10.1

AORDEEn
T

R
E N

Laplace Transforms

Introduction

The I_:aplace transform is a mathematical operation, like the Fourier transform, that
replaces differentiation problems with algebraic ones, an essential simplification for
ordinary and partial differential equations. Fourier transforms are associated with
sp;_\gg@niﬁfes; the Laplace transform is associated with time. In this section wé give ™

abrief review of the transform and its simple propertiés; the complex inversion integral
is developed in Section 10.3, and the transform is applied to initial boundary value
problems in Sections 10.2, IQ:4, and 10.5.

The Laplace transform f(s) of a function f(¢) is defined by

fio) = 2{ @)} = r () dt, )

provided the improper integral converges. When S (t) is piecewise continuous on every

finiteinterval 0 < ¢ < T,and f(t)is of exponential order! a, its Laplace transform exists
fors > a.

* Afunction f(t)is said to be of exponential order x, written O(e*), if there exist constants T and M such that

/() < Me“forallt > T. For example, e is O(e?), sin tis O(¢*), and 1", n a nonnegative integer, is Ofe*)for
arbitrarily small ¢ > Q.
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Table 10.1

Chapter 10 Laplace Transforms

When f (s) is the Laplace transform of f(t), we call f(t) the inverse Laplace trans-
form of f(s) and write

10 =27HSs). (2)

The Laplace transforms contained in Table 10.1 are fundamental to applications
of the transform to ordinary and partial differential equations; more extensive tables
are contained in such references as Tables of Integral Transforms, Vol. 1, by Erdelyi,
Magnus, Oberhettinger, and Tricomi (New York: McGraw-Hill, 1954). All but the last
entry are straightforward applications of definition (1). The transform of ¢~ 1/2 requires
the improper integral of e~ overtheinterval 0 < ¢ < co,an integral that was evaluated
in Exercise 24 of Section 7.2,

£ fis) f(B £(s)
n! . a
" oI sinh at Tl
1 s
e —_ coshat
s—a s —a?
) a B 2as
sinat -3 tsinhat 33
st +a (s? —a%)
cosat 2 tcoshat s +al
0! —_— cosha —
s? 4+ a? (s —a?)?
L 2as 1 T
tsinat ——3 — -
(s2 +a?) Je s
st—a?
tcosat ——33
(82 + aZ)l

Because the Laplace transformis an integral transform, f (s) is unique for given f(t),
but there exist many functions f(¢) having the same transform f(s). For example, the
functions )

0 t=1
fey=1* and g()={t* t#L2
0 t=2

which are identical except for their values at t = 1 and t = 2, both have the same
transform 2/s3. What we are saying is that because the Laplace transform is not a one-
to-one operation, the inverse transform LY f(s)} in (2) cannot be a true inverse. In
Section 10.3 we derive a formula for calculating inverse transforms, and this formula
always yields a continuous function f(t), if this is possible. In the event that this is not
possible, the formula gives a piecewise continuous function whose value is the average
of right and left limits at discontinuities, namely, [f(t+)+ f(t—)1/2. This is
reminiscent of equation (14a) in Chapter 4 for Fourier series and equation (6) in
Chapter 7 for Fourier integrals. The importance, then, of this formula is that it defines
£ty = L7'{f(5)} in a unique way. Other functions that have the same transform f(s)
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differ from f(¢) only in their values at isolated points; they cannot differ from f(t) over
an entire interval a < t < b. In compliance with this anticipated formula, we adopt the
procedure in this section and the next of always choosing a continuous function
£~ f(s)} for given f(s) or, when this is not possible, a piecewise continuous function.
The Laplace transform and its inverse are linear operators. Some of their simple
properties are summarized below.
One of two shifting properties is

(T\ L(e“f (1)) = [ — a), (3a)

Y -af=eYO)" )] (3b)

(see Exercise 1). It states that multiplication by an exponential e in the time do-
main is equivalent to a translation in the s domain. For example, since £ {cos 2t} =
s/(s* + 4), (3a) implies that

/‘.-"—‘rr‘;'_fl ———
Lle¥cos2t) = (S—_S—;)Ziﬁ.

The other shifting property is
i = aH( - a)} =) (4a)
and " Ne ) = [ — QHE—a)h (4b)
where H(t — a)is the lmdé'imit step function. It has value 0 .\;/hen—t‘f*a and value 1
when ¢ > a.(See Exercise 2 for a proof of these properties.) These properties imply that

multiplication by an exponential e™* in the s domain is equivalent to a transiation in
the time domain. Graphs of f(¢) and f(t — a)H(t — a) are shown in Figure 10.1.

f fit — a)H({t — a)

(a) ‘ (b)

The following property is often called the change of scale property:

2! flat)} = a"f(%). (5a)
£ flas)) = f(‘) " (sb)-

(see Exercise 3). For instance, since ¥ '{1/(s> +2)} = (1/3/2)sin J2t, (5b) implies

that
() o) -2 )
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[ Theorem 1

Chapter 10 Laplace Transforms

When a function is periodic with period P, the improper integral in (1) may be
replaced by an integral over 0 <t < P: '

l P
L{f)} = T=o L e f(t)dt (6)
(see Exercise 4).

The following theorem and its corollary eliminate much of the work when Laplace
transforms are applied to initial boundary value problems.

4

Proof:

Suppose f(?) is continuous with a piecewise continuous first derivative on every finite interval
0 <.t < T.If f(t) is O(e®), then L{f (1)} exists for s > and

21} = sf(s) — F0). (7a)

If ¢, j=1,...,n denote the discontinuities of f(¢)in0 <t < T, then

re-“f'(z) di=3 J "oy d,

1} i=0 Jy,

where to = 0 and ¢, = T. Since f(f) is continuous on each subinterval, we may integrate by
parts on each subinterval:

T n fiet
j e f(dt =Y. ({e“’f(t)}if” + SJ e"‘f(t)dt>~
0 <o y

Because f(t) is continuous, f(t;+) = f{t;—).j = {,...,n, and therefore

T

T
J e ' (t)dt = —f(0) + e *Tf(T) + SJ‘ e % f(t)dt.

[+] 4]

T

Thus, LW = J: e (@) de = lim L e () dt
T

= lim (—f(O) + e Tf(T) + sj

T-o 0

= sf(s) — £(0) + lim e™*Tf(T),
T—o

e V(1) dt)

provided the limit on the right exists. Since f{t) is O(e™), there exist M and T such that for ¢t > T
[f(O < Me*. Thus, for T > T,

eTIf(T) < e *TMe™T = Me® ™7,

which approaches zero as T approaches infinity (provided s > x). Consequently, Z{f (1)} =
sf(s) — f(O). .

This result is easily extended to second-order derivatives. The extension is stated in
the following corollary and is verified in Exercise 5. For extensions when f(¢) is only
piecewise continuous, see Exercise 35.
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Corollary

sk

Example 1:

Solution:

; Example 2:

Solution:

Suppose f(t) and f(t) are continuous and f"(¢) is piecewise continuous on every finite interval
0 <t < T.If f(1) and f'(¢) are Ofe™), then L{ (1)} exists for s > «, and

LSO} = s¥(s) = s£(0) — f(0). (7b)

The following examples use these properties and at the same time indicate how
Laplace transforms reduce ordinary differential equations to algebraic problems.

Solve the differential equation
Y=y ty=2 )0 =y(0)=0.

When we take Laplace transforms of both sides of the differential equation and use
linearity of the operator,

Ly} —22{y} + 2{y} =22{e}
Properties (7a, b) yield
2
[s*7(6) — 5%(0) = y'(O)] — 2055(s) — YO + J68) = ——-
We now use the initial conditions y(0) = y'(0) = 0,

2
s—1

S22y +y=
and solve this equation for y(s):

- 2
ys) = PP

The required function y(t) can now be obtained by taking the inverse transform of y(s):
yy=2""! 2 =2%"! o (by linearity)
(s~1)>° (s—1)°

= 2e‘5?“(;13> [by (3b)]

2
= 28'(%) (from Table 10.1)

=2, ]

Solve the differential equation
y" + 4y = 3cos2t, v(0) =1, y'(0) = 0.

When we take the Laplace transforms of the differential equation and use the initial
conditions,

[s?y —s(1) — 0] + 4y =

st+ 4
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Theorem 2
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The solution of this equation for j(s) is

5(s) = 3s + s
YO =GTva T+ 4

and Table 10.1 gives
t
y(t)y=3 (Z sin Zt) + cos 2t. -

When solving ordinary differential equations by means of Laplace transforms,
considerable emphasis is placed on partial fraction decompositions of transforrT
functions j(s), and rightly so, because for ODEs, transform functions are often rational
functions of s. Once the transform is decomposed into constituent fractions, and
provided the decomposition is not too complicated, inverse transforms of individual
terms can be located in tables. Unfortunately, transforms arising from PDEs are
seldom rational functions, and there is therefore little point in our giving a detailed
discussion of partial fractions.

It is often necessary in applications to find the inverse transform of the product of
two functions f(s)d(s) when inverse transforms of f(s) and §(s) are known. Recalling
that convolutions were introduced for precisely the same problem associated with
Fourier transforms, it should not be surprising that convolutions are defined for
Laplace transforms. The convolution of two functions f(t) and g(t) is defined as

feg= j Sl — wdu. ®)
0

It has the same properties as convolution (32) in Chapter 7 {see equations (36) in
Exercises 7.3], and its importance lies in the following theorem.

Proof:

If £(¢) and g(¢) are O(e*) and piecewise continuous on every finite interval 0 < ¢t < T, then
L{f g} =2{fO}L{gW} s>a (9a)

If fs) = £{ ()} and §(s) = L{g(1)}, then

T = j e (u) du J " emrg(o)de

o 0

= Jm Jm eSO (u)g(r) dr du.
0

0

Suppose we change variables of integration in the inner integral with respect to t by setting
t =u+ 1. Then

f)d6s) = Jm J‘” e~ f (u)g(t — u)dt du.

0 u
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Now, g(1) is defined only for t > 0. If we set g(t) = 0 for t < 0, we may write

-~

J/(5)g(s) = lim J " f me“'f (u)g(t — u)dt du.
T-w Jo Jo

We would like to interchange orders of integration, but to do so requires that the inner integral
converge uniformly with respect to u. To verify that this is indeed the case, we note that since f(¢)
and g(t) are O(e*) and piecewise continuous on every finite interval 0 < ¢ < T, there exists a
constant M such that for afl ¢ > 0, [ /()] < Me™ and |g(t)] < Me*. For each u > 0, we there-
fore have [e™f(u)g(t — ul} < M2e™"e™e™“ ¥ = M2e '¢~% Thus,

0 S“‘a’

w© I w© e—t(x—c) ®» MZ
f e f(Wg(t — u)dt| < sz e g = M’{ }
o I o x—3S

provided s > «x and the improper integral is uniformly convergent with respect to u. The order of
integration in the expression for f(s)g(s) may therefore be interchanged, and we obtain

f()§(s) = lim f me-"r f)g(t — u)dudt
T—x Jo 0

lim (Ire“‘ J.Tf(u)g(t — u)dudt + J'm e frf(u)g(t — u)dudt).
T-o\Jo 0 T o .

@ T o T
Since J e“"J‘ S)g(t — u)dudt| < J. I M2e G2 dy de
T 4] . T 0
—t(s—a)} o 2 ~T(s~a)
_ M’T{e } _M’Te
: a—s §r s—a

provided s > a, it follows that

lim Jm e““JTf(u)g(t — u)dudt = 0.
o

T-w JT

Further, due to the fact that g(t — u) = 0 for u > ¢, we may write, for T > ¢,

T T r , .
J‘ e—nJ‘ f(u)g(t—u)dudt-——J e—“J‘ f(u)g(t—u)dudt:J‘ 5 % gdt.
0 [} o o \
T
Thus, J()3() = lim J e «gdi = £{f * g). .
T~ Jo

More important in practice is the inverse of (9a).

If .Sf’"'{,f(s)} = f{t) and £7Y3(s)} = g(t), where f(t) and g(1) are Ofe*) and piecewise
continuous on every finite interval, then

F T = ﬂf(u)y(:—\uw\\u./ (o)
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As an example to illustrate this corollary, consider finding &~ 1{2/[s*(s? + 9]}
Since £ '{2/(s* + 4)} =sin2t and £7'{1/s?} =1, we can state that the inverse
transform of 2/[s%(s? + 4)] is

g_l<;f(—s-zi:‘_‘—4')'> =J‘ usinZ(t - u)du,

(-

={¥cos 20 —u) + lsin 2(t — u) '
|2 4 0
t
= % -2 sin 2t.
Convolutions are particularly important in ODEs that contain unspecified forcing
functions.
Example 3: Find the solution of the problem

Yo+ —y=f, y0=4, yO=B
for arbitrary constants A and B and an arbitrary function f(¢).
Solution: When we take Laplace transforms,
[s%f — As — B + 2[s7 — 41 = § = [0,

and solve for , ~
f(s) As+ B+ 24
st 4+ 2s—1 s24+2s—1"7

ys) =
To find the inverse transform of this function, we first note that

1 1 1 t
-1 — -1 — p-tcp—t — -t g
L2 (sz T l) L4 ((s . 2) e (sz — 2> ﬁe sinh /2.

Convolution property (9b) on the first term of y(s) now yields
A+ 1)+ B+ A)>

y(t) = J.'f(u)—l—e"""sinh\/—i(t — u)du + f“(
0 .

J2 s+1)2-2
=L fwervsi - (AT B A
_ﬁjof(u)e smhﬁ(z wydu + e '¥ ( ) )

1 ¢ . B+ A
=— —t-wiginh/2(t — u)du + e”'{ Acosh/2¢ + inhy/2¢t}.
7 Lf(u)e sinh/2(t — u)du + ¢ ( cosh/2t 7 sin \/—)

Exercises 10.1

1. (a) Verily shifting property (3).
(b) Use (3a) and Table 10.1 to calculate Laplace transforms for the following:
Gy fuy =™ (ii) f(t) = e "cos2t + e*sin2t
(iil) f(1) = e*cosh 4t — ¢™*sinh 4t
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(c) Use (3b) and Table 10.1 to calculate inverse Laplace transforms for the following:

() [(s) = 1/(s* = 25 + 5) (i) fis)=1//s+3
(i) f(s) = s/(s2 + 4s + 1)

2. (a) Verily shifting prpperty (4).
(b) Use (4a) and Table 10.1 to calculate Laplace transforms for the following:

. 0 0<t<3 .. 0 O<t<a
(i) f(t)={t_2 >3 (ii) f(')'—{l ‘>a

| 0 0 O<t<a

i) f(0) = { <f<a ) fO={1 a<t<b

0 t>a
0 t>b
() Use (4b) and Table 10.1 to calculate inverse Laplace tr_ansforms for the following:

(@) [5) = e72/s? (i) fls) = e /(s> + 1)

© (i) f(s) = se™*/(s? - 2)
3. (a) Verify change of scale property (5).
(b) Use (5a) and Table 10.1 to calculate Laplace transforms for the {ollowing:
@) f(t) = 42 + sinh 2t (ii) f(t) = e** cos 4t
{c) Use (5b) and Table 10.1 t‘o calculate inverse Laplace transforms for the following:
o= o 1
) f(s) = 5/95* + 2) i) f6) = s
4. (a) Verify equation (6).
(b) Find Laplace transforms for the following functions:

) fh=t, 0<t<a, f(t+a)=[f()

.. 1 O<t<a

@iy f(1) = {—1 a<t<ig JUF2=/0
(iti) f(t) = |sinaz|

5. Verify equation (7b).

In Exercises 6-9, use convolutions to find the inverse transform for the function.

6.f(s)=s—(;—irTj 7~ﬂﬂ=6f:&F:75
8. J(s) =(7+—4)Z?TZ) 9. fls) =mz—_—9)
In Exercises 10~15, find the Laplace transform of the function.

10. f(t)={r21 ?f:gl ‘ 11, f(t)={t22t ?5:51
o=l 0TI e

t O<t<a
0 a<t<a

13. f(l)={ it +2a) = f(1)

0 O<t<a
. f(0) = 0 O<t<a s { |
. = t>a 15. f{t} = a<t<a-+
0 t>a+ 1
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In Exercises 16-25, find the inverse Laplace transform for the function.
4s + 1

- s 7 —

6. fO =573 17 SO = gt -0
- e'3’ - -2s

18. f(8)=;g 19. f(s)—s’+3s+2

5s —2

0. J0= 57 2 JO=3 g rs
= e(l-e™) Za__ S
22. f(s) sl 23. f(s) L
2 - 2
24. f(s)= P25 +3 25. f(s)=(s—2s_—4)—z

T+2+ T+ 25+5)

In Exercises 26-32, solve the differential equation.

26, y'+2y—y=¢" yO0) =1, y)y=2

27. Yy +y=2", y0)=y@©Q= 0

28. y'+ 2y +y=t y0)=0, y(0y=1

29, Y =3y +3y —y= t2e', y0y=1, y'(©0)=0, y'(0)y= -2
30. y“ +9y=cos2t, y0) =1 yx/2)= -1

3Ly =3yt 4 3y -y =12

32y —aly=f{

33. Verify that the Laplace transform of a function f(1) that is piecewise continuous on every finite
interval 0 < ¢ < T and is O(e") exists for s > «

34. (a) Prove that when n is a nonnegative integer, t" is O(e®) for every ¢ > 0.
(b) Prove that when (1) is O(e), "/ (t) is O[e"*] for every & > 0.

{a) Let f(¢) be O(e*) and be continuous for ¢ > 0 except for a finite discontinuity at ¢ = to > 0;
and let f(¢) be piecewise continuous on every finite interval 0 < t < T. Show that

L) = sf6) — £0) — e[ f(to+) — f(to—)):
(b) What is the result in (a) if £y = 07

36. Let f(t)and f'(t}be O(e™), let £'(t) be piecewise continuous on every finiteinterval0 <t < T,and
let f(1) have only a finite number of finite discontinuities for t > 0. Verify the “initial value

35.

w
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theorem,” -
lim sf(s) = lim f(2).
s— o (=0*
Assume the result that - -~ i
lim f(s) =0 %
s e
5

for functions that are piecewise continuous and of exponential order.

10.2 Laplace Transform Solutions for Problems
on Unbounded Domains

e Ry AL

In this section we illustrate the use of Laplace transforms on problems over unbounded
domains. Such problems do not require the complex inversion formuta of Section 10.3.
We begin with a heat conduction problem on a semi-infinite interval.
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xample 4: Solve the heat conduction problem
‘ 2
?ﬂr-ké—lzj, x>0, >0, (10a)
' ét o0x
U0,1) = U,, t>0, (10b)
U(x,0) =0, x>0, (10¢)

for temperature in a semi-infinite rod that is initially at temperature 0°C. For time
t>0,itsend at x = 0 is held at constant temperature U,. (This problem was solved
by Fourier sine transforms in Exercise 2 of Section 7.4)

" Solution: When we take Laplace transforms of PDE (10a) and use initial condition (10c), we

obtain

~ oU
=k .
sU = k& ( 6x2)
Since the integration with respect to ¢ in the Laplace transform and the differentiation
with respect to x are independent, we interchange the order of operations on the right:
' ~ 020

Because only derivatives with respect to x remain, we replace the partial derivative with
an ordinary derivative:

.
J s
%T—£U=Q x> 0. (112)

This ordinary differential equation is subject to the transform of (10b),
~ U,
U(0,s) = -s~° (11b)

For problems on finite domains, we have found it convenient to express general
solutions of equations like (11a) in terms of hyperbolic functions. On infinite and semi-
infinite intervals, it is advantageous to use the exponential formulation,

U(x,s) = Ae"s®x 4 Be~Velkx, (12)

Because U(x,t) must remain bounded as x becomes infinite, so also must U(x, s). We
must therefore set 4 = 0, in which case (11b) requires that B = U,/s. Thus,

U(x,s) = %e'”m‘. (13)

The inverse Laplace transform of this function is found in tables:

e—~.ﬁx X
Ux,t) = U, L1 = U, erf , 14
(x,t) A ( - ) ber C(ZJE) (14)
where erfc(x) is the complementary error function
Y 2 e
erfc(x) = 1 — erf(x) = —J. e du, (15) =
NERE
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Example 5:

Solution:

Chapter 10 Laplace Transforms

Notice that for any x > Oand any f > 0, temperature U(x, 1) is positive. This indicates
that the abrupt change in temperature at theend x = 0from 0°Cto U, is felt instanta-
neously at every point in the rod. In other words, energy is “transmitted” infinitely fast
along the rod, a property of the heat equation that we mentioned in Section 5.6. =

When U(0, t) is a function of time in this example, say U@©,t) = f1(t) transform (13)
is replaced by
(x,s) = fils)e ™. (16)

Because & ‘{e™V*} = [a/V at®)Je 40, it follows by convolution property (9b)

that
X

—x2)(4ku) d (17 )
e u a
2 knu?

U(x,t) = j’ filt —w
(1)

t
w3 (e — u)e ™ XA dy

X
2kn j 0
or, alternatively, that

Ux,t) = 2 J (t — u) 2 (u)e N du. (17b)

ZMO

In the next example we illustrate how a semi-infinite string falling under gravity

~ reacts to one end being fixed.

- A semi-infinite string is supported from below so that it lies motionless on the x-axis. At

time ¢ = 0, the support is removed and gravity is permitted to act on the string. If the
end x = 0 is fixed at the origin, find the displacement of the string.

The initial boundary value problem is

%i—{=czg—i)—;+g, x>0, t>0, (18a)

)0, =0, >0, (18b)

_ ¥(x,0)=0, x >0, (18¢)
Too plx,0) =0, x > 0. (18d)

where g = —9.81. When we apply the Laplace transform to the PDE and use the initial
conditions,

. L4 g
¥ =c" — 4+ -
s ¢ dx- s
Thus, §(x,s) must satisfy the ODE
d¥y st g
N—?yz——c—z—;‘ X>0, (193)
subject to the transform of (18b),
7(0,5) = 0. (19b)
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The general solution of (19a) is

byt X —sX, g
V(x,s) = Ae**/c + Be=sxle + 3

For this function to remain bounded as x —+ o0, we must set 4 = 0, in which case
boundary condition (19b) requires that B = --g/s3. Hence,

x, s) = ;‘-’3(1 — emoe), (20)

The inverse transform of this function is

2 2
}’(X,t)=%—g(t —g) H(t—)c—c), 1)

where H(t — x/c) is the Heaviside unit step function. What this says is that a point x
in the string falls freely under gravity for 0 < t < x/c, after which it falls with constant.
velocity gx/c [since for ¢ > x/c, y(x,t) = —(g/2(—2xt/c + x%/cY)]. A picture of the
= string at any given time ¢, is shown in Figure 10.2. It is parabolic for 0 < x < cty and .
b horizontal for x > ct,. As to increases, the parabolic portion lengthens and the hori- :

PO SO SRR

zontal section drops. .
y ’.
| x i
Cly i
{:
y = _g_xz(x = 2cty) :
2c 1,
1 y = 58'0
B —o12 L.
‘yure 10.2 280

It is worthwhile noting that this problem cannot be solved by Fourier sine

transforms because a constant function (¢ in this case) is not absolutely integrable on
0<x <o,

Exercises 10.2

Part A— Heat Conduction

\

1. Solve Exercise 3 in Section 7.4.

.E}how that every solution U(x, 1) of the one-dimensional heat conduction equation

. ou ok
| T T e T o,




e

364

Chapter 10 Laplace Transforms
which at time t = 0 has value U(x,0) = f{x), must have a Laplace transform of the form

U(x,s)=Ae"ﬁ‘+Be‘ sthx & M+M sinh -s-(x—-u)du,
sJo\ k K k

where A and B are independent of x. In Exercises 3-6 we use this result to solve -various heat
conduction problems on infinite and semi-infinite intervals.

'—53(;) Use the result of Exercise 2 to solve the heat conduction problem

v _ 2
ot oxt’

U©,1) = f1(), t>0,

Ux,0 =U, = constant, x>0

x>0, t>0,

(b) Simplify the solution when fi{t) = 7 = constant. {See also Exercises 4(b) and () in Sec-
tion 7.4.]

ﬂa) Use the result of Exercise 2 to solve the heat conduction problem

ou i)
—a;'-k-é-;‘z-, x >0, t>0,
3U(0,t)=__f_l(_t)_’ >0,
ox K

Ux,0)=U, = constant, x> 0.

(b) Simplify the solution when fi{t) = Qo = constant. [See also Exercises 5(b) and (c) in Sec-
tion 7.4.]

5. (a) Use the result of Exercise 2 to solve the heat conduction problem

i U 9 .
—a;t‘ = k—a;z—, x>0, t>0,
au(0,t
_ U0 v =i £ 0,

ax
U(x,0) =0, x> 0.

\\(b) Simplify the solution when f,(t) = Up = constant. [See also Exercise 6 in Section 7.4.]
6. (a) Use the result of Exercise 2, and the fact that the transform must remain bounded as

x =+ +0, to show that the transform of the function satisfying the heat conduction
problem

%%:k%;gz, —c < X < 0, t>0,
U(x,0) = UgH(x), —0< X < 0,
must be of the form
_ AeVse x<0
Ux,s) = )

U
Be™ VT + (2~ eV x>0

RM'
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(b) By demanding that the expression for G(x, s) and its first derivative with respect to x agree at
x =0, show that

~ U, (eYs*x x<0

(¢} Find the inverse transform U(x, ¢). [See also Case 2 for sdlution {47b) in Section 74.]

Part B— Vibrations
@ Show that every solution y(x, t) of the one-dimensional wave equation

a_.zy -_— czg.z_y + F(x’t)
at? ox? i
that also satisfies the initial conditions

Y00 = fx),  y(x,0) = g(x)

must have a Laplace transform of the form

V(x,5) = Ae*™ 4 Be*xtc l f (sf (u) + g(u) + M) sinh i(x — u)duy,
cs Jo P c

where A4 and B are independent of x. In Exercises 8 and 9 we use this result to solve vibration
problems on semi-infinite intervals.

@ At time ¢ = 0 a semi-infinite taut string lics motionless along the positive x-axis. If its left end is
subjected to vertical motion described by f£,(1) for ¢ > 0, find its subsequent displacements. (See
also Example 11 in Section 7.4)) _

9. Solve Exercise 8 if f(¢) represents a force on the end x = 0 of the string; that is, replace the

Dirichlet condition with the Neumann condition 3y(0,1)/dx = —17f(¢). (See also Exercise 8 in
Section 7.4.)

10.3 The Complex Inversion Integral

Finding the inverse Laplace transform in Section 10.1 was a matter of organization and
tables; we used properties (3b), (4b), (5b) (and partial fractions) to organize a given
transform f(s) into a form for which the inverse transform can be found in tables. In
Section 10.2, for PDEs on infinite and semi-infinite intervals, tables and convolutions
were once again prominent. For PDEs on finite domains, however, the situation is
diflerent; transform functions are so complicated that they can seldom be found in
tables. What we need, then, is a direct method for inverting the Laplace transform. In
this section we use the theory of functions of a complex variable to derive such a
formula.

We first note that the results in equations (3)—(9) remain valid when s is complex;
the complex derivation may be somewhat different from its real counterpart, but each
result is valid when s is complex.

.
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The following theorem shows that Laplace transforms are analytic functions of the
complex variable s.

Proof:

I is O(e™) and piecewise continuous on every finite interval 0 < t < T, the Laplace transform
fs) = f(x + iy) of f(1) is an analytic function of s in the half-plane x > a.

If the real and imaginary parts of f (s) are denoted by u(x, y) and v(x, y)

fis)=u+iv= jm e xHONf(1) de,
. 0

then u(x,y) = j‘ e ™ cos yt f(t)dt, v(x,y) = j‘ —e Msinyt f(t)dt.
(] o

To verily the analyticity of f (s), we show that u(x, ) and v(x, y) have continuous first partial
derivatives that satisfy the Cauchy-Riemann equations when x > a. Now,

je™* cos yt f(0) ot
{le"' sin yt f(t)l} <e sl

and since f(t) is O(e®), there exist constants M and T such that for all > T, 1f(0)] < Me™.
Consequently, whenever x 2 o >aandt>T,

‘e—x‘cosytf(t)‘ —-xt " —t
Xi at - (@—a’k
{le._x' sin y! f(t)‘ <e Me Me

and {ll:g ;’ ;:} < Lre"“u ®ldt + J‘ : Me ™" dt

T e(a-a')l )
< J e f (o)l de + M{a - a,}
0 ]

T
= j e f(ldt +

° o —

Thus, the integrals representing u and v converge absolutely and uniformly with respect to x and

yinthe half-planex 2 «' > a. Since f(t) is piecewise continuous, u and v are continuous functions
for x =2 «'. Now,

j‘” _6_(8_“ cos yt f(1))dt = j'n —te *cosyt f(r)dt
dx o

0

and i(—e_x' sinye f())dt = | —te"*cosyt f(B)dt.
1] 6y 0

Since (1) is Ofe="*"] for any & > 0 and is piecewise continuous on every finite interval
0 <t < T,a similar argument to that above shows that this integral is absolutely and uniformly
convergent with respect to x and y for x > « > x Because ¥ > xis arbitrary, it follows that this
integral converges to a continuous function that is equal to both du/dx and ¢v/dy for x > «.
We have shown, then, that the first of the Cauchy-Riemann equations Jufox = Cvfdyis satisfied

for x > «. In a similar way, we can show that ¢ujéy = —dv/dx, and therefore f{s) is analytic for

x> A ™




Section 10.3  The Complex Inversion Integral 367

To obtain the complex inversion integral for L™*{ f(s)}, we use the extension of
Cauchy's integral formula contained in the following theorem.

Theorem 4
Let f(z)bea complex function analyticina domai.n containing the half-plane x > y(Figure 10.3),
and let f(z) be 0(z~*)t (k > 0) as |z| — oo in that half-plane. Then, if 24 is any complex number
with real part greater than 1
1, THE 17
S(20) = —— lim f &dz. (22)
20 gy Jyoig 2 — 29
Im
L3 Zo
5 Re
. Figure 10.3

When a function f{(t) is O(e™), we know that its transform f (s) is analytic for x > «
(see Theorem 3). It follows from (22) that when f(s)isO(s™ %) in a half-plane x > y > «,
we can write f(s) in the form

fs) = ——21—, lim Jw&dz

Tgaw Jy_ig 2—5

for x >y, If we formally take inverse transforms of both sides of this equation and
interchange the order of integration and % "', we obtain

1 . y+if - - 1 d 1 l y+ig uF d
J0 = =3 lim fﬂ - f2 (? z) 2 =5 lim L_me f(z)dz.

