Helmholtz equation on arectangle 0 < x < L,0<y < L' takes the form

2 2
%*%y—‘z/'”’=°' 0<x<L, O<y<l (28a)
where s is some given constant. When s = 0, we obtain the extremely important special
case of Laplace’s equation. A boundary value problem accompanying either of these
equations is said to be homogeneous if the boundary conditions on a pair of parallel
sides are homogeneous. For example, the following conditions on x = Oand x =L
yield a homogeneous problem:

V©0,y) =0, O<y<L, ~ (28b)
M =0, 0<y<lL, (28¢)
ox
V(x,0) = f(x), 0<x<L, (28d)
Vix,L')=g(x)) O<x<L. (28e)

No real difficulty is encountered in the solution of problem (28) if (28b, c) are not
homogeneous, if say,

VO,y)=h(y), O<y<lL, (28f)
‘wéi’y) =k(y), O<y<L. (28g)

We simply use superposition to write V(x,y) = Vi(x,y) + V,(x, y), where V, and V,
both satisfy PDE (28a) and the following boundary conditions:

Vi(0,y) =0, 0<y<lL V50, y) = h(y), 0<y< L,
¢Vi(L, oV, (L,
Ly _ 0<y<L, ML) _piy), 0<y <L
éx éx
Vi(x,0) = f(x), 0<x<L, Vy{x,0) = 0, 0<x<L,
Vi(x, L) = g(x), 0<x<L; Vo(x,L) =0, 0<x<L.

In other words, the nonhomogeneous boundary value problem (28a,d, e, f, g) can be
divided into two homogeneous problems. It follows, then, that separation of variables
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as illustrated here in problem (28a-e) is typical for all boundary value problems on
rectangles (provided the PDE is homogeneous).

Substitution of a separated function ¥(x, y) = X(x) Y(y) into (28a, b, ¢) leads to a
Sturm-Liouville system in X(x), .

X"+ iX 20, 0<F<L,
X(©0) =0 = X"(L),
and an ODE in Y(y),
Y —(s+4)Y=0, O<y<L. g

Eigenpairs of the Sturm-Liouville system are A2 = (2n — 1)’n%/(4L?) and X(x) =
J2/Lsin A,x. Corresponding solutions for Y(y) are Y(y)= Acoshy/s + A2y +
Bsinh /s + A2y. We superpose separated functions and take

V(x,y) = ¥ [A,cosh\/s + A2y + B,sinh+/s + 17 y]1 X, (x). (29a)
n=1 :
Boundary conditions (28d, ¢) require that

1) = 2 AX(), O<x<L

and g(x) = Zl [A,cosh</s + 22 L' + B,sinh/s + AZL]X,(x)) O0<x<L.

These imply that

L
A, = J S X (x)dx (29b)
V]
L
and A,cosh/s + A2 L' + B,sinh/s + AL = j g(xX) X, (x)dx (29¢)
0

L

1
B,=———— X)X, (x)dx — A,cosh/s + A} L'). (29d)
sinh/s + A2 L (L 90X0)

or

The formal solution of (28a—e) is therefore

2 @0
V(x,y) = \/; Z‘ [A,cosh/s + A2y + B,sinh+/s + A2 y]sin4,x, (30)

where A, and B, are calculated in (29b, d).

As a specific example, suppose s = 0, so that (28a) becomes Laplace's equation, and
suppose that f(x) = 0 and g(x) = x. One possible interpretation of problem (28) would
be that for determining steady-state temperature in a rectangle in which sides x = Oand
y = O are held at temperature 0°C, side x = L is insulated, and y = L' has temperature
x. The solution to this problem is

2n — Vnx
2L ’

where B, = ! Lx 2sin(zn——l)md = 4\/5“,2(_1)"”
"Tanh AL Jo NI i T @n— 1)Prfsinh AL

2 x
Vix,y) = T Y B,sinh 4,y sin
n=1
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Thus,
2 & 4200 oy @n — 1)nx
Ve = |2 Y o L en-
(<. 5) \/; YL Gn - et sinh 4L sinh £,y SIRTL
- ;% i o -y Sinh(zn — 1)y Sin(2n — 1)ax
= @2n— 1)?sinh {(2n — L' /(2L)} 2L )

We now consider Laplace’s equation in 2 circle of radius a with a Dirichlet
boundary condition (Figure 5.10):

‘121+1‘1‘1+L32"—o o<r<a <0< (31a)
ot roor AT ren m<f="n :

V(a,0) = £, —_g<@<sm (31b)

The solution of this problem describes a number of physical phenomena. It represents
(axially symmetric) electrostatic potential in a source-free cylinderr < 4, with potential
prescribed on the surface of the cylinder r = aas £(0). Also described is steady-state
temperature in a thin circular plate, insulated at top and bottom, with circumferential
temperature 1. Finally, V(r.0) represents static deflections of a circular membrane
subjected to no external forces but with edge deflections f(6)-

Figure 5.10

When we substitute a separated function V(r,0) = R(r)®(8)into (3ta)and multiply
by r/v(r, 0 separation results:

+ e .; constant
't === stant.
R

Thus, R(r) and ©(0) must satisfy the ODEs
P2R" 4+ rR' — AR = 0, o +0=0.

Now, V(r,8) must be 2r-periodic in g, as must its first derivative with respect 10 8,
that is,

Vir,0 + 21 = V(r,0)
ovr, 6 + 210 _ v, 0
20 =T
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These imply that ©(8) and ©'(6) must also be periodic. It follows that @(6) must satisfy
the periodic Sturm-Liouville system

0" +7/0=0, —-n<f<m,
- O(—x) = O(n),
O(—n)=0m.

According to Example 2 in Section 4.1, eigenvalues of this system are 4, = n* (n = 0),
with a single eigenfunction, l/\/ﬂ, corresponding to 4, =0 and a pair of eigen-
functions, (l/ﬁ) cosnf and (l/ﬁ) sin n@ corresponding to 4, = n?(n > 0).

The differential equation in R(r) is a Cauchy-Euler equation, which can be solved
(in the case in which n > 0) by setting R(r) = r",man unknown constant. This results in

the general solution A+ Bl 0
nr n=
= . 32
R {Ar" + Br™*" n>1 (32)

For these solutions to remain bounded near r = 0, we must set B =0. Separated
functions have now been determined to be A/\/E:, corresponding to 4, =0, and
(Ar"/\/1—t)cos n@ and (Ar"/\/;)sin nf, corresponding to A, = n? (n > 0). To_satisfy
boundary condition (31b), we superpose separated functions and take

V(r,0) = —i‘-’— + i r"(A,,cos nd + B, = no). (33a)
a=1

J2n Jr Jn

The boundary condition requires that

‘A @ cos né sin n6
9) = 2 + a"(A,, - + B, ), —n<0<m,
10 = =+ L\ A Y
from which : :
* i 1 (" cos nf
Ay = 0)——=4d@, A, =— (%) de,
1) j~tf( )ﬁ; a j—xf( ) ﬁ

1 {r sinn@ -(33b)

B, =— () de
an j‘_xf( ) \/’7; .

[see equations (21) in Section 4.2, with L = mand x replaced by 6]. The formal solution
of problem (31)is now complete; it is (33a) with coefficients defined in (33b). An integral
expression for the solution can be obtained by substituting coefficients 4, and B, into
(33a). In order to keep variable 6 in (33a) distinct from the variable of integration in
(33b), we replace 6 by u in (33b):

1 .4
V(r,0) = T j‘_ f(u)ydu

+ i %<d>n<cosn0jn f(u)cos nudu +éinn(9J~K f(u)sinnudu)
n=1 -n -
= ;lt. % Jjnf(u)du + "2 (g)njnnf(u)cos n(6 — u)du). - (34)

. e
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n and summation,

he order of integratio

e s (Y
g {i + nz‘ (:1) cosn(0 — u)lf(u)d“‘

V(I‘, 0) = 7—1:'
— u)isthe real partof a

If we interchange t

m by noting that cos n(¢

- The series canﬂé—sﬁmmcdin-closed form b}
tial, cos n(0 — u) = e(e™® ],

complex exponen

i (£>“ cosn(f —w) = i
a n=1

n=1
eometric series with €

Since the right sideisa g
we may write
—u)t+ isin(@ — )]

therefore when r <a,
(r/a)e“”““ ) _ Re( r{cos(0 )
. n(@ — wl

i 4 "cosn(B —u) =Re W
Lh\a ; 1= (rja)e™ ™" 7 — r{cos(@ — ) + isi

arcos(@ — ) — r?
—arcos(@ — u)

(r)n Re[e;,.(o—u;] = Re i (geiw—"’)"]‘

a
ommon ratio (rja)e™® ™ converging

(35)

“at+r?
RAA arcos(@ — W) — r?
vir.6)= ;S (5 it 2arcos(d — u)) fluydu
al _rZ " f(ll)
§_,az - 2arcos(@ — u)du'

T

s integral formula. 1t expresses
r < a in terms of its values ©
tegral formula are the followin

Consequently,

-%

(36)

olution to Laplace’s

the s
mmediate

n the circle. 1

called Poisson’
g two results.