This expression,

y+ip

o =
= — st 3
’f(t) 2ni plinl J;—m “Yeds @3

' A function f(z) is said to be 0(z7*) as |z] — o if there exist constants M and r such that |f{(z)z*| < M for
|z} > r.
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is called the complex inversion integral for the Laplace transformation. Although itisan
integral in the complex plane along the line x = 7, it can be written as a complex
combination of real improper integrals. But even for very simple functions £(s), the
integrations involved in this real form are usually very difficult (see Exercise 17).
Fortunately, in Theorem 7 we prove that residues of e*f (s) may be used to evaluate the
integral. First, however, we give conditions on a function f(s) sufficient to guarantee
that a function f(t) exists whose transform is f(s) and that f(t) is given by this inversion
integral.

Theorem 6

Let f(s) be any function of the complex variable s that is analytic and 0(s™*), k > 1, for all
s = x + iy in a half-plane x = x. Let also f(x) be real when x 2 . Then the inversion integral
of f (s) along any line x = y(y = «) converges to a real-valued function f(t) that is independent
of y and whose Laplace transform is f(s) for x > a. Furthermore, f{t) is O(e*), it is continuous,
and f(r) =0fort <0

The conditions on f (s) in this theorem are severe. They are not, for instance,
satisfied by f(s) = 1/s, since this function is O(s™!). By qualifying the function f(f)
instead of f(s), it is possible to relax conditions on the inversion integral formula.

Proof:

If f(s) is the Laplace transform of any function f(f) of 0(e*), which is piecewise smooth on
every finite interval 0 < ¢ < T, then the inversion integral of f(s) along any line x = y > a exists
and represeats f(1). At any point of discontinuity of f(t), the inversion integral represents
[f(+) + f(t—)1/2,and if ¢ = 0,1t represents f(0+)/2.

Define a function
t<0

0
g(6) = {e""f(t) >0 where y > «.

Then g(t) is piecewise smooth on every finite interval 0 <t < T,andif T'is such that | f(1)] < Me™
fort > T,

T
0

on lg(t)‘dt = jme"‘lf(t)ldt < j e " f(ldt + Jw e "*Me* dt
-0 o T

T —(y~-0T
=j i folde+ M

0 7=

that is, g(t) is absolutely integrable on — 20 < <% Consequently, g(t) may be represented by
Fourier's integral formula [see equation (6} in Chapter T}

gle+) +gU=) _ J [(LJ J(x)co0s ,-.xdx>cos;.t
2 o \7 ),
l 0
+ (; j g(x)sin Ax dx) sin ).t}d).

j j‘ g(x)cos At — x)dx dA. (24)
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But because cos A(x —¢) and sin A

(x — 1) are even and odd functions of 4, respectively, it follows
that

] © ® ©
j f g{x)cos A(t — x)dxdi = j f g(x)cos A(t — x)dx dA
—® J m 0 -

and

/] ® © fo ’
f f g(x)sin A(t — x)dx di = —f J. g(x)sin A(t — x)dx dA.
—® J o 1] ~®

This means that we can replace (24) with

g(t+);'g(t'—) =51’;f°° r g(x)cos At — x)dxdi
+§% f: f : g(x)sin A(e — x)dx dA
1 (e (= :
3 | g(x)e* N dx dj
=_1_ . 4 ac]” —idx
eim [ j_mg(x)e dx di.

Because g(x) vanishes for x < 0 and is equal to e” 7 (x) for x > 0, we may write

= rp @
gt+) + g(_t ) _1 lim oidt f e~ () dx dd
2 21 g J g 0
1 lim ¥ e f(y + id)da
zn fo J-8 .

We now regard this integral as an integral along the line x = y in the complex plane by setting
s =y + il and ds = i dA. Multiplying both sides of the equation by e, we obtain

ew<w> = —1—- lim Jpr e*f(s)ds.
ig

¥

But from the definition of g(t), we see that when ¢t > 0, e[gt+) + gt —12=[fC+) +
f(t=)1/2, and whent = 0, e"[glt+) + g(t—)1/2 = fO+)/2. Thus,

— y+i
e tfes) Ly J ’ ey ds. .
2 y—ip

One might argue that Theorem 6 is of little use in applications since we do not
know f(z); it is precisely f(z) that is the unknown in the problem. For instance, suppose
the Laplace transform was applied to an ODE {ora PDE)in y(t) and some analysis was
performed, leading to an expression for $(s). It now remains to apply the inverse
transform to find y(t). But how then can we use Theorem 6? What we do is ignore the
conditions of the theorem and simply apply the inversion integral to y(s) to obtain a
function y(t), a function that we hope is both the inverse transform of ¥(s) and a solution
to our differential equation. To verify that this is indeed the case, we can proceed in two
ways. First, we can take the Laplace transform of y(t), and if we obtain y(s), there is no




s
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question that y(1) is the inverse transform of ¥(s). Alternatively, we can set aside
Laplace transforms completely and verify that y(t) is a solution of the differential

equation with which we began.

As we have already mentioned, the inversion integral is seldom used to find inverse
transforms; it is circumvented with residues of the complex function e*§(s). The main
argument of the method is contained in the following theorem, wherein f(s) is as-

sumed to satisfy conditions like those of Theorem 5 or Theorem 6.

Theorem 7

Let f (s) be a function for which the inversion integral along a line x = y represents the inverse
function f(t), and let f(s) be analytic except for isolated singularities s,(n = 1,. ..) in the half-
plane x < y. Then the series of residues of e*f(s) at s = 5, cOnverges to f(¢) for each positive ¢,

£(¢) = sum of residues of e"f (s) at its singularities,

provided a sequence C, of contours can be found that satisfies the following propertics:

(1) C, consists of the straight line x = yfromy — i, toy + ip, and some curve I, beginning

aty + if,, ending aty — ip,,and lyinginx <v,
(2) C, encloses Sy, S24.-+s Sui
(3) lim, . , B, = o0; and

(4) lim, . j\ e"f(s) ds = 0 (Figure 10.4).

Ta

Y + B

Re

Yy = B,

Figure 10.4

Proof: Since e"f(s) is analytic in C, except at 5¢,.... Sa, the residue theorem states that
Sum of residues of l ~
o = e™f(s)ds
ef(s)atsy,..., Sa 2ni Ve,

2 ¥~ ifn

i yHifn 1 -
= e J ef(s)ds + =— j. e*'f(s)ds.
i Jr,

O} T S
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When we take limits on n [and use conditions (3) and (4) in the theorem],

Sum of residues of . v _
(e%) { esidue S) = im L-m efi(s)ds = £1). .

It is not essential, as condition (2) requires, that C, contain precisely n of the
singularities of f(s). In fact, this could be very difficult to accomplish, depending on how
the singularities are enumerated. What is essential is that as n increases, the C, expand
to enclose eventually all singularities of f{(s). -

As a result of Theorem 7, finding the inverse transform of a function f(s) is now a
matter of calculating residues of the function e®f(s) at its singularities. When Spisa
singularity of e’ff(s), the residue at s, is defined as the coefficient of (s — s,)! in the
Laurent expansion of ¢*f{(s) about so- It can be found in one of two ways:

(1) Find the Laurent expansion of e*f(s) about Sg, Or at least enough of it to .
identify the coefficient of (s — s,)".

(2) When it is known that s, is a pole of order m, the following formula yields the
residue of ¢*f(s) at s,:

. . { gt e C
Res(ef(s),50] = ,hj: [m a‘s'm((s — 5o)"e"f (S))} (25)
= 1 . i
Example 6: Use Theorem 5 to find inverse transforms when f(s) is equal to (a) pol > 2 aninteger; .
(b) 1/(s2 + 9); (c) s¥(s? + 1)~
Solution: (a) The function f (5) = 1/s™ has a pole of order mat s = 0, as does e“f(s). According to
equation (25), the residue there is
. dm—l o . dm—l “ tm—l
i =1 T e ) = oM T =

The contours T, in Figure 10.5 clearly satisfy conditions (1) and (3) in Theorem 7.
Furthermore, on I,

en e(xHy)x

sm

ext e
= e < e
n n

= m_imf

n-e

2nne'  2net t

Thus, P

and this expression approaches zero as n — 0. Consequently, the [, satisfy condition
(4) of Theorem 7, and by this theorem,

_ 1 lrn-l
ol l{F} RCENN

' We have used the foilowing result to arrive at this inequality. When | f(2){ < M on a curve C of finite

length L,
U J(z)dz
c

<ML,

I
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Tas = ne® ﬂ‘ + iBa
9,<0=<2m — On /

KT

(b) The function fi)=1 /(s* + 9) has poles of order 1 ats = + 3i, as does e"f(s).
The residue at 3i is

.. ) (s — 3i)e*

e - PN A
Res(e (311 = I, &7 306 — 3)
Similarly, Res[e“f~ (s), —3i] = (i/6)e™>". On the contour I,(n=4)in Figure 10.5,

\ es( \ 18(““’"‘ exl e(
r =

e:m
= — = — =€
6i

€ = < .
s+ 907 sl -9 n:—9 n*-9
e” 2nne'
Thus, Ur.. s24+9 ds| <39

and this expression approaches zero as 1 — 0. By Theorem 7, then,
1 PV S |
b Vo e - -3it .. _gin 3t.
Z (s’ T 9) A +ge 3sm

(c) The function f(s) = s*/s* + 1)? has poles of order 7 at s = +i, as does e (s).
The residue at i is

WFa 1t d{ (s—i)e's’
RCS[e f(s)) l] - ‘:T‘ Z;((S + i)z(S . 1)2)

2 st sty st s
_ lim((s +1)2(2se” + ts’e™) sZet(2)s + 1))

s—i (S + 1)4
1.
= ze"(t - l)
Similarly, Res[e“f(s), —i] = (1/4)e”"(t + i) On the contour [, (n = 2) in Figure 10.5,
' szesz < ‘S‘Zex( < nze(
7+ D s - 02~ (= 1Y

s2e* 2nnle!
Thus, S it
us Hr.. o l)zds\ < o 0




<'xample 7:

Solutions:
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and this expression approaches zero as n — co. By Theorem 7, then,

2

More complicated illustrations of Theorem 7 are contained in Example 7. This
example is more typical of problems encountered in Section 10.4, where Laplace
transforms are used to solve initial boundary value problems.

1. | t 1.
.Sf’"((szi\”z) =Ze"(t —-i)+ Ze‘"(t + i) = 5C0st + 5sint. ]

Find inverse transforms for the following:

sinh ssinh sx

- sinh \/; x
@) f(s) = ssinh s s¥coshs

nh \/E ’
(a) The function f (s) has singularities at the zeros of sinh \/.;; that is, when \/s = nni or
s = —n’n?, n > 0 an integer. To determine the nature of the singularity at s = 0, we
find the Laurent expansion of J(s) about s = 0. We do this with expansions of the
hyperbolic functions:

®) f(s) = ;ls(l — cosh sx) +

\/§x+i(\/§x)3 $oeen
b L K] 1 s, 4
f(3)=-s‘ T =;<x+g(x ——x)+...).
Vs + 55+

Consequently, f (s) has a pole of order 1 at s =0, as does e"f(s). The following
expansion shows that the residue of e"f(s) at this pole is x:

(o B o)

1 s 3
—-s—(x+g(6xt+x —x)+-~).

Because the derivative of sinh s does not vanish at the remaining singular-
ities s = —n?n? (n > 0), these are also poles of order 1, and the residues of e“f(s) at
these poles are given by limit (25):

. sinh\/s x sinhnnxi . s + nlg?
lim (s +n2n2)e"f\/;—= e itk m -—
5= —nin? ssinh/s

L’Hépital's rule can be used to evaluate this limit, which, combined with the facts that
sinhif = isin 0 and coshi8 = cos 6, gives, for these residues,

. . 1
sinanx lim

~ a2z |
T cosh/s
2ys

7.2 - -
THIRT s—-n2m? sinhy's

i
nin?

~nin?
nlndy
4

< o~ nink hmi
2.2
new

sin nmx

cosh nni

2 . 2(—-1)" .
= —e " gin nnx = ——)e"‘z“" sin nzx,

nr cosnn nmn




374

Chapter 10 Laplace Transforms

Thus, the sum of the residues of e"f(s) at its singularities is

fle)y=x+ 2 Y D nee i pax.
T a=1 n .
Verification that this function is the inverse of £(s) still requires the establishment of a
sequence of contours satisfying the conditions of Theorem 7. We omit this part of the
argument. Transforms of this type arise in heat conduction problems.
(b) This transform has singularities at s = 0 and s = (2n — 1)7i/2, n an integer (the

zeros of cosh s). The Laurent expansion of f (s) about s = O canbe found by expanding
the hyperbolic functions in Maclaurin series:

~ { six? s*x*
Fo =551 - s

s? s8
s —
N ERETRET six
+;3 1 pe sx + 3 +
+E*!+‘-ﬁ+

_Xmn_ Xs, .3 1
—-25(2 x)+24( x? + 4x 8) 4+ -

Consequently, f (s) has a pole of order 1 at s = 0, as does e“f(s). Multiplication of this
series by the Maclaurin series for e* gives
(s1)?

stF(s) = 60" WX - xS _
ef(s)—(l+st+ 2!+ )(25(2 x)+24( x3 + 4x? —8) + >

X xt
—‘2;(2*")‘*'7(2—3‘)4-“-,

and therefore the residue of e"f(s) ats =0is x(2 — x)/2.

Because the derivative of coshs does not vanish at s =(2n — 1)mi/2, these
singularities are also poles of order 1, and the residues of e*f(s) at these poles are given
by the limits

2n — i sinh ssi .
lim (s —-(——"——1—)n—1>e“<;13(1 — cosh sx) + M)

3
s=(3n— 1ymis2 2 s3>coshs

et op — Omi . (2n = Daxi s —(2n — Yni/2
- —(2n — 1)3n%/8 sinh 2 sinh 2 s-(ziulinl)m'/l ~ coshs
Se(Zn—l)xu‘IZ ) (2" - . (2'1 — lynx . 1
Smogaet T 2 rcan- ez Sinh s
(using l'H6pital‘s>
rule

- § s AT A 1 P A TV A ALY A wewe
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_ 8(__ 1)n+le(2n-l)xti/25in(2n — l)nx |
T @n=-1)%% 2 L Qn— Dmi
sinh———

8et2n - imtis2 in (2n — Dnx
(2n — 1)3x3 2 ’
The sum of the residues of e*f(s) at its singularities is therefore

x 8 ® e(Zn—l)nu‘/Z . 2" _- 1 nx . .
JO=5Q-x)-= ¥ 3sm( ) .
2 Wy 2n—1) 2
To simplify this expréssion, we separate it into two summations, one over positive n and
the other over nonpositive n, and in the latter we set m = [ — n:

X 8§ = e(Zn—l)uu'IZ . 2”—1)7!)(
F10) =5(2 —x)—F.=1 an T sm( 3
g - e(2i.-1)ui/2 . (2"— 1)1!X
RS- T
8 2 eln limi2  (3p _ Dax
P T T T I
8 @ el-m-ilmiz Py gy |]nx
TR AR —m P 2 ‘
If we now replace m by n in the second summation and combine it with the first,
8 & eln-lmilz  (Op _ [)ax
e -1 T3
8 2 e-(a-nminz 2n — rx
TR e n—1p T

X
=52 -x) -

fO=3@-x-

x 8§ = e(Zn—l)xu’/Z + e—(zn-nmlz . (2!1 _ l)nx
=—(2 —=x)— —

P P @n - 1)° M
X 16 = 1 (2n— Dt . 2n — nx
_2(2—x)—Fn;(2n_1)3cos 3 sin 5 )

Once again, we omit verification of existence of a sequence of contours satisfying
Theorem 7. Transforms of this type occur in vibration problems. L]

Exercises 10.3

In Exercises 1-16, use residues to find the inverse Laplace transform of the given function. In
Exercises 1-5, verify the existence of contours satisfying the requirements of Theorem 7; in
Exercises 616, neglect this verification.

3. fls) =

1. f(s) =s5/(s - 1)3 2. f(s) = s/(s* + 4)?
= st2
si(s + 3) & f6) = s+ D*s —3)°
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- s2 -~ s
. = 6. R
S SO =T e v 8 fo =
. f) = 8. J) = sz
B P TE YTt - 25+ 2)°
9. fis) = st 10. f(s)= s
I T -+ 22 - I =T s + 2)?
-~ 1 si'nh\/; x - sinh sx sinh s(1 — )
11, f(x,s) —;(x ~m> 12, f(x,u,5) = ~sinhs
13. fix,s) = 2sinh sx (t — coshs) + 2 (coshsx — 1) + i(l — x)
© IV T Ysinhs 53 s )
- 1 coshsx
14 fxs) = 3t STsinns
~ sinh sx
15. =
5. S8 = G x%)sinhs
~ sinh sx
16. = ————
Jx9) (s® + n?)sinhs
17. We have claimed that to use inversion integral (23) directly is usually impossible. Set up the
complex combination of real improper integrals for (23) when f(s) = 1 /s%; that s, express (23} in
the form
it ;
& ‘{s—z} =1, +il,,
where I, and I, are real, improper integrals. Use the liney =L
10.4 Applications to Partial Differential Equations
on Bounded Domains
Laplace transforms can be used to eliminate the time variable from initial boundary
value problems. This reduces the PDE to an ODE or a PDE with one fewer variable.
We illustrate with the following examples.
Example 8: Solve the heat conduction problern
oU 92U
— = k—, 0<x<L, t>0, (26a)
ct 0x
U@, =0, t>0, (26b)
U(L,t) =0, t >0, (26¢)
U(x,0) = x, O<x<L. (26d)
Solution: When we take Laplace transforms with respect to t on both sides of PDE (26a) and use

property (7a),

. 30
U(x,s) — x = k—.
sU(x,s) — x E

1
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Thus, U(x, 5) must satisfy the ODE

0 s - x
—_——U === 27
o kTR @ra)
subject to the transforms of (26b, c),
U(0,s) = 0, (27b)
U(L,s) = 0. (27¢)
The general solution of ODE (27a) is
U(x,s) = C, cosh S x + C,sinh Sx + f—,
k k s
and boundary conditions (27b, c) require that ‘
s . s L
0=C,, 0=C,coshﬁL+Czsmh\/—’;L+;.
From these,
. inh/s/k
U(x,s) = 1(x _ Lsinhyis/kx x). (28)
s sinh/s/k L

It remains now to find the inverse transform of U(x,s).We do this by calculating the
residues of e*U(x, s) at its singularities. To discover the nature of the singularity at
s = 0, we expand U(x,s) in a Laurent series around s = 0:

U(x,s) = l(x _ L{V/s/kx + (/s/kx)*/3! + ])
s VSIkL + (Js/kL)* /31 + ..

1( x + sx}/(6k) + ---
s\F 71 + sL/(6k) + ---

=1<M+...)=&x_’>

terms in s, 52, ....
s\ 6k g+

It follows that U(x, s) has a removabl~c singularity at s = 0.
The remaining singularities of U(x,s) occur at the zeros of sinh</s/kL; that is,
when /s/kL = nni or s = —n?n?k/L?, n a positive integer. Because the derivative

of sinh «/s/k L does not vanish at s = —n2n2k/L2, this function has zeros of order 1
at s = —n?n?k/L% It follows that U(x,s) has poles of order 1 at these singularities,
and, according to formula (25), the residue of e*U(x,s) at s = —n*n2k/L? is

. ( nznzk)e“< Lsinhds/kx)
lim St | —|x -
L s sinh/s/kL
g-niniL? L hnnxi i s+ nink/L?
———-3-5L sinh—— lim —— "
—n*rik/L* L s~ -n2zuge2 sinh+/s/kL

s —adnlkl?
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L'Hépital's rule, together with the facts that sinh i = isin8 and cosh i6 = cos 8, yields

73
il - . nmnx . 1
Tize aelkL? sm—L—— im L
nn —n2r2k/L2
oM cosh+/s/kL
2 ks
L g PRX 1
= aikt !

~——coshnni
nnki

— _2_[‘_(__ 1y + le—nlekr/l} sin nnx .
nw L

“We sum these residues to find the inverse Laplace transform of U(x,s):

[ _1 n+ 1 ,
vt =%‘ I AR sin"—"zx.
n=1

(29) =
n

Before proceeding to further problems, some general comments are appropriate:

(1) In the above example, the Laplace transform was applied to the time variable ¢
to eliminate the time derivative from the PDE and obtain an ODE in U(x,s). The
Laplace transform cannot be applied to the space variable x, because the range of x
isonly0 < x < L. Itis the power of finite Fourier transforms to eliminate the space
variable, not the Laplace transform. This is why Laplace transforms are applied to
initial boundary value problems and not boundary value problems.

(2) The Laplace transform immediately incorporates the initial condition into the
solution, and boundary conditions on U(x,t) become boundary conditions for
U(x,s). Contrast this with finite Fourier transforms, which immediately in-
corporate boundary conditions and use the initial condition on U(x, ¢) as an initial
condition for U(4,,1).

(3) Mathematically, the solution is not complete because the existence of a
sequence of contours satisfying the properties of Theorem 7 has not been
established, but we omit this part of the problem. We could circumvent this

difficulty by now verifying that function (29) does indeed satisfy initial boundary
value problem (26).

Problems with arbitrary initial conditions are more difficult to handle. This is
illustrated in the next example.

Solve the vibration problem

o’y  ,0%

'at—z—-C 5;—2-, O0<x<L, t >0, (30a)
y0,0)=0, ¢>0, (30b)
y(L’ t) = 01 t> 01 (30C)
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¥(x,0) = f(x), O<x<L, (30d)
y{x,0) =0, O<x<L (30e)
(see Exercise 10 in Section 3.2, with g(x) = 0].
Solution: When we take Laplace transforms of (30a) with respect to ¢t and use initial conditions
(30d, ¢) in property (7b),
s —sf(x) = 023%’-

Thus, y(x, s) must satisfy the ODE

d*y  s?
dx "f = e f(X) (31a)
subject to the transforms of (30b, c),
¥(0,5) = ¥(L,s) = (31b)

Variation of parameters (see Section 3. 3) leads to the following form for the general
solution of (31a):

ylx,5) = C, cosh— +C, smh— - I f(u)smh (x — u)du.

Boundary conditions (31b) on j(x, 5) require that

: L
0=2C,, 0=C1cosh£+C25inhiE—l f(u)sinhi(L——u)du,
c ¢ c¢lo c

from which
smh——- {
¥(x,s) ————-—J f(u)smh —(L — u)du — ~j f(u)smh ~(x — u)du
csinh—
c
L l x s
= J‘ SW)p(x,u,s)du — — J. Sf(u)ysinh=(x — w)du, (32a)
0 C Jo c
sinh Nl sinh E(L — u)
where plx,u,s) = < : (32b)
' ¢ sinhs—c—

To obtain y(x,t) by residues requires the singularities of y(x,s). Provided f(x) is
piecewise continuous, integration with respect to uin(32a)and any differentiation with
respect to s can be interchanged, and therefore the second integral in (32a) has no
singularities. Singularities of the first integral are determined by those of p(x, u,s). For
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the singularity at s = 0, we note that

.. Sx
sinh—

1
p(x,u,s) = —sinhE(L —u)
c ¢ .
sinh —

YE )+_si_(L_u)3+... :
T Z( TP sL 1(3L>3
+— +¢..

c 3\ ¢
x3s2
+ +
s s? X T 6l
=(C—2—(L—u)+gc—‘(L—u)3+---> 7352
L+ =g+
6¢

x .
=Es-2—(L—u)z+tcrms ins%,s3,..., g
and therefore j(x, u, s) has a removable singularity at s = 0. The remaining singularities §
of p(x,u,s) are s = nrci/L, n a nonzero integer. Because the derivative of sinh (sL/c) ‘5
does not vanish at s = nnci/L, these singularities are poles of order L. According to “
formula (25), the residue of p(x,u,s) at s = naci/L is "f
. »
. anci\ . o
lim (s - ———) Flx,u,s) i
s—nxci/l L ;‘»
=
. .S T
. smhgsmh-(l, - u) S
- lim (s 3 nna) ¢ c :
s—+axci L . L 1'
ik csinh>= ®
¢
nmnci :
o 4
. i . i(L — . F
= smh@smh nai( u) Him :
L s—nncifl. . sL
c¢sinh —
I
. nmx . onmw . t irA
= —sin—sin—(L —u) lim ———— (by I'Hopital's rule)
L L s—nxci/L sL
L cosh—
¢
(=" . nanx . nau 1

L n L Sln_—L—,—cosh nmni
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The residue of e* times the first integral in (32a) at s = nnci/L is now

Him ( nct) f f(W)p(x,u,s)du.

s—axci/l

381

When we interchange the limit on s with the integration with respect to u, the residue

becomes

f: lim [e“(s - i"‘—“)f(u)ﬁ(x, " s)] du

L nax . nnu
= nmetiiL f (u)— sin——sin—du
J; L L

1 ; .
= Z‘-e""“‘”‘sinﬁ-;j—x L f@) sm%du.
The inverse transform of j(x, s) is the sum of all such residues:

n= -0

y(x,t) = —[l: Z emmetit. gj 11X J‘ flu )sm—du

n#Q
To simplify this summation, we divide it into two parts,

y(x,t)=zz emetilL gjn X T j flu )sm——du

1= —a

+i Z e""‘""‘sm——J‘ Sflu )sm-—du

and replace n by —n in the second term:

1 = . L
Yot = L § g o P j Fysin™ du
L& o L

nx) JLf(u)sin(- nu)du
0

L
. nnx . . . hnu
Sln__(ennm/L 4 e—-nncu/L)J. f(u) SIH—L—dU

1

+ i e‘mu:u/L < _

n=1

ZZSinn—Z— fnct f f(u)sm-——du

i nnct . nnx
n—-,
= L L

L
where a, = EJ S ) sinﬂlidu.

(33)

(34a)

(34b)

This is identical to the solution obtained by separation of variables in Exercise 10 of

Section 3.2 when g(x) is set equal to zero.
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Examples 8 and 9 were homogeneous problems. Convolutions can be used to

handle problems with nonhomogeneities.

Example 10: Solve Example 8 if the end x = 0 of the rod has a prescribed temperature f(t) and the
initial temperature is zero throughout. Compare the solution with that obtained by

eigenfunction expansions and finite Fourier transforms.

Solution: The initial boundary value problem in this case is
ou o
—=k—, O <L, t>0,
o ox? =X

uo,n=/@ t>9
U(L,t) =0, t>0,
U(x,0) =0, 0<x<L.

(35a)

(35b)
(350)
(35d)

When the Laplace transform is applied to PDE (35a) and initial temperature (35d) is

used, the transform function U(x, s) must satisfy the ODE

20 s ~

Ti-x-f'—ic'u=0, 0<x<L,
7, = fs),
O(L,s) =0.

The solution of this system is

. f(s)sinh /s/k(L — x)
- U(x,s) = )
() sinh/s/kL

(36a)

(36b)
(36¢)

(37)

To find the inverse transform of this function, we first find the inverse of p(x,s) =
sinh«/s/k(L — x)/sinh Js/kL. This function has singularities when s/kL= n=mi or
s = —n*n2k/L? n a nonnegative integer. Expansion of p(x,s) in a Laurent series

around s = 0 immediately shows that p(x, s) has a removable singularity at s = 0.
The remaining singularities are poles of order I, and the residue of e*p(x,s) at

s = —n*n?k/L?is
. ( n1n2k> sinh/s/k(L — x)
lim s+——})e .
s— —n2nlk/L? L sinh ’S/k L
_ e-,,z,lu,l';‘z sinh nmi(L — x) im s+ l'l7'7'67'k/L2
L se-memer sinh/s/kL
= ie”" M 5in rll =X iy !
L s —ninlk; L
. kit cosh/s/kL
2Jks

nnx  2nkmni

;- alnlkyL? LR
= je MR P sin— 5
L L*coshnmi

2nkn
Lz ¢

—nlg? , . X
nlnlke/L sin

PSR o T Fadaniess 2 I GATONIRD RER TR
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Convolutions can now be used to invert U(x, s) in (37):

Ulx,0) = 7' [ f(s)(x,5)] = wa ()p(x,t — u)du

2kn & -nix? u
=1, f (u) <_LT “; ne~mwke Lt gip 17X T )du
= _Z_an i c(t) sin =, (38a)
E: o= L
[
where colt) = n[ S(u)e= = kel gy (38b)
)

With eigenfunction expansions (from Section 3.3), the dependent variable is
changedto V(x,t) = U(x,t) ~ f(¢}(1 — x/L), resulting maproblem with homogeneous
boundary conditions for ¥(x, t),

vV y
‘;—t ?32 f(t)( ), 0<x<L, t>0,
V(0,t) =0, t>0,
V(L,t) =0, t>0,

V(x,0) = ——f(O)(l -~ %) -0, O<x<lL,

provided we assume that f(0) = O.[The f(0) # O situation is discussed in Exercise 14.]
An eigenfunction expansion

V(x,t) i a,ft) sin
- L
leads to

-2 [t
t) = ¢ ~n1n’k(l—u)/L1d ,
) =22 || e u

and therefore

Ux,0 = £t )( - —) =) (nf Syt du) sin - 09

Ta=1

That this is identical to (38) is verified by integrating (38b) by parts,

LZ . . 4
= —n2rk(t —up Lt
0 n{———nznzk fwe }0

t LZ s N
—-n (e " n2k(t —u)/L du
J‘o 7!27{2’( f( )

LZ LZ t , k(e ) LE
= Wf(i) T jof(u)e Ke=wiLs dy,

3

W
3
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and substituting into (38a):

AU = [ L? LY [ . e . Anx

Ut =77 ¥, (Tf Ur Lf (et "") sin 7~
3 o 2 oonmx 22 (U aete-an? . nux
_f(t).; —sin— 7tn:x(nj.of(u)e du | sin =

This is identical to (39) when we notice that the coefficients in the Fourier sine series of
1 — x/L are 2/(nn).
The finite Fourier transform

fh) = j 70, % sin ™ dx

L
0
applied to problem (35) gives the solution in form (38). "
When we write solution (38) for problem (35) in the form '
2kn & 2 .
Ux,t) = ——f— Y be kL smﬁ, (40a)
L? .= L
t
where b, = nJ‘ fw)e™ =L du, (40b)
0

" we see that the exponentials in (40a) enhance convergence for large values of t. For

instance, if the temperature of the left end is maintained at 100°Cfort > 0, temperature

~ function (40) reduces to

200 &2 1 nnx
U, ==Y =(1 — e "= ") sin——, 41
Ot =— n=1n( e )sin— a1)
which can also be expressed in the form
X 200 & 1 _ ;502 . NX
— l Ty - nlx?kt/L -,
U(x,t) 100( L) - "Zlne sin— (42)

Suppose the rod is 1/5 m in length and is made from stainless steel with thermal
diffusivity k = 3.87 x 107¢ m?/s. Consider finding the temperature at the midpoint
x = 1/10 of the rod at the four times t = 2, 5, 30, and 100 min. Series (42) gives

1 1 200 2 1 nn
ul—=,120)=100{ t — =) —— L1 —o.145861n2 o T
(10 ) _ (1 2> n ,.Z‘lne St

=0.10°C;
l 1\ 200 21 nm
U{ —,300} = ) -= L -0.28646526a% 30
(s00) - (1 3) - 2 £, rmomernan’
= 3.80°C;
! 1\ 200 = I . nm
Ul —,1800}=1 o)== U Lusroser AT
(10 ) 00<l 2) n ,.; nt s
) =138.6°C;

TR 2, MR gz o AD RN (32 BN %y ,g‘..__\#
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1 _ 1 200 & 1 5359308202 N
U(l—6,6000>—100<1 —:2‘)— gl ;e sin 7
=49.8°C.

To obtain these temperatures, we required only four nonzero terms from the first series,
three from the second, and one each from the third and fourth. This substantiates our
claim that as ¢ increases, fewer and fewer terms in series (42) are required for accurate
calculations of temperature.

Laplace transforms can be used to give a completely different representation for
the temperature in the rod when f(¢) = 100. To find this representation, we return to
expression (37) for the Laplace transform U(x, s) of U(x,t) and set f(s) = 100/s, the
transform of f(t) = 100:

O(x,5) = 100sinh y/s/k(L — x) _ 100 o/ =x) _ o= VER(L~x)
’ ssinha/s/kL 5 eV _ VL

100 e—\/WL(em(L—xl . e—\/s—/E(L'!))

s 1 — e—ZJs/kL

If we regard 1/(1 — e”2Y**L) a5 the sum of an infinite geometric series with common

ratio e 2Y"*L we may write
5 100 /efke _ - Va2t -x)y & - 20vFRL
U(X,S) = ______(e stkx _ o~ /s[k2 x)) z e~ 2nVsl
§ =0
) @ o~ VSk(2aL+x)  ,~Jsk(2n+ 1)L - x]
=100 ) ( - > (43)
n=0 5 N

Tables of Laplace transforms indicate that

(7))

where erfc(x) is the complementary error function in equation (15). Hence, U(x, t) may
be expressed as a series of complementary error functions,

X 2nL + x 2n+ 1)L — x
Ulx,t) =100 IR ik A S
(x,1) ngo[erfc( T > erfc( N >}

L] 2n + )L — x> <2nL + x>]
= 100 erf| ———— ) —etf| ——— 1} |, (44)
;0[ ' ( 2kt 2kt

where we have used the fact that erfc(x) = 1 — erf(x). This representation of U(x, t) is
valuable for small values of r [as opposed to (42), which converges rapidly for large ¢].

To understand this, consider temperature at the midpoint of the above stainless steel
rod att = 300 s:

U(-l—, 3oo> 100§ [m( 2n + 1)/5 — 1/10 )_erf< 2n/5 + 110 )]
10 o 2/3.87 x 1075(300) 2387 x 10-5(300)
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For n > 0, all terms in this series essentially vanish, and

U(I%, 300) = 100[er{(4.40) — erf(1.467)] = 3.80°C.

For ¢ = 1800,

1 & 2(n+1)/5-1/10 2n/5 + 1/10 )]
-, = —erf .
U(lo 1800)4 lOOnZo[erf(z\/lm X 10'6(1800)> “ (2J3.87 x 107%(1800)

Once again, only the n = 0 term is required; it yields

1 \ .
U(—l—é, 1800/ = 38.6°C.

Finally, for ¢ = 6000,

1 e 2n + 1)/5 —1/10 ) ( 2n/5 + 1/10 )]
2 = of —erf .
U(IO' 6000) loonzo[e (2\587 x 1075(6000) ° 24/3.87 x 1075(6000)

In this case, the n = 0 and n = 1 terms give

10’

For larger values of ¢, more and more terms of (44) are required.

The error function representation in (44) once again substantiates our claim in
Section 5.6 that heat propagates with infinite speed. Because the error function is an
increasing function of its argument, and the argument (2nL + 2L — x)/(Z\ﬁc_E) of the
first error function in (44) is greater than the second argument, (2nL + x)/(2\/7<?), it
follows that each term in (44) is positive. Since this is true for every x in0 < x < Land
every t > 0, the temperature at every point in the rod for every t > 0 is positive. This
means that the effect of changing the temperature of theend x = 0 of the rod from 0°C
to 100°C at time ¢ = 0 is instantaneously felt at every point in the rod. The amount of
heat transmitted to other parts of the rod may be minute, but nonetheless, heat is
transmitted instantaneously to all parts of the rod.

' U(—!— 6000) = 49.9°C.

Exercises 10.4

Use Laplace transforms to solve all problems in this set of exercises.

Part A— Heat Conduction

1. A homogeneous, isotropic rod with insulated sides has temperature sin mnx/L (m an integer) at

timet = 0. Fortimet > 0,itsends(x = Oand x = L)are held at temperature 0°C.Find aformula
for temperature U(x, () in the rod for0 < x < L andt > 0.

2. Solve Example 1 in Section 3.2 whea the initial temperature is U, = constant.
3. Repeat Exercise 1 if the initial temperature is 10°C throughout.
4. Solve Exercise 8 in Section 3.3.
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. Repeat Exercise 4 if g{x,1) = ¢™™. Assume that « # n’nk/L? for any integer n.
. {a) Repeat Exercise 5 if the initial temperature at time ¢ = 0 is 10°C throughout.

(b) Compare the solution with that obtained in Exercise 9 of Section 3.3.

. Solve Exercise 2 in Section 3.2.

8. Solve Example 1 in Section 3.2 when the initial temperature is f(x) (in place of x).

10.

1L

12.

13.
14.

15.

16.

17.

. A homogeneous, isotropic rod with insulated sides is initially (¢t = 0) at temperature 0°C

throughout. For time t > 0, its left end, x = 0, is kept at 0°C and its right end, x = L, is kept at

constant temperature U,°C. Find two expressions for temperature in the rod, one in terms of

exponentials in time and the other in terms of error functions.

A homogeneous, isotropic rod with insulated sides is initially (¢ = 0) at constant temperature

U,°C throughout. For ¢ > 0, its end x = 0 is insulated, and heat is added to theend x = L ata

constant rate Q W/m?. Find the temperature in the rod for 0 < x < Land ¢ > 0.

(a) A homogeneous, isotropic rod with insulated sides has, for time ¢ > 0, its ends at x = O and
x = L kept at temperature zero. Initially its temperature is Ax, where A is constant. Show
that temperature in the rod can be expressed in two ways:

2AL -ty
Ux,t) = — z (—)e
n

a=t n

and U(x,t) = A(x —L Zo[er ((2n 42-\1/)_L_,+ x) erf(%f)]).

(b) Which of the two solutions do you expect to converge more quickly for small t? For large ¢?
(o) Verify your conjecture in (b) by calculating the temperature at the midpoint of a stainless steel
rod (k = 3.87 x 107%) of length 1/5 m when A = 500 and
(i) t=130s (i) £ = 5 min. (iii) ¢ = 100 min.
A homogeneous, isotropic rod with insulated sides is initially (¢ = 0) at temperature 0°C
throughout. For ¢ > 0, its left end, x = 0, is kept at 0°C and heat is added to theend x = L ata

constant rate Q > 0 W/m?. Find two series representations for U(x,t), one in terms of error
functions and one in terms of time exponentials.

Solve Exercise 13 in Section 6.2.

nnx
- 2 2 .
n2x2ke/L sin

Show that the Laplace transform solution and the eigenfunction expansion solution to the
problem in Example 10 are identical when f(0) # 0.

A homogeneous, isotropic rod with insulated sides has initial temperature distribution U x/L,
0 < x < L(U_aconstant). Fortimet > 0,itsendsx = 0 andx = L are held at temperatures 0°C
and U, °C, respectively. Find the temperature distribution in the rod for ¢ > Q.

Repeat Exercise 15 if the initial temperature distribution is f(x) = x, 0 < x < L, and the ends
x = 0 and x = L are held at constant temperatures U, C and 0°C, respectively, for ¢ > 0.

Solve Exercise 5 in Section 3.3. (See also Exercise 8 in Section 6.2.)

Part B— Vibrations

18. A taut string has its ends fixed at x = 0 and x = L on the x-axis. If it is given an initial
displacement (at time t = 0) of f(x) = kx(L — x) (k a constant) and zero initial velocity, find its

19.

subsequent displacement.
Solve Exercise 8 in Section 3.2.

S o e e e g i

KA e e T T
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20. Repeat Exercise 18 for zero initial displacement and an unspecified initial velocity g(x).

21. Solve Exercise 33(a) in Section 6.2.

22. Solve Exercise 23 in Section 6.2. Assume that @ # nrc/L for any integer n.

23. A taut string has its ends fixed at x =0 and x = L on the x-axis. An external force (per unit
x-length) F = —ky (k > 0) acts at each point on the string. Assuming an initial displacement
f(x) and a velocity g(x), find subsequent displacements of the string.

For Exercises 24-29, solve Exercises 26-31 in Section 6.2.

30. Repeat Example 9 if gravity is taken into account. See also Exercise 37 in Section 6.2.

31. Solve Exercise 24 in Section 6.2.

32. Show that Laplace transforms lead to the solution in part (b) for the problem in Exercise 21 of
Section 6.2.

33. (a) Find aseries solution for displacements in the bar of Exercise 21 of Section 6.2 if the constant
force per unit area F is replaced by an impulse force F = Fo5(¢). Use the fact that

Lm £©5@)dt = FO+).

(b) Show that the displacement of the end x = L is cFo/(AE) times the square wave function

1 0<t<2L/c
M, (t) = )
i) {—1 2L/c < t < 4Lfc
My + 4L/c) = Myy,(0).
34. Solve Exercise 38 in Section 6.2.
35. A'tautstring of length L is initially at rest along the x-axis. For time ¢ > 0, its ends are subjected
to prescribed displacements
yO,0 = fi(&)  y(L,1) = f2()).
Find its displacement for 0 < x < L and £ > 0.
36. (a) Show that the Laplace transform of the displacement function y(x, ) for the vibrations in
Exercise 41 of Section 6.2 is
5x, ) = Fywc sinh (sx/c)
W% s(s? + w?)[AE cosh(sL/c) + mcssinh(sL/c)]’

(b) Resonance occurs if either of the zeros s = +iw of 5% + w? coincides with a zero of

h(s) = AE cosh (%) + mcssinh (%)

By expressing zeros of h(s) in the form s = c(u + i4), show that

—2AEmc?y

tanh 2uL =
AN UL = TOET it (12 + A

and that therefore x = 0. Verify that resonance occurs if w = c4 where 4 is a root of the
equation
AE

. tan AL = ——.
an mc?i

T e S FrAt AT i 2 o &

A
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37. Solve Example 3 in Section 3.2, but with an unspecified initial displacement f(x). [Hint: Replace s
by icq? in the ODE for ji(x, s).]

38. (a) Thetop of the barin Exercise 21 is attached to a spring with constant k. If x = 0 corresponds
to the top end of the bar when the spring is unstretched, show that the Laplace transform of
the displacement function for cross sections of the bar is

kgc cosh [s(L — x)/c]
"~ s’[AEssinh(sL/c) + kccosh(sL/c)]”

(b) Verify that j(x,s) has a pole of order 1 at s = 0. What is the residue of e“j(x,s) at s = 0?
(¢} By setting s = c(u + i2) to obtain zeros of

L
h(s) = AEssinh (%) + kccosh (EE—)'

show that u must be zero and that A must satisfy

5(x,5) = %
y(x,s) - s3

k
tan AL = —A—E—I

(d) Find y(x, ). (See also Exercise 34 in Section 6.2.)

39. (a) An unstrained elastic bar falls vertically under gravity with its axis in the vertical position
(Figure 10.6). When its velocity is v > 0, it strikes a solid object and remains in contact with it

thereafter. Show that the Laplace transform of displacements y(x, t) of cross sections of the

bar is

~ v g _ M
y(x,s) = (s—z + F)(l cosh(sL/C))'

v
) x =L
‘gure 10.6
(b) Use residues to find
V) g(L? —x*) 8Lv & (—1P*' _ (2n — et o= L
WG =——=5 3 S sin
’ 2c? nic 24 (2n = 1)? 2L 2L
6L = (=1 (2n — l)m‘tc (2n — Vnx
: os .
e & Cn— 1) T 2L 2L
(c) Verify that the second series in {b) may be expressed in the form
.

~ a0 (K(x + ct) + K{x — ct)),
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where K(x) is the even, odd-harmonic extension of L2 — x2, 0 < x < L, to a function of
period 4L. (See Exercise 22 in Section 2.2 for the definition of an even, odd-harmonic
function.)

(d) Verify that the first series in (b) may be expressed in the form
v
2c

where M, (x) is the odd; odd-harmonic extension of x,0 < x < L, to a function of period 4L.
(See Exercise 21 in Section 2.2 for the definition of an odd, odd-harmonic function.)

(e) Find an expression for the force F(¢) due to the bar on the cross section at x = L. Sketch
graphs of F(t) when v < 2Lg/c and v > 2Lg/c.

A bar 1/4 m long is falling as in Exercise 39 whex it strikes an object squarely. Use the result of
Exercise 39 to find a formula for the length of time of contact of the bar with the object. Use
this formula to find the contact time for a steel bar with p = 7.8 x 10* kg/m® and E = 2.1 x
10! kg/m? when v = 2 m/s.

(My(x + ct) — Mi(x — c1)),

Laplace Transform Solutions to Problems in Polar,
Cylindrical, and Spherical Coordinates

Laplace transforms can also be used to soive problems in polar, cylindrical, and

spherical coordinates, but calculations are sometimes more difficult. We illustrate with
the following examples.

An infinitely long cylinder of radius r, is initially at temperature f(r) = rz —r? and
for time ¢ > 0, the boundary r = r, is insulated. Find the temperature in the cylinder

for ¢ > 0. (This problem was solved by separation of variables in Example 1 of
Section 9.1.)

Solution: The initial boundary value problem for U(r,t) is
au U 14U
—g—k(w-{-;—g;), 0<r<r2, t>0, (45a)
oU(r,,t
U1 0, >0, (45b)
ér
Ur,0)=ri—r2, O<r<r,. (45¢)
When we take Laplace transforms of (45a) and use (45c},
- ;0 1 o0
sT(r,s) = (12 — r¥) = k<iﬁi +- aﬂ);
cr ror
that is, U(r, s) must satisfy the ODE
rﬂ+d0 srU_rj—rzr o
Tt 0= <r<r, (46a)
subject to the transform of boundary condition (45b),
‘ U'rys) = 0. (46b)

T LhETA e




Section 10.5 Laplace Transforms in Other Coordinates 391

The change of independent variable u = i/s/kr replaces the homogeneous equation
d*0  d0 s - ”

— U = 47
" + dr k Uu=0 “7)
. d*0 40 -
a7+ =0. 48
with udu2 + o +ulU =0 (48)

This is Bessel's differential equation of order zero, with general solution
AJy(u) + BYy(u).

Thus, the general solution of (47) is

. .S
AJO<1\/§r)+BYO(1\/;r>. (49)

When the particular solution —r?/s + (ris — 4k)/s* of (46a) is added to (49), the
general solution of (46a) is

~ s s A ri—r?
U(r,s)=AJ0<1\/IEr)+BY0<1\/;r>——s—2-+ 2 punnt (50)

Because U(r, t) must remain bounded as r approaches zero, so also must U(r, s). This
implies that B must vanish, in which case boundary condition (46b) requires that

s . s 2r
1\/£AJ0<1\/£r2>—~—51=0.

When this equation i's solved for A and the result is substituted into (50),

: 22
Tir,s) = 2ryJo(iN/s/kr) _ﬁ-{_rz r‘ 1)

TSk J(iskr,) 52 s
This function has singularities at s=0 and values of s satisfying Jo(i</s/kr,) =0. If we

set \/s/ki = 2, singularities occur for s = — kA2 where J4(4,r;) = 0. Power series (15)
in Section 8.3 can be used to expand U(r, s) about s = 0:

CGisrkn)? (i slkn)t

I

G = 2N i tTe T s ri-rt
8 is312 \_(i /_s/krz)+(i /s/kr2)3 o s? s
2 16
2k 2 stk (rd 4k ri=r?
_ isy:z[_‘ _l\/S/ <%z_%>+”.]__z+r- r
istkr, ) s §
S
“2s+

When this result is multiplied by %,

O = (145t 4+ 2 (g
= ) 2s '
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s{f(r,s)ats = 0is r3/2. Because the derivative of J does

itis clear that the residue of e
s = —kAZ2 are poles of order 1, and

not vanish at its zeros, the remaining singularities at
the residues of e U(r, s) at these poles are
( 2rdolivs/kr) 4k + ri — r2>
Vs kdotivslkry) 5 s

lim (s + kA2)e*

= —kal
2)'2 —ka2t . s+ kl:
= e k4 J (Ar) lim
—ka3 of ):-'-u.‘. Jo(in/stkrs)

e e My (A ) lim ! (by I'Hépital’s rule)

= 3 . "
s Ty ifkrs)

2ks

_—4
T kA2

e AT (A1)

—1
H g(lu"z)

_ 4
T A2J5(Aar2)
) : But, because Jq(4,7) satisfies equation (47) when s = —kaZ,
d¥,(Ar)  dlo(A,r
r ;fz ) + otgr !
or A2rJ YA + A o(Aar) + Agrdo(A,r) = 0.
When we set r = r, in this equation and note that J5(4,r,) = 0, we obtain

.’8(:]."1'2) = "'Jo(ln"z)~

e "“'z"Jo().,, r).

+ 22ry(A,r) =0

Residues of e*U(r,s) at s = —kA2 can therefore be expressed as
—4 kA2t
e A (A1)
T o) |
The sum of the residuesats =0 and s = — kA2 yields the temperature function
2 w0 p—kAlt 3
U(r,t)=r2—4z e ™ Jo(4a) s (52)

27 S A

The following vibration problem has a nonhomogeneous boundary condition.

Example 12: A circular membrane of radius r, is initially at rest on the xy-plane. Find its dis-
placement for time ¢ > 0 if its edge is forced to undergo periodic oscillations described

by Asinwt, A a constant.

Solution: The initial boundary value problem for displacements z(r, 1) of the membrane is
9%z %z 1oz ‘

572:“(57?*75)’ O<r<r;, t>0, (53a)

z(ry,t) = Asinwt, t>0, (53b)
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2(r,0) = 0, O<r<r,, (53¢)
2,(r,0) = 0, O<r<r,. (53d)

When we apply the Laplace transform to PDE (53a) and use initial conditions
(53c, d),
d*z 1d7
2y . A2 2 ° - 1.
se=c (dr2 +; dr)’

d*2 di st _
r?"—i-{-z;—?‘Z:O (54a)

that is, Z(r, s) must satisfy

subject to
Aw
Zt =, 54b
z(r,,s) Tt (54b)
The change of independent variable u = isr/c replaces this equation with
d*z di
MEF+E+HZ=O, (55)

Bessel's differential equation of order zero. Since the general solution of (55) is
BJo(u) + DYy(u), it follows that

#(r,s) = BJ, <'—zi) + DY, ('-‘-Zi> (56)

Because z(r, t) must remain bounded as r approaches zero, so also must z(r,s). This
implies that D must vanish, in which case boundary condition (54b) requires that

Aw isry\-
Trel s B’o(*;‘)-

When this equation is solved for B and the result is substituted into (56),

Aw  Jylisr/c)
52+ w? Jylisry/c)

2(r,s) =

(57)

This function has singularities at s = + iw and values of s satisfying Jo(isr,/c) = 0. If we

set is/c = 4,, singularities occur for s = —ic4, where Jo(4,r3) = 0. (For every positive
value of 4, satisfying this equation, 4i_, = — , isalso a solution.) Provided w # c4, for
any n, all singularities are poles of order 1. The residue of e*'Z(r,s)ats = iw is
. Awe™ Jolisr/c)
lim (s — iw)e™Z(r,s) = li — i ;
,a.-u,( w)en2r,s) ,LT,(S !w)(s + iwl(s — iw) Jy(isr,/c)

Awe™ Jo(~wrfc)
2iw  Jo{ —wry/fc)
iy ior Joferfe)
2 Jolwry/c)
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Similarly, the residue of e”Z(r,s) ats = —iwis
iAe""‘" Jolwr/c} .
2 Jolwr,/c)
The residues of eZ(r,s) at s = —icA, are

Aw  Jolisr/c)

lim (s + icd,)e”

s+ —icdn Sz + (1)2 .lo(isrz/c)

_Aw —ichut . S+icd,

T w? -t} ¢ JO('I"’),.!I_[?:;,_ Jolisryfc)

=3 A® 173 e M o(Ayr) lim ! (by I'Hopital’s rule)

@ et 22 s /o)

B —iAwce™ M Johr) 1 iAwce ™ Jo(Aa1)

= =) ) T rale? = ¢?an) Jdara)
The sum of the tesidues at s = fiw and s = —icl, yields the displacement of the
membrane,

Jolwrfc) 1 Ae-ion Jolwr/c) o jAwce " Jo(Ar)
Jolwrs/c) 2 Jolawr,/c) " "2((02 —c?a}) Ji(Aar2)
_, Jolor/c) giet — g it o jdwce A Jo(Aat)
N Jo(a)rz/c)( 2i ) E4 (0 = 22 Ji(Aara)
o jAwce M Jo(ALr)
n=—l"2(w2 — c2A2) Ji(Aar2)

o(r0) = =5 A

Jolwrfo) . idwe & e Jo(Ar)
= A —— t

AT L T =R Ty

iAdwc 2 g ich -t Jo(2 -t

Fy; n=1 w? - Cz(;__")z Jl()'—an)‘

Since i_, = —A,,and Jg and J, areeven and odd functions, respectively, it follows that

il

Jolwrfe) iAwc i gichat _ gmieAt Jo(A 1)

z(r,t) = Asinwt

Tolory/d) 1y =1 @' - PEVERRNA VS
J A 2 Jol(4 .

= Asin wt—(’—(—‘ai):/—C)— -+ g—% -—-7——1'—1_7‘ O(A"r) sin cAqt. (58)
Jolwr,/c) r, AT w" Ay Ji(2ar2)

The solution of this problem, obtained by finite Fourier transforms in Exercise 16 of
Section 9.2, is
2Ac & cli sinwt — wsinciyl

q(r )= —— - -
r.0) 1y, o=t (@ = cPaidars)

Jo(Aa0).

The Laplace transform solution is preferable; it expresses part of the finite Fourier
transform solution in closed form. -
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Exercises 10.5

Part A— Heat Conduction

1. Solve Exercise 1(b) in Section 9.1.

2. Solve Exercise 1(c) in Section 9.1.

3. Laplace transforms do not handle problems in polar coordinates efficiently when initial
conditions contain unspecified functions. To illustrate this, find the Laplace transform of the
PDE for Exercise 1(a) in Section 9.1. How difficult is it to solve the ODE in U(r,s)?

4. Solve Example 5§ in Section 9.2.

S. (@) An infinitely long cylinder of radius r, is initially at temperature 0°C throughout. If the

surface r = r, has variable temperature f(t) for ¢ > 0, find the temperature inside the
cylinder.

(b) Simplify the solution when f(t) = U, a constant. Do you obtain the solution to Exercise 4?
6. Solve Exercise 2(b) in Section 9.2.
7. (a) A cylinder occupying the region 0 < r < r,,0 < z < L, is initially at constant temperature

Uyp°C throughout. What is the initial boundary value problem for temperature in the cylinder
if its surface is held at 0°C for ¢ > 0?

(b) If a finite Fourier transform is used to remove the z-variable from the problem in U(r, z, ),
what is the initial boundary value problem for U(r, y,,, t) (Where y,, = ma/L are eigenvalues
associated with this transform)?

(c) Show that when the Laplace transform is applied to the PDE in U(r, tm, 1), the transform
function U(r, ,,,5) must sajisfy

2 = -

ﬁ(rluunns) = 0’

where T = V2L[t +(=1)" "._‘]/(mn) is the finite Fourier transform of the unity function.
(d) Verify that the solution for U(r, Hps S) 1S

Uo1 (1 _ Jolivua + s/kr)>

(7(", Hens S) =

s+kun\ ol + stkry)
(e} Prove that (j(r.u,“,s) has a removable singularity at s = —ky,l!' and poles of order 1 at
s= —k(i + u2)where J4(4,r,) = 0. Show that the residues of e U(r, u,,, 5) at these poles are

,) d .
2Uol izt Jolzal)
Faty Jl(/'nrz)

{f) Finally, invert the Laplace transform and the finite Fourier transform to find U(r,z, 1),

Part B— Vibrations

8. Solve Exercise 19 in Section 9.1,
9. Solve Exercise 20 in Section 9.1.
10. Solve Exercise 17 in Section 9.2 in the nonresonance case.
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E L E V E N

Green's Functions

for Ordinary Differential Equations

11.1 Generalized Functions

To solve many physical problems, we create mathematical idealizations called “point”
entities— point charges, point masses, point heat sources, and point forces, to name a
few. For example, suppose a 1-N force is applied to the midpoint of a taut string (of
negligible mass) as shown in Figure 11.1. The boundary value problem that describes

static deflections of the string is

d’y .
—"[E;E‘=F(X), 0<x<L,
p(0) = 0 = »(L)

where t is the constant tension in the string and F(x)is the force per unit x-length on the
string due to the applied force. Although it would seem to be a simple procedure to
integrate the differential equation twice and apply the boundary conditions (for
blem. If

determination of constants of integration), integration of F(x) presents a pro




Figure 11.1

Figure 11.2
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we use

0 0<x<L/2
F(x) =11 x=1L/2 (2)
0 Li2<x<L

as the definition of F(x), antidifferentiation gives

() = Ax + B O<x<L/2
YW =1ex+p Lp<x<L

(Recall from elementary calculus that we antidifferentiate only over an interval, notat a
point; hence the absence of an antiderivative “at” x = L/2.) If we now apply boundary
conditions (1b) and demand that y(x) be continuous at x = L/2, we obtain

) = 4 0<x<L/2
Y =1-4ax-L) Lp2<x<L’

But how do we calculate A? Certainly the size of the force (1 N here) and the tension
v in the string must determine A, but there seems to be no way to use this information.
The problem must be representation (2) for a point force concentrated at x = L/2. Per-
haps what we should do is distribute this force along the string, solve the problem, and
then take a limit as the distributed force approaches a concentrated force. There is a
multitude of ways that F(x) might be defined, but clearly each must satisfy the
condition

L
f F(x)ydx = 1. 3)
+]

Two possibilities, which are symmetric, are shown in Figure 11.2.

1 newton

NI~
fad
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Figure 11.3

Figure 11.4
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Suppose we solve the boundary value problem for y(x) using the distribution in
Figure 11.2(a). Then
P ( 0 0<x<(L—¢)2
%y _ e w-eon2<x<@+anr

2
dx "lo (L+ej2<x<L

Integration leads to

Ax + B 0<x<(L—¢)/2
y(x) = —={x*/(2e) + Cx + D (L—e)/2<x<(L+é¢/2
“lex+F (L+e)/2<x<L

If we apply boundary conditions (1b) and demand that y(x) and y'(x) be continuous at
x=(L—¢)/2and x=(L + £)/2, we find that

% 0<x<(L—6)2
1 xr Lx 1 ) »
yo) = - R UL (L-g/2<x<(L+92 @)
{L;" (L+e2<x<L

the graph of which is shown in Figure 11.3. To obtain the solution of (1) for a
concentrated force, we now let ¢ approach zero. Geometrically, the parabolic section
becomes smaller and smaller in width, and in the limit the two straight-line sections
meet at x = L/2 (Figure 11.4). This implies that the displacement at L/2 is L/(47) and
the displacement function for the unit point force in Figure 11.1is that in Figure 11.4,
defined algebraically by

x/(21) 0<x<L/2
y(x) =

L-x/@) L2<x<L (s)

e Parabolic

Y
Straight-line . )
i / Straight-line
1

— X

L
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In Exercise 7, displacement y(x) for the distributed load in Figure 11.2(b)
is calculated. Although it is different from (4), its limit as & approaches zero is once
again (5).

We have attempted to illustrate with this one example that problems containing
point sources can be solved with distributed sources and limits. This example and other
physical situations in the exercises make it abundantly clear, however, that the method
is extremely cumbersome. It is the purpose of this chapter and the next to develop
representations for concentrated sources that are effective in solving ordinary and
partial differential equations. .

When we solve lineat, second-order differential equations
. dzy dy
P(x)p + Q(X)E + R(x)y = f(x),

where P(x), Q(x), and R(x) are continuous and f(x) is piecewise continuous, the
solution should be continuous and have a continuous first derivative. In fact, for
the distributed load of Figure 11.2(a) we actually imposed these conditions at x = )
(L £ €)/2 to obtain displacement (4). But notice that limit function (5), shown in Fig-
ure 11.4, has a discontinuity in y'(x) at x = L/2. In other words, when “point"” sources

~ influence second-order boundary value problems, we cannot expect solutions to have

continuous first derivatives.

To begin our search for representations of concentrated sources, suppose that we
have a time-independent one-dimensional problem along the x-axis (perhaps static
deflections of a string, or steady-state heat conduction in a rod, or potential). We wish
to define a function, which we denote by (x — ¢), to represent a unit point source at
x =c. Based on the above example (where the unit force was distributed over an interval
on the x-axis), it might seem reasonable to define 5(x — c) as the limit as ¢ - 0 of the
unit pulse function P(x,¢) in Figure 11.5, that is, define

6(x — ¢) = lim P(x, c). 6)
£~0

Because the area under B(x, ¢) is unity for any ¢ > 0, this definition appears to preserve
the “unit” character of the source. But, from the point of view of a function as a
mapping from domain to range, definition (6) is unacceptable. It maps all values x # ¢
onto zero, and the value of §(x — c)at x = ¢ is somehow “infinite.” What we are saying
is that 8(x — ¢) cannot be defined in a pointwise sense; functions that represent point
sources require a completely new approach.

i ¥ = PUx, )
r————
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To introduce this approach, recall that when y,(x) are normalized eigenfunctions
of a Sturm-Liouville system on anintervala < x < b,and f(x)is suitably behaved, the
finite Fourier transform of f(x) is

- b
f&) = J p(x)f(x)ya(x)dx

{p(x) is the weight function of the Sturm-Liouville system]. By this definition, each
eigenfunction y,(x) associates with a function f(x) its nth Fourier coefficient f(4,),

£ 25 74,

We have, then, an infinity of mappings y(x). Each maps functions onto reals, and the
real numbers are calculated by means of integrals. Such mappings are not restricted to
eigenfunctions arising from Sturm-Liouville systems, however. We can associate such a
mapping with any continuous function whatsoever. Indeed, if g(x) is continuous on an
interval a < x < b, we can associate an integral mapping with g(x) according to

b
f(x)i(’ﬂ*j f60g(x)dx;

that is, g(x) is a functional, or operator, which maps functions f(x) onto real numbers,
and these numbers are defined by integrals. It is this view of an ordinary function as a
functional or operator that we adopt to define 6(x — ¢). The “generalized” function!
8(x — ¢), called the (Dirac)? delta function, is the functional that maps a function f(x),
continuous at x = ¢, onto its value at x = ¢,

e 2=, f(e).