de the circle
f the Poisson in

_This result is
equation insi
consequences O

m for Laplace's equation inacircler & the

Theorem 1
When V(r,0) is the solution to Dirichlet’s proble
: value V(0,0) at the center of the circle is the average of its valuesonr = a.

ge of V(r,0yatr= Qis

Proof: According to (36), the val
aZ L3 u 1 n
V(O,G) = i;t- S— %ldl‘ = 5;—(; S— f(G)adG.
-

the average value of f(Byonr =2a

gorollary
When Vir.0}is the solution to Dirichlet’s problem {or Laplace's equation in 4 circle r < a, the
centered atr = 0is V(0.0
e .._/___,.,___//,4_

average value of Vir.0h around every circle
- - e

—_—

Exercises 5 3
quare.

om Section 3.2.
[ the plate if the plate is s

1. (a) Solve Exercise 17 fr
te value for the

(b) Find an approxima polentia\ at the center O
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2. (a) Findthe steady-state temperature U(x, y)inside a plate0 < x.y < Lif thesidesx = 0,y=0,
and x = Lareall insulated and the boundary conditionon y = Lis dU(x,LY/dy = f(x).Can
f(x)be specified arbitrarily?
(b) Whatisthe solution when f(x) = (L —2x)/2 and the temperature at the center of the plate is
50°C? .
(& What s the solution when f(x) = L= )0 '
-3. (a) Find the steady-state temperature U(x, y) inside a rectangular plate 0<x<L0OSys L
if the sides y =0and y = L' are insulated; the temperature along x = L is prescribed by the
¥ function fo(y 0 <y < L'; and the boundary condition along x = 0is U0, y)/dx = S0
: 0<y<L: .
(b) Simplify the solution in (a) when fi(yyand f2(y) are constants.

4. A membrane is stretched tightly over the rectangle 0 < x LOo<y<L.Its edges are given
deflections that are described by the following boundary conditions:

20, = £y, O<Y< L,

3 ALy = L) 0<y <L
260 =gy, 0<x<L
z(x, LY = g2(x), 0<x<L.

Find static deflections of the membrane when all external forces are negligible compared with
tensions in the membrane.

5. Solve Laplace’s equation in the rectangle 0 < x < L, 0 <y <L subject to the following
boundary conditions:

: vo. = Ly, 0<y<L,
VAL,y) = fo(y), 0<¥< L,
V,(x,0) = 0, 0<x<L,
Vix,L)= g(x), 0<x < L.

6. (a) Solve Laplaces equationina semicircler €a,0< 0 < n when the unknown function is zero
on the diameter and f(6) on the semicircle.

(b) Simplify the solution when f(0) = 1. Evaluate this solution along the y-axis.

7. (a) Alongthe circle r = a, a solution V(r,0) of Laplace's equation must take on the value 1 for
0<0<nandQfor —n < § < 0. Show that the series solution for Vir,8)is

1 22 (r/a)z""l .
= Ve, =z+t= V4 sin(2n — 1)6.
) . ( ) 2 n ,.2:‘1 n — ( )
A closed-form solution of this problem is found in Exercise 19.
(b) What is the value of V(r,8)along the x-axis?

8. Find thesteady-state temperature inside the quartercircler <a0<0< nf2if its straight edges
are insulated and the temperature along the curved edge is sin 0.

9. (a) Solve boundary value problem (31) when boundary condition (31b) is of Neumana type:

aV(a,0)

r

=f(9)s "TI<0S7I.




e —

‘188 Chapter 5 Solution of Homogeneous Problems

(b) Show that the solution can be expressed in the form

Vr,0)y=C — ;;J‘ f(u)nla® + r? — 2arcos(f — w)ldu,

- -,

where Cis .an‘arbitrary &onstant. This result is calied Dini's integral.
10. (a) Solve boundary value problem (31) when boundary condition (31b) is of Robin type:
oV

13—+hV=f(6), r=a, —r<f<n
11. What is the solution to boundary value problem (31) in the exterior regionr > a if

@) V(r,0)is required to be bounded at infinity [ie., V(r,8) must be bounded for large ri?

(b) V(r,0) must vanish at infinity?
12. Solve the boundary value problem of Exercise 11 when the boundary condition is of Neumann

type:
V(a0
_ M )=f(9), —r<f<n
cr
13. Solve the boundary value problem of Exercise 11 when the boundary condition is of Robin type:
v
—l—bT+le=f(0), r=a, —nr<f<n
14. Solve Laplace's equation inside a circular annulusa < r < R with Dirichlet boundary conditions
V(a,0) = fi(8), V(R.B)=f6), -—n<fsm
15. Solve Exercise 14 when the boundary conditions are Neumann:
cV(a,0) dV(R,6)
™ = fu(8), T’fz(e)’ —n<f<m
16. Solve Exercise 14 when the boundary conditions are Robin:
Va0
-1, ‘(; )+hlV(a,9)=f1(6), —n<B<m,
2V(R,0
12——(87—_) + h,V(R,0) = f,(0), —nt<@<n

17. (a) A circular membrane of radius R isin a steady-state position with radial lines § =0 and
0 = x clamped on the xy-plane. If the displacement of the edger = Ris f(0)for 0 < 0 < x,
find the displacement in the sector 0 < 0 <1

(b) Take the limit of your answer in (a)as x — 1. What does this function represent physically?
{(¢) Whatis the answer in (bYif f(0) = sin(0:2)?

When f(0) in the boundary condition for Dirichlet problem (31) is piecewise constant, Poisson's

integral can be evaluated analytically. We illustrate this in Exercises 18-20.

18. Show that

i -2 a+r 0—u
— an 1
‘[az +r? —2arcos(t — “)du Tat - rzT‘m [a - r\an( 2 )] + G

provided v # 0 + 1.
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19. (@) When
0 -n<f8<0
0 =
/6 {l O<fO<n

use thesresult of Exercise 18 to obtafif the'following solution for problem (31):

—l—Tan‘l a+rtan 9 +1Tan’l a+rc0t Q 0<8<n:
Vir. 6) = n a-—r 2 n a—r 2
r.0)= 1 _Ja+r 0 L. _Ja+r 0
I +—Tan tan{ - ) | +~Tan cot{ -~ ~-n<0<0.
n a—r 2 T a-—r 2

(b) For @ = 0and 0 = =, the solution in (a) must be regarded in the sense of limits as § —+ 0" and
6 — nn~. What are V(r,0) and V(r,n)?

{c) Use trigonometry to combine the description for V(r,8) in (a) into the single expression

I 1 2arsind
V(r,0) = + —Tan™* (;%r—l—z)

—-r

(d) Solve the expression in (c) for r in terms of V and 8, and use the resuit to plot equip;)iential
curves for V = 1/8, 1/4, 3/8, 5/8, 3/4, and 7/8.

20. Use the result of Exercise 19 to solve problem (31) when

—-nt<8<0
O0<l<n

v
1) = {,,x
21. Find expressions similar to those in Exercise 19(a) when the boundary condition is

0, ~-t<8<0
f@={1, 0<8<mn/2
0, f2<0<n

5.4 Homogeneous Problems in Three and Four Variables
(Cartesian Coordinates Only)

In this section we extend the technique of separation of variables to homogeneous
problems in two and three space variables, but confine our discussions to rectangles
0<x<L,0<y<Linthexy-planeand boxes0 < x < L,0<y<L,0<:z<L"in
space. In other words, boundaries of the region under consideration must be
coordinate curves x = constant and y = constant in the xy-plane and coordinate
surfaces x = constant, y = constant, and z = constaat in space. This is an inherent
restriction on the method of separation of variables for any problem whatsoever, be it
initial boundary value or boundary value; be it two- or three-dimensional; be it in
Cartesian, polar, cylindrical, or spherical coordinates. Separation of variables requires
a region bounded by coordinate curves or surfaces; then and only then will separation
of variables lead to Sturm-Liouville systems in space variables.
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First consider the homogenedus initial boundary value problem

=2 2 2

g’z g%z @'z

o=z t3a) 0<x<L, 0<y<l,
ot? (cx2 6‘y2> Y

- 205,9=0, - -0<y< L, t>0,
2Ly, 1y =0, 0<y<L, t>0,
2(x,0,0) = 0, 0<x<L, t >0,
2(x, L', 1) = 0, 0<x<L, t >0,
z(x,y,O):f(x,y), 0<x<L, 0<y<L,
i z,(x,y,0)=0, 0<x<L, 0<y<L.

t >0,

(37a)

(37b)
(37¢)
(37d)
(37e)
(37€)
(37g)

Physically described are the vertical oscillations of a rectangular membrane that is
released from rest at time { = 0 with displacement described by f(x,y). Its edges are

fixed on the xy-plane for all time, and no external forces act on the membrane.

If a function separated in the form z(x,y,0) = X(x)Y() T is substituted into
(37a), the x-dependence can be separated from the y- and t-dependence:

xu Yu

T .
et =AT constant independent of x, ¥,

X Y T

and t.