For example,

S(x~ D)
—p

x24+2x-3 5

and (x + 1)2cos x LY

In order that the delta functional have an integral representation, we write

[e]

f(x)d(x — c)dx. (7)

£ 2= () =j

But because §(x — ¢) cannot be regarded pointwise, the multiplication in this integral,
and the integral itself, are symbolic. When we encounter an integral such as that in
(7), we interpret it as the action of the functional §(x — ¢) operating on f{x) and
immediately write f(c). For example,

0 ) 2 o
J_n(x +——-——x_ l)é(.vc)d.\ = -2

* A complete treatment of gencralized functions can be found in M. J. Lighthill, Introduction to Fourier
Analysis and Generalized Functions (Cambridge, England: Cambridge University Press, 1958).
t After the mathematical physicist Paul Dirac.
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and f O(x +2)dx =1

[since the left side of the latter integral is interpreted as the delta function S(x + 2)
operating on the function f(x) = 1].
Because d(x — ¢) picks out the value of a function at x = ¢, we write

fbf(x)é(x —c)dx = f(c) (8a) -

aslongasa < ¢ < b; that is, the limits on the integral need not be + co0. Furthermore, if
x = ¢ is not between a and b, we set

f ! F(¥)8(x — c)dx = 0. (8b)

For instance,
[
f Vx +58(x)dx = /5
-2
3
and J (x? 4+ 2x — 4)8(x + 1)dx = 0.
2

From a functional point of view, it is not at all clear that the delta function 5(x —¢)
represents a point source at x = ¢. Our first evidence of this appears in the next section.

Exercises 11.1

In Exercises 1-6, evaluate the integral.

1.

3.

vt

10.

© 3
J. (x2 — 2x + 4)(x — 1)dx 2, J sin(3x + 1)d(x)dx
2 o
J (e + x2)3(x + 3)dx 4. J (x% + 1/x)d(x)dx
s 3
J (22 + X3 + 4)8(x — 4)dx 6. JE (1 + 4x — cosx)8(x + 10)dx

Solve problem (1) when F(x)is defined asin Figure 11.2(b), and sketch the displacement function.
Show that the displacement of Figure 11.4 is obtained in the limit as ¢ — 0*.

- Define your own distributed force function F(x) [subject to condition (3)] and solve problem (1),

taking limits as F(x) approaches a point force. Do you obtain the result in Figure 11.4?

Calculate the displacement of a taut string (of negligible mass and length L) when two unit point
masses are attached at distances L/3 from each end. Use distribution functions like that in
Figure 11.2(a) for each mass.

Abeam of length L and negligible weight is subjected to a unit load at its midpoint. If the left end
of the beam (x = 0) is fixed horizontally and the right end (x = L) is free, use a distributed load
like that of Figure 11.2(a)and limitsas& — 0 * to find the static deflection of the beam. Sketch the
graph of the displacement function. Are y'(x), y*(x), and y"'(x) continuous?
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11. Find deflections of the beam in Exercise 10 if the point load is placed at the end x = L.

12. Thedisplacement of a mass M from its equilibrium position at the end of a spring with constant k
is described by the differential equation

dy
M—+ky=F
wz+y (1)

when viscous damping is negligible. In this exercise we determine the displacement y(t) due to an
instantaneous unit force F(t) applicd at time T,

0 0<t<T
0 t>T

called a unit impulse. We do this by distributing the unit impulse in two ways.
(a) First, distribute F(f) over a time interval of length ¢ around T according to

0 O<t<T—¢?2
F{ty=41/e T—¢2<t<T+e/2
0 t>T+¢/2

{Notice that the units of F,(¢) are units of force per unit of time, so the total area “under™ the
F (1) curve is unity.] Solve the differential equation with F(1) replaced by Fi() subject to the
- initial conditions y(0) = y'(0) = 0. Find and sketch the limit function as ¢ =+ 0*.
(b) Repeat (a) with the unit impulse F(¢) distributed over the time interval T<t< T +¢
- according to
0 0<t<T
Fo(t) = ¢ 1/e T<t<T+e

0 t>T+¢

13. Show that the same function as that in Exercise 12 is obtained if we assume that y(t) = Ofort < T
and that for ¢ > T, y(t) satisfies
dl
M:i—%+ky=0, (> T,

.
wWT)=0, MN—M.

Distributing point sources for multidimensional boundary value problems is more complex. The
remaining exercises give examples.

14. A square membrane stretched tightly over the region 0 < x. y < L has its edges fixed on the
xy-plane. Distribute a unit load at the midpoint of the membrane according to

—ljg? (L—e)2<xy<(L+¢2

0 otherwise

F(x,y) = {

(a) Find the static deflection of the membrane due to this load by using the finite Fourier
transform associated with the x-variable, or an eigenfunction expansion

2 2 . nnx
Z(x,)’): Z:]an(Y)J;SlnT.
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(b) Take the limit of the function z(x, y) in (a) as ¢ — 0* to find the static deflection of the
membrane under a unit concentrated load at its center.

(c) Is the result in (b) defined at (L/2, L/2)?
15. Repeat Exercise 14 for a circular membrane of radius R. Distribute the unit load at the midpoint
N of the membrane according to
—1/(ne? 0<r<e
Fe,0)={ "1/ 0<r<e
0 otherwise

11.2 Introductory Example

In this section we use a very simple example to illustrate the essential features of a
Green's function. The example also helps justify our hopes that the delta function of

Section 11.1 can be used to represent concentrated sources. The boundary value

problem
dz .
~ra—{ = F(x), (9a)
y(0) = y(L) = 0 | (9b)

describes static deflections of a taut string of negligible mass, tension t, and length L
due to a load F(x) (Figure 11.6). We can solve this problem by using variation of
parameters on the general solution Ax + B of the associated homogeneous equation
(see Section 3.3). Derivatives of A(x) and B(x) must satisfy

A'x + B' =0,

F(x)
B

A' =

y

] X
“ure 11.6 String

Solutions of these equations may be expressed as definite integrals

A(x) = JX -t F(X)dX + C,

0

B(x) = Jxr“XF(X)dX +D,

0
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and hence - y(x)=x(j. -t F(X)dX + C) +J~ 1" IXF(X)dX + D
) 0

=7t jx(x — x)F(X)dX + Cx + D.

(1)
Boundary conditions (9b) require the constants C and D to satisfy

0=yL)= t"J'L(X — L)F(X)dX + CL + D,
0

and therefore

yx)=17" jx(x — x)F(X)dX + (L) 'x jL(L — X)F(X)dX
0

o

x L
~ j (X = x) + L™x(L — X)F(X)dX + (Lr)“xj (L — X)F(X)dX
o

x

=(Lt)! jx X(L - x)F(X)dX + (Lr)"ij(L — X)F(X)dX
0

x

. L
or yx) = j‘ g(x; X)F(X)dX, (10a)
0
5—(1—;‘—5—% 0<X<x
where g(x; X) = . (10b)
)-f(—L—I';l(—) x<X<L

The solution of problem (9) has therefore been expressed in integral form—the integral
of the nonhomogeneity F(x) multiplied by the function g(x; X). The function glx; X)is
called the Green’s function for boundary value problem (9). It does not depend on F(x);
it depends only on the differential operator and the boundary conditions. Once g(x; X)
is known, the solution for any F (x) can be represented in the form of a definite integral
involving g(x; X) and F(x), and this integral representation clearly displays how the
solution depends on F(x). In addition, we shall see that when the boundary conditions
are nonhomogeneous, representation of the solution in terms of the Green's function
also indicates the nature of the dependence on these nonhomogeneities. Finally, it
should be clear that formulation of the solution as a definite integral is a distinct
advantage in numerical analysis.

The representation of g{x; X)in (10b) regards X as the independent variable and x
as a parameter. By interchanging the two expressions, we obtain a representation
wherein X is the parameter and x is the independent variable:

xL=X)  goi<x
(x:X) = Lt (100)
g X(L — x) ‘
—_—— X<x<L
Lt
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With representation (10c), it is straightforward to illustrate three properties of this
Green's function that are shared by all Green's functions. First,

g(x; X) is continuous for all x (including x = X). (11a)

Second, the derivative of g(x; X) with respect to x is continuous for all x # X, and _

. dg . dg -X L—-X 1
lim -= — =) {—)=--. 11
s dx ,,l.l.T- dx (Lt) ( Lt ) T ( b

This jump is the reciprocal of the coefficient of d?y/dx? in differential equation (9a).
Finally, it is straightforward to check that at every x # X,

g(x; X) satisfies the homogeneous version of the (110)
differential equation from which it was derived. ¢
As we said, properties (11a—c) are shared by all Green’s functions associated with
ordinary differential equations. In fact, we shall use them to characterize Green’s
functions in Section 11.3.
In Section 11.1 we defined the delta function in hopes that it would represent a
concentrated source. Let us see what happens if we set F(x) = d(x — L/2) in (10):

L L
Yx) = f g(x.-xw(x - 3> ix

0
I S Chat ) L “x(L - X) L
- [ RO - F)ax s [T (x-S ax,

Since the first integral vanishes when x < L/2 and the second is zero when x > L/2, we
separate the solution into two parts,

x (L 0<x<L/2
Lt\2

yx) = L L
—{= - <L
Lr(2>(L x) L/2 <x
X 0<x<L/2

_ 2t

L(L—-x) Li2<x<L
2t

(provided we demand continuity of the solution at L/2). But this is solution (5) to
problem (1) for displacement due to a unit force concentrated at x = L/2. In other
words, the delta function §(x — L/2) appears to be a valid representation for a point
force of magnitude unity at x = L/2.




406

Chapter 11 Green's Functions for Ordinary Differential Equations

Exercises 11.2

1. Consider the boundary value problem

d’y
;i—x—2-+y—F(x), 0<x<L,
y(0) = 0 = y'(L).

(a) Use variation of parameters to show that the solution can be expressed in the form

L
y(x) = L g(x; X)F(X)dX,

where g(x; X) is the Green's function of the problem defined by

-1 {sianos(L—x) 0<X<x

ng):cosL sin xcos(L — X) x<X<L

(b) Show that g(x; X) satisfies properties (11a-c).

11.3 Green's Functions

~In this section we associate Green's functions with linear, second-order ordinary

differential equations

4z d
| P(x)a;lz + Q(x)% +RWy = (), a<x<f. (12)

Functions P(x), Q(x), and R(x) are assumed continuous for « < x < §, but no
assumption is yet made on the behavior of f(x). Provided P(x) does not vanish on the

interval & < x < B, multiplication of (12) by ol@PVx gives

d Ldy) R . 1 x
H}(@(wm E) + 7)_emz/md y = Femz/?)d f(x).

When we set a(x) = /@4 ¢(x) = RP™1e/@PVx and F(x) = P~'ef@P¥ f(x), the

equation takes on a more pleasing appearance:

d
dx

{n other words, every linear, second-order differential equation for which P(x) # O can
be expressed in form (13a), where a(x) > 0. This is called the self-adjoint form of the
differential equation. We shall often find it convenient to denote the differential
operator on the left side of (13a) by L, in which case the differential equation is

expressed more compactly as

Ly = F(x), a<x<§f. (13b)

——( (x)%) + c(x)y = F(x), x<x<f (13a)

NN g e AP LN b AP hmm—#
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To obtain a unique solution of (13), it is necessary to specify two boundary
conditions. For the most part, we consider conditions of the form

By = =1,y (a) + hyy(a) = my, (14a)
B,y =1L,y (B) + hyy(B) = m,, (14b)

where I, 1,, hy, h,, m,, and m, are given constants. They are called unmixed boundary
conditions because one condition is at x = « and the other is at x = . On occasion,
however, we shall consider conditions of the form

(@) = y(B), (15a)
y'(@) = y(B) (15b)

called periodic boundary conditions. They arise only when a(a) = a(f), and they are
always homogeneous. We have seen both types of conditions many times throughout
the first ten chapters.

For the moment, we concentrate only on the operator L in (13), not on the
differential equation or the boundary conditions. When u(x) and v(x) are continuously

differentiable functions on a < x < f with piecewise continuous second derivatives, it
is straightforward to show that

d d
— = — = — - ! . 16
uLv ~ vLu T J(u,v) o (a(uv’ — vu")) (16)

This equation is known as Lagrange’s identity; J(u, v) is called the conjunct of u and v.
The identity is valid at every point except discontinuities of the second derivatives of u

and v. Because such discontinuities must be finite, (16) may be integrated between any
two values of x in the interval « < x < 8:

J~ (uLv — vLu)dx = {J(u,v)} ;2. (17)

This result is called Green's formula on the interval x, < x < x,. When x, = « and
x, = f, we obtain Green's formulaon x« < x < f,

B
J‘ (uLv — vLu)dx = {J(u,v)}. (18)

Identities (16)—-(18) were based on the operator L in differential equation (13), but not
on the differential equation itself; that is, F(x) was not introduced. Nor were boundary
conditions used in the derivation. In other words, (16)-(18) are properties of the
operator L.

When u(x) and v(x) satisfy the homogeneous version of (13),1t is obvious that their

conjunct is constant. This result is sufficiently important that we state it in the form of a
theorem.
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If u(x) and v(x) satisfy the homogencous differential equation Ly =0, then J(u,v) is a constant
(independent of x).

The constant value vanishes only if u(x) and v(x) are linearly dependent.
With these preliminaries out of the way, we are prepared to define Green’s
functions for boundary value problems of the form

_ A -
Ly = E(G(X)E) + c(x)y = F(x), a<x<pf, (19a)

By =my, (19b)
B,y=m,, (19¢)

where a(x) is continuously differentiable and does not vanish for « < x < fand ¢(x) is
continuous therein. (If the boundary conditions are periodic, they are also homo-
geneous, m; = m, = 0.) Solutions of (19) are called classical when F(x) is piecewise
continuous. A solution y(x) is classical if it is continuously differentiable, has a piece-
wise continuous second derivative, satisfies the boundary conditions (19b, c), and is
such that Ly and F(x) are identical at every point of continuity of F(x). We mention
this fact because Green's functions do not turn out to be classical solutions. The Green's
function g(x; X) for problem (19), if it exists, is defined as the solution of

Lg = d(x — X), (20a)
B,g =0, (20b)
B,g =0. {(20¢)

It is the solution of the same problem, with two changes. The source function F(x) is
replaced by a concentrated unit source, and the boundary conditions are made
homogeneous. Because 5(x — X) is not piecewise continuous, Green's function cannot
be called a classical solution of (20). It is, however, an ordinary function (as opposed to
a generalized function). This is established in Schwartz’s theory of distributions,
wherein it is also shown that solutions of differential equation (20a) have the following
properties analogous to those in (11):

(1) g(x; X) is continuous for a < x < f; (21a)

(2) dg(x; X)/dx is continuous except for a discontinuity at x = X of
magnitude 1/a(X); that is,

d
lim &9 — gim -, (21b)

(3) for all x # X,

Lg=0. (21c)

These properties, along with boundary conditions (20b, c), completely characterize
Green’s functions: in fact, we now use them to derive formulas for Green's functions.

o g
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Condition (21c) implies that g(x; X) must be of the form

Eu(x) + Bv(x) r<x< X

Du(x) + Go(x) X<x<p' @2)

g(X;X)={

where u(x) and v(x) are continuously differentiable solutions of L y = 0. Inclusion of
x =« and x = fis a result of continuity condition (21a). Continuity at x = X requlrcs
that

Eu(X) + Bu(X) = Du(X) + Guv(X),

and condition (21b) for the jump in dg/dx at x = X implies that

1

Du'(X) + Gv'(X) — Eu'(X) — Bv'(X) = 2

When these equations are solved for B and D in terms of E and G and substituted if{to
(22), the result is

Eu(x) + Go(x) — “(j((u)"lf;‘) t<x<X
g(x; X) = ’ .
Eu(x) + Go(x) — ”(jx"g‘) X<x<p

The Heaviside unit step function can be used to combine these two expressions
into one:

g(x; X) = Eu(x) + Go(x) — u(X)v(x)H(X — x) + v(X)u(x)H(x — X))

1
()(

= Eu(x) + Gv(x) — u(X)v(x){1 — H(x — X)]

1
J(u, v)(
+ o(X)u(x){1 — H(X — x)])

_ v(X) u(X)
= (B~ o) (6 - e

(ux)o(XVH(X — x) + u(X)v(x)H(x — X))

1
+ J(u,v)

= Au(x) + Cuo(x) + ()X VH(X — x) + u(X)e(x)H(x — X)). (23)

1
J(u,v)

We understand that terms involving the step function are regarded in the limit sense
(x—=X)atx = X.
The remaining unknowns A and C are evaluated using boundary conditions
(20b, c). They require that
0= B,g=ABu+ CB,v + Br, (24a)
0 = B,g = AB,u + CB,v + B,r, (24b)
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where r = J H{u(x)o(X)H(X — x) + u(X)v(x)H(x — X)]. These are algebraic equa-
tions for A and C that have a unique solution provided

Byu By
B,u B,v

Thus, when condition (25) is satisfied, g(x; X) is defined by (23), where 4 and C are
chosen so that g(x; X) satisfies (20b, ¢).

We briefly examine here the significance of a vanishing determinant and deal with
it more fully in Section 11.5. A vanishing determinant is equivalent to the existence of a
constant A # O such that

#0. (25)

) B,u=AByv and Bu= AB,v (26a)
or Bu—Av)=0 and Blu— A} =0. (26b)
Since u(x) and v(x) are linearly independent, we can say that the determinant vanishes if

and only if thereis a nontrivial solution u — Av of the homogeneous boundary value
problem

d dy

_— pt A = 27

e (a(x) dx) + c(x)y =0, a<x<f, (27a)
B,y =0, (27b)
Bzy = 0. (27C)

We summarize these results in the following theorem.

Corollary

When homogeneous system (27) has only the trivial solution, the Green's function for problem
(19) is uniquely given by

1
J(u, v)

g(x; X) = A;l(x) + Co(x) + (u(x)v(X)H(X — x) + u(X)v(x)H(x — X)ﬂ (28)

where u(x) and v(x) are linearly independent solutions of (27a) and A and C are chosen so that
g(x; X) satisfies (20b, ¢).

When the .boundary conditions are unmixed, determination of g(x;X) can be
simplified further.

When homogeneous system (27) has only the trivial solution and boundary conditions are
unmixed, the Green's function for problem (19) is uniquely given by

glx; X) = J(l: 0 (u(x)v(X)H(X — x) + u(X)u(x)H(x — Xﬂ (29)

where u(x) and v(x) are linearly independent solutions of (27a) satisfying B,u = 0 and B,v=0.

. “;»‘Npﬂ.‘m

anyea-

P bt DTE o R




Proof:

Example 1:
\ Solution:

= Example 2:

Solution:

Example 3:

Solution:

3
4

Section 11.3 Green's Functions 411

Certainly this function satisfies (20a) [since the function in (28) does]. In addition, when x < X,

g(x; X} reduces to J ~tu(x)v(X), which, as a function of x, satisfies B,g = 0. Similarly, because

B,v = 0, we must have B,g = 0. -

Once again, we point out that due to the step functions, expressions for g(x; X) in
(28) and (29) are not defined for x = X. However, continuity of g(x; X)atx = X implies
that g(x; X) must be given by either of the limits lim, ..y« g(x; X) = lim,_ x- g(x; X),
and we implicitly understand this when we write (28) and (29).

Notice that for unmixed boundary conditions, g(x; X) is symmetric in x and X,
That this is also true for periodic boundary conditions is verified in Theorem 5 of -this
section.

Use formula (29) to find the Green’s function for problem (9).

Solutions of y” = 0 satisfying y(0) = 0 and y(L) = 0, respectively, are u(x) = x and
v(x) = L — x. With J(u,v) = a(uv’ — vu’) = —t[(x)(—1) — (1L — x)] = Lt,(29) gives
g(x; X) = %(x(L — X)H(X — x) + X(L ~ x)H(x — X)),

and this is (10c).

Find the Green’s function for the boundary value problem

2
:—x—';+4y=F(x), xa<x<p,
y(@) = my, y(B) = m,.

Since solutions of y” + 4y =0 are of the form Asin2(x + ¢) or Acos2(x + ¢),

solutions that satisfy y(«) = 0 and y'(B) = 0, respectively, are u{x) = sin 2(x — «) and
v(x) = cos 2(f — x). With

J(u,v) = wv' - vu’

= 2sin2(x — a)sin 2(f — x) — 2cos2(x — a)cos 2(f — x)

= —2cos2(f — a),
formula (29) gives
1 .
x; X) = ——————(sin 2(x — 2B - X)H(X — .
g(x; X) P Ty - 9[)(sm2(‘< x)cos 2(f YH( x)
+sin 2(X — 2)cos 2(f — x)H{x — X)). "
Find the Green'’s function for
d?y dy n
N+21;+1QV=F(X), 0<x<5,

y(0) =5, >(§) =2

Solutions of y” + 2y’ + 10y = 0 are always of the form e *(Asin3x + Bcos 3x).
Solutions that satisfy y'(0) = 0 and y(n/2) = 0, respectively, are

u(x) = e *(sin3x + 3cos3x) and wv(x) = e *cos3x.
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To find the conjunct of u and v, we express the differential equation in self-adjoint form
by multiplying by e2*:

2 d
ez"d—y +2eY 10e?*y = e2*F(x)

dx? dx
d 2x dy 2x,, _. p2x
or | e (e dx) + 10e**y = e**F(x).

With a(x) identified as e,
J(u,v) = e3*(e”*(sin 3x + 3 cos 3x)(—e*cos 3x — 3e”*sin 3x)
— e™*cos 3x(— 10e™*sin 3x))
= -3,

and therefore
glx; X) = —%(e""””cos 3X (sin 3x + 3cos 3x)H(X — x)

+ e **X¢cos3x(sin 3X + 3cos 3X)H(x — X)) .

Find the Green's function for the problem

2
Zx—’;+y=F(x), 0<x <1,

yO) —y(1)=0,  y'©@ —y(l)=0.

Since u(x) =sinx and v(x)=cosx are solutions of y” +y =0, we may take
[according to (28)]

g(x; X) = Asinx + Ccosx + (sinxcos X H(X — x)

J(sin x, cos x)
+ sin X cos x H(x — X)),

where J(sin x,cos x) = sin x(—sin x) — cos x(cos x) = — 1. The boundary conditions
must also be satisfied by g(x; X), and therefore

C — Asinl — Ccosl +sinXcos1 =0,
A—cosX —Acost + Csinl —sin Xsinl =0.

These can be solved for 4 and C:

A_cosX—cos(1+X) _sinX+sin(1—X)
T 21 —cost) T 2(1 —cosl)
and
1
g(x; X) 30— cos l)(sm)::[cosX cos{l + X)] + cosx[sin X + sin(! N
—sinxcos XH(X — x) — sin X cos x H(x — X). L
' 4« HEREE
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The importance of Green's functions is contained in the following theorem.

Proof:

When g(x; X) is the Green’s function for the boundary value problem
L—d a(x)dy + c(x)y = F(x) a<x<f (30a)
Y= dx dx ) T O =, ’
B,y =0, (30¢)
the solution of the problem is

8

y{x) = f g(x; X)F(X)dX. (31)

Notice that the boundary conditions are homogeneous; nonhomogeneous boundary
conditions are discussed in Section 11.4.

The Green's function for (30a) satisfies equations (20). If we substitute (31) into (30a) and reverse

orders of integration with respect to X and differentiations with respect to x,
g
Ly = LJ g(x; X)F(X)dX
8
= j [La(x; X)JF(X)dX

- J "5 — X)F(X)AX by (200)]

= F(x).
Furthermore, because g(x; X) satisfies (20b, ¢}, y(x) must satisfy (30b, c). a

As a result of this theorem, once we know the Green’s function for a boundary
value problem, the solution for any source function F(x) can be obtained by
integration. Think of the integral as a superposition. Because the Green's function is
the solution of problem (30) due to a unit point source at X, we interpret
g(x; X)F(X)dX as the effect due to that part F(X)dX of the source over the interval dX
of the x-axis, and the integral adds over all sources from x = « to x = . Were the
source composed of both a distributed portion F(x) and n concentrated parts of
magnitudes F; at points x;, the solution of (30) would be

B n
y(x) =J g(x;X)(F(X) + Y FoX —x;)> dX
a i=t

8 n
= J 9 XYF(X)dX + 5, Fig(xix)). (32)
-

Before considering examples of Theorem 3 (in Section 11.4), we extend Green’s
formula to encompass delta functions. One of these extensions immediately implies
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that g(x; X) is symmetric. Through the other, we see how Green's functions handle :
nonhomogeneous boundary conditions. S
Theorem 4
Let L be the differential operator of problem (30). When v(x; X)is a solution of Ly = §(x — X) i
and u(x) is continuously differentiable with a piecewise continuous second derivative,
] -
J. (uLv — vLu)dx = {a(uv’ — vu')}4. (33) 4
[
Proof: Suppose u(x) has a discontinuity in its second derivative at a point X < X. [Similar discussions. .

can be made if u(x) has more than one such point or if X > X.] Then

1] X X-¢
J‘ (uLv — vLu)dx = I (uLv — vLu)dx + J (uLv — vLu)dx

a X

X-¢

X+e 8
+ J (uLv — vLu)dx + j (uLv — vLu)dx,
X+te

where £ > 0 is some small number. Green's formula (17) can be applied to the first, second, and
fourth of these integrals since Lv = 0 therein [see condition (21c)]:

B -
f (uLv — vLu)dx = {a(uv’ — v )} ¥ + {a(uv’ — vu')}f ~*

X+te
+ j. (ud(x — X) — vLu)dx + {a(uv’ — o'},
X-—e

Because a, u, u’, v, and v’ are all continuous at X, terms in X vanish, and the expression on the
right reduces to

[
j (uLv — vLu)dx = {a(uv’ — vu')}8 + a(X — e)[u(X — v'(X — & X)
—u(X — & X)X — &)] — a(X + e)[u(X + e’ (X + ¢ X)

X +e

—o(X + & X (X + &)] + u(X) ~ j vLudx.

X~

We now take limits as ¢ — 0*. Since v, u, u’, and u” are continuouson X —e < x < X +¢ the !
final integral vanishes in the limit, and the remaining terms give

B
J (uLv — vLuydx = {a(uv’ — vu' )} + a(X)[w(X)e'(X =1 X) - o( X X)u'(X)]

— a(X)[u(X ) (X +; X) = o(X; X)u'(X)] + u(X)
= {a(uo’ — vu)}? + a(X)u(X)[v' (X = X) = o'(X +: X)) + u(X)
= {a(uv’ — vu')}s

{because v satisfies condition (21b)]. L]
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A similar proof leads to the following extension of Green's formula.

"Theorem 6

Let L be the differential operator of problem (30). When u and v satisfy Lu = 6(x — X) and
Lv=4(x-7Y),

s
f (uLv — vLu)dx = {a(uv’ — vu')}?. (34)

In this case, the integral of uLv — vLu over the interval « < x < § is subdivided into
five integrals over the intervals

xS x <X —g, X—e<x<X+s, X+egsx<Y—g
Y—e<x<Y+s Y+e<x<p
(for X < Y), and Green's formula (17) is applied to the first, third, and fifth. Details are

given in Exercise 20,

Formula (29) indicates that Green's functions for problems with unmixed

boundary conditions are symmetric. That this is true for periodic boundary conditions
as well is proved in the next theorem.

Proof:

When boundary conditions in problem (30) are unmixed or periodic, Green's function g(x; X)
is symmetric: .

g(x; X) = g(X; x). (35)

When we set u = g(x; X) and v = g(x; Y) in version (34). of Green's formula, the result is
8
j Lg(x; X)Lg(x; Y) — g(x; Y)Lg(x; X)) dx

dg(x; Y dg(x; X)\}#
= {a(x)(g(x; X>g—(;‘x~’ — g(x; Y)—g%—% :

It is straightforward to show that when g(x; X) satisfies unmixed boundary conditions (14) or
periodic conditions (15), the right side of this equation must vanish, and therefore

8
0= J [g(x;: X)o(x — Y) — g(x; Y)d(x — X)]dx = g(YV; X) — g(X: V). .

Itis interesting to interpret this symmetry physically, say, in string problem (9) of
Section 11.2. Green's function g(x; X) for this problem is the deflection of the string due
to a unit force at position X. Symmetry of g(x; X ) means that the deflection at xdueto a
unit force at X is identical to the defiection at X due to a unit force at x. This is often
referred to as Maxwell's reciprocity and is illustrated in Figure 11.7.

!
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yX = g(X; x) yx) = glx; X)

Figure 11.7 x : X L

Exercises 11.3

In Exercises 1-S, write the differential equation in self-adjoint form.

d¥y dy d*y dy
St AT A TP it A A T
1 xd 5 +dx + 3y = F(x) 2 o +dx y = F(x)
d d’y dy ,dy dy
. A LSt AN A =F
3 x'o3 +2xd (x + 1)y = F(x) 4. x o % (x + )y = F(x)
d*y  dy
S T =

In Exercises 6-14, find the Green's function for the boundary value problem.

d*y
6 T= F(x), 0<x<2, y0)=0, y'(2}=
d*y
7. ‘7)-‘—2+y=F(x), O<x<l1, y0)=0, y'(1)=0
dly
8. dx? + k%y = F(x), 0 < x < (k> 0 aconstant, but not an integer), y(0) = 0, y(n) =
d’y . .
9. d_2=F(x)' O<x<l, yO)=y'@), y(1)=0
d? d
10. 2232 L4y =F), 0<x<2 yO)=0, y@ =
dx? dx
Y. _ ’ . _
o2+ 5y =F(x), O0<x<n/2, y'(0)=0, yr/2) =
dx dx
d2 dy
12, X1 St A 2xd— —6y=F(x), l<x<2 y2=y@, y)=
dZ
13. el + k%*y = F(x), 2 < x < f{k>0aconstant), y(z) = y(8), y(2) = y'(B). Would you place
any restrictions on k?
d? d
14. x—£+—z+xy=F(x) O<ax<x<f, =0, ypf)=
dx? = dx ’

15. The boundary value problem for static deflections of a beam subjected to a distributed force

) P A T PGS M 2 e DS )

e ™
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F(x)is
d*y
EIE'F=F(X), 0<x<lL,
Boundary conditions at x = 0and x = L,

where E and [ are constants. The Green's function g(x; X) for this fourth-order problem satisfies

4

d’y
El‘—iy—&(X—X),

Homogeneous boundary conditions at x = 0 and x = L.

Thus, it is the solution of the problem due to a unit concentrated force at X (with homogeneous
boundary conditions). Solutions of the differential equation age characterized by the following
properties:
(i) g(x; X), dg(x; X)/dx, and d*g(x; X)/dx? are continuous for 0 < x < L except for a
removable discontinuity at x = X,
(ii) d*g(x; X)/dx* is continuous except for a discontinuity at x = X of magnitude (EI)"!;
that is,
d’g dg 1
lim — - lim -— = —.
x—X+ dx3 x—X" dXJ EI
(iii) for any x # X,

d*g(x; X)
El ————= = (,
dx* 0
Use the characterization in (i), (i), and (iii) to show that g(x; X) can be expressed in the form
1
g(x; X) = m(x — X)*H(x — X) + Ax® + Bx* + Cx + D,

where A, B, C, and D are constants. (The constants are evaluated using the homogeneous
boundary conditions.)

In Exercises 1619, use the result of Exercise 15 to find the Green's Sunction for static deflections
of abeam of length L (0 < x < L), where the boundary conditions are as given.

16.
17.
18.
19.
20.
21.

y(0) = y'(0) =0 = y"(L) = y"(L) (cantilevered)

y0) = y"(0) =0 = y(L) = y"(L) (simply supported at both ends)

y(0) = y'(0) =0 = y(L) = y'(L) (clamped at both ends)

Y0) = y'(0) =0 = y(L) = y"(L) (clamped at one end, simply supported at the other)
Prove Theorem 5.

When the boundary conditions in (19} are unmixed, it is sometimes advantageous to represent

the Green's function of the problem in terms of orthonormal eigenfunctions of the correspond-
ing Sturm-Liouville system:

d dy )
Ix a(x)a + {e(x) + Ap(x)1y =0, < x <f,

Biy=0, B,y=0.

T




418

22.

11.4
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[Notice that the weight function p(x} is unspecified, but normally there is only one choice of p(x)
for which the differential equation gives rise to standard functions.] Show that when y,(x) are
normalized cigenfunctions corresponding to eigenvalues A,, Green’s function g(x; X) can be
expressed in the form

1alX)3a2)

glx; X) = 21 3

[Hint: Use Green's formula (33) with u = y,(x) and v = g(x; X).]
Find an eigenfunction expansion for the Green’s function of the boundary value problem
d?y

E—,—:F(x), O<x<lL,

y0 =0, yL)=0.

Solutions of Boundary Value Problems
Using Green'’s Functions

In this section we show how easy it is to solve boundary value problems once the
Green’s function for the problem is known. Theorem 3 in Section 11.3 yields solutions
to problems with homogeneous boundary conditions; we give two illustrative
examples. Nonhomogeneous boundary conditions are handled either by superposition
or by Green's formula.

' Problems with Homogeneous Boundary Conditions

In Section 11.3 we defined the Green'’s function for the boundary value problem

Ly= ;}-(a(x)%) + c(x)y = F(x), a<x<f, (36a)
B,y =0, (36b)
B,y=0 (36¢)
as the solution of
" Lg = d(x — X), (37a)
Big =0, (37b)
B,g = 0. (37¢)

The solution of (36) is then given by the definite integral

[}
y(x) = J glx; X)F(X)dX (38)

{(see Theorem 3).
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umple 5: A taut string of length L has its ends fixed at x =0 and x = L on the x-axis. A
¥ concentrated mass of M kg is attached to the string at x = L/3 [Figure 11.8(a)]). Find
the deflections in the string if gravity is also taken into account.

o y
|

; X

L L

3

Mg
()
y

1 X

L L

3

< ~-98Ix(L —x) 98IM(L—x)
y = —
2 3t
< _ 98l ~x) _ 19.62Mx
Y 2 3t
ure 11.8 (b)
Solution: The boundary value problem for deflections in the string is
d%y L
y(0) = 0 = y(L).

According to equation (10c) and Example 1, the Green's function for this problem is
1
g(x; X) = E(X(L — X)H(X — x) + X(L — x)H(x — X)).

The solution is therefore defined by integral (38):

L
y{(x) =J g(x;X)[—9.81 —9.81M5<X —%)]dx
0

L L
= —9.81J‘ g(x; X)dX —9.81Mg<x; ?>

0

x

_ x L
=i8—1j X(L~x)dX—9—‘8—lJ (L — X)dX
Lt ) Lt .

28 Y5+ (S ()
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_—9.81 L—x) x_z_ __9il_x(L——x)z
" Lt ( 2 Lt 2

98IM[2Lx (L L L
’T[TH(? B ) * (?)‘L -0 ( B ?)]

_ —9.81x(L — x) _ 9.81M {2x 0<xsL/3
- 2t 3t |L—x L3<x<L

- '~%M¢mmm¢’#ﬂ

This is supérposition of the displacement due to gravity (the first term) and that due to
the concentrated load (the second term) [Figure 1 1.8(b)]. .
Example 6: Solve the boundary value problem
:—;}—;-{-4}!=F(x), 0<x<3,
y(0) =0 = y'(3)
when (a) F(x) = 2x and (b) F(x) = H(x— 1) — H(x - 2).

Solution: The Green’s function for this problem can be obtained from Example 2 by setting o = 0
and §=3:
-1
2cos6

With source function F(x), the solution of the boundary value problem is

g(x; X) = (sin 2xcos(6 — 2X)H(X — x) + sin 2X cos(6 — 2x)H(x — X))

3
y(x) = L g(x; X)F(X)dX.

(a) When F(x) = 2x,

y(x) = r 2Xg(x; X)dX
o

-1 [~
= i —2x)dX
Teos6 L 2X sin 2X cos(6 x)d

2cos

_ —cos(6 — 2x) {—X cos2X N sin ZX}"

cos 6 2 4 J,

_sin2x {—Xsin(6 —-2X) N cos(6 — ?_X)}3
cos6 2 4

X

1 3
- j 2X sin2xcos(6 — 2X)dX

sin 2x
4cos6’

=X
T2

(This solution could‘ also be derived very simply by finding the general solution of
y" + 4y = 2x and using boundary conditions to evaluate arbitrary constants.)

—



Section 11.4 Solutions of Boundary Value Problems

{b) For F(x) = H{x — 1) — H(x — 2), the solution is

, :
¥(x) =f [H(X — 1) — H(X — 2)]g(x; X)dX
V]

2
=j g(x; X)dX.

When x < |,

2
~-1 .
y(x) = J“ Toosg Sin 2xcos(6 — 2X)dX

_sin2x {sin(6 — 2X))?
" 2cos6 2
_sin2x(sin2 —sin4)

B 4cosb6

1

when !l <x <2,

2

y(x) = f ! gn2x cos(6 — 2x)dX + f sin 2x cos(6 — 2X)dX

1 2cos6 < 2C086
_cos(6 — 2x) fcos2X)*  sin2x {sin(6 — 2X)]?
2cos6 2§, 2coséb 2 x

1 1 . . .
=3 + Toost {sin2xsin2 — cos(6 — 2x)cos 2];

and when 2 < x < 3,

e - 2X)?
yx) = J 1 sin 2X cos(6 — 2x)dX = cos(6 — 2x) {cos }

1 2cos6 2cos6 2§,
__cos(6 — 2x)(cos 4 — cos 2)
- 4c0s6 '
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This solution is not so easily produced using methods from elementary differential
equations. [t requires integration of the differential equation on three separate intervals

and matching of the solution and its first derivative at x = { and x = 2.

Problems with Nonhomogeneous Boundary Conditions

Suppose now that boundary conditions (36b, ¢} are not homogeneous, in which case

problem (36) becomes
d d
Ly=— a(x)—y + c(x}y = F(x), 1< x < B,
dx dx
By =m,
B,y =m,.

(39a)

(39b)
(39¢)
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Example 7:

Solution:

Chapter 11  Green's Functions for Ordinary Differential Equations

(Only nonhomogeneous unmixed boundary conditions are considered; periodic
conditions are always homogeneous.) There are two ways to solve this problem; one is
to use superposition, and the other is to use Green's formula. Both methods use Green’s
function for the associated problem with homogeneous boundary conditions:

d dy
Ly= z;(“"" E) +o(xy=F(x), a<x<p, (40a)
By=0, (40b)
Bzy = 0. (40C)

In the superposition method, we note that

B
yilx) = J. g(x; X)F(X)dX,

where g(x; X) is the associated Green's function, is a solution of (40). A solution of (39)
will therefore be y = y, + y, if y, satisfies

Ly =0, x<x<f, (41a)
By =my, (41b)
B,y =m,. (41c)

In ODEs it is often quite straightforward to obtain y ,{x)—apply boundary conditions
(41b, c) to a general solution of (41a). We illustrate with thé following example.

Solve the boundary value problem

dz
—t#:F(x), 0<x<L,
y@) =m,,  y(L)=m,.
In Section 11.2 we derived the solution

L—x

L x - L
y,(x) = J g(x; X)F(X)dX = J XF(X)dX + %j (L — X)F(X)dX
0 0 x

for the associated problem with homogeneous boundary conditions. To this we must
add the solution of

dz

—Xz =0, y(0) = my, y(L) = m,.

dx

Since every solution of this differential equation must be of the form y,(x) = Ax + B,
to satisfy the boundary conditions we require that

ml=B, mZ=AL+B.

Thus, yo(x) = (my — m,)% + m,

[P Y .p—z;ewr‘a\mm s oA SHTRR I I S
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emor 22 [Cxro0ax
0

and  y() = yux) + yo(x) = (m — m) T I

L
x [t
+—f (L—- X)F(X)dX. .
Lt |},

This superposition method works well for ODEs but fails to generalize to PDEs; it
is not usually possible to produce general solutions of homogeneous PDEs and apply
nonhomogeneous boundary conditions to determine arbitrary functions. An aiter-
native approach, which does generalize to PDEs, is to use Green's formula (33). This
method also illustrates how the solution depends on the nonhomogeneities in the
boundary conditions.

If y(x)is the required solution of (39) and v(x) is the Green’s function g(x; X) for the
problem, (33) becomes

8

— g X )y’(x)]} .

R e S e
yLg(x; X)dx — | g(x; X)Lydx = {a(x) y(x)

Because Ly = F(x) and Lg(x; X) = 8(x — X), we may write
B

] 8 .
J Y(9S(x — X)dx — j 9c; X)F(x)dx = {a(x)[y(x)—’”%‘)’;ﬁ e xwm]}
(194

or wX) - J g(x; X)F(x)dx = a(li)<y(ﬂ) —-g(B X )y’(ﬂ))

—a(a)( (2@ X) "(“ X) g(a;x)y'<a)>. (42)

If we now substitute from the boundary conditions
By = —1,y'(®) + hyy(a) = my, (43a)
Byy = 1,y (B) + hyy(B) = my, (43b)

00 - [ s 0reax = ap| w255 - o (5= 5) |
—a(a)[y(a)—%g—) — gl X)(— Tt h—l (a)ﬂ
- ap| - o + A1, 0 hoat9i0) |

—a(u)[ glx; X) — 19_)<—lleg(0:c )+h,g(1;X)>].
Iy

But g(x; X ) must satisfy homogeneous versions of (43); that is,

-1 Cg(;ix) +hg(xX) =0, (44a)
og(B; X
I, 9(B: X) + hyg(B; X) = 0. (44b)

ox
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Example 8:

Solution:

Chapter 11 Green’s Functions for Ordinary Differential Equations
Consequently,
' m m
wX) = f g0 X)F(x)dx — 5+ a(@)gle; X) — 7> a(B)g(B: X).
« 1 2

Finally, when we interchange x and X and use the fact that g(x; X) is symmetric,

y(x) = r g(x; X)F(X)dX — '—7—‘a(a)g(x; a) - %a(ﬂ)g(x; B (45a)
« 1 2

When [, =1, = 0 (and we set h, = h; = 1), (42) yields the following replacement
for (45a):

dg(x; o)

3X (45b)

m,a(x)

’ .
y(x) = J‘ g(x; X)F(X)dX + mza(ﬂ)%’.@ _

Both (45a) and (45b) clearly indicate the dependence of y(x) on all three nonhomogene-
ities in problem (39). The integral term accounts for the nonhomogeneity F(x} in the

_ PDE, and the remaining terms contain contributions due to nonhomogeneities in the

boundary conditions. With F(x) piecewise continuous, the integral term in (45) is
continuous in x. Furthermore, because g(x;X) is continuous and dg/dx has a

" discontinuity only when x = X, it follows that the additional terms in (45) due to the

nonhomogeneities in the boundary conditions are also continuous. In other words, the
representation of the solution to a boundary value problem in terms of its Green's
function is always a continuous function.

Solve the boundary value problem of Example 7.
The Green’s function for this problem is
gOx; X) = (Lt '[x(L ~ X)H(X — x) + X(L — x)H(x — X)}.

In Example 7 we used the direct method to find the particular solution satisfying the
homogeneous differential equation and nonhomogencous boundary conditions.
Alternatively, according to equation (45b),

L . .
o) = J og0iL) 2g(x;0)

og(x;X)F(X)dX—tmz X m, ax

L
= j g(x; X)F(X)dX — %"ti(—xﬁ(x —x) 4 (L - )Hx = Xx=s
o

™m,

+ —LT(—XH(X —x)+ (L — )H(x — X))ix=0

-

SET
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t my m

= gx; X)F(X)dX + -~ x + (L — x)
o L L
L X

=f g(x;X)F(X)dX+(m2—ml)z-+m,. .
[+]

Example 9: Solve the boundary value problem
d%y

m+4y;——l"(x), a<x<p,
ye)=my,  y'(B)=m,.

Solution: According to Example 2, the Green's function for this problem is

. glx; X) = ms—z—(%—a—)(éin 2(x — a)cos 2(f — X)H(X — x)

+5in2(X — a)cos 2(f — x)H(x — X)). -
To account for the nonhomogeneities m, and m, in the boundary conditions, we use the
term in (45a) containing m, and the term in (45b) containing m,:
9g(x; @)
X
m
2cos2(f — a)
x (2sin2(x — «)sin2(B — a)H(x — x) + 2cos 2(B — x)H(x — a))

— myg(x; f)

8
y(x) =J gle; XYF(X)dX — m,

= Jpg(x;X)F(X)dX +

+ 'mT";;f__aj(s"‘ 2(x — )H(B — x) + sin 2(f— a)cos 2(B — x)H(x — B))

i . 2m, cos 2(f — x) + m, sin 2(x — a)
B J 9L XIF(X)dX + 2cos 2(f — a) '

Exercises 11.4

Do the exercises in Part D first.

Part A— Heat Conduction

1. What is the Green's function for the boundary value problem for steady-state temperature in a
rod from x = 0 to x = L with constant thermal conductivity k and zero end temperatures?

2. Solve the boundary value problem

d dU

——| k—} = F{x), 1< x<p,

dx< dx) x) 4

Ul@ =0=U(p)

liatessst
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for steady-state temperature in a rod from x = xto x = § with variable thermal conductivity k(x)

and heat generation F(x). Interpret the Green's function physically. :
3. Two rods of lengths L, and L, and constant thermal conductivities «, and «, are joined end to :
end (the left end of L, at x = Oand the rightend of Lyat x = Ly + L,). If theends at x = O and 2
x = L, + L, are kept at temperature zero, what is the Green's function for steady-state i
temperature in the rods? ]

Part B— Vibrations :

In Exercises 4-9, the function F(x) describes the appplied force on a massless string with constant
tension t stretched between two fixed points x = 0 and x = L. Find and sketch a graph of the
displacement y(x) in the string.
4. F(x) =k <0aconstant
5. F(x)={_kx 0<XSL/2, k < 0 a constant
kix — L) Li2<x<L
0 O<x<L/4
6. F(x)= 1k L/4 < x < 3L/4, k < 0 a constant
0 IL/d<x <L
7. F(x)is due to two concentrated loads of magnitude k placed at x = L/4 and x = 3L/4.

8. F(x)is due to the combination of the constant force k in Exercise 4 and the concentrated loads k
in Exercise 7.

k O<x<lL/4
9. F(x)=4{0 L/4 < x < 3L/4, k < 0 a constant
: k 3L/4<x <L
10. Solve Exercise 13 in Section 1.3.
11. Solve Exercise 10 if a thin ring of mass m is attached halfway along the length of the bar.
12. Solve Exercise 10 if a mass M is attached to the lower end of the bar.

13. The barin Exercise 12 is hung from a spring with constant k, and a thin ring of mass mis attached
halfway along the length of the bar. Find displacements of its cross sections in the coordinate
system shown in Figure 11.9.

/
t x = Qatunstretched
1 T l position of spring
| Li2in X
; unstretched
! positien
1
Unstretched 1

lengthof L "

|
1

Figure 11.9 1 J M
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In Exercises 14-19, the function F(x) describes the applied force on a beam of length L
(0 < x 5 L), and the conditions represent boundary conditions at the ends of the beam. Use the
Green's functions from Exercises 1619 in Section 11.3 to find the static deflection of the beam.
Sketch the deflection curve in Exercises 14-17.

14. F(x)is due to a concentrated load of magnitude unity at x = L/2, and the weight of the beam is
assumed negligible:

y(0) = y'(0) = 0 = y"(L) = y"(L).
(See also Exercise 10 in Section 11.1.) :
1S. F(x)is due to the load of Exercise 14 placed at x = L. (See also Exercise 11 in Section 11.1:)
16. F(x) is due only to the weight per unit x-length w of a uniform beam:
y(0) = y"(0) = 0 = y(L) = y"(L).

17. F(x)is due to a uniform weight per unit x-length w of a uniform beam and a concentrated load of
magnitude k at x = L/2:

Y(©0) = y'(0) = 0 = y(L) = y'(L).

—w O<x<L/4 — constant
18, F(x)=1—(w+ W) L[4 <x<3L/4, ‘:{/—— c(:)r:nstant’
—w WMA<x<L B

y(0) = y'(0) = 0 = y“(L) = y"(L)
19. F(x)is due to a uniform weight per unit x-length W on 0 < x < L/2 and a concentrated load of
magnitude k at x = L./4. The weight of the beam itself is negligible:

y(0) =y'(0) =0 = y(L) = y"(L).
Part D—General Results

In Exercises 20-27, find an integral representation for the solution of the boundary value
problem.

dz
20. ;—yz =F(x), 1<x<2 y(1)=my, y@) = m,. What is the solution when F(x) = xe*?
x
d%y .
21. yrel +y=F(x), 0<x<l, p0)=m,y(l)=m,. Whatis the solution when F(x) = cos x?
x
d?y

22, el +k*y = F(x), x<x < f(k>0aconstant), p(x) = 0, (8} = 1. Is there any restriction on
x

the value of k? What is the solution when F(x) = 1?
23. % +k?y = F(x), x<x<f(k>0a constant), y(x) = y(B),  y'(x) = ¥'(B). (See Exercise 13
in Section 11.3 for the Green's function.) What is the solution when F(x) = x?
24, (x + l)% + j—t =F(x), 0<x<1,p0)=0, y(1)=0.Whatis the solution when F(x) = x?
25, j—;‘:— - 4% +8y="F(x), 0<x<n, pO0)=yn), y(0)=0 What is the solution when

F(x) = e**?
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d dy ,
26. —(x-—):F(x). O<ax<x<p, ) — y'(2) = my,
dx \ dx

27. Show that the solution of nonhomogeneous problem (39} can be expressed in the form

/]
- y(x) =J‘ gle; X)F(X)dX -i-—-—Bm2 yil(x) +
« Zyl

where y(x) and y,(x) are nontrivial solutions of the associated homogeneous equation that

satisfy By(y,) = 0 and B,(y,) = 0, respectively.

11.5 Modified Green’s Functions

When homogeneous problem (27) has nontrivial solutions, Green's function for the
operator L and boundary conditions (27b, c) does not exist. Another way of saying the
same thing is that Green’s function does not exist when A =0 is an eigenvalue of

the associated problem

f;(a(x)%) + [e0) + 2001y = O, (a6a)
By =0, (46b)
B,y =0 (46¢)
A physical example to illustrate this is the boundary value problem
—x%:F(x), 0<x<L,

U'©=0,U'(L)=0

for steady-state heat conduction in a rod with insulated sides and ends. The associated

wB)=m,.

ny
By,

yZ(x)v

homogeneous problem has nontrivial solutions U = constant. Notice that if we
integrate the differential equation from x =0 to x = L,

L L dzu
L F(x)dx = j.o —xd—dex = {

L
_Kd_‘i} —o.

dx §o

Thus, if there is to be a solution to this problem, F(x) cannot be specified arbitrarily; it

must satisfy the condition

L
j F(x)dx = 0.

Q

47)

Physically this means that with insulated sides and ends, the only way a steady-state
condition can prevail is if total internal heat generation is zero.
Since the delta function d(x — X) does not satisfy this condition (a unit point

source at x = X), there can be no solution to

d’g
—KE? =6(x — X),

g0;X)=0, ¢g(L;X)=0

for the associated Green's function g(x; X).
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The condition equivalent to (47) in more general problems with homogeneous
boundary conditions is contained in the following theorem.

When a homogencous boundary value problem

Ly=zd;( %)+cy=0, a<x<p, (48a)
By =0, (48b)
Byy=0 (48¢)
has nontrivial solutions w(x), the nonhomogeneous problem
Ly = %( %) + ¢y = F(x), (49a)
B,y=0, (49b)
B,y =0 (49¢)

has a solution if and oaly if

'[ ’ F(x)w(x)dx = 0 (50)

for every such solution w(x).

Itis easy to establish the necessity of condition (50). If y(x)is a solution of (49), then

J‘p F(x)w(x)dx = J-a(Ly)w(x) dx

s
= J‘ y(Lw)dx + {a(wy' — yw')}4 [using Green’s formula (18)]

= a(Bw(B)y'(B) — y(B)w' ()] — a(@)w(x)y' (@) — ylx)w'(®)],

since Lw = 0. These terms both vanish when boundary conditions (49b, ¢) are un-
mixed, and they cancel when the boundary conditions are periodic.

When (48) has nontrivial solutions and consistency condition (50) is satisfied, the
solution of (49)is not unique. If y(x)is a solution, so also is y(x) + Cw(x)for arbitrary C
and w(x) a solution of (48). :

To solve (49) when condition (50) is satisfied, we introduce “modified” Green’s
functions. We do so because there can be no “ordinary” Green’s function satisfying

Lg = 6(x — X),
B,g =0, B,g =0,

since d(x — X) does not satisfy (50). Two situations arise, depending on whether (48)
has one or two linearly independent solutions. We consider first the case in which (48)
has only one nontrivial solution that is unique to a multiplicative constant and may
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therefore be taken as normalized:

s
J [w(x)}?dx = L. (51)
A modified Green’s function associated with (49) is defined as a solution g(x; X) of
Lj=dx—X)— w(x)w(X), _ (52a)
B, =0, (52b)

Bzg_ = 0. (52C)

Because the right side of equation (52a) satisfies consistency condition (50), Theorem 7
guarantees a solution g(x; X). But because the solution is not unique, g(x; X) may or
may not be symmetric, depending on the method used in its construction. It is
important to note, however, that because the differential equation for the ordinary
Green's function is modified only by the term w(x)w(X), the modified Green’s function
satisfies the same continuity properties as the ordinary Green's function. Indeed, we
shall use these properties to find g(x; X).

Modified Green’s functions can be used to solve problem (49), which has a solution
provided F(x) satisfies (50). Green's identity (33) with u = y(x) and v = g(x; X) gives

T agiX) - G
j [yLg — Lyldx = {a(x)(y(x)—%x—— — g6 X)y (x))} :
It is quickly shown that with either unmixed or periodic boundary conditions, the right
side of this equation vanishes. Differential equations (49a) and (52a) then give

s
0= J- (Y)3(x — X) — wx)w(X)] — g(x; X)F(x))dx

= y(X) — C,w(X) —- j: glx; X)F(x)dx,
where C, = [?y(x)w(x)dx. Thus,
yX) = r glx; X)F(x)dx + Cyw(X) (53)
or, interchanging x and X,

[
y(x) = J FX;x)F(X)dX + Cyw(x). (54)

x

Because y(x) is unique only to the addition of a term Cw(x), we may drop the subscript
in (54) and write

]
px) = j GX;x)F(X)dX + Cw(x), (55)

where C is arbitrary.
Finally, when the construction of g(x; X)givesa symmetric function, we may write

8
y(x) = j gx; X)F(X)dX + Cw(x), (56)

{
¢
{,
3
t
4
H
H
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and the form of the solution, except for the Cw(x) term, is identical to that for ordinary
Green's functions. Exercise 11 describes a technique for calculating symmetric modified
Green's functions from nonsymmetric ones.

Solve the boundary value problem

d? -
a-ﬁi+4y=p(x), 0<x<n,

y(0) = 0 = y(xn).

Solutions of the homogeneous differential equation y” + 4y = 0 are of the form-
y = Acos 2x + Bsin2x. Since the function sin 2x satisfies both boundary conditions,
the Green's function for this problem does not exist. We define a modified Green's
function g(x; X) as the solution of

g
dx?
3(0; X) = 0 = g(m; X).

(2/r is the normalizing factor.) Because §(x;X) must satisfy property (2c), and a
particular solution of §* + 4g = —(2/n)sin 2x sin 2X is (27) ' x sin 2X cos 2x, we take

+47=6(x - X) — %siansinZX,

Asin2x + Bcos2x 0<x<X

X
g(x; X) = —sin 2 .
g0 X) 2" Xcoszx+{Csin2x+Dcos2x X<xgn
To determine A, B, C, and D, we apply boundary conditions §(0; X) = 0 = §(m; X),

B =0,

1
iSil’l 2X+ D= 0,
and continuity conditions (21a, b) at x = X,

Asin2X 4+ Bcos2X = Csin2X + Dcos2X,

(2Ccos2X — 2Dsin2X) —~ (2Acos2X — 2Bsin2X) = L.

These four equations require that

B =0, D=—%sin2X, and C=A+%cos2X,

where A = A(X)is an arbitrary function of X. A modified Green's function is therefore

_ x in2 0<x<X
g(x;X)=—;—nsm2Xc052x+ Asin 2x -

(A+%c052x>sin2x—%sinZXcost X<x<n

X . in 2 <x<X
=2—;-sm2Xcoszx+ Asin 2x 0=x

1
LAsin2x+§sin2(x—)() X<x<nmn

= zx—nsin 2X cos 2x + Asin2x + %sin 2x — X)H(x — X).
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Notice that the arbitrariness in §(x; X) is a constant A(X) times w(x), the solution of the
homogeneous problem. Because §(x; X) is not symmetric, we use equation (55) to
express the solution of the original boundary value problem in the form

yx) = J'g(x;x)F(X)dX + Csin2x
[}

X . , .
= j. (Z?sm 2x cos 2X + A(x)sin2X + %sm 2(X — x)H(X — x)) F(X)dX
o

+ Csin2x (C a constant)

. sin 2x
= Csin2x +

I X cos2X F(X)dX + A(x)J F(X)sin2X dX
(4] 0

l x
+ 3 J- sin2(X — x) F(X)dX.
Since the first integral is a constant, the second term may be grouped with Csin 2x.

Furthermore, the second integral vanishes because of consistency condition (50). Thus,
the final solution is

y(x)=Csin2x+%[ sin 2(X — x)F(X)dX. -

x

We have considered the situation in which the homogeneous problem (48)
corresponding to (49) has a single nontrivial solution (unique to a multiplicative
constant). The remaining possibility is that all solutions of (48a) satisfy boundary
conditions (48b, ¢). In such a case, we can always find two orthonormal solutions v(x)

and w(x) of Ly =0. If ¢{(x) and ¢(x) are linearly independent solutions, two
orthonormal solutions are

f -1/2
v(x) = !I/(X)(J [y} dx)

and

] ] 8 2 ~1/2
wix) = (d)(x) -~ u(x)j d(x)v(x) dx)(’( (d)(x) - v(x)J‘ ¢(x)v(x) dx) dx) .

[¥(x) is normalized to form v(x). For w(x), the component of ¢(x) in the “direction” of
v(x) is removed, and the result is then normalized.] We define a modified Green's
function §(x; X) associated with {49) as a solution of

LG = d(x — X) — wx)w(X) — v(x)u(X), ) (57a)
B,g =0, (57b)
B,g=0. (57¢)

Because the right side of (57a) satisfies consistency condition (50), g(x; X)) must indeed

PR T
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exist. Green's identity once again gives the solution of (49) as

2
y(x) = J. G(X;x)F(X)dX + Cw(x) + Dv(x), (58)

» where C and D are arbitrary constants.

'é‘ixample 11: Solve the boundary value problem
d?y
dx—z-{-y=F(x), 0<x<2m,

y0) = y@2n),  y'(0) =yCn).

Solution: The homogeneous problem has nontrivial solutions sin x and cos x. Because these
functions are orthogonal, a modified Green's function for this problem is defined by

%G

T +§ = d(x — X) — n"(sinxsin X + cos xcos X),

0g(0; X) _ 0g(Qm; X)

3(0; X) = g(2x; X), e Em

A solution of the differential equation is

Asinx + Bcosx 0<x<X

X
alx: X) = —si — .
4. %) 2r sin(X —x) + {Csinx + Dcosx X<x<2n

P

To determine 4, B, C, and D, we first apply the boundary conditions

B=sinX + D,
sin X + A =sz —cos X + C,
2r 2n

and then continuity conditions (21a, b) at x = X,
AsinX + Bcos X =CsinX + Dcos X,
CcosX —DsinX — AcosX + BsinX = 1.

These four conditions require that 4 = C — cos X and B = D + sin X, where C =
C(X) and D = D(X) are arbitrary functions of X. A modified Green's function is
therefore

sin X cos x —cos X sinx 0<x<X

_ x . .
g(x,X)~§;sm(X~x)+Csmx+Dcosx+{0 X<x<2n

X
2n

= Csinx + Dcos x + sin(X — x)

\\k
>
A
=

A
)
A

2n

= Csin x + D cos x + sin{X —x)<2'—j;+ H(X—x)).

5
k3
5
N
=
&

Tt
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e

According to (58), the solution of the boundary value problem is

A e s

2z
y(x) =J G(X:x)F(X)dX + Esinx + Gcosx
0

= Jozn[CsinX + Dcos X + sin(x — X)(zl(; + H(x — X))]F(X)dX ;

+ Esinx + Gcosx ;

=-; Esinx + Gcosx + jOZ’sin(x — X)(% + H(x — X)) F(X)dX, (

since F(x) must satisfy the consistency conditions :
J‘:‘ F(x)sinxdx =0 = Lh F(x)cos xdx. "

When boundary conditions in {49b, ¢) are nonhomogeneous (and therefore
unmixed), it is also necessary to introduce modified Green's functions into the results of
Section 11.4. The following results are proved in Exercises 4 and 9.

When (48) has only one solution w(x) (unique to a multiplicative constant), the
solution of

_ d dy _
Ly—a<adx> + ¢y = F(x), x<x<f, (59a)
B,y =m,, (59b)
B,y =m, (59¢)
8
is y(x) = j G(X; x)F(X)dX + Cw(x) — ';Aa(a)g"(a;x)
« 1
- ';'—:a(ﬂ)ﬁ(ﬁ: x) (60a)
or,when !, =1, =0,
[ =N e
Yx) = J FX:x)F(X)dX + Cw(x) + mya(f) c"g((a[)}(, x) _ mla(a)ég—géfl. (60b)

If (48) has two linearly independent solutions v(x) and w(x), the quantity Cw(x) in
equations (60) is replaced by Cw(x) + Du(x), and the solutions are otherwise the same.