When this is combined with boundary conditions (37b, ¢), the Sturm-Liouville system

X" —aX =0, 0<x<UL,
X(0)=X(L)=0

(38a)
(38b)

is obtained. Since eigenvalues of a proper Sturm-Liouville system must be nonnegative,
weset 1= —A2 (A = 0)in which case eigenvalues are A2 = n*n?/L?, with normalized

eigenfunctions X (x)= J2/L sin(nnx/L).
We continue to separate the equation in Y(y) and T(t):

Y _ . _ 412 =p=constant independent of y and .

Combine this with boundary conditions (384, e}, and the system

Yy —pY=0 0<y< L, (39a)
Y(0)= Y(Lh=0 (39b)
results. With = —u?, the eigenvalues of this proper Sturm-Liouville system are

uk = m3r?/L' 2, with orthonormal eigenfunctions Y. (y) = J2/L sinmmy/L').

The ordinary differential equation

T + 22+ p2)T=0

has general solution A cos e AL+ pit + Bsiney 72 + pit Butinitial condition (37g)

requires that B = 0, and therefore

T(t) = Acoscil 4+ pht.
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We have determined that separated functions '
2 x [2 .
XY ()T = A \/;sinf{—t ﬁsm T—Z—ycosc\/ A2+ pdt,

for any pgsitive integers m and n and_any constant 4, satisfy PDE (37a), boundary
conditions (37b—¢), and initial condition (37g). Since these conditions are all linear
and homogeneous, we superpose separated functions in an attempt to satisfy the initial
displacement condition,

© @© 2 2 A
2(x,y,8) = mgl ..;1 A,,,,\/%sinn—z-)f \/;sm '—'g—y—cos cJAZ + plt, (40a)

where A,,, are constants. Condition (37f) requires that

> & 2 . nmx (2 . mmy .
f(x'y)'__..;.=;A""'\/;smT\/;smT' 0<x<L, 0<y<L._::'

If we multiply this equation by /2/L sin(knx/L), integrate with respect to x from
x =0 to x = L, and interchange orders of summation and integration on the right,
orthogonality of the eigenfunctions v/ 2/L sin{nmx/L) leads to

L 2 krx &2 2 mny
/I — = —a1 _ 0 '
L fx, y) sin——dx §= 1 Amk[81n . <y<L

Multiplication by +/2/L'sin(jny/L') and integration with respect to y from y =0 to
y = L gives, similarly,

Lrre 2 . kmx 2 . jmy
J.o (L f(x,y) Esm——L—dx> \/’;".5‘“_5"1}’“‘4]&-

Thus, coefficients 4, in (40a) are given by

Lre 2 . nmx [2 . may
= 2 6n™™ (25" axdy,
A J.o L f(x,y)\/;sm T L|sm K dxdy (40b)

and the formal solution is complete.

As a special case, suppose f(x,y) = xy(L — x)(L' — y) so that cross sections of the
initial displacement parallel to the xz- and yz-planes are parabolic. Integration by parts
in (40b) yields

_ 8L+ (=0 (=nm*']

A

mn P )
and hence
‘ 5z S(LLY2[L + (=) [+ (=)™ 2 nax
) = Zsin—
(320 ,"z::l ,.Z‘l n3m3n® LML

2 . mmy nin? N min? .
x |—sin—=c0sC [—5 + —51.
Ll Ll LZ L|2




192

Chapter 5 Solution of Homogeneous Problems

Since terms are nonzero only when both m and n are odd integers, we may write

dey.t) = 64(LL'): = & 1 Sin(zn — )nx
A Y= L A G - 1) 2m — 1) L
T —@Qm - Dy @n—1? (2m-—1)?
X sin——pr—— cos nc X + 2 L (41)

The terms in this series are called the normal modes of vibration for the membrane
(similar to the normal modes of a vibrating string in Section 5.2). The first term
corresponding ton =land m = 1,

64(LL‘)2 . mx . nmy 1 i
H..:(x.y,l)=—n—6——sm—zsml‘—cosnc Zf+7,'—="

is called the fundamental mode of vibration. It represents displacements of a mem-
brane identical to that in problem (37), except that the initial displacement is
[64(L L')%/n®] sin(nx/L)sin(zy/L'). For such an initial displacement, the membrane
oscillates back and forth between the enveloping surfaces + [64(LL')*/n%] sin(nx/L)
sin(ny/L'); the shape of the membrane is always the same, the cosine factor describ-
ing the time dependence of the oscillations.

Then = 1 and m = 2 term in (41) is

H, ( .[)__64(LL‘)Z innxsinhy os 1 N 9 .
2,1\ )1 = 277.[6 S L L cosnc LZ Lll .

‘It represents vibrations of the same membrane with an initial displacement

[64(L L)?/(27x®)) sin(nx/L)sin(3my/L'). The membrane oscillates back and forth
between this surface and its negative. The lines y = L'/3 and y = 2L'/3, which always
remain motionless, are called nodal curves for this mode of vibration.

The mode

H, . ‘t)_64(LL')ZS. :’mxSichosnc —9—+—l—t
1.2 X ¥ = 27“6 imn L L' LZ L|2

is similar with nodal curves x = L/3 and x = 2L/3.

Solution (41) is the sum of an infinity of modes of vibration, the modes of lower
orders contributing more significantly than higher-order ones.

We now consider a three-dimensional boundary value problem,

@ZU 2 A2
———+a—£,+(722=0, 0O<x<L O<y<lL, 0<z<L" (42a)

éxt o &t C:
U0y, =
‘—(—{-‘——’=o, O<y<l. O0<:z<lL", (42b)
o
U(L.y.2)=0, O<y<L, 0<z< LY, (42¢)
U(x.0.2) = 0. 0<x<L. 0<:z-< LY, (42d)
cU. L2y

- 0. Q< x<L, 0<z< L™ (42¢)
oy
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Ux,y,0) = f(x. y) O0<x<L, O<y< L, (42f)
U(x, y, L") = g(x, y), O<x<L, O<y<lL. 42g)

The problem describes steady-state temperature U(x, y,z) in the box of Figure 5.11,
where two faces (x =0 and y = L') are msulatcd two faces (x = L and y = 0) are
held at temperature zero, and the reraining faces-have prescribed nonzero tempera-
tures f(x, y) and g(x, y). The problem is said to be homogeneous because the PDE is
homogeneous and all boundary conditions are homogeneous except those on a smglc
pair of opposite faces.

gure 5.11

When a function with variables separated, U(x, y, z) = X(x)Y(y)Z(z2), is substituted
into (42a), separation gives
Xll YII le 2 .
% 7 + Z A constant independent of x, y, and z

Combined with boundary conditions (42b, c), this yields
X“+i2X =0, O0<x<L,
X'0) = X(L) =
Eigenvalues of this Sturm-Liouville system are A2 = (2n — 1)?n?/(4L?), with eigen-

functions X,(x) = V2/Lcos 4,x (see Table 4.1).
Further separation of the equation in Y and Z leads to

vz )
-y =7 - il = u? = constant independent of y and :.
This equation, along with boundary conditions (42d, ¢}, givés

Y 4+ 1ty =0, O<y<lL,

Y(0) = Y'(L')=0.
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Eigenpairs of this Sturm-Liouville system are 12 = (m — e /4L?) and Y, (3) =
< 2L sin gy

Finally, the ODE
. Z'— 4+ pl)Z=0

-
—

has general solution
Z(z) = Acosh mz + Bsinh mz
We have now determined that separated functions
XLOYa(GIZ(E) = X Yaly){Acosh A2 + ukz + Bsinh /AT + u37]
for positive integers n and m and arbitrary constants A and B satisfy PDE (42a) and
boundary conditions (42b-e¢). To accommodate boundary conditions (42f, g), we

superpose separated functions and take

Ulx,p.2) = i i X () Yol 3)[Amacosh /27 + Uiz + B,sinhy/AZ + pazl, (a3a)
m=1n=1

in which case (42f, g) require that

Sx.y) = i i Amn Xa(X) Yo 3), 0<x<lUL, O<y<lL
1

m=1in=

and P
glx. = Y Y X ()Y (»)[An,cosh JiI+ pAL + B,sinh A7 + un L],

m=1n=1

0<x<L, O0<y<L.

Successive multiplications of these equations by eigenfunctions in x and y and
integrations with respect to x and y lead to the following expressions for 4, and B,,:

L' L
A =j j SN XA Y (y)dxdy (43b)
(4] 0
and
_ |
™ sinh 2l + piL"
L' L P
x \:j‘ J g XA YW dx dy = A, cosh NV y,z,,L":\. (430
Q [t}

In Section S.5. solutions like (40) and (43) are approached from a different point
of view.

Exercises 5.4

Part A— Heat Condition

1. A thin rectangle occupying the region 0 < v < L. 0 <y < L' has its top and bottom faces
insulated. At time ¢ = 0. its temperature is described by the function [(x, v). Find its temperature
for £ > Oif all four edges. x =0, v =0.x = L.and v = L. are maintained at 0 C.
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2. Repeat Exercise | if edges x =0 and y = L' are insulated.

3. (a) Repeat Exercise 1if edges y = 0 and y = L’ are insulated.
(b) Simplify the solution if the initial temperature is a function only of x.

4. Repeat Exercise 1 if heat is transferred to an environment at temperature 0°C along the edge
x = L (according to Newton's law of cogling),

5. A block of metal occupies the region 0 <. x < L, 0<y<L,0<z< L The surfaces y =0,
= L', and z = L" are insulated, and faces x = 0, x = L, and z = 0 are held at temperature
0°C. If the temperature of the block is initially a constant U, throughout, find the temperature

in the block thereafter. ’ ’

6. Repeat Exercise 5 if heat is transferred to the surrounding medium, at temperature zero,
according to Newton's law of cooling on the face z = L".

7. Repeat Exercise § if face z =0 is insulated.

8. Repeat Exercise 5 if face y = L' is held at temperature 0°C.

9. In this exercise we prove a result for homogeneous heat conduction problems in two or three
space variables that uses solutions of one-dimensional problems provided the initial temperature
distribution is the product of one-dimensional functions. In particular, show that the solution of
the two-dimensional problem :

ég=k(i—2xg+%%>, 0<x<L, 0<y<lL, t>0,.‘ .
—ll%—%+h‘U=0, x =0, O<y<L, ‘t>0,
12%%+h2U=,0, x=1L, O0<y<lL, t>0,
-—l,%[yi+h3U=0, y=0, 0<x <L, t>0,
l,,%%-l—h.,U:O, y =L, 0<x<L, t>0,

U, 3,00 = f(x)g(y), O0<x<L, O<y<L

is the product of the solutions of the one-dimensional problems

cU U : cU U .
6t=k€€;, O<x<L, t>0, —6_t_=k57’ O<y<L, t>0,
cu eU
——“E;"‘l"hlU:O, x =0, t >0, —I;Ty‘+h3U=0, y=0, t>0,
U N
126‘7—+h2U=0. x=L, t>0, 1467U—+114U=0, y=L, t>0,
éx ¢y
Ux0)= f{x), 0<x<Li U(y,0) =gy, 0<y<L.

This result is easily extended to heat conduction problems in x, y. z, and ¢. In addition, it can
sometimes be generalized to other coordinate systems (see Exercise 15 in Section 9.1).

10. (a) Use the result of Exercise 9 in this section, together with those of Exercise | in Section 5.2 and
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Example 1 in Section 3.2, o solve the following heat conduction problem:

(C_—Lt]=(%;gz+%;-g> 0<x<L, O<y<L, >0
U03:4=0,- Q<y<L, >0
UlL,yt)=0, O<y<L, >0
U(x,0,) =0, 0<x<L, t>0,
U(x,L',1) =0, 0<x<lL, t >0,
U(x, y,0) = x(L' — y) 0<x<L, O0<y<lL.

(b) Solve the problem in (a) by separation of variables. Are the solutions identical?

Part B— Vibrations

11

12.

13.

14.

(a) A membrane is stretched tightly over thesquare 0 < x,y < L.[f allfour edges are clamped on
the xy-plane and the membrane is released from rest at an initial displacement f(x,y) find its
subsequent displacements.

(b} Simplify the solution when

i) = (L — 2ix — L/2IL = 2|y = L/2})

Y 3L :

{a) A membrane is stretched tightly over therectangle0 < x < L,0<y < L. Edges x = 0and
x = L are clamped on the xy-plane, but y = 0 and y = L' are {ree to move vertically. If the
membrane is released from rest at time ¢ = 0 from a position described by f(x,y), determine
subsequent displacements of the membrane.

(b) Simplify the solution when f(x, yy=(L-—2lx— L/2D/(32L).

Equation (40) describes displacements of a rectangular membrane with edges fixed on

the xy-plane when oscillations are initiated by releasing the membrane from rest at a

prescribed displacement. Find nodal curves for the mode 2A,,,,/\/H,‘ sin(nmx/L)sin(mmny/L") X

cosc/n?/LY + m/L nt.

Is there a result analogous to that in Exercise 9 for the vibration problem of displacements ina
membrane?

Part C— Potential, Steady-State Heat Conduction

15.

16.

17..

Find the potential inside the rectangular parallelopiped 0 < x < L0<y<L,0<z<sL'if
facesx =0,y =0.x=L.and y = L are all held at potential zero while faces z = Oandz =L"
are maintained at potentials f{x, ) and g(x, y), respectively.

Repeat Exercise 15if faces x = 0 and x = L are heid at potentials i(y, z)and k(y, z), the other four
faces remaining unchanged. '

Find the steady-state temperature distribution inside acube0 € x < L, 0 <y < LOo<z<Lil
faces x = Oand z = L areinsulated,facesy = Oand y = L are held at temperature zero, and heat
is added 1o faces*x = L and - = 0 at constant rates ¢ and Q W/m?, respectively.
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The Multidimensional Eigenvalue Problem

In Section 5.4 we demonstrated that successively separating off Cartesian variables in
homogeneous problems leads to the Sturm-Liouville systems of Section 4.2. When the
problem is an initial boundary value one, as opposed to a boundary value problem,
there remains an ODE for the tifne’ dependemce of the unknown function. An
alternative procedure is first to separate off the time dependence, leaving what is called
the multidimensional eigenvalue problem. To illustrate, suppose that the unknown
function V in the homogeneous PDE
2
V2V=p%t—'2:+q—-+sV (44)
is separated into a spatial part, which we designate by W, and a time-dependent part,
T(), V = WT(1). (We have purposely not expressed W as a function of coordinates
because what we are about to do is independent of the particular choice of coordinate
system.) When this product representation for V is substituted into (44), the time
dependence contained in T may be separated from the spatial dependence in W: .

Viw _PT"+qT +sT
w T
It follows that T'(f) must satisfy the ODE
pT" +qT +(s+ kT=0
and W must satisfy the Helmholtz equation
VW + kW =0.

= —k = constant independent of all variables.

When PDE (44) is accompanied by homogeneous boundary conditions on V, these
become homogeneous boundary conditions for W. If we set k = A2, the problem

VW + AW =0, (45a)
Homogeneous boundary conditions {45b)

is called the multidimensional eigenvalue problem. For certain eigenvalues A2, there exist
nontrivial solutions of (45) called eigenfunctions. Properties of eigenvalues and eigen-
functions of this eigenvalue problem parallel those of Sturm-Liouville systems in
Chapter 4, but important differences do exist. We consider one example here and give
general discussions and further examples in the exercises.

When boundary conditions (45b) are of Dirichlet type on the edges of a rectangle
0<x<L,0<y< L', (45) takes the form

o a2 '
¢ ¢ W+/‘.2W=O, O<x<L, O<y<lL, ‘(46a)

T
WO,y) =0, O0<y<lL, (46b)
W(L,y) =0, O<y<L, (460)
W(x,0) =0, O<x<lL, (a6d)

Wix, L) =0, O<x<L. (46e)
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To solve this problem, we separate W(x, y) = X(x)Y(y). This results in the SL-systems
X' 4+u’X =0, 0<x<L, Y+ (2 —-pu?)Y=0, O<y<lL,
X0)=X(L)=0; Y0) = Y(L')=0,

solutions & which are..

2 : . .
X (x) = \/gsinf{—r corresponding to eigenvalues u? = n*n?/L?,

and Y, (y) = \/%sinﬂg—y corresponding to eigenvalues 4% — u? = m*n?/L'%.
In other words, eigenvalues of (46j are A2, = n*n?/L* + m*n*/L'?, with corresponding
eigenfunctions

sin—sin———. 47)

2
WX, 9) = — -
(x,y) JiD 2 I

It is straightforward to show that these functions are orthonormal on the rectangle with
respect to the weight function p(x,y) = 1; that is,

L L 1 ifm=kandn=1
J. j W,.(x, ,V)u/kl(x' y) dy dx = {0 otherwise

0o Jo

(48)

Furthermore, suppose we are given a function f(x, y) that is, along with its first partial
derivatives, piecewise continuous on the rectangle 0 S x < L,0 < y < L. For fixed y,
f(x,y) and &f(x, y)/dx are piecewise continuous functions of x, and we may therefore
express f(x,y) in terms of X,(x); that is, the eigenfunction expansion of f(x,y)as a
function of x is

f(X+,y)+f(X—,y) _ 3 3 . 27_53‘_
5 —"; d.(y) \/; sin——, (49a)

where the functions d,(y) are defined by

L 2 . nmx
dfy) = (x, )\/:sin——dx. (49b)
| (» L Sy [psin—T

Equations (49) are valid provided f(x, y) is continuous in y at the chosen value of y.
When this is not the case, these equations must be replaced by appropriate limiting
expressions. Because d,(y) is itself piecewise continuous, with a piecewise continuous
first derivative, it may be expanded in terms of Y, (y):

dfy+) +d(y-) & 2 . mmy

L 2 y
where Com = L d,,(y)\/;—(sinﬂz—)dy. (50b)
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We combine these expressions to write

(f(X+.y+) + f(x"'-.V+)) + (f(x+'y_) +f(x—1y—)>

2 2
- _ e 2o anx & 2 . nnx
_";d,,(y-e-)\/;- =7 +"§;d,(y—) [SinT
= 2 | nmx
—"; [du(y+) + duly=)] [T sin—~
2 . mny 2si nnx
n= L L

il
Ms
[\S)
el iMe
()
i
o
@
3
|

In other words, the function f(x, y) has been expanded in terms of the orthonormal
eigenfunctions of eigenvalue problem (46),

S+, y+)+ fx+,y=) + f(x—,y+) + f(x—,y~)
4

x ° B 2 . nnx , mn
mzl Cmu wmn(xv )’) = “Z;‘ mzl C""‘ -—Z

Mls

1

"

P
-
P
£

o

L L
where C,,m = J J‘ f(x’ y)wmu(xv .V) dy dx

Lrr 2 nnx . mmy '
= X, Y)——==sin——sin——dy dx, (51b)
J-o L fx.y) T Tl

and this resultisvalidfor0 < x < L,0 <y < L\

We have illustrated with this example that for the multidimensional eigenvalue
problem we should expect multisubscripted eigenvalues, orthogonal eigenfunctions,
and multidimensional eigenfunction expansions. This is illustrated further in the
exercises.