In all cases, a solution of (59) exists if and only if F(x), m{, and m, satisfy the
consistency condition

8 m, m,
Fix)w(x)dx = I—a(ﬁ)w(ﬂ) + I—a(:x)w(ot) (61a)
Ed 2 1
or,when!, =1, =0,
]
J. F(x)w(x)dx = ma(x)w'(x) — mya(Byw'(f) (61b)

for every solution w(x) of the corresponding homogeneous problem.

|
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Exercises 11.5

1. Solve the boundary value problem
2

I
U'0) = 0 = U'L)

when F(x) satisfies consistency condition (47). Calculate the solution in closed form when
F(x) = cos(nx/L).

=F(x), O<X<L1

2. Verify that the result in Example 11 gives the correct solution when F(x) = sin 2x.
3. (a) Simplify the solution to Example 10 when F(x) = cos 2x.

{(b) Use equation (60b) to find the solution when the boundary conditions are nonhomogeneous:

yO) =my,  y(n)=m,.

What condition must be imposed on m, and m,?

4. Verify consistency conditions (61) for the nonhomogeneous problem (59).
5. Solve the boundary value problem

2
Z-);’;—*—kzy: F(x), O<x<L {k > 0 a constant),

¥(0) =0 = y(L).

6. (a) Use the result of Exercise 5 to solve

2 2
:T};—+9{—z—y=l-‘(x), 0<x<L,

yOy =my,  yL)=m,.

(b) Simplify the solution when F(x) = x. What is the consistency condition?

7. Solve the boundary value problem

dz
(—i—{+k2y= F(x), O<x<L {k > 0 a constant),
X
y(0) =0 =y(L)
(a) Use the result of Exercise 7 to solve

d.zy 25m?
—5 + —5y = F{x), 0<x<L,
dx? L2’ tx)
¥(0) =my, y(L) =m,.
(b} Simplify the solution when F(x) = x*. What is the consistency condition?
. Verify the results in equations (60).

10. A modified Green's function for boundary value problem (59), when the corresponding

homogeneous problem has only one solution w(x) (unique to a multiplicative constant), is
defined by boundary value problem (52). In this exercise we show that modified Green's functions
can be defined in other ways. The homogeneous boundary value problem associated with the
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heat conduction problem
. d*U
—-K——2"=F(X), 0<x<L,
dx
U=m, UL)=m,
has noatrivial solutions y = constant.
(a) Show that when a function d(x; X) satisfies
d*g

-—Kd—x—f = 6(x - X),

=00y — l =, . __:_1
g(O'X)—zK’ g(th)_‘ 2K’

consistency condition (61a) for nonhomogeneous problems is satisfied.
(b) Use Green's formula (33) to show that U(x) can be expressed in the form

+ e 7. BRI AP T

L
U(x) = J‘ FX;X)F(X)dX + x[myg(Lix) — mg(0;x)] + C,
V]

where C is an arbitrary constant. Find g(x; X) and simplify this solution.
{©) Use the result in (b) to find the solution to the boundary value problem of Exercise 1 when
. F(x) ='_cos(nx/L).

11. (a) Show that there is only one modified Green's function §,(x; X) satisfying (52) that is ]
orthogonal to w(x) and that this function is given by ‘

N e )

[
gix; X) = glx; X) — W(X)(J‘ é(é;X)W(é)dé),

where §(x; X) is any modified Green's function whatsoever.

(b) Use Green's identity (34) with u = g,(x; X) and v = g,(x;Y) to show that g,(x;X) is
symmetric. Are there any other symmetric modified Green's functions?

12. Use Exercise 11 to find symmetric modified Green's functions for the problem in Exercise 1.
13. Use Exercise 11 to find symmetric modified Green’s functions for the prablem in Example 10.

14. (a) Show that there is only one modified Green's function g,(x; X) satisfying (57) that is
orthogonal to w(x) and v(x) and that this function is given by

8 s
gilx; X) = g(x; X) - W(X)<j Q'(C;X)W(C)d€> - v(X)(j E(C:X)v(é)dé).

where (x; X is any modified Green’s function whatsoever.

(b) Use Green's identity (34) with u = §(x;X) and v =g,x; Y) to show that g,(x;X) is
symmetric. Are there any other symmetric modified Green's functions?

15. Use Exercise 14 to find symmetric modified Green's functions for the problem in Example 11.

R AT 2

11.6 Green's Functions for Initial Value Problems

When the conditions that accompany differential equation (19a) are of the form

o) =0, y(@=0 62)
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they are called initial conditions, and the problem is known as an initial value problem
rather than a boundary value problem. Because this situation arises most frequently
when the independent variable is time ¢, we rewrite the initial value problem in the form

_ d dy _

Ly = pr (a(t)—a-t—) + c(t)y = F(1), t>ty, (63a)
Yto) =my, (63b)
y'(to) = m,. (63c)

Initial time t, is often chosen as t, = 0, but for the sake of generality we maintain
arbitrary tq.

It might seem natural to define the Green's function g(¢; T) for this problem as the
function ¢(t; T) satisfying

%(a(t) 3—‘?) +c(t)g=06(t—T), (64a)

g(to; T) =0 dglto:T) _ g (64b)
dt

Unfortunately, this would lead to improper integral representations of solutions of

(63), together with associated convergence problems. Instead, we define the Green's

function g(t; T) as what is called a causal fundamental solution of (63); it is the solu-
tion of

g(t; T) =0, to<t<T, (65a)

Lg=46(—T). (65b)

Physically g(t; T) s the reaction of the system described by (63) to a unitimpulse at time
T. Naturally, for time ¢ < T, the system must be identically equal to zero [hence the
requirement (65a)].

Provided a(t) does not vanish for ¢ > ¢, the solution of (65) exists and is unique.
Furthermore, corresponding to properties (21), which characterize the Green's function
for boundary value problem (19), the following conditions characterize the Green’s
function for initial value problem (63):

g(t; TY=0, to<t<T, (66a)
d dg
= — = = T, 66b
Lg ’r (a(t) dt) +c(tyg=0, t>T (66b)
g(T+;T)=0Q, (66¢)
dg(T+;T) 1
= . 66d
dt a(T) (66d)
When u(r) and ¢(r) are linearly independent solutions of (66b), the function
1
g(t;T) = Lu(T)e(t) — o(TYu(@]H( — T) (67)
J(u,v)

clearly satisfies (66) and must therefore be the Green’s function for (63). This formula
replaces (29) for boundary value problems, but notice that the condition that the
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associated homogeneous system have only the trivial solution is absent for initial value
problems (it is always satisfied).

Example 12: What is the Green's function for the initial value problem
2
M%‘—f +ky=F@, >0,

y(0) = my, y'(Q) =m;
for displacements of a mass M on the end of a spring with constant k?

Solution: Since sin/k/M t and cos v k/M t are solutions of My" + ky = 0, the Green’s function,
according to (67), is

1 k k.
-T) = 1 —T —_—
g:T) J(sin\/k/Mt,cos\/k/Mt)(sm\/f\_’f cos\/;t

/k . /k
— cos -MTsm —M—t>H(t——T)

4

1 / k .

- = sin [—(T~-0H(—-T) 3
—JkM M ‘F

&

1 k ¢

= sin [—(— T)H( —T) - :

JkM N M ;

. The solution of an initial value problem can be expressed in terms of its Green’s “
function. In particular, the solution of problem (63) is ¥
: ?

! og(t;t <

y(o) = j g(t; TYF(T)dT + a(to)(ng(t; to) — my g;T"))- (68) I

to 7

The integral term, which accounts for the nonhomogeneity in the differential equation, g

is interpreted as the superposition of incremental results. Because the Green's function
g(t; T) is the result at time t due to a unit impulse §(t — T) at time T, g(t; TYF(T)AT is
the result at time ¢ due to an incremental “force™ F (T)dT over dT. The integral then
adds over all contributions, beginning at time ¢, to give the final result at time ¢. The
last two terms in (68) account for nonhomogeneities in initial conditions (63b, c).

Example 13: What is the solution of the problem in Example 127

Solution: According to (68), the solution is
(1) j( ! Sin\/T(t TYH( — TYF(TdT
q1) = L _ )
. OV"W .'\/’
+ M M sin —k—t+ o k cos Tr
WY M kM NM M
1 £ k M . k k
=—\/I—A7Lsm\gd—(t—T)F(T)dT+\/€—mzsm&t+mlcos /-M—t -

[ 4
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Exercises 11.6

1. A particle of mass M moves along the x-axis under the action of a force that is an explicit
function F(t)(¢ = 0)of time t only. Find an integral representation for its position as a function of
time ¢ if at time ¢ = 0 it is moving with velocity v, at position x,.

2. A mass M is suspended from a spring (with constant k). Vertical oscillations are initiated at time
t =0 by displacing M from its equilibrium position and giving it an initial speed. If motion
takes place in a medium that causes a damping force proportional to velocity, and an external
force F(t) (¢ = 0) acts on M, find an integral representation for the position of M asa function of
time ¢. '

3. (a) Show that the solution of problem (63) can be expressed in the form

¥ = J—(ul-v')(f [u(T)o(t) — o(T)u(®] F(T)dT + alte)lm,v'(te) — myv(to)Ju(t)

+ a(to)[myulty) — myu'(to)] U(l)),

where u(t) and v(t) are any two linearly independent solutions of Ly=0.
{b) Use the result in (a) to show that p(t) can also be written in the form

y(t) = PR lt ) [ [u(TYo(t) — o(T)u@)] F(T) dT + muu(t) + myu(t),
0 to
where u(t) and v(t) are solutions of Ly = 0 satisfying

utg) =1, ulte)=0; oltg) =0, vito)=1.

4. Use Exercise 3(b) to obtain the solution for Example 13.
5. Use Exercise 3(b) to solve Exercise 2.
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Green’s Functions
for Partial Differential Equations

12.1 Generalized Functions and Green's Identities

In this chapter we develop Green’s functions for boundary value problems (and initial
boundary value problems) associated with partial differential equations. Solutions to
such problems can then be represented in terms of integrals of source functions and
Green’s functions. We begin by discussing multidimensional delta functions and
Green’s identities.

Two- and three-dimensional delta functions, like (x — ¢), are defined from a
functional point of view. We discuss two-dimensional functions, but three-dimensional
results are analogous. The generalized function §(x — a, y — b) maps a function f(x, y)
continuous at (a, b) onto its value at (a, b); that is,

f(.w)mf(a‘bhj j o(x — a, y — b)f(x, y)dA. (1

il o} -0
Because successive applications of delta functions lead to

€K

Jm Jm o(x — a)d(y — b)f(x,y)dydx = [ é(x — a)f(x,b)dx = f(a,b),  (2)

o e o}
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it follows that
(x —a, y — b) = 5(x — a)6(y — b). (3)

In other words, the two-dimensional delta function in Cartesian coordinates is the

product of two one-dimensional delta functions. Corresponding to property (8) in
Chapter 11, we take ‘

f(@ab) (ab)inR
fJ; Ox —a,y—b)f(x,y)dA = {0 (a,b)notin R’ @

Delta functions in curvilinear coordinates are defined analogously to those in
Cartesian coordinates, but their expressions in terms of products of one-dimensional
delta functions are complicated by formulas for area and volume elements in
curvilinear coordinates. To illustrate, suppose that a point with Cartesian coordinates
(xo, o) has polar coordinates (ro,0). The delta function 6(r — ry, 8 — 6,) in-polar
coordinates is that generalized function that assigns to a function f(r, ), continuous at
(ra.8), its value at (ry, 8,),

.
f O(r —ro, 8 — 8,)f(r,0)dA = f(ro,0,), (5a)
JR?
where R? refers to the xy-plane. But because dA = rdr d0,(5a) is expressible in the form
LI -
J‘ O(r ~ro, 0 — 0,)f(r,0)rdrdd = f(ry,6,). (5b)
-x JO
Since f O(r — rg)o(0 — 0,)f(r,0)drdd = f(r,,0,), (6}
-8 JO

it follows that ré(r — ro, 8 — 6,) = 6(r — re)o(0 — 8,), or
8(r—rq, 8 —0,) = —'1:5(r — 10)0(0 — 6,). (7)

Since the delta function §(x — x,)8(y — Yo) and that in (7) pick out the value of a
function at the same point, we may write

. 1
0(x = x0)(y ~ yo) = ~0lr —10)d(8 — 6). (8a)

Similarly, transformation laws from delta functions in Cartesian coordinates to those
in cylindrical and spherical coordinates are

‘ 1
O{(x — x0)d(y — yo)d(z — Zo) = ;5(" —ro)o(8 — 05)6(z ~ =) _ (8b)

and Ox = x0)d(y — yo)d(z — Zo) =

1
——0(r — r0)8(0 — 6,)5(¢ — ). (8¢)
T g O = )80 — 00)5(6 — o)
Many curvilinear coordinate systems, and in particular the above three, have
singular points—npoints at which transformations between them and Cartesian
coordinates fail to be one to one. In polar coordinates, the origin is singular, and in
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cylindrical and spherical coordinates, the z-axis is singular. Transformation laws (8) are
not valid at singular points. To understand this, we first note that when the functional
on the right side of (8a) operates on a function f(r,8), it produces f(ro,0,), the value of
the function at (rq, 6,). But if ry = 0, the value of the function f(r,8) does not depend on
the value of 6; its value is completely dictated by setting r = 0. This means that when
ro =0, 8(8 — 8,) on the right side of (8a) is redundant. To see how to remove this
delta function, notice that if we write F(0) for the value of £(0,6), then

J ® 81/ (r,0)dr = F(O).
4]

Integration of this result with respect to 0 gives

JK Imé(r)f(r,ﬂ)drd0=f" F(0)do

~-x JO

x 0 6
or J. J. —(rﬂf(r, Q)r drdf = 2rnF(0).
-xJO
© (=60
Thus, — f(r, = .
us J._‘ Jlo ar Sf(r,0)rdrdd = F(0)
But this equation implies that §(r)/(2nr) must be the delta function at the origin, that is,
é
S(x)o(y) = E(I—) 9)
nr

A similar discussion in cylindrical coordinates shows that

(r)é(z — zo)

3(x)8(y)o(z — zo) = ar (10
In spherical coordinates, we obtain
5 = ro)é(#) o

2ar?sin ¢ 0
3(x)6(No(z — z4) = (11a)
e e R R :

2nrtsing 0
and 5(x)8(y)(z) = otr) (11b)

4nr-

Boundary value problems are associated with elliptic PDEs. We consider only two
types in this chapter, those associated with the Helmholtz and Poisson’s equations. The
two-dimensional Helmholtz equation is

Vi + kiu = F(x,y), {(x,¥)in A, (12)

where A is some open region of the xy-plane (with a piecewise smooth boundary), and
Poisson’s equation is

Viu = F(x,y), {x,y)in A. (13)
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Green’s (second) identity for both of these operators states that for functions u(x, y)

and v(x, y) that have continuous first partial derivatives and piecewise continuous
secopd partials in 4, :

J.J. (vVu — uV3)dA = § (vVu — uVv) . iids, ' (14a)
4 A

where i is the unit outward normal vector to the boundary #(A4) of 4 (see Appendix C).
This identity is also valid when u(x, y) and/or v(x, y) satisfy the PDEs V2u + ku =
8(x — X,y — Y)or V2u = §(x — X, y — Y). These extensions parallel those in Theo-
rems 4 and 5 in Chapter 11 for Green's formulas.

The three-dimensional version of Green's identity is

J]. (VU — uVi)dV = J:f (vVu — uVv) - i dS, (14b)
v [lig]

where V is a volume in space with piecewise smooth boundary B(V). It is also valid
when either u(x, y, z) or v(x, y, z) satisfies PDE V2u + k?u = (x—-X,y—Y,z—2Z)or
PDEV2u =4(x~ X,y - Y,z — Z).

Green’s Functions for Dirichlet Boundary Value Problems

Dirichlet problems for the two-dimensional Helmholtz equation take the form
Lu=Viu + k> = F(x,y), (x,y)in 4, (15a)
u(x,y) = K(x,y),  (x,y) on (A). ' (15b)

For k = 0, we have the special case of Poisson’s equation. When F(x, y) has continuous
first derivatives and piecewise continuous second derivatives in A, as does K(x,y)on
B(A), problem (15) has a unique solution. A simplified example was discussed in Sec-
tion 5.6 [see problem (74)]. In practical situations when F(x, y) and K(x, y) may not
satisfy these conditions, verification of uniqueness is much more difficult, as is finding
the solution by previous methods. Green's functions are an excellent alternative.

We define the Green's function G(x, y; X, Y) for problem (15) as the solution of

LG=VG +k* =6(x - X.y— Y), (x,y)in A4, (16a)
Gl,y; X,Y)=0.  (x,y)on S(A). (16b)

[t is the solution of (15) due to a unit point source at (X, Y) when boundary conditions
are homogeneous. It is straightforward, then, to prove that the function

u(x, y) = ” G(x,y; X, Y)F(X, Y)dA (17)
A
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satisfies (15a) (since integrations with respect to X and Y may be interchanged with
differentiations with respect to x and y). Additional terms must be added to(17)in order
to account for the nonhomogeneity K(x, y) in boundary condition (15b). But clearly,
u(x, y) = 0 on B(A). In other words, when G(x,y; X, Y) is the Green's function for (15),
the function u(x, y) in (17) satisfies

Lu=Vu+k*u = F(x,y), (xy)inA4, (18a)
u(x,y) =0,  (x,y) on B(A). (18b)

For boundary value problems associated with ODEs, we derived general formulas
[equations(28) and (29) in Chapter 11] for Green's functions. This was possible because
boundaries for ODEs cousist of two points. For PDEs, boundaries consist of curves for
two-dimensional problems and surfaces for three-dimensional problems. As a result, it
is impossible to find formulas for Green’s functions associated with multivariable
boundary value problems. At best, we can hope to develop general techniques useful in
large classes of problems. We illustrate some of these methods in this section. Before
doing so, however, notice that if we substitute u = G(x, y; X, Y) and v = G(x, y; R,S)
into Green's identity (14a),

j‘j [G(x,y; R,S)V?G(x,y; X, Y) — G(x,y: X, Y)V2G(x,y;R,8)]dA =0
A

[since G(x, y; R,S)and G(x,y; X, Y) satisfy boundary condition (16b)]. But because G is
a solution of PDE (16a), we may write

0= ” {Glx, y; R, S)[8(x — X, y — ¥) — k*G(x, y; X, Y]
A

— G(x,y; X, Y)[8(x — R, y — §) — k*G(x,y; R, 5)}} dA
= G(X,Y;R,S) — G(R,S; X, Y). '

In other words, the Green's function is symmetric under an interchange of first and
second variables with third and fourth:

Gx,y;X,Y) = G(X,Y;x,y) (19)

This result is also valid when boundary condition (15b) is replaced by either a
Neumann or a Robin condition.

We now illustrate four techniques for finding Green's functions.

Full Eigenfunction Expansion

In this method, the Green's function is expanded in terms of orthonormal
eigenfunctions of the associated eigenvalue problem

Lu+ 2u=0, (x,y)in A, (20a)

u=0, (x,y) on f(A). : (20b)
We illustrate with the following example.
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Solution:

Section 12.2  Green's Functions for Dirichlet Problems 445

Find the Green's function associated with the Dirichlet problem for the two-
dimensional Laplacian on arectangle : 0 < x < L,0<y < L'

Separation of variables on

Viu+iu=0 (x,p)inA4, (21a)
u=0, (x,y)on f(4) (21b)
leads to normalized eigenfunctions

. HMRX . mmy
sin ——sin ——,

u (x )-—-L

S =L L L
corresponding to eigenvalues A2, = (nn/L)* + (mn/L')* (see Section 5.5). The
eigenfunction expansion of G(x, y; X, Y) in terms of these eigenfunctions is

Gix,y;X,Y)= Y 3
m=1n=
and this representation satisfies the boundary condition that G vanish on the edges
of the rectangle. To calculate the coefficients c,,,, we substitute (22) into the PDE
V3G = 6(x — X,y — Y)for G and expand &(x — X,y — Y)in terms of the u,.,(x, y):
£ 0 ( n2n2 mlnl

z z Coin ? - '_L—.z—') umn(xv y)

m=1a=1

=§x—-X,y—Y)

© o L rLt
D) <L J o(x — X)o(y ~ Y)um(X,.V)dydx>“m(X,y)

m=1n=1 0
2:[ Zl umn(xv y)umn(xv y)‘

Consequently, ¢, = U X, Y)/(~12,), and

2 & u,(X,Y
Gx,y; X, V)= ) 3. —_(lz*)“m(x.y)

m=1{na=1]

Countlmn(%: ¥), 22)
i

Il

—i i i L sinnnxsinmnysinnnxsinm—ny (23)
TLL m:.m(nn)z <mn>2 L L L L

L

a
In Exercise 1 it is shown that (23) can also be obtained using Green’s identity (14a).

This avoids the interchange of the Laplacian and summation operations and the
eigenfunction expansion of §(x — X,y — Y). "

A general formula for full eigenfunction expansions can be found in Exercise 2, but
such expansions are of limited calculational utility. First, they are possible only when
the eigenvalue problem can be separated, and this requires that the boundary of A4
consist of coordinate curves (or coordinate surfaces, in three-dimensional problems).
Second, in the case in which the full eigenfunction expansion is available, a partial
eigenfunction expansion that converges more rapidly is also available.
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Partial Eigenfunction Expansion

Like the full eigenfunction expansion, this method requires that region A4 be bounded
by coordinate curves (or coordinate surfaces, in three-dimensional problems). It differs

‘in that separation is considered on the homogeneous problem

Lu=0, (x,y)in A, (24a)

u=0, (x,y)on f(A), (24b)

and is carried out until one variable remains. An eigenfunction expansion for the
Green’s function is then found in terms of normalized eigenfunctions already

determined, with coefficients that are functions of the remaining variable. We illustrate
once again with the problem in Example 1.

Find a partial eigenfunction representation for the Green's function of Example 1.

Separation of variables on
V2u=0, (x,y)in A, (25a)
u=0, (x,y)on p(4), (25b)

leads to normalized eigenfunctions f,(x) = «/2/Lsin(nnx/L). We expand
G(x,y; X, Y) in terms of these:

G,y X, Y) = 3 a(n)fulx). (26)

a=1
In actual fact, coefficients a,(y) must also be functions of X and Y, but we shall
understand this dependence implicitly rather than express it explicitly. To determine

the a,(y), we substitute (26) into the PDE VG = 6(x — X, y — Y) for G and expand
6(x — X,y — Y) in terms of the f,(x):

$ T a0+ 5 50 = 56— Xy 1)

3 ( f 5(x ~ X,y - Y)fn(x)dx) £

S SUX)oty = ¥ o)

a=1

This equation and the boundarj/ conditions G(x,0; X, Y) = 0 = G(x, L X, Y) require
the a,(y) to satisfy

dla,, nn?
d}‘l Lz a, =y — Y) f{X), O<y<L,

a,(0) =0, a,(L) =0.

We can solve this boundary value problem most easily by using our theory of
Green’s functions for ODEs. Since a solution of the homogeneous equation that
satisfies the first boundary condition is sinh (nzy/L), and one that satisfies the second
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is sinh [na(L' — y)/L], equation (29) in Chapter 11 gives
Y .
a(y) = }<sinh”—zlsinh"L—"(L' —Y)H(Y - y)+ sinh.'ll‘[-smhﬁi’f(u — ) H(y - Y)).

where J is the conjunct of sinh (nny/L) and sinh {[an(L' — y)/L],
1 ., nny( —nn nn nn nmy .  nxm
= — (= —(L' —y) = h—=sinh—(L' —
J j:,(X)[Smh T ( 3 )coshL(L y) (L)cos I sin L( y)]
nrn sinh(th'/L)
V2Lsin(nnX/L)’

Thus, an alternative expression to the double-series, full eigenfunction expansion for
G(x, y; X, Y) is the single-series, partial eigenfunction expansion

. naX | nnx
ik —zsstmT nny nn
X, Y) = inh—=sinh— (L' — Y)H(Y —
Stsrxin = £ — o <smh % sinh " (L — V) (Y~ y)
L

Y
+ sinhﬂz—sinh%(U ~ Y H(y - Y))

. nnX | . .
- —Zsm%smn—zx-smhn%smh n—:—(L‘ —Y)
2 0<y<Y
n=1 . nnLl
nxsinh ——
L
= X _ . (27)
n

- —25in%—sin%§sinh%—sinh%(L‘ -y
Y Y<y<L
"=t nnsinhﬂ—-'-

L

It is clear that we could find an equivalent solution by expanding G in a Fourier
sine series in y. The result would be

. Y | Lo .
o —2sm%smfg¥smh%smh%@—X)
) 0<x<X
=1 . . nnL
nm smh—F
G = v x . (28)
. —2sinn—z‘—sin?§sinhn%sinhl—7f(L - X)
)3 X<x<lL
net nmsinh n__nL
LI

A natural question to ask is, when should each of these expressions for
G(x,y; X, Y) be used? Since each is a Fourier series f(27) in x and (28) in y], rates of
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convergence of the series will depend on the relative magnitudes of coefficients. The
coefficient of sin(nnx/L)in (27)for y > Y is

.nnX . nnY . onm
—2sm——L—smh—z—smh—L—(L -y

nnlL' ¥

nnsinh

and for large n we may drop the negative exponentials in the hyperbolic functions and
approximate this quantity with
e ik gaxlli-iL pax | nnX

—_ e sin—— = —— "™ " WLgin
nne~LiL L nn L

Similarly, when y < Y, the coefficient can, for large n, be approximated by
-t e Pilgin X .
nm

Corresponding coefficients in (28) are approximated for large n by

-t _ v, . nnY
—— g X = xliligin —

nrx
It follows that to calculate G(x, y; X, Y) at a value of x that is substantially different
from X, it would be wise to use (28), and, conversely, when y is markedly different from
Y, (27) would provide faster convergence.

~ In addition, when boundary integrals arise for the solution of Dirichlet’s prob-
lem (15) [and this occurs for nonhomogeneous boundary conditions (15b)], it is

advantageous to use (27) for integrations along y = 0 and y = L' but use (28) along
x=0and x = L. ’ .

Splitting Technique

Sometimes it is convenient to separate G into two parts, G = U + g, where U contains
the singular part of G due to the delta function in (16a) and g guarantees that G satisfies
the boundary conditions associated with L. This splitting technique permits con-
sideration of the singular nature of the Green’s function without the annoyance of
boundary conditions. [The technique could have been used for ODEs, but it was
unnecessary because formulas (28) and (29) in Chapter 11 were presented for Green’s
functions.] To be more specific, for the Green's function satisfying (16), we set G =
U + g, where U(x, y; X, Y) satisfies the PDE

LU =6(x—-X,y—Y) (29)

and g satisfies the boundary value problem
Lg =0, (x,y)in A, (30a)
g=—-U,  (xy) onB(A) A (30b)

Because U(x, y; X, Y) is not required to satisfy boundary conditions, it is often called
the free-space Green's function for the operator L. Free-space Green's functions for the

RGO
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Helmbholtz, modified Helmholtz, and Laplace operators in two and three dimensions
are listed in Table 12.1. Each is singular at the source point (X, Y).

i Table 12.1 Free-Space Green's Functions
Vl Vl + kl vl — kl
R Laplacian Helmholtz Modified Helmholtz
g | 1 i N
xy-plane ﬂln\/(x—X)’ +(y-Y)? ZYo[k\/(x-—X)z+(y—- Y)?] —-Z—;Ko[k x—-X)+(y—Y)]
i xyz-space . -1 eill e—t‘kr ekr e-kl
’ dnd(x = XY +(y - Y +(z - 2Z) 4n’  dn 4nr’  dnr

We illustrate the splitting technique in the following example.

* Example 3: Find the Green's function for the Dirichiet problem associated with Laplace's equation
onacircle0 <r <r,.

Solution: The Green’s function associated with the Dirichlet problem for the Laplacian on a
circle centered at the origin with radius r, satisfies

é(r - R)5(0 — ©)

VG = p , O<r<rg, —n<fl<a (31a)
G(ry,0; R,©) =0, —-n<f<n (31b)
The free-space Green’s function for the two-dimensional Laplacian with singularity at

(R,0®)is

U(r,0;R,0) = %ln\/(rcosﬂ — Rcos ®)? + (rsin@ — Rsin ©)?

= ;—nln [r? + R?* — 2rRcos(d —- ©)]

(see Table 12.1). When we split G into G = U + g, g must satisfy

Vig =0, 0<r<r,, —nr<f<m, (32a)
1
g(re,9;R,0) = —Eln[r(z, + R? — 2ryRcos(f — 9)], —n<8<n (32b)

Separation of variables on the PDE, together with boundedness at r = 0, leads toa

S solution of the form
< ,cosnf sin n6>
+ b r"—=
\/n NE:

[see equation (33a) in Section 5.3]. Boundary condition (32b) requires that

g(r,6,R,0) =

< scosnf | bnr'(',w) - %ln[ré + R? — 2ryRcos(0 — O)]
T

C Jr

-1, 1 R\? R
—Tnlnro—zzln[l+(;) 2( )cos(@ @)]

\/__
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With the result
y acosnd —%ln(l +a2—2acos¢) (o < 1), (33)

we may write

a i (a jn COS 1O b sinn())
\/ﬂ R a’ Q \/; a'0 \/;

B __[ 1 (R/"o)
_ 47; ; L9 cosn(d — ©)
= ;_nl }L Z (R/ o) ———(cos nf cos n@ + sin ndsin n®).

Comparison of coefficients requires that

9 _ ——-—ln r2, Galo _ (R/ro) cosn®, b.ry _ (R/ro) sinn®,
NPT L n 2an \/E 2nn
and therefore
_ & [(R[ro)" (R/ro)" . .
g(r,0;R,9) ln ro + ; ( p— cosnfcosn® + Sanrt sin n0sin n®

rR/ro)"

-1 1 ©
=?7;—lnro 2— ; SH(B—G)

But identity (33) permits evaluatlon of this series in closed form:

g(r,0;R, @) = llnro : ln[l + (i’;)z - 2(’R>cos(e @)]
4n rs

1
= z—n—lnr0 - 4~7;In [ré + R%r? — 2r3Rrcos(f — 9)].

Finally,

1
G(r.0;RO)=U +g= 4—17;ln[rl + R* —2Rrcos(8 — @)] + %ln ro
~4l—nln[rg + R2%r? — 2riRrcos(f — 9)]. (34)

This result is also obtained with a partial eigenfunction expansion in Exercise 13. =

The splitting technique points out a distinct difference between Green's functions
for one-dimensional problems and those for multidimensional problems. Green’s
function g(x; X) for a one-dimensional boundary value problem (associated with a
second-order ODE) is a continuous function of x (or can be made so) with a jump
discontinuity in its first derivative. Green's functions for multidimensional boundary
value problems can always be represented as the sum of a free-space Green's function U

iedemids
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and a regular part g, and, according to Table 12.1, free-space Green's functions are
always singular at the source point. Thus, multivariable Green’s functions always have
discontinuities at source points.

Method of Images

The method of images is simply physical reasoning and intelligent guesswork in
arriving at the function g in the splitting technique, and as such it works only on
Laplace’s equation with very simple geometries. When the Green’s function G for a
domain 4 is split into U + g, the free-space Green'’s function U can be regarded as the
potential due to a unit point source interior to A. This source, by itself, induces an
undesirable potential on f(4). What is needed is a source distribution exterior to A4
whose potential g will cancel the effect of U on f(A). (The fact that this distribution is -
exterior to A guarantees that G = U + g satisfies V2G = & interior to A.)
We illustrate with the following three-dimensional problem.

Find the Green’s function associated with the three-dimensional Dirichlet problemin a
sphere of radius ry.

The Green’s function satisfies

8(r — R)6(0 — ©)5(p — D)

G = 0<r<rg,

Ve rising <r<ro
: —nt<f<m, 0<¢<m, (35a)
G(ry,0,6;R,0,0) =0, ~-n<f<n, O<¢<m (35b)

According to Table 12.1, the free-space Green's function with source point (X, Y, Z) is

—1/[4nJ(x — X)* + (y — Y)? + (z — Z)*]. When (R, ©®,®) are the spherical coor-
dinates of (X, Y, Z), this function becomes. '

—1

U(T,G,(b;R,@,‘D) = " n N
4r/r? + R? — 2Rr{cos ¢ cos ® + sin ¢ sin dcos (0 — O)]

What the method of images suggests is finding a source distribution exterior to the
sphere, the potential g for which is such that G = U + g vanishes on r = ry. We might
first consider whether a single source of magnitude g at a point (R*,@*, ®*)(R* > rg)
might suffice. Symmetry would suggest that such a source could eliminate U on r = rg,
which is symmetric around the line through the origin, and (R, ©,®) (Figure 12.1) only
if (R*, O @*) were to liec on the line also. We assume, therefore, that ©* = © and
®* = @, in which case the condition that G = U + g vanishon r = ry is

—1
- 4n\rd + R* — 2roR{cos ¢ cos ® + sin ¢ sin® cos(d — O)]
+ —q
4nJrl + R*2 — 2r,R*[cos ¢ cos® + sin ¢ sin @ cos(d — O)]

0
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or —qJri + R* = 2ryR[cos ¢ cos ® + sin ¢ sin @ cos(d — O)]
= /rd + R** = 2r,R*[cos ¢ cos ® + sin ¢ sin @ cos(d — O)].

Since this condition must be valid for all ¢ and 6, we set ¢ =0and ¢ = n:

—qJrl + R? = 2rqRcos® = /rl + R** — 2r,R*cos ®,
—qJri + R? + 2rqRcos® = /r + R** + 2roR*cos ®.

These two équations imply that R* = r2/R and q = —ro/R, and with these, U + g
vanishes identically on r = ry. Thus, the Green’s function for the Laplacian inside
a sphere of radius r, is

| G(r,6,4:R,0,0) = _ _
4nJr?* + R? — 2Rr[cos ¢ cos ® + sin ¢ sin ® cos(d — O)]
| 8
2

2\2
4nR \/r’ + (%) - 2r(%°) [cos ¢ cos @ + sin ¢ sin D cos(@ — O)]

—1
ks l 4 JrP 4+ R2 — 2Rr[cos ¢ cos ® + sin ¢ sin @ cos(d — O)]
Yo

+ e :
4nJR*r? +r& — 2rlRr[cos ¢ cos @ + sin ¢ sin d cos(d — )]
n (36)

z

o

(R*,6,9)

’,,.f'(iz', 0,0)
i . (l‘ 0 0! ¢)

Figure 12.1 x

Exercises 12.2

1. Show that coefficients ¢, in (22) can be obtained by substituting u = G(x,y; X, Y) and v =
u,.(x,y) in Green's identity (14a).

| !
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2. Show that when u,(x, y) are orthonormal eigenfunctions of the eigenvalue problem

Viu+22u=0, (x,y)inA, (37a)
u=0, (x,y)onp(4), (37b)
associated with the Dirichlet problem
Viu=F(x,y), (x,y)in A4, (38a)
u=K(x,y)y (x,y)on p(A), (38b)

the full eigenfunction expansion for the Green's function is

G,y X,Y) = i‘ M

2
a=1 _ln

(This expansion should be compared with that in Exercise 21 of Section 11.3 for the Green's
function of an ODE))

(39)

In Exercises 3-8, use Exercise 2 (and its extension to three dimensions) to find full eigenfunction

expansions for the Green's function associated with the Dirichlet problem for Poisson's equation
on the given domain.

3.

10,

1L

12,

13.

0<r<ry,, —-n<8<n 4. 0<r<ry, 0<fO<nr

5. 0<r<ry,, 0<8<L 6. 0<x<L, O<y<L, O<z<l®
7.
9

O0<r<ry, ~nm<f<na O0<z<lL 8. 0<r<ry, —n<l<n 0<¢<n

. Use the method of images and the resuit of Example 4 to find the Green's function for the

Dirichlet problem associated with Poisson’s equation in a hemisphere of radius r,.

Use a “modified” method of images to find the Green's function for the Dirichlet problem
associated with the two-dimensional Laplacian on a circle of radius ry. Assume that g consists of
a potential due to an exterior, negative unit point source plus a constant potential.

Use the result of Exercise 10 and the method of images to find the Green'’s function for the
Dirichlet problem associated with Poisson's equation on a semicircle 0 <r < rq, 0 < 8 < .
How does it compare with the representation in Exercise 4?7

Use the method of images to find an expression for the Green's function of the Dirichlet problem
for the Laplacian on the rectangle 0 < x < L,0 < y < L.

In this exercise we use a partial eigenfunction expansion to find Green's function (34) for prob-
lem (31).

(a) Show that the partial eigenfunction expansion for G(r, 8; R, ©) is
ks 0 sin nf
Gr,0:R,©) = % | ¢ <a"(r)ﬂ + b,,(r)?)
V2t A=t \/—n' VT

(b) Substitute the expansion in (a) into PDE (31a), and expand 8(r — R)8(8 — ®\.r in a Fourier
series to obtain the following boundary value problems for the coefficients:

1 r‘_If_o_ =u‘ aolre) =05
dr\_ dr v 2n

2 0
i(rda"> g, =00 - R, () =0
r

T

d{ db,\ n? sin nd
Z_(’j;) - —r~b,. =8(r — R) b,(ro) = 0.

T

[SEOERN

m
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14.

15.

16.

17

Chapter 12

(¢} The systems in (b) are “singular” int

the coefficient r in the derivative term vanishes

Green's Functions for Partial Differential Equations

he sense that there is only one boundary condition and

atr = 0. As a result, equations (28) and (29) in

Chapter 11 cannot be used to find a, and b,. Instead, use properties (21a~c) from Chapter 11

and the one boundary condition to show that

In(R/ry
—_— 0<r<R
ag(r) = V2 o
o) =1, » ,
2\(/%_:%) R<r<r,
cosn® [EY 3 (L>"] 0<r<R
3 2Jmn [(r(z,/ R =rs
0= cosno (-] wsrsn
2Jmn L\rd r - °
sinn®] (rRY" ry\"

R _ (Y] o R
bir) = 2ﬁn[(r3) (R)] =r=
Tl 0] e

2mn |\ r2 r e

Use the technique of Exercise 13 to find the partial eigenfunction expansion for the Green's
function of Exercise 3.

Viu + k*u = F(x,y),
u = K(x,y),

G,y X, Y)= 3,

n=1

(d) Find G(r,9; R, ©) and use (33) to reduce the function to the form in (34).

Use the technique of Exercise (3 to find a partial eigenfunction expansion for the Green's
function of the Dirichlet problem for the Laplacian on the semicircle 0 <r <rg, 0 <0 < m.
Show that it can be expressed in the form of Exercise 11.

Find a partial eigenfunction expansion for the Green's function of Exercise 6 using eigen-
functions in x and y. '

. Show that when u,(x, y) are orthonormal eigenfunctions of cigenvalue problem (20), the full
eigenfunction expansion for the Green’s function of the boundary value problem

(xv ,V) in Aq (403)
(x,y) on B(4), (40b)
u X, Yu,(x,y) 1)

T .2
k® — 4;

provided k # 4, for any n. (The exceptional case is discussed in Exercise 8 of Section 12.3.)

In Exercises 1824, use Exercise 17 to state Green's functions for problem (40) on the given
domain. (See Example I and Exercises 3-8 for eigenpairs.)

18.
20.
22,
24.

O<x<L, O<y<l
0<r<ry,, 0<O<nm
O<x<lL, O<y<lLl, O<z<lL"
0<r<ry,

—n<f<n 0<d<n

19. 0<r <rg,
21, O<r<ry, 0<O0<L
23, 0 <r<ry,

—n<0<n

—n<l0<mn O<z<L

|

|ttt PO e By B
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12.3 Solutions of Dirichlet Boundary Value Problems
on Finite Regions

In this section we use Green's functions to solve Dirichlet boundary value problems

associated with Poisson's equation on finite regions. Identical results for the Helmholtz ' i
equation are discussed in the exercises. .

The Dirichlet boundary value problem for Poisson’s equation in two dimensions is v
Viu=F(x,y, (xy)in 4, (42a) )
! u=K(xy, (xy onp(4), (42b) '

where A is a region with finite area. When K(x, ) = 0, the solution is given by integral
(17). The following theorem indicates that a line integral involving the normal .
derivative of G(x, y; X, Y) incorporates nonzero K(x, y). : -

» Theorem 1

When G(x,y; X, Y) is the Green's function for Dirichlet problem (42), the solution to (42) is o

u(x, y) = ” GOy X, VIF(X,Y)dd + imx(x, Y)?—G—("—‘a%il—x’—”

where 8G/ON is the outward normal derivative of G with respect to the (X, Y) variables. :

ds, A (43)

Proof: If in Green's identity (14a) we let u = G(x, y; X, Y) and v = u(x, y) be the solution of (42),

f (uV*G — GVu)dA = (ﬁ (uVG — GVu) - i ds. v
A [

(4)

v

Because V2u = F and V3G = 8(x — X,y — Y)in 4,and u = K and G = 0 on f(A),

f [u(x, 1)0(x — X,y — Y) — G(x,y; X, Y)F(x, y)] dA
JA

= § K(x,y)VVG(x,y; X, Y)-ads
LA

6G(x,y; X, Y
or uX,Y)= J:[ G(x,y; X, Y)F(x.y)dydx + § K(x,y)g—Gi{-{’———)d&
Y

8(A)

When we interchange (x, y) and (X, Y),

3G(X, Y x. y
wey) = || G Ve FOYydYdx + d  Kox, vy S Tiod)
4 8(A) ¢N

- H G(x,y; X, Y)F(X, Y)dY dX + 3€ k(x, )G rn X, ¥)
A

ds
B(A) cN

[because G(x, y; X, Y} is symmetric.] a

S

i@



S

456

Chapter 12 Green’s Functions for Partial Differential Equations

It is often helpful to interpret the integral terms in (43) physically. From an
electrostatic point of view, problem (42) defines potential in a region A due to an area
charge density determined by F(x, y) and a boundary potential K(x, ). (In actual fact,
we are considering any cross section of a z-symmetric three-dimensional problem.)
The area integral in (43) represents that part of the potential due to the interior
charge, and the line integral is the boundary potential contribution. The Green's
function G(x, y; X, Y) is the potential at (x, y) due to a unit charge at (X, Y) when the
boundary potential-on B(4) vanishes (which would be the case, say, for a grounded
metallic surface). The double integral superposes over all elemental contributions

'G(x,y; X, Y)F(X, Y)dY dX of internal charge.

From a heat conduction point of view, problem (42) describes steady-state
temperature in a region A due to internal heat generation determined by F(x, y) and
boundary temperature K(x,y). The area integral in (43) represents that part of the
temperature due to internal sources. The Green's function is the temperature at (x, y)
due to a unit source at (X, Y) when the boundary temperature is made to vanish. The
line integral represents the effect of imposed boundary temperatures.

Finally, problem (42) also describes static deflections of a membrane stretched
tautly over 4. The double integral represents the effect due to applied forces [contained
in F(x, y)], and the line integral determines the effect of boundary displacements.

We noted in Section 12.2 that G(x, y; X, Y) is not continuous; it has a singularity
when (x, y) = (X, Y). The discontinuity cannot be too severe, however, since existence
of the area integral in (43) (which integrates over the singularity) is guaranteed by
Theorem 2. To illustrate this point, suppose 4 is the circle r < ro and K = 0 on (4),
According to (43), the solution to problem (42) at any point (r,§) in this case is

u(r,0) = ”‘ G(r,0; R,Q)F(R,0)dA.
A
For simplicity, we consider the origin, in which case
u(0,0) = JT G(0,0; R,©)F(R,0)dA.
A

Using equation (34) for G(r,6; R, 9),

u(0,0) = jj %ln(i> F(R,©)dA,
AT Yo

and indeed we can see that In(R/r,) is singular at R = 0. However, the area element
dA = RdR dO effectively removes this singularity, and

u0,0) = j. J‘ ’ l—ln(fg> F(R,©®)RdR 4O

e Jo 2m o

must converge. In particular, if F(R,©) = 1, integration by parts gives

1 L3 ro R 2
U(Oa9)=—j‘ jA Rln(—)deG):—-r—o,
2n J-x Jo ro 4
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For three-dimensional problems

Viu=F(x,y,z2, (x,yz)inV, (44a)
u = K(x,y,2), (x, y,2) on B(V), (44b)

the solution is

u(x,y,z) = J‘J‘J. G(x!va;X9 YrZ)F(X: sz)dV
| 4

X, Y, Z
+ U K(x,v,z) 20502 ) is. (45)
I oN
" We now consider some examples.
Example 5: Solve the boundary value problem
Viu=F(r8), O<r<ry,, -n<0<n, - (@éa)
u(ry,0) = K(9), —n<f<m “ (46b)
Solution: According to (43), the solution can be represented in the form
0G(r,0;r,,0©
u(r,8) = G(r,0; R,®)F(R,0)dA + K(@)—(r—ro—)ds,
4 B4 oR
where G(r, 6; R, ©) is the Green’s function
) 1 , r*+ R*—2rRcos(6 — ©)
G 8:R,0) = £ tn (’°r3 + r?R? = 2rZrRcos(0 — ©)
{see equation (34)]. Now,
6G(r,0;r0,@) _ 1 2R—2rcos(§~©)  2r’R—2rjrcos(§ — ©)
3R “4n\r?+ R2—2rRcos(0 —©) r§+r*R? —2riRrcos(f — ) ) z-r,
1 2ro —2rcos(f — ©) 2riry —2rircos(d — ©)
A \rt4ri— 2rrgcos{f —O)  rd+rird —2rircos(d — )
1 rd—r?

= 2arg r2 +rd —2ryrcos(d — O)

Thus,
w.0=|[ cror@FR G+ (" K@) e o
ulr, _J 4 oK, ,0) +J—u ( 2Hro[r2+ré—2r0rcos(0.—®)}ro
2_,2 (n
P K(©)
= ‘R: F ’ ‘ Y
J.J‘AG(r,G, O)F(R,0)d4 + 2n J—xr2+r3—2fofcos(6_®)d® ()
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When F(r,8) = 0, the solution of Laplace’s equation is

_ ré _ r2 x K(O) »
u(r,8) = I J‘_x r 4 rd —2rorecos(6 — @)d@,

Poisson’s integral formula for a circle (see equation (36) in Section 5.3]. -
Example 6: Solve the following Dirichlet problem:
' Viu=F(xy, O<x<L, 0O<y<L,~ (48a)
u(x,0) = f(x), O0<x<L, (48b)
u(L,y) =0, O<y<l, (48¢)
wx,[')=0, O<x<L, (48d)
u@,y) =g(y), O<y<L' (48e)
Solution: The solution can be represented in the form é
u(x,y):JI(G(x,y;X, Y)F(X,Y)dA +J: ~f(X)%a—);—X’—(—)ldX %
Y
+ [ o R ) ;

where G is given by either (27) or (28). For the first line integral, we use (27) in the form

—ZSin————-—nnx sinmsinh ——nnY sinh ___nn(L — ) K
e L L L L 3
Z - 0<Y<y 1
n=t nnsinh——L )
Gx,y: X, Y)= ¥
(x.y ) .nnX . nax ., nmy .  nn(L'—y) %
— 2 sin——sin — sinh —~sinh ——— T
@ L L L L ¢
)y ysyY<L ¥
a=1 . nnl' <
nrsinh—— 2
L '
to calculate :

.neX | nrxf{an\ .  nr(L' —y)

— D i i — | — he—— —

Gl yiX0) 2 s (L)S‘“ L
cY T . nrL!
nusinh ——
L
A similar calculation using (28) gives
.Y | onmy /nmy ,  an(L - x)
_ pshtell jhdd he——
£G(x,1:0, ) - i 2sin X sin T <L|>sm X
¢ A nnl ’

nmsinh —
L

..
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.. Example 7:

@an e

Solution:

\ —
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and therefore

u(x,y) = ff G(x,y; X, Y)F(X,Y)dA
A

L —2sin —mZXs o Lx ('Z’) sinh —(L‘ -
o A , , hnL
nnsinh T

nnY nny . hn
- = ——(L —
2sin T sin % (L‘) sinh L'( x)

M8

h

L ©
—j gy 3
[+ n=1

dY
., hal
nnsth
l L . .
=f f G(x,y; X,Y)F(X,Y)dX dY
o Jo '
7 ® sinn—Z{sinhnn(L =) nnX
- in—dX
L,.g‘l . th‘ J S(X)sin L
sinh
nm mt(L——x)
o Sin—— Y sinh 2= X L
LZ ) L — L f g(Y)sin%KdY. . (49)
= 1]
smh—L—

Special cases of this problem that lead to solutions found in previous chapters are
contained in Exercises 1 and 2.
Solve the following Dirichlet problem on a sphere:
VZiu = F(r,0, ¢), 0<r<r,, -n<@<m, 0<¢ < (50a)
uro,0,9) = K(6,¢), -n<f6<n O<o<n (50b)
The solution can be represented in the form
oG(r.6,¢:r,,0,0
u(r, 0, ¢) = Hj G(r,0,;R,®,d)F(R,®,®)dV + H k(©,0) " ‘é’R'° s,
By) ’

where the Green’s function is contained in equation (36). Since ¢G(r, 0, ¢;ry, ©, D)/ER
is equal to

l ro — r{cos ¢ cos® + sin ¢ sindcos(d — O)]
4n <[r + 1§ — 2rrofcos ¢ cos @ + sin @ sin ® cos( — G)))]’”)
To ror® —rrcos ¢ cos® + sin ¢ sin ®cos(@ — 9)]
B Z;([’éfz + 1§ — 2rdr(cos ¢ cos ® + sin ¢ sin ®cos(f — O))] 3“)
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1 ro — r(cos ¢ cos ® + sin ¢ sin ®cos(6 — O)]
= G((r2 + rZ — 2rrg[cos ¢ cos ® + sin ¢ sin @ cos(d — @)])312>
r r — ro[cos ¢ cos ® + sin ¢ sin @ cos(6 — O)] )
B E((r’ +r2 — 2rro[cos ¢ cos @ + sin ¢ sin @ cos(f — 9)])*"?
rd—r?
= 4nro(r? + r§ — 2rro[cos ¢ cos® + sin psin®cos(d — Q)P

we find that

u(r,0,¢) = JJ‘ ”V G(r,0,¢; R, 0,0)F(R,0,0)dV

+ fr (= (r: — r)K(©,D)rdsin®
o 4mro(r? + rd — 2rro[cos ¢ cos @ + sin ¢ sin ®cos(d — Q)1)**

[ rd —rir,
= G(r,0,¢;R,®,(D)F(R,G),CD)dV+-——~
JV

dddoe

J-x

4n

f= [ K(©,®)sin®
dddO. (51
X J e L (r? + r3 — 2rrg[cos ¢ cos @ + sin ¢ sin @ cos (6 — @)])*? 51)
-

Exercises 12.3

1. Use the result of Example 6 to solve Exercise 18 in Section 3.2.
2. Use the result of Example 6 to solve Exercise 42 in Section 6.2.

3. Find an integral representation for the solution of the boundary value problem

Viu=F(xy), O<x<L, 0O<y<L|
u(x,0) =0, O0<x<L,
u(L,y)=g(y), O0<y<lL,
u(x, L) = f(x), 0<x<L,
u©0,9) =0, O<y<Ll.

4. Find an integral representation for the solution of the following Dirichlet problem on a
semicircle:

Viu = F(r,0), 0<r<rg, 0<8<m,
u(ro.9) = f(0), 0<8<n,
u(r,0) = ¢ ,(r), O<r<rg,-
u(r,n) = g,(r), O0<r<r,.

{See Exercise 11 in Section 12.2 for the Green's function.)

Ty edte
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In the remaining exercises we discuss results for the Dirichlet problem associated with the
Helmholtz equation

(V? + k¥)u = F(x, y), (x,y)in A, (52a)
u(x,y) = K(x, ), (x,y) on B(A), . (52b)

where k > 0 is a constant.
S. Verify that (43) is the solution of problem (52) when G(x,y;X,Y) is the Green's function

satisfying
[(V2+k]G=0(x—X,y—~Y), (x,y)in A4, (53a)
G =0, (x,y) on B(A). (53b)
6. What is the result corresponding to that in Exercise 5 for three-dimensional problems?
The homogeneous Dirichlet problem for the Laplacian
Vig =0, (x,y)in A,
u=0, (x,y)onp(A4),
has only the trivial solution, The homogeneous Dirichlet problem
(V*+Kk*u=0, (x,y)in A,
u=0, (x,y)onp(A),

on the other hand, may have nontrivial solutions. In this case, it is necessary to introduce modified
Green'’s functions. We illustrate this in Exercise 7 and discuss it in general in Exercise 8.

7. (a) Show that when A is the square 0 <x, y <L, w(x, y) = (2/L)sin(nx/L)sin(ny/L) is a
(nontrivial) solution of

2
Viu 4+ -Z{Tu =0, (x,y)in A4,
u=0, (x,y)on f(A4)

(b) Prove that when the problem
2n? .
V2u+—LTu= F(x,y),  (x,y)in A,

u=0,  (x,y)onp(4),

has a solution u(x, y), F(x, y) satisfies

L L
j J. F(x, y)w(x, y)dydx = 0.
o Jo
{The converse is also valid; that is, when F(x, y) satisfies this condition, the nonhomoge-
neous problem has a solution u(x, y). It is not unique; u(x, y) + Cw(x, y) is also a solution for
any constant C.]
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(c)

(d)

(e

. (a)

Because the delta function does not satisfy the condition in (b), there can be no Green's
function satisfying

s 27[2 .
VG + G =0~ Xy Yy, (xy)in4,

G =0, (x,y) on B(A).

We therefore introduce a modified Green's function G(x, y; X, Y), satisfying
,  2nt\ 5 .
v tgT G=0x—-X,y-Y)~ wix, pw(X, Y), (x,y)in A,

G =0, (xy) onf(A).

Show that the right side of the PDE for G satisfies the condition in (b).

Find a partial eigenfunction expansion for G in terms of the normalized eigenfunctions
ﬁﬁjsin(nnx/u.

Find anintegral representation for the solution of the boundary value problemin (b)in terms
of F(x,y) and G(x,y; X, Y).

Show that when the homogeneous problem
(V24 k?Ju=0, (xy)in4, (54a)
u=0, (xy) onf(A) (54b)

" has nontrivial solutions w(x, y), nonhomogeneous problem (52) has a solution only il F(x, y)

and K(x, y) satisfy the condition that for every such solution w(x, y),

” F(x, y)wix, y)dA = —45 K,y 22 4 (55)
4 8(A) on

where dw/dn is the derivative of win the outwardly normal direction to (A). [The converse
result is also valid; that is, when (55) is satisfied, (52) has a solution that is unique to an
additive term Cw(x, y), C an drbitrary constant.]

(b) Show that the solution of (52) can be expressed in the form

u(x,y) = H G(X,Y;x, ) F(X,Y)dA
A4

+ # K(X.Y)
sy

where G(x.y: X, Y} is a modified Green's function satisfving

PGIX. Yix,y
i—(—:vﬂ—\’—y—)ds + Cwi(x, y), (56)

(V2 +k*]G=08(x —X,y~Y)— wlx, (X, Y), (x,»)in 4, (57a)
G=0, (x,y)on B(A) (57b)

and w(x, y) is a normalized solutibn of (54).

LR e B e RSN O et P
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12.4 Solutions of Neumann Boundary Value Problems
on Finite Regions

The Neumann problem for Poisson’s equation

Viu=F(x,y), (xy)in 4, (58a)
g—:~ = K(x, y), (x, y) on B(A), (58b)

is more difficult to handle than the Dirichlet problem because the corresponding
homogeneous problem,

Vu=0, (x,y)inA, (59a)
: du
B3 —_— = Sgb
% n 0, (x,y) on B(A), (59b)

always has nontrivial solutions u = constant. As a result, (58) does not have a unique
solution; if u(x, y) is a solution, so also is u(x, y) + constant. The following theorem

shows that for there to be a solution of (58) at all, F(x, y) and K(x, y) must satisfy a
consistency condition.

. Theorem 2
Neumann problem (58) has a solution if and only if
' J.f F(x,y)dA = § K(x, y)ds. (60)
A LAy
When (58) is a steady-state heat conduction problem, condition (60) implieé that
heat generated within A must be compensated by heat crossing its boundary. This
condition is the two-dimensional analog of condition (61a) in Chapter 11; its necessity
is easily established with Green’s theorem:
§ K(x,y)ds = § ggds = § Vu-nds
. A AL f}" AlA)
. = Jj ViudA = Jf F(x,y)dA.
- A A
% According to the following theorem, solutions of Neumann problems can be
. expressed in terms of modified Green's functions.

Theorem 3

When consistency condition (60} is satisfied, the solution of Neumann problem (58) is

u(x, y) = ” N(x,y; X, Y)F(X, Y)dA — é; N(x,y; X, Y)K(X,Y)ds + C, (61)
A 8y

where C is an arbitrary constant and N(x, y; X, Y) is the symmetric modified Green's function
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satisfying
1
FIN _ vy :
VIN =6x - X,y —Y) arca (A)’ (x,y)in A, (62a)
D=0, (ay)on flA) (62b)

In Green's identity (14a) on 4, we letu = N{(x,y; X, Y)and v = u(x, y), the solution of (58):

J‘J. (uVN — NV?u)dA = (uYN — NVu) - ds.
4 BA)

Because V2u = F in A, V?N = 8{x — X,y — Y)— l/area (A), and du/dn = K and dN/on = 0

/ _ 1 B ‘
JL(u(x, y)[é(x -X,y-Y)— Tren(A) (A)] N(x,y; X, Y)F(x, y)) dA

=§ “N(Xv)’§X, Y)K(X,}’)ds
B(A)

or
u(X,Y)= '” N(x, y; X, Y)F(x, VdA ——§ N(x,y; X, Y)K(x )ds +——£l——-
V * A 7y| h !y ‘(A) ')yl 9 iy area(A)l
where C, = 'H u(x, y)dA. When we interchange (x, y) and (X, Y),
A
u(x, y) = H N(X, Y;x, )F(X,Y)dA — <§ N(X, Y;x, KX, Y)ds + C 63)
A A

= ” N(x,y; X, Y)F(X,Y)dA — <§ N(x, y: X, Y)K(X, Y)ds + C,
A A

where we have replaced C,farea (4) by C, since u(x, y) is unique only to an additive constant.
"

If the modified Green's function N(x, y; X, Y)is not symmetric, equation (63) must
be used for the solution in place of (61).
Solutions to three-dimensional Neumann problems

Vlu = F(X, Vs Z)y (x‘ ¥ :) ‘n V‘ (64a)
= K@yah  (xrnaon ), (64b)

exist if and only if F(x,y,z)and K(x, y, z) satisfy

m F(x,y.2)dV = ” K(x,y,z2)dS. (65)
v I8}

‘.,?g.gs;umv.u:g:nh?uﬂqmm‘mm,4-.. ST :
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When this condition is satisfied, the solution of (64) is

u(x,y,z} = J:” N(x,y,z; X, Y, Z)F(X,Y,Z)dV
4

i

- J f N(x,y,z; X, Y, Z)K(X, Y, Z)dS + C, (66)
Bv)

where C is an arbitrary constant and N(x,y,z; X, Y,Z) is the symmetric modified
Green's function satisfying

oV

' 1
= VZN = 6 - X - - e NPT v Js i V’ 67
(x ,y—-Yz—-2) volume V)’ (x,y,2) in (67a)
oN
: = 0, (x,y,z)on (V) (67b) ‘
| When N(x,y,z; X, Y, Z) is not symmetric in (x,y,2) and (X, Y, Z), (66) must be re-
= placed by G
A
u(x, y,2) = J” N(X,Y,Z;x,y,2F(X,Y,Z)dV ;
4 (2
Wy
- J‘J‘ N(X,Y,Z;x,y,2)K(X,Y,Z)dS + C. (68) .
14} 4
As an example, we consider the following Neumann problem on a rectangle. d
(%)
:ixample 8: Use a modified Green’s function to solve the boundary value problem fa
: t
v otV b
— = <y<L, vl
) F) + 3y 0, 0<x<L, O0<y %
av(©,y) 1
— =0 0 L, 1
o o 0TS
! VL, y) : -
I =0, O<y<Ll,
oV by
‘_ 00 o, 0<x<L,
3y 1
J av(x, L")
’ —_ = ) L.
P f{(x), O<x<
_ Solution: Modified Green's functions N(x, y; X, Y) for this problem must satisfy
N &N !
= 8(x — Yy — — ; c< L
6x2+6y2 S(x—-X,v—1Y) I 0<x<L, O<y<

N,(0,y) =0, 0<y<L,
N.(L,y)=0, O<y<l,
N,(x,0) =0, 0<x<L,
Ny(x,L') =0, 0<x<L.

&

B



466

Chapter 12 Green's Functions for Partial Differential Equations

Substitution of a partial eigenfunction expansion,

Ny X1 = 3 a0 =22+ § a0 [peos T

JL

into the PDE for N(x, y; X, Y) gives

® 2 2
2

1
a0+ 5 T =0 = Xy =V =

- io(j [ - 2080y = 1) - ]f.(x)dx)f,(x)

- 7‘_2(5( y—Y)— E)fo(x) + "; SX)o(y — V) fu(x).