When solving homogeneous initial boundary value problems by separation of
variables, there is always the choice of separating off the time dependence first or last.
The solution will ultimately be the same for either approach, but the steps differ in
arriving at this solution. Let us illustrate with the heat conduction problem

- ~2 2
CU=k<CU+a—U>, O<x<L, O<y<lL, t >0, (52a)

ct ox? | ay?
U0, y,1) =0, O<y<L, t>0, (52b)
' UL,y 1) =0, O<y<L, t>0, (52¢)
U(x.0,1) = 0, O<x<L, t >0, (52d)
Ulx, L) = 0, O<x<L, t >0, (52e)

U(x,3.0) = f{x, ) 0<x<L, O<y< L (52f)
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If the x- and y-dependences of a separated function U(x, y,t) = X(x)Y(y)T(t) are
separated off first (as was done in Section 5.4), Sturm-Liouville systems in X (x) and
Y(y) are obtained:

X‘"+/'.2X=O, O0<x<L, Y 4 uY =0, O<y<lL,

=T TX(0) =0 = X(LY; Y(©0) =0 = (L)

Eigenpairs of these systems are

nlng? 2 . nax
i2 = == ~—§in—0
Ay = IER X,(x) Lsm I

2.2 /
. _m'm _ 3 . mmy
na =77 Y.(» o sm—L‘ .

What remains is an ODE in T(t), namely,
T + k(A2 + p2)T=0, t>0,

with general solution
T(t) = Ae-k(li"'ﬂ.z..)l‘

To satisfy the initial condition, separated functions are superposed in the form

I & 2 2 . x [2 . mn
Ulx, y, 8} = .; ...Zn A,,,,,e"‘“”“"""\/%sxnﬁz—— \/;sm —Div-, (53a)

and the initial temperature f(x, y) at t = 0 then requires that

0 20 2
=3 ¥ 4. isinn—g Zsin™  g<x< L, O<y<lL. (54a)
At m=1 L L yL L

To find expressions for the 4,,, we multiply successively by «/2/Lsin(knx/L) and
V2/L'sin(jny/L'), integrate with respect to x and ¥, and use orthogonality. The

result is
Lo 2 2
A""':J.o L f(x,y)\/gsin%\/;sinml#dxdy. (53b)

Alternatively, if time is the first variable separated off by setting U(x, y,t) =
W(x, y)T(t), the ODE
T + ki’T =0

is obtained along with eigenvalue problem (46). With the eigenpairs 42, =
n*a?/L? + m*n?iL2 and W, (x, ) = (2//LL) sin{nrx/L)sin(mny/L'), the solution for
T(t)is

T(t) = Ae %4,

Superposition of separated functions gives

n x

U, ) = Y Y Apae W, (x, p) (55a)

n=lm=1
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and the initial condition (52f) requires that
7o =3 Y ApWaxy, O<x<L, O<y<lL. (54b)
n=lm=1

But then, 4, are the Fourier coefficients in the_ejgenfunction expansion of f(x, y) in
terms of the W, (x, y),

L (L )
A,M = J' J. f(xv y)Wmn(x!.V)dxdy (SSb)
o [+]

Solutions (53) and (55) are identical; it is only the way in which we regard equations
(54a, b) that differs in our arriving at the solution.

Exercises 5.5

In Exercises 1-3 we prove some general results concerning eigenvalue problem (45) in the
xy-plane. Results in three space variables are analogous.

1.

3.

Prove the following result corresponding to Theorem 1 in Chapter 4. All eigenvalues of the
multidimensional eigenvalue problem

VW + AW =0, (x,y)in A, (56a)
I‘%p:,— + hW =0, {x, y) on B(A), h >0, >0, (56b)

are real, and eigenfunctions corresponding to different eigenvalues are orthogonal with respect
to the unit weight function.

. Use eigenvalue problem (46) (with L' = 2L) to illustrate that a multidimensional eigenvalue

problem can have linearly independent eigenfunctions corresponding to the same eigenvalue.
(Contrast this with Exercise 12 in Section 4.1 for Sturm-Liouville systems.)

Show that all eigenvalues of (56) are nonnegative and that 1 = 0 is an eigenvalue only when the
boundary condition is Neumann. In this case, what is the eigenfunction cotresponding to A = 0?7

In Exercises 4-8, find eigenvalues and orthonormal eigenfunctions of eigenproblem (45) on the
rectangle A: 0 S x < L,0 <y < L' for the given boundary conditions.

4.

WO, =0 0<y<L; W(,»)=0, O0<y<Ll; W(x0=0 0<x<lL;
W(x,L)=0, 0<x<L

W@O0,y)=0, O<y<L; WL, y=0 0O<y<L; oW(x0)/3y=0 0<x<lL;
OW(x,L)/dy =0, 0<x<L

oW(0,y)/dx =0, O<y<L; WL,»»=0, 0<y<Ll; W(kx0=0 0<x<L;
oW(x,L')/éy=0, 0<x<L

W@O,y) =0, O<y<L:; W(L,y)=0, O0<y<L; ¢W(x0/0y=0 0<x<L;
18W(x,L')/dy + hW(x,L) =0, O0<x<L

~L@W/ex + h,W =0, x=0, 0<y<L: LEWex+hW=0, x=L, 0<y<Lj
~1,0W/dy + hsW =0, y=0, O<x<L; [éWdy+hW=0, y=L, O<x<L

In Exercises 9-11, use the multidimensional eigenvalue problem approach to solve the initial
boundary value problem.

9.
11.

Exercise 11(a) in Section 5.4. 10. Exercise 12(a) in Section 5.4.
Exercise S in Section 5.4.
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5.6 Properties of Parabolic Partial Differential Equations

We now return to a difficulty posed in Chapter 3. In what sense are the series obtained
in Chapters 3 and 5 “solutions” of their respective problems? In arriving at each series
- solution, we superpesed an _infinity of functions satisfying a linear, homogeneous PDE
and linear, homogeneous boundary and/or initial conditions. Because of the
questionable validity of this step (superposition principle | in Section 3.1 endorses only
finite linear combinations), we have called each series a formal solution. It is now
incumbent on us to verify that each formal solution is indeed a valid solution of its
(initial) boundary value problem. Unfortunately, it is not possible to prove general
results that encompass all problems solved by means of separation of variables and
generalized Fourier series; on the other hand, the situation is not so bad that every
problem is its own special case. Techniques exist that verify formal solutions for large
classes of problems. In this section and Sections 5.7 and 5.8, we illustrate techniques
that work when separation of variables leads to the Sturm-Liouville systems in
Table 4.1. At the same time, we take the opportunity to develop properties of solutions
of parabolic, hyperbolic, and elliptic PDEs. Time-dependent heat conduction prob-
lems are manifested in parabolic equations; vibrations invariably involve hyperbolic
equations; and potential problems give rise to elliptic equations. '
' We choose to illustrate the situation for parabolic PDEs with the heat conduction
problem in equation (2) of Section 5.2:

5 2
ij =ka—(f, O<x<L, >0 (57a)
Gt ox
ovQ,q =0, >0, v (57b)
Ox
L,
aU( )b ut(Ly=0, >0, (570
U(x,0) = f(x), O0<x<L. (57d)
The formal solution of this problem is
U(x,t) = z cpe MY (x) (58a)
_ L
where Cp = J F)X, (x)dx. (58b)
0

Eigenfunctions are X,(x) = N7 !cos /,x, where normalizing factors are 2N2 = L +
(u'k)/[2} + (u/x)*]. and eigenvalues are defined by the equation tan AL = p/(k/).

We shall show by direct substitution that the function U(x, () defined by series
(58) does indeed satisfy PDE (57a), its boundary conditions (57b, ¢}, and its initial
condition (57d).

When coefficients ¢, are calculated according to (58b), the series Zn 1 Co X (x)
converges to f(x) for 0 < x < L [provided f(x) is piecewise smooth for 0 < x < L].
Since this series is U(x,0). it follows that initial condition (57d) is satisfied if f(x)is
piecewise smooth on 0 < x < L. provided at any point of discontinuity of f(x), f(x)is
defined by f(x) = [ f{x+) + f(x=)]/2.
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To verify (57a-c) is not quite so simple. We first show that series (58a) converges for
all0 < x < L and t > 0 and can be differentiated with respect to either x or t. Because
eigenfunctions X,(x) are uniformly bounded (see Theorem 2 of Chapter 4), there exists a
constant M such that foralln > 1and 0 < x < L, [ X,(x)| < N~! < M. Further, since
f(x) is piecewise continuous on 0 < x <¥,-it-is alsq_bounded thereon: | f(x)| < K.
These two results imply that the coefficients c, defined by (58b) are bounded by

.
feal < I [fONIX(x)dx < KML. (59)
0 :
It follows that for any xin0 < x < L,and any t > £, > 0.
X O
Y lenXa(x)e ) < KM?L Y, (e Moy,
n=1 a=1

Figure 4.2 indicates that the nth eigenvalue 4, 2 (n — l)n/L. Combine this with the fact
that e < 1, and we may write, for 0 < x < L and t > 15 > 0,

Y. leaXo(x)e 4% < KMPL Y, (o) 1
a=1 n=1
< KMZL z [(e—klo)lel}]u—l - KMZL Z '.n--l‘l (60) -
a=1 a=1

and the geometric series on the right converges, since r = e Mol < 1 According to
the Weierstrass M-test (Theorem 4 in Section 2.3), series (58a) converges absolutely and
uniformly with respect to x and ¢ for 0 < x < L and t > t, > 0. Because ¢, > 0is
arbitrary, it also follows that series (58a) converges absolutely for0 < x < L andt > 0.
Term-by-term differentiation of series (58a) with respect to ¢ gives

R
Y —kAZe X, (x)e (61)
n=1
Since 4, < nn/L (see, once again, Figure 4.2), it follows that forall0 < x < L and t >
to >0,

] k ©
le—-kl,fc,,X,,(x)e"‘"z“l <S— 2—:1 n2rnl, (62)

Because the series Y= n’r""! converges, we conclude that series (61) converges
absolutely and uniformly with respect to x and tfor0 < x < L and t > 1, > 0. Asa
result, series (61) represents dU/ét for 0 < x < L and t > t5 > G (Theorem 8 in Sec-
tion 2.3). But, once again, the fact that t, is arbitrary implies that we may write
BU 0 . .
= Y —kile X (x)e T (63)
ct a=1
for0<x<Landt>0.
Term-by-term differentiation of series (58a) with respect to x gives

XL 0
Y o Xix)e ™ = 3 e (— AN sin i xe kN, (64)
a=1 n=1
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0 <t < T,wheree > Ois a very small number. Because U satisfies (72a), we can say that
forO<x<LandO0<t<T,
v v eu 2

:-‘.4',, E.: 6x_2=7t~_k<$7+ 28) = —2ke < 0. (73)
Assuming that U(x, t) is continuous, so also is V(x, t), and therefore V(x, t) must take on
a maximum in the closed rectangle A of Figure 5.12. This value must occur either on the
edge of the rectangle or at an interior point (x*,t*). In the latter case, V(x,t) must
necessarily have a relative maximum at (x*,¢*), and therefore dV/dt = d¥/dx = 0 and
02V/dx? < 0 at (x*,¢*). But then dV/dt — kd*V/dx? > 0 at (x*,t*), contradicting (73).
Hence, the maximum value of ¥ must occur on the boundary of A. It cannot occur
along t = T, for, in this case, 3V/dt > 0 at the point and 9*V/dx? would still be
nonpositive. Once again, (73) would be violated. Consequently, the maximum value of
V on A must occur on one of the three boundariest = 0,x = 0,0r x = L.Since U < Uy,
on these three lines, it follows that V < U,, + ¢L? on these lines and therefore in 4. But
because U(x,t) < V(x,t), we can state that, in A, U(x,t) < Uy, + €L?. Since ¢ can be
made arbitrarily small, it follows that U, must be the maximum value of U for
O0<x<LandO0<t<T.

(x*,1%) o

When this result is applied to — U, the minimum principle is obtained —at no point
in the rod during the time interval 0 < t < T can the temperature ever be less than the
minimum of the initial temperature of the rod and that found (or applied) at the ends of
the rod up to time T.

We mention one final property of heat conduction problems, which, un-
fortunately, is not demonstrable with the series solutions of Chapters 3 and 5. [It is
illustrated for infinite rods in Case 2 of solution (47b)in Section 7.4 and for finite rods in
solution (44) of Section 10.4.] When heat is added to any part of an object, its effect is
instantaneously felt throughout the whole object. For instance, suppose that the initial
temperature f(x) of the rod in problem (57) is identically equal to zero,and att =0 a
small amount of heat is added to either end of the rod or over some cross section of the
rod. Instantaneously, the temperature of every point of the rod rises. The increase may
be extremely small, but, nonetheless, every point in the rod has a positive temperature
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for arbitrarily small > 0, and this is true for arbitrarily large L. In other words, heat
has been propagated infinitely fast from the source point to all other points in the rod.
This apparent paradox is a result of the macroscopic derivation of the heat equation in
Section 1.2. On a microscopic level, it would be necessary to take into account the
moment of inertia of the molecules4fansmitting heat, and this would lead to a finite
speed for propagation of heat. -

Exercises 5.6

1. (a) What is the formal series solution of the one-dimensional heat conduction problem

ou o
i =k— 0,
5 kaxz, 0<x<lL, t>
ou
——I,—a—x—+h1-U=0, x =0, t>0,
ou
125+h2U=0, x=L, [>0,_

Ux,0)= f(x), O<x<L?

(b) Use a technique similar to verification of formal solution (58) for problem (57) to verify that
the formal solution in (a) satisfies the four equations in (a) when f(x) is piecewise smooth on
0<x<L.

(c) Assuming further that f(x)is continuous on 0 < x < L, show that there is one and only one
solution of the problem in (a) that also satisfies continuity conditions (57¢, f).

(d) Verify that the formal solution in (a) satisfies (57¢, f) when f(x) satisfies the boundary
conditions of the associated Sturm-Liouville system.

2. Use Green's first identity (sce Appendix C) to verify that there cannot be more than one solution
to problem (71).

3. Repeat Exercise 2 if the boundary condition on f(¥) is of Robin type.
4. Can you repeat Exercise 2 if the boundary condition on (V) is of Neumann type?

5. In this exercise we prove three-dimensional maximum and minimum principles. Let U(x, y,2,1)
be the continuous solution of the homogeneous three-dimensional heat conduction equation in
some open region V,

U
i kViU,  (x,y,2)in V, t>0,

which also satisfies the initial condition
Ux.y,2,0) = f(x,3,2),  (x,y,2)in ¥,

where ¥ is the closed region consisting of V and its boundary f(V). Let U, be the maximum
value of f(x, y, z) and the value of U on (V) for 0 <t < T, T some given time. '

(a) Define a function

Wix,y,2,0) = U(x,y,2,1) + e(x? + y? + 22),
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where ¢ > 0 is a very small number. Show that

iui— kV:W <0
ot

.

for (x, y, z’)'iﬂ';f/ and O~<t < T, and use this fact to verify that W cannot have a relative
maximum for a point (x,y,z)in V and atime0 <t < T.

(b) Prove the maximum principle that U(x, y,2z,1) < Uy for (x, y, 2) inVand0<t<T.
(¢) What is the minimum principle for this situation?

Properties of Elliptic Partial Differential Equations

Verifications that formal solutions of boundary value problems do indeed satisfy the
elliptic PDEs and boundary conditions from which they were derived are similar to
those for parabolic (heat) problems. We illustrate with the following Dirichlet problem
for Laplace’s equation

%}‘;+%%—=0, O0<x<lL, 0<y<lL, (74a)
V(0,y) =0, O<y<L, (74b)
V(L,y) =0, O<y<Ll, (74¢)
V(x,0) =0, 0<x<L, : (74d)
Vix,L') = f(x), O0<x<L. (74e)

Separation leads to the formal solution

V)= S Aysinh T X,(x), (75a)
a=1
h L ’
whnere A,. = m J; f(x)X,,(x) dx (75b)

and X, (x) = \/ﬁ sin(nnx/L).

Theorem 2 of Chapter 4 guarantees that boundary condition (74e) is satisfied
when f(x) is piecewise smooth on 0 < x < L [provided f(x) is defined as the average
of right- and left-hand limits at any point of discontinuity]. Boundary conditions
(74b-d) are clearly satisfied by (75a). To verify that V(x,y) as defined by (75a)
satisfies PDE (74a), we first note that when f(x) is piecewise continuous, it is neces-

sarily bounded [|f(x)| < K)]. Combine this with the fact that | X, (x)| < V2/L, and
we obtain

L
|4 1 (oo o ax

<1
{sinh(nL'/LY 1o

JKVLwy o JaLk 7e)
= sinh(urL'/L) ~ sinh(nxL'/L)
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With this result, we may write, forany xin0 < x< L andanyyin0<y <y, < L
nrty 2

J2LK i
“Z A snnh——X..() ,,ZISTW mTVL

- o & smh(nn'y/L)‘ —an(Li=y)IL
=2K 2 SohnmLL) = 2K ?ie

e

—ar(li=yolL . K Z (e x(L‘-yo)/L)n

Z
» el
Z ?77)
a convergent geometric series since r = ¢~ *L'"7L < { Consequently, according to
the Weierstrass M-test, series (75a) converges absolutely and uniformly with respect
toxand yfor0 < x < Land 0 < y < yo < L'. Because y, is arbitrary, series (75a).con-
verges absolutely for 0 < x < L and 0 < y < L'. In addition, series (75a) repre__sents
a continuous function for 0 < x < L and 0 < y < L'. Thus, even though f(x) may
have discontinuities, the solution of Laplace’s equation must be a continuous func-
tion. In other words, Laplace’s equation smooths out discontinuities in boundary data.
Term-by-term differentiation of series (75a) with respect to x gives

3 A,sinh%x;(x), (78)

where X (x) = (nn/L)«/2/L cos(nnx/L). It follows that, for0 < x <L and 0<y<
Yo < LY,

<2K_1: z nr™. (79)

2
n=1
Because ) 7, nr" converges, series (78) converges absolutely and uniformly. Thus,

series (75a) may be differentiated term by term to yield,for0 < x < Land0 < y < L',

av k)
ox ;A sinh Ly Xolx). (80y

4, sinh%X;(x)

Similarly,for0 < x < Land0 <y < L','
62 ® nm
= 3. Asinh = X1, 1)

Term-by-term differentiation of (75a) with respect to y gives

3. nAycosh '-'% X,(x). 82)

A

Using inequality (76) and the fact that | X,(x){ < /2/L, we may write

2Kn & ncosh(nny/L)

"L & sinh(naLl'/L) 63)

}; nA, cosh yX()

[l
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Now N can always be chosen sufficiently large that sinh(nnL'/L) = (1/4)e"™'E,
whenever n > N. For such N,

<ZKn i ne"™™t
=L L (1/4)e

R | - nny
- = .;v nA,cosh I X, (x) ..

8Kn & 8Kn X
— —ax(L =L —ax(L' — yolL
T .;~ ne <7 "ZN ne
8Kn &
= —-L—n .EN nr", (84)

where r = e~ WL provided also that 0 < x < L and 0 <y < y, < L' Since the
series Y -, | nr" converges, it follows that series (82) converges uniformly and absolutely
for 0 < x < L and 0 < y < yo < L'. Thus, series (75a) may be differentiated term by
term with respect to y to yield, for0 < x < Land 0 < y < L,

V o
% = % ,;1 nA,cosh %XX,,(x). (85)
For the same values of x and y, we also obtain
o ot 2 nry
— inh — X, (x). 86
%7 = L7 “Z:l n4,sinh T (%) (86)

Because X:(x) = (—n?n?/L?)X,(x), expressions (81) and (86) clearly indicate that
~ V(x, y)satisfies Laplace’s equation (74a). We have shown, therefore, that series solution
(75) satisfies problem (74).

In order to guarantee a unique solution of (74), continuity conditions must also
accompany the problem. We show that when f(x) is a continuous function with a
continuous first derivative f‘(x) and a piecewise continuous second derivative f(x), for
which f(0) = f(L) = 0, appropriate conditions are

%%, and %‘;— continuousfor0 < x < Land0 <y < L'; (74f)

V,
second partial derivatives of V(x,y) continuous for
O<x<L,O<y<L. (74g)

Suppose, to the contrary, that there exist two solutions, V\(x, y) and V(x, y), satisfying
(74). The difference V(x,y) = Vi(x,y) — Va(x, y) must also satisfy (74), but with (74e)
replaced by the homogeneous condition V(x,L) =0,0 < x < L. If we multiply (74a)
by V(x, y), integrate over the rectangle R: 0 < x < L,0 <y < L', and use Green's first
identity (Appendix C), we obtain

cV
0=JJ VVszA=§ Vﬂ—ds——{”x |VV|2dA, (87)
R pry  n R

where ¢V/én is the directional derivative of V outwardly normal to B(R). Since ¥ =0

on B(R),
0= —” VV|2dA.
R
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But this result requires that V¥ = 0 in R, and therefore V(x, y) must be constant in R.
Because V is constant in R, vanishes on #(R), and is continuous for 0 < x < L,
0 < y < L, it follows that V(x, y) = 0. In other words, conditions (74f, g) guarantee a
unique solution of problem (74).

Once again, we point out that Laplace’s equation, like the heat equation, smooths
out discontinuities. Even when the boundary data function f(x) has discontinuities in
its second derivative, (74g) demands that second derivatives of ¥{x, y) be continuous for
O<x<LandO<y<lL'.

We now establish that solution (75) of problem (74a-e) also satisfies con-
ditions (74f, g). The facts that series (81) and (86) converge uniformly for 0 <
x<Land 0<y<y,<L' and y, is arbitrary imply that 02¥/dx? and 0?V/dy?
are continuous for 0 < x < L and 0 < y < L. To verify (74f), we use Theorem § in
Section 2.3. First, note that with continuity of f(x) and f(0) = f(L) = 0, the Fourier
series of f(x),

fe=3 A,sinhﬂ;—"ix,(x), (88)

converges uniformly to f(x) on 0 < x < L (see Theorem 3 in Section 4.3). Series (75a)
can be obtained from series (88) by multiplying the nth term of (88) by

_ sinh(nmy/L)

Y0O) = ok D)

These functions are uniformly bounded for 0 < y < L'. For fixed yin 0 < y < L/, the
derivative of Y,(y) as a function of a continuous variable n is

g_)_’,: _ (my/L)sinh(nnL! /L) cosh(nny/L) — (xL'/L)sinh(nny/L)cosh(nnL'/L)

on sinh*(neL'/L) - )
Thus,
% sinh? (mZL‘ > ?:‘ = ysinh m;‘L' cosh n—?— — L'sinh %cosh %
_ %’(sinh nn(LL‘l+ y) +sinh mt(LL—— y))v_ %(sinh nn(yL+ L) + sinh nn(yL— L‘))
_L ;- y Sinhnrt(LL“-— y L 2— Y sinh nn(LL"+ ¥)

_L+ye 1 (nn(L‘—y) 1"'“_L‘——y © 1 nn(L' + yy\*™*!
2 WSoQm+1)! L 2 W @m4+ )\ L

_(LI+}‘)(Ll_Y) > 1 o 2m t N2im hn mel

- L, Gmy r Py )<T> ‘

2 m=0

which is clearly nonpositive. Thus, for each fixed yin0 < y < L', the sequence { Y,())} is
nonincreasing, and by Theorem 5 in Section 2.3, series {75a) converges uniformly for
0<x<Land 0 < y < L' This series therefore defines a continuous function V(x, y)
on0<x<LO<y<L'
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Because f‘(x) is continuous fand f"(x) is piecewise continuous], the Fourier

(cosine) series
\/— 2n 2 nnl! nnx
o Z nA, smh— 08—
converges uniformly tb [(x) for 0 < x < L [see Exercise 4(c) in Section 2.3]. Since
series (80) for dV/dx can be obtained from this series by multiplying the nth term by
Y.,(y), it follows that series (80) converges uniformly to dV/dx for 0 < x < L and

f(x) = 2‘. A,sinhffEIiX;(.r)

- .

" 0 < y < L' and that dV/dx is continuous thereon.

Finally, we must show that 8V/dy as defined by series (85) is continuous. Because
the above series for f*(x) is uniformly convergent for 0 < x < L, it follows (by setting
x = 0) that the series

an Ll
A, it
"Z: nA,sin T
is convergent. Consequently, the series
o0
Z nd, sinh 2= X,(x)

converges absolutely and uniformly for 0 < x < L. Series (85) for d¥/dy can be
obtained from this series by multiplying the nth term by

_ cosh(nny/L)
29 = G L)
These functions are uniformly bounded for 0 < y < L', and, furthermore,
[(Z)]? = cosh?(nny/L) 1 sinh(nny/L) \?
sinh®(nnL'/L) _ sinh*(nnL /L) sinh(nrL/L)
! 2
= Snh*(uaL /L) + [V(»]°.

For fixed y in 0 < y < L', the sequence {Y,(y)} is nonincreasing, as is the sequence
{1/sinh?(nnL'/L)}. Consequently, the same can be said for {Z,(y)}, and it follows by
Theorem S in Section 2.3 that series (85) converges uniformly for 0 < x < L and
0 < y < L'. Thus, ¢V/dy must be continuous thereon, and this completes the proof that
solution (75) satisfies conditions (74f, g).

The method used to verify that problem (74a-g) has a unique solution is appli-
cable to much more general problems. Consider, for example, the three-dimensional
boundary value problem

VU = F(x,y.2), (x,y,2)in V, (89a)

U
lé_ + hU = f(x,y,z). (x,y,z) on B(V), (89b)
U and its first derivatives continuous in ¥, (89¢)

Second derivatives of U continuous in V, (89d)
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where V is the closed region consisting of V and its boundary and [ > Oand h = 0are
constants. In Exercise 2 it is shown that when h #0, there cannot be more than one
solution of this problem, and whenh =0, the solution is unique to an additive constant
(e, if Uis a solution, then all sglpt_igns are of the form U + C, C = constant).
Uniquenéss also results when different parts of AtV ) are subjected to different types of
boundary conditions. For U not to be unique, the boundary condition must be
Neumann on all of (V).

Maximum and minimum principles for elliptic-problems are important theoret-
ically. and practically.'Wc verify three-dimensional principles here. The maximum
principle for Poisson’s equation is as follows: ‘

1f U(x,y.2)isa continuous solution of (89a), and F(x. ¥, z) > 0in V, thenatno pointin V can the
value of U(x.y. 2 exceed the maximum value of Uon (V).

To prove this result, we let Uy be the maximum value of U on B(V) and define 2

function W(x,y,2) = Ulx,y,2) + gx? +yr+2)in ¥, where ¢ > 0 is a very small
number. Because U satisfies (89a), we can say thatin V,

VW = V2U + 68 = F(x,y2) + 65> 0. (90)

Because W is continuous in ¥, it must attain an absolute maximum therein. Suppose
this maximum occurs ata point (x*, y*,z*)in the interior V (which therefore mustbe a
relative maximum). It follows, then, that

ow  aw oW oW 3w 3w
=2 =0 and

—

x oy 0z ox? =0, ay? <0, 022 <0

all at (x*, y*, z*). Because the last three inequalities contradict (90), the maximum of W
must occur on (V).

~ Since U< Ugonf(V), W< Uy + eR?on B(V), where R is the radius of a sphere
centered at the origin that contains V (such a sphere must exist when V is bounded).
Since the maximum value of W must occur ot B(V), we can state further that W <
Uy + eR? for all (x, y,z) in 7. But because U(x, y, z) < Wx,y, z)in 7, it follows that in
7, U(x,y,2) S Uy + ¢R?. Since ¢ can be made arbitrarily small, we conclude that
U(x,y,2) < Uy in ¥, and the proof is complete.

When U(x,y,2)isa solution of Laplace’s equation, the above maximum principle
still holds. In addition, the principle may also be applied to — U, resulting in a minimum
principle. In other words, we have the following maximum-minimum principle for
Laplace's equation:

if a continuous solution of Laplace’s equation ViU = 0 in V satisfies the condition that
U, susiyon p(v), then U, < U < U, in V also.

This principle provides an alternative, and very simple, proof for uniqueness of
solutions to problem (89) when the boundary condition is Dirichlet. If U, and U, are
solutions of Poisson’s equation (89a) and a Dirichlet condition U = f{x,y;z)on BV,
then U =U, - U,isa solution of Laplace’s equation VU = 0 subject to U = 0 on
B(V). But, according to the maximum-minimum principle for Laplace’s equation, U
must then be identically equal to zero in V: thatis, U = U,.
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difficulty, we use d’Alembert’s reprcscnlalion of (92),
yx, 0) = i ¢ g-sin"—nicosmm
WA= 2L L L

- = — if 2 ‘Sinnn(x+ct)+sinnn(x——cr)
=1 " L L L

[flx +ct) + flx = ct)]-

i

(Y S A

93)

For this solution to define y(x, ) for 0<x<Llandt 2 0, f(x)is extended as an odd,.
2L-periodic function. This extension immediately implies that 93) satisfies boundary
conditions (91b,¢) and initial condition (91e). Initial condition (91d) is clearly sat-
isfied. With continuity of f(x), itisa straightforward application of chain rules to

verify (91a).

We now show that problem (91)hasa unique solution when y(x,t) is also required

{0 satisfy the condition that

y(x,0) and its first and second partial derivatives
be continuous for0<x<L and t = 0.

Suppose, o the contrary, that y(x, 0 and yj(x,t) are two solution
Their difference, y(x, 1) = y,(x, 0) — 2.0 must then satisfy (91a, b,c ¢
replaced by the homogencous i
(91a) by ¢y/ct and integrate with respect to x from X = ot x=1L,

Lazy 5)’ L azy ay
S L Zdx = oczé;—zadx, t > 0.

Intégration by parts on the right gives

Because the ends of the string are fixed on the «-axis, it follows that oy(0,1)/ct =

év(L,njct = 0. and therefore (94) reduces to

LT A 2 ; \?
0=£ _f_ Q +clf_— i—‘- dx, t>0.
2l L€t ét CTA\CX

When this equation is antidifferentiated with respect to time, the result is

L ~\ 2 A0\ 2
‘—g K‘-’) +c:((_—'\—) ld.\'=K. t >0,
2 0 ct CX

916)

s of (91a-f).
f), but (91d)is
nitial condition y(x,0) = 0,0<x< L.1f we multiply

(94)

95)

(96)
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where K is a constant. To evaluate K, we take the limit of each term in this equation as
¢ — 0*. Because dy/ét and dy/dx are assumed continuous [condition (91f)],

lim ey(x,1) _ 9y(x,0) _ 0,
v | S

0<x<L

—

[initial condition (91e)]. Furthermore, bécause ¥(x,0) = y,(x,0) — y2(x,0) = 0, we find
that

Ly W60 _o  o<x<lL.
t—=0* ax Ox -

With these results, limitsas ¢ — 0* in equation (96) show that K = 0, and, therefore, for

t > 0 we may write
L ay 2 5 ay 2 .
= = =0. 97
LG =G )= on

Since each term in this equation is continuous and nonnegative, it follows that each
must vanish separately; that is, we must have dy/dx = dy/ot =0for0 < x < L,t 2 0.
These imply that y(x, t) is constant for 0 < x < Land t > 0, and this constant must be
zero since y(x,0) = 0. Thus, y(x,8) =0, and the solution of (91) is unique.

That (93) satisfies continuity condition (91f) is an immediate consequence of the
assumption that f"'(x) is continuous for0<x< L.

In Section 5.6 we saw that discontinuities in the initial temperature function were
smoothed out by the heat equation. Likewise, discontinuities in boundary data were
smoothed out by Laplace’s equation. This is not the case for hyperbolic equations; a
distinguishing property of hyperbolic equations is that discontinuities in initial data
are propagated by the solution. We have already seen this with the discontinuity in
f'(x) for f(x) in Figure 1.30(a). The discontinuity in f'(x) is propagated in both
directions along the string at speed c; it is not smoothed out. For a small time ¢ (before
the disturbance reaches the ends of the string), the discontinuity is found at positions
x = L/2 + ct, that is, at points given by x + ct = L/2. But these are equations of
characteristic curves for the one-dimensional wave equation (see Example 6 in Sec-
tion 1.8). We have illustrated, therefore, that discontinuities in derivatives of initial
data are propagated along characteristic curves of hyperbolic equations. These char-
acteristics are shown in Figure 5.13. At time ¢ = L/(2¢), the discontinuities reach the
ends of the string for the first time, whereupon they are reflected to travel once again
along the string. By drawing a horizontal line, say t = to, to intersect the broken lines
in this figure, we obtain the positions of the discontinuities at time t,. Intersections
with a vertical line x = x, give the times at which the discontinuities pass through the
point x4 on the string.

The formal solution of problem (91) when f(x) is as shown in Figure 1.30(a) is still
defined by (92) or, more compactly, by (93). It is not, however, a function that satisfies
(91a)forali0 < x < Land ¢ >0. It satisfies (91a) at all points (x,t) in Figure 5.13 that
are not on the characteristics x = L/2 + ct and their reflections.

I—
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Figure 5.13

Exercises 5.8

1. (a) What is the formal series solution of the vibration problem

8ty  ,0%
5 ¢ ax?
y.(0,6) =0, t >0,
yL, ) =0, t>0,
y(x,0) = f(x), 0<x<UL,
y(x,0) =0, 0<x<L?

0<x<L, t>0,

Express this solution in closed form.

(b) Verify that the formal solution in (a) satisfies the five equations in (a) when f(x), f'(x), and

(©)

d
2. {(a)

—

(b
(<)

-

d)

f"(x) are continuous on 0<x<Land f(Q=f(L)=0.

Show that there is a unique solution to the problem in (a) that also satisfies continuity
condition (91f).

Verify that the formal solution in (a) satisfies (91{).
What is the formal series solution of vibration problem (91) if initial conditions (91d, e} are
replaced by

¥(x,0)=0, y,(x.0) = g(x), 0<x<L?

Express the formal solution in closed form when g(x) and g'(x) are continuous for0 < x < L
and g(0) = g(L) = 0.
Verify that the formal solution in (a) satisfies (9la—c) and the initial conditions in (a).

Show that there is a unique solution to the problem in (a) that also
condition (91f).

Verify that the formal solution in (a) satisfies (91f).

satisfies continuity