This equation, along with the boundary conditions N,(x,0) = 0 = N(x, L"), requires
coefficients a,(y) to satisfy

d*a, 1 1

— T e— —_— —-— L'

52 =grlo-n-g) o<y
ap(0) = ag(L) =0,

and, for n > 0,

d*a, nn? .
dy? L
a,(0) = a,(L') = 0.
Since the general solution of the differential equation d%a,/dy* — (n*n%/L¥)a, =0is
Acosh(nny/L) + Bsinh(nny/L), we take

= fn(X)a(y - Y)v 0< y < Ll,

AcoshﬂJrBsinhim—y 0<y<?Y
L L
a,(y) = ny ny
Ccosh—L + Dsinh T Y<y<L

The boundary conditions require that

i 1

L L
2E—B=0, CsinhTL—+DcoshT—z—=0,

and continuity conditions (21a, b) from Chapter 11 necessitate that

Y . Y nY nY
Acosh%— + Bsmh?—%—= Cco hLL—+ Dsmh-z—

nnY nnY nY nnY L
inh—— + D - _ — = .
(C sinh T + Dcosh T ) <As nh L + Bcosh > s [4X)

These four equations can be solved for

RN
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— Lcosh "T”(L' — Y)f(X) — Lcosh ""LL coshﬁ’z—y £.X),
A= nrsinh(nnL'/L) ! B=o. ¢= nxsinh(nal'/L) ’
L
= ;l—;cosh f,,(X),
and hence
A
-—Lcosh"z'f(u — Y)cosh %X 1.X) .
<y<
nnsinh(nal'/L) O<y=Y
W) = nnlL! nxY nm nY nn
—Lcosh—L—cosh———c osh ‘vf,,(X) Lcosh—smh yf,,(X)
< ]
nnsinh(anL'/L) VsysL

nm -
(
—-Lcosh——(L‘ - Y)coshﬂ?i (X)

nasinh(nrL'/L) 0<y<Y

nnY nm
—-Lcosh—E—coshr(L - ) [(X)

L s sinh (il /L) YsyslL
Because — y2/(2+/L L") is a solution of d’ao/dyz = —1/(JL L"), we take

Ay + B —
ao(y) =
Dy + C —

sz' O<sy<Y

Y<y<lL
2J_ LL Y
Boundary conditions ay(0) = 0 = ag(L'), and continuity conditions (21a,b) from
Chapter 11, require that

A =0, - p-—L o
JL
AY+ B=DY +C !
= , D—A4A=—"F.
JL
These equations yield A =0, D = 1/\/L, and B = Y/\/L + C, where C is arbitrary,
and hence
Y y?
— 4+ C - —— <v<Y
JL N
ao(,V) = y 2
4+ C - Y<y<L
JL 2JLL

4
i

.
o
]
4
E

P 1
A

P ot s o Y
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A modified Green's function is therefore

2 2cos ﬂ cosh 7Y cosh ﬁﬂl—‘———f—)
Y+£ y i L L L cosﬂ O0sy<Y
- L 7L LT % — nnsioh(uLyL) L y
N(x,y; X,Y)=
nnX nnY nn(L' — y)
2 2cos——cosh cosh
y C y*. = L L L nax Y L
L T - - cos—— sy<
(L JL 2LL = nrsinh(nnL'/L) L
Because N(x,y; X, Y) is not symmetric, we use (63) to express the solution of the
original boundary value problem as a line integral along the edge C':y = L/,
Vix,y) = - I N(X,Y;x,y)f(X)ds + D
Cl
L
1]
where D is an arbitrary constant, and
( X Y L' —
2 2cos 2 cosh ——cosh i )
_y_+_§__ L —i L L L <:os173 0<Y<
LYJL 2L & nrsinh(nnLyL) L ==y
NX,Y;x,y) =
nnX nmy nn(L' — Y)
: 2 2cos ——cosh——cosh———
v,c v 2L L L ™ y<¥sL
L7 JL 2Ll = nrsinh(nnL'/L) L
When we use the latter of these expressions to evaluate N(X, L', x, y) along C',
nnX nny
L c L 2cos - coshT

s"—’zﬁ f(X)dX + D.

Ms

L
Vg =—| \ =+ —=—5—
(x,) L LY 2L T & nasiob(mL/D)
Since f(x) must satisfy the consistency condition

L
j f(x)dx =0,
0

this solution reduces to

2 nny nnx
Vix,y)=D h—=cos—,
x,y) +"; a,cosh —=cos—
2 L nnX
h S S mX iy
where % = Lxsinh(nnL/L) L S(X)cos—=dX

Had the nonhomogeneity been along either of the boundaries x = Oorx = L, or both,
an eigenfunction expansion for N(x, y; X, Y) in terms of functions go(y) = 1/\/E and
g.(y) = VJ2/L' cos(nmy/L') would have been used (see Exercise 1). L]
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Exercises 12.4

1. (a) Solve Example 8 when boundary conditions along x = L, y =0, and y = L' ar¢ homo-
geneous and that along x = 0 is ¥,(0, y) =f(MO<y<L\

(b) Find V(x, y) when f(y) = 5(y — L'/4F =5y ~ 3L'4} and V(0, L'/2) = 0. What is the value
of V(x, y} at all points on the line y = LY2?

2. What is the solution to Example 8 if the boundary condition along y = 0 is also nonhomo-
geneous, V,(x,0) = g(x)? ‘

3. Verify that the steady-state heat conduction problem

U WU 1
—a;z--f-—a—y—z——'x—, 0<X<L, 0<y<L9'

U,(O,y)=z%, 0<}<L,

U,(L,y)=—i?L, O<y<lL,
Uy(x,0) = %, 0<x<lL,

Uyx,L) = -;TL, 0<x<L,

satisfies consistency condition (60), and find its solution.

4. Inthis problem we develop a modified Green’s function for the Neumann problem on a circle and
solve the corresponding boundary value problem:

Vu=F(0), 0<r<r,, —-n<f<m
£3-'i(-g-‘fi’lﬂ((e), —n<f<m

(a) What is the boundary value problem characterizing N(r, 6; R, ®) for this problem?

(b) Using a partial eigenfunction expansion identical to that in Exercise 13(a) of Section 12.2,
show that coefficient functions aq(r), a,(r), and b,(r) must satisfy

day lday _8¢—R) 2

= . O<r<ry,
T R P N o r=ro
ag(re) = 0;
da, 1da, ﬁa _&(r — R)cosné O<r<r
ar* rdr 2" Jur ’ o
ay(re) =0;
d*b, _l_glﬁ_lli _0(r — R)sinnd O<r<r
dr* rdr 2" Jur ’ o

bi(re) =0.

ik




470 Chapter 12 Green's Functions for Partial Differential Equations

() Solve the equations in (b) and hence show that

A el (m)n (r)]
el - —HZY} +{=]) |cosn(@ — @)
\/2_1; 4nr} :nzf:}_;nn[ ré R . ) 0<r<R
2 00 L] a )
A + ln(r/R) _ r _ Z __1__[(."_15) + (5.) ]Cosn(g _ @), R<r<ro,
J2n 2n 4nrl  w=127n r r

where A is independent of r and 6.
(d) Use (33) to simplify the modified Green's function to

N(,0;R,©) =

rl

NG.0:R.O) ===
+ 1 In ([r2 +R?—2rRcos(8 —0)][rs + r2R* —2rr§Rcos(6 — ®)]>
4 .

réR?

{e) Find an integral representation for the solution of the boundary value problem in (a). .

5. (a) To satisfy consistency condition (60), it is possible to change the boundary condition defining
the modified Green’s function instead of the PDE. Show that the function N(x,y; X,Y)
defined by ‘

VN =6(x - X,y = ¥)  (y)ind
= -E, (x, y) on ﬁ(A)§

where L is the length of f(A), satisfies (60).

(b) Find the solution of problem (58) in terms of N(x,y; X, Y)

6. Use the modified Green's function of Exercise 5 to find the solution of the problem in
Exercise 4.

7. What is the three-dimensional analog of Exercise 5?
8. (a) The Neumann problem for the Helmholtz equation is

(V? + k¥u = F(x,y), (%) in4, (69a)
K Ko () on BA) (69b)
The homogeneous system
(Vi+kHu=0, (x,y)in4, (70a)
%% =0, (x,y) on B(A), (70b)

has nontrivial solutions. (This is clear when k = 0, since u = constant is a solution, and it is
also true when k # 0.) Asa result, (69) does not have a unique sotution; if u(x, ) is a solution,
then so also is u(x, y) + Cw(x, ), where w(x, y) is any solution of (70). In addition, F(x, y)and
K(x, y) must satisfy a consistency condition for there to be a solution of (69) at all: problem
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% (69) has solutions if and only if
J f w(x, y)F(x,y)dA = 3@ w(x, y)K(x, y)ds (71)
A . B(A)
? for every solution w(x, y) of (70). Provethe mecessity-of this condition.
i {b) Show that when consistency condition (71) is satisfied, the solution of (69) is
& u(x,y) = J:[ N(x,y; X,Y)F(X,Y)dA — § N(x,y: X, Y)K(X,Y)ds + Cw(x,y) (72)
: A A
where w(x, y)is the normalized solution of (70), Cis an arbitrary constant, and N(x, y; X, Y)is
the symmetric modified Green's function satisfying
(VE4+KON=6(x — X,y — V) —wlx, pw(X,Y), (xy)ind, (73a)
oN
3 = Or (xv ,V) on B(A) (73b)
on
9. State and prove the three-dimensional analog of Exercise 8.
12.5 Robin and Mixed Boundary Value Problems on Finite Regions
The Robin problem for Poisson’s equation is
_ Viu=F(x,y), (x,y)in 4, (74a)
boj
l:?% + hu = K(x,y), (x, ») on f(A). (74b)
Its solution can be represented in integral form in terms of the nonhomogeneities and
the Green’s function for the problem.

‘Theorem 4

The solution of problem (74) is

“(XJ)=” G(x,sz,Y)F(X,Y)dA—%<§ Glx,y; X, V)K(X,Y)ds, (75)
A BA)

where G(x, y; X, Y) satisfies

VIiG=8x—-X,y—Y), (x,y)in 4, (76a)
¢G
la + hG =0, (x, ) on B(A). (76b)
Proof: If in Green's identity (14a) on A we let u = G(x, y; X, Y) and v = u(x, y), the solution of (74),

j[ uV3G — GVZu)dA = § (uVG — GVu) - iids.
) A B(A)
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Because V2G = 8(x — X, y — Y),V3u = F,and ldu/dn + hu = K and l0G/dn + hG = O on f(A),

J‘J. [U(X’y)CS(X - X'y - Y) - G(X’y;x, Y)F(X,y)]dA
A

- ?- -(«();,_y) [=hG(x,y; X, V)] ~ MCK("' ) = b y)]) “

AA)

or u(X,Yy= J:f G(x,y; X,Y)F(x,y)dA — -}- (ﬁ G(x,y; X, Y)K(x, y)ds.
A

8(4)

When we interchange (x, y} and (X, Y),
u(x,y) = JI G(X,Y;x,y)F(X,Y)dA — % § G(X, Y;x,y)K(X, Y)ds
4 B(A)

= J.[ G(x,y; X, Y)F(X,Y)dA — % 9€ G(x,y; X, Y)K(X, Y)ds,
4 B
since G(x, y; X, Y) must be symmetric (sec Exercise 1). -

Because G = —(I/h)dG/dn on B(A), we may also express the solution in the form

1

u(x,y) = 4” G, y; X, Y)F(X,Y)dA + - §
4 h Jan

0G(x,y; X, Y)

N K(X,Y)ds, (77)

where once again 8G/dN indicates the outward normal derivative of G with respect to
the (X, Y) variables.
For three-dimensional problems
Viu=F(x,y,z), (x,p,2)}inV, (78a)
ou

la + hu = K(x» Y, Z)v (X, Y, Z) on B(V)o (78b)

the solution may be represented in either of the forms

u(x,y,2) = J.J:[ G(x,y,2;X,Y,Z2)F(X,Y,Z)dV
1 4

1
-7 .U Gx,v,2;X,Y,2)K(X,Y,Z)dS (79a)
1t 4]
or u(x,y,z) = JU G(x,y, 2, X, Y, Z2)F(X,Y,Z)dV
| 4
1 8G(x, 3,2, X, Y, Z)
- K(X,Y,Z)ds. 79b
i ”am iN *.r.2) 798)

A boundary value problem is said to be mixed if all parts of the boundary are
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not subjected to the same type of condition. For instance, the unknown function may

have to satisfy a Dirichlet condition on part of the boundary and a Neumann condition
on the remainder.

g Y

Example 9: Solve the boundary value problem : l. ‘ j
Viu=F(r0), O<r<r,, O0<8<n, ! A
u(ro,0) =K, (0, 0<f<m, 1
du(r,0) ;3}
i 0, O<r<r,, ‘;1
a ‘:!';'q
—u((%tl=0, O<r<r,. y‘!
t
Solution: The Green's function for this problem is "

G(r,0;R,0) = L iaf s [+ R*—2Rrcos(@+8)][r* + R*— 2Rr cos(§ — )] )
i A o[Rz"z+l‘3-—Zr?,rRcos(0+®)][Rzr2+r3—2r§rRcos(()—@)]

(see Exercise 2). To solve the boundary value problem, we apply identity (14a) to the
semicircle with u = G and v = u(r, 8), the solution of the problem:

'
i
,5.

AN it

ff (uV2G ~- GV3u)dA = § (uVG — GVu) - nds.
4 Bl

. .
e oy’
re s

9

TP AN a0

With V2G = &(r — R, § — ®)/r, V2u = F, and the boundary conditions for G and «,
J J (u(r, 0)6('-—_1%?_—0) - G(r,0; R, ®)F(r, 0)>rdr dg
A

= f K,(0)260:9: R, ©) ’ao; R.9), a0
/] r

e vAtesiad

or u(R,®)=j J " G(r,0: R, ©)F(r, O)r dr df

0 Jo

+ f roK (0) 28025 R,0) 4o
0 or

When we interchange (r, 8) and (R, ®) and note the symmetry in G,

u(r,9)=J f G(r,6;R,©)F(R,®)RdR d®
o Jo

9G(r,6:r0,0) o

- + ro K(© . -
[Foriot
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Exercises 12.5

1. Verify that the Green's function for the Robin problem is symmetric.
2. Show that the Green's function for the boundary value problem of Exampic 9 is

—l——ln(r‘ [r? + RT = 2rRcos(d + @))[r* + R* — 2rRcos(d ~— O)] )

@z "\"°Tr?R? 1 r4 = 2rirRcos(@ + ©)][r*R* + 15 — 2rirRcos(d — ©)]
3. Use a Green’s function to find an integral representation for the solution of the boundary value
problem
d*u  d
a—;+5}l—2=F(;,y), O<x<L, O0<y<lL,

u@©,y) = f(y), O<y<L,
u(L,y) =0, 0<y<lL,
u{x,0) = 0, 0<x<L,
u(x,L) =0, O0<x<L.
4. Show that the solution of the Robin problem
(V2 + k¥u = F(x,y),  (x,y)in 4,

du
lgr'l' + hu = K(X9y)v (x1 .V) on B(A)

“is (75) when G(x, y; X, Y) is the associated Green's function.

12.6 Green's Functions for Heat Conduction Problems

Green's functions can also be defined for initial boundary value problems; they
encompass the character of Green’s functions for boundary value problems and also
the “causal” features of the initial value problems of Section 11.6.

The causal Green's function for the one-dimensional heat conduction problem

U 13U  g(x,0)

T Tk 0O<x<L, >0 (80a)
eu
—11—&+th=fx(‘), x=0, t>0 (80b)
U
12%7 +hU=f), x=L, >0, (80¢)
Ux,0)= f(x) 0<x<L, (80d)

is defined as the solution of the corresponding problem with homogeneous initial and
boundary conditions when a unit of heat is inserted at position X and time T
izg_ 10U &(x — X)o(e —T)

Tk p 0<x<L, t>T, (81a)




i
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Example 10:
Solution:
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U

“’1a—+hU 0, x =0, t>T, (81b)

l ou +h,U=0 =L T (81¢)

_ 2 ax 2 =Y, x:—.-..__; 'f : N C

Ux,t;X,T)=0, O<x<L, t<T 81d)

For t > T, it can also be characterized as the solution of

a=G 1 4G
t>T, 82
it 0<x<L, > (82a)
—l,g—G+h G =0, x =0, t>T, (82b)
%G-+hG 0, x=1L, t>T, : (82¢)
k
‘G(x,T+;X,T)=;6(x—X), O<x<L; (82d)

that is, the solution of (81) is H(t — T)G{(x,t; X, T) when G(x,t; X, T) satisfies (82).
What this means is that the effect of a unit heat source at position X and time T on a
rod with zero temperature is equivalent to the effect of suddenly raising the tem-
perature of the rod at point X to k/x at time T. The causal Green’s function for (80)
is H(t — T)G(x,t; X, T), where G(x, t; X, T) satisfies (82). In essence, then, G(x, t; X, T)
is the causal Green's function for problem (80); we must simply remember to set it equal
to zero for t < T. Because of this, we shall customarily call G(x,¢t; X, T) the causal
Green's function.

Find the causal Green’s function for problem (80) in the case that [, =0 = h,.

Separation of variables on problem (82) with l, = h, = Oleads, for ¢ > T, to a solution
in the form

G(X, £ X, T) — Z Cne—(zn— l)luzkll(“l.l)j;(x)’
a=1

where f,(x) = «/2/L sin[(2n — D)zx/(2L)].If 6(x — X)is given an eigenfunction expan-
sion in terms of the {f,(x)}, the initial condition requires that

» L
Y (J o(x — X)f..(XMX)f..(X)
= 0

f (X) flx)-

= 2 2p2 2 k
Z C,,e (2r~ 1)In2kT/(4L )f,.(x) =

a=1

o
K
K.

"Ma

1t follows, then, that

k
- - 13252 2
C,e™3n = IPRkTIGLY Kfn(x)
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and
Gl X, T) = L 5,;"’"" R A STACY
- ==2 «i e;‘l"“)""‘"'”’“"”sin(zn - )nX Si“(2n - l)nx'

KL

A 2L 2L

The solution of problem (80) can be expressed in terms of the causal Green’s
function for the problem:

U(x,t) = J:J.:G(x, t: X, T)g(X, T)dX dT + % J.:G(x,t;X,O)f(X)dX

[}

+ K J' (G(x, t,L, T)f#‘—) + G(x,¢;0, T)él(—’ﬂ) dT. (83a)
2 1

The first term is the contribution of the internal heat source from ¢ = 0 to present time,
the second term is due to the initial temperature distribution in the rod, and the last
integral represents the effects of heat transfer at the ends of the rod. Boundary con-

ditions (82b, c) can be used to rewrite the last integral in the form §
U(x,t) = J j G(x,t; X, T)g(X,T)dX dT + % J. G(x, t; X,0) f(X)dX i
0J0 4
(G GLT) fo(T)  9G(x60,T) f(T) ;
- {
+ KL( X h, +——2x h: dT (83b) (
(see Exercise 11). This form must be used when I, = I, = 0. 2
i
Example 11: Solve the heat conduction problem in Example 2 of Section 6.2. t
Solution: The Green’s function for this problem was obtained in the previous example. With :

-

g(x,t) = 0, and f,(¢) replaced by —«x~ 1f, (1), we use (83a, b) to write

L
Ulx,t) = % J' G(x, t: X, 0) f(X)dX
o

e J( fAT) , 96(x,60.T) L(T)) ir

—-G(x,t; L, T) <, + X h,

K [F(2k & _a- n . 2n=0rX , (2n- nx
= — - (2n— 1)2x2ke{(4L2)
k J. <KL ,‘Z ¢ s 2L sin L f(X)dX

-l . (2n—1
(2n . ™ in " ZL)nx>f2(T)dT

t/2k & L aerke- (2n — D\ . (2n — Dnx
ol 2n— 122k - TH4LY)
+ KL (KL "Zle ( 5L )sm ST f(T)dT.

Y2k a- ek TiALY
- Y e sin

A
h
a

[}
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When we intcrchange orders of summation and integration,

U(X, Z ('[ f(X) l)ﬂX ) —(2n - l)’l’kt/(‘l,l) sin (2}1__;{25{

n=l

]

— )nx
=(2n - 122G~ THALY g T ) 6 (2n ,
xe ) sin————

and this is solution (46) in Section 6.2. L]

8

=~

The causal Green's function for the two-dimensional heat conduction problem

10U g(x, 1) . T

= t>0, 84 ;

ViU = % — (x,y)in 4, > (84a) i

oU i

1 . + hU = F(x,y,1),  (x,y)on f(A), t>0, (84b)

Ux, » 0) = f(xy), (x,y)in4,
is defined as the solution of
' 10U 8(x = X,y — V)é(t — T)

2 = -
VU”k ot K ’

(84c)

(x,y) in A, t>T,

l%y— + hU =0, (x, y) on B(A), t>T,

Uy, X, Y, T)=0, (x,y)ind, <T
It is also given by H(t — T)G(x,y,t; X, Y, T), where G(x, y,t; X, Y, T) satisfies

1 0G
G=-— i T
VG T (x,y)in A, t>T,
I—ZG + hG =0, (x,y) on f(A), t>T,

Glx,y, T+;X,Y,T) = ;5(x -X,y—=7Y) (xy)inA

The solution of problem (84) can then be expressed in the form

U(x, y,t) =J ﬂ G(x,y,t: X, Y, T)g(X, Y, T)dAdT

+';” G(x,y,6; X, Y,0)f(X, Y)dA
K
+....

t
f fﬁ G(x,y,t: X, Y, T)F(X, Y, T)dsdT
B(A)




 mssmmmsss ]
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! t
or Ux, y,t) = j. JT Gx, 0 t: X,Y, T)g(X,Y,T)dA dT
0JJa
. +%‘U G(x, yt: X,Y,0)f(X,Y)d4
- - M
' . Y, T
_EJ 4; Fox, v,y 20 B X B T gy, (87b)
h 0 J A 5N

Exercises 12.6

In Exercises I-4, find the causal Green’s function for problem (80) when the values for l{, 1y, hy,
and h, are as specified.

. L,=4=0 hy=h=1 2. hy=hy =0, ly=1=1

3. Ly=h =0, Iy=h,=1 4. 1, =0, hy=1, Lh#0
In Exercises 59, use formulas (83a, b) to solve the initial boundary value problem.

5. Exercise 8 in Section 3.3. 6. Exercise 9 in Section 3.3.

7. Exercise | in Section 6.2. 8. Excrcise 7 in Section 6.2.

9. Exercise 15 in Section 6.2.
10. (a) What is the causal Green's function for problem (80)?
(b) Use the representation in (a) to show that G(x, ; X, T) satisfies the “reciprocity principle”
G(x,t; X, T) = G(X,t;x, T).

What does this mean physically?
(c) Use the representation in (a) to show that G(x,t; X, T) satisfies the “time-translation”
property
Gx,t —T: X, T)=Glx, 5, X, T + T
(provided ¢t — T — T > 0). What does this mean physically? .
11. Use the result in Exercise 10(b) to show that solution (83a) can be expressed in form (83b).

In Exercises 12-15, use formulas (87a, b) to solve the two-dimensional heat conduction problem.
12. Exercise 1 in Section 6.3. 13. Exercise 2(a) in Section 6.3.

14. Exercise 2(a) in Section 9.2.

15. Parts (a) and (b) of Exercise 3 in Section 9.2.

16. What are the three-dimensional analogs of equations (84)~(87)?

12.7 Green'’s Functions for the Wave Equation

The causal Green's function G(x, t; X, T) for the one-dimensional vibration problem

3y 1 3ty F(x0)

ox? c¢*ar pct’

0<x<lL, t>0, (88a)



tird

()
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yd
dy ‘
—I,a+h,y=fl(z), x =0, t>0, (88b)
dy
125’; + hly = fl(t)v N x_ = L: t> 00 (88¢)
Y0 =f(x), - O0<x<lL, (88d)
2(x,0=g(x)) O<x<lL, (88e)
is defined as the solution of
Py 13y Sx—-X)o(t—T)
G = —g —m , 0<x<lL, t>T, (89a)
M  c* o pc?
—Ilg%+h,y=0, x =0, t>T, (89b)
dy .
125;+h,y=0, x =1L, t>T, (89¢)
yx X, T)=0, O<x<L, t<T (89d)
It is also given by H(t — T)G(x, t; X, T), where G(x, t; X, T) satisfics
’G 1 0%G
W.:FW’ O0<x<L, t>T, (90a)
—I;a—G+h,G=o, x=0, t>T, (90b)
ox -
I,?£+h26=0, x=L, t>T, (900)
ax
Gx, T+;X,T)=0, O<x<lL, (90d)
G(x,T+;X,T)= is-("p;x—), 0<x<L. (90e)

o

In other words, the effect of an instantaneous unit force at position X and time T is
equivalent to the effect of giving the point at X an instantaneous initial velocity 1/p.
Although the causal Green's function for (88) is H(t — T)G(x,t; X, T), where
G(x,t; X, T) satisfies (90), we shall customarily call G(x,¢; X, T) itself the Green’s
function.

Problem (90) is easily solved by separation of variables.

Example 12: Find the causal Green's function for problem (88) when [, =1{, = 0.
Solution: Separation of variables on (90a-d) leads, for ¢t > T, to
nnc(t — T)

G(e X, T) = 3 Aysin £,

L
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Example 13:
Solution:
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where f,(x) = +/2/L sin(nnx/L). If 5(x — X) is expanded in terms of the { S+(x)}, initial
condition (90e) requires that

nnc

L
——A.L(X) = Z (I o(x - X )ﬁ.(X)dX)f..(X)

LEA P a=1

=— Z JUX)(x).
P =1

It follo_ws, then, that

=4, ——f.(X)

and G EX,T) = 3 — M———)

a=1 NAC
L &1, mtc(t

=—Y -sin——— f,.(X)fn( ). .

pf.(X)S Jax)

The solution of problem (88) can be expressed in terms of its Green's function:

¥x, ) = f‘ jLG(x,t;X, T)F(X,T)dXdT
0Jo

L .
e f ("‘X’G(x";"ﬁ) - f(X)a—G—(%t%X—’O))dx
o

t

+p I (G(x,t L, T)fZ( )+ G(x,t;0, T)f‘( )>dT. (91a)
(1]

The first integral contains the effect of past external forces, and the second integral

contains that of the initial displacement and velocity. The last integral is due to

boundary disturbances. Boundary conditions (90b, c) can be used to rewrite the last
integral in the form

y(x,t) = J‘ J.L G(x,t; X, T)F(X,T)dXdT

0Jo

e ‘L<g(x G(x, £ X,0) — f(X)M>dx
o

oT
t
2 _ f2(T) aG(xv i L1 T) fl(T) aG(x, t’ol T)
+ pc L( Py X + P e dT. (91b)

This form must be used when [, = [, = 0.
Solve the vibration problem of Example 3 in Section 6.2,

The Green's function for this problem was derived in Example 12. According to (91b),

then,
! G L, T
y(x,0)=pc? | — %6 tL.T) )g(T)dT
° X
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= pe? j '(:E $ Loin M——f,(mmx)) g(T)dT

prc <11

--=3 '( f sin =)y (T)dT>f.(L)f(x)

- T 4=1 0
When g(t) = Asinwt and w # m:c/L for any integer n,
Y onme(t—-T) |, AL? nnc nnct
J.o sm—z——-A_ sinwTdT = LT S T Tsm wt — wsm——L—— ,

and therefore

(x,t) = ke i AL I sin oot
I, P ”(nz 2,2 _ ZLZ) L

—wsinﬂtﬁ 2 mt( 1" 2sin'mx
L JNT\L LML
—)"
=2cA Z —u——i<wL sin-m;‘—“ — nncsin wt) sin%.

o= ninie 2y

When g(t) = Asin(mnct/L),

AL . mmnct . nnct
——————) nsin——— L — msin— n#m

! t—T 2 L
sin——————nm( )g(T)dT= me(n
° L ' 4 Lsinm—mnctcos—@ n=m
2mnc L L -
Lc =2 AL nct nmc
and 1) = — ~ msin L),
nd yx0=—2 ) m(nz_mz)( = —ms )f( k)
a¥m
L A
= 3 Lsin™ _ mr ctcos—— S (L) fulX)
n | 2m*nc L
24 & (-1 . nmct . muct\ . nmx
-—7"; T T\ msin—— — nsin— >sn T
n¥Em
(——l)"' : mnct Lsi mnct sinmnx
o mmnct cos T sin T <

The causal Green's function for the two-dimensional vibration problem

1 3%z Fl(x,y,0)

VZZ = E—z' a[_z - pcl N (x, y) in A, t > 0‘ : (923)
lg +hz = K(x,y,t), (x,y)on f(4), >0, (92b)
2(x, y,0) = f(x, ), (x,y) in A, (92¢)
z(x, 1,0) = g(x, ), (x,y}in A4, (92d)
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is defined as the solution of

1 8%z 8(x — X,y — Y)8(t — T)

vz (x,y)in A, t>T, (93a)

T ar T pc? '
zg +hz=0, (xy)onp(d), t>T, ' (93b)
20, 0,6X,Y,T)=0, (x,y)in A, t<T. (93¢)

It is also given by H(t — T)G(x, y.t; X, Y, T), where G(x, y,t; X, Y, T) satisfies

1 4*%G .
VG = = (x,y)in 4, t>T, (94a)
G
I—a—n— + hG =0, (x, y) on B(A), t>T, (94b)
G(x,y, T+;X,Y,T)=0, (x,y)in A, (94¢)
Gy, T+:X,Y, T)= ﬂ_x:_%:ﬁ’ (x,y)in A. (94d)

The solution of (92) can then be expressed in the form

2(x, p,1) = J ” G(x,y.t;X,Y,T)F(X,Y,TYdAdT
0 A

+ "” (g(x, Y)G(x,y.6;X,Y,0) — f(X, Y)a_Gg,yb;}X,_Y,_O)yA
A

2 t
+ 2 Jfﬁ G(x,y,t: X, Y, T)K(X, Y, T)dsdT (95a)
U Jo Jacn
or

t

z(x, y,t) = J‘ j:[ G(x,y,t; X, Y, TYF(X,Y,T)dAdT
0
+

A

p ” (g(x, )G,y 61 X, ¥,0) — f(x, ) SR X 0
] 3T

pc?

‘ 3Gy X, Y. T
—-—f-j § K(x, v, T) 2GR0t ) dsdT. (95b)
n o Toa N

Exercises 12.7

In Exercises 1-3, find the causal Green's function for problem (88) when values forl,, 1}, hy, and
h, are as specified.

1ohy=hy =01 =1l=1 2. ly=h =01, =hy=1
3o ly=h =11 =h =0
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In Exercises 4—6, use formulas (91a, b) to solve the initial boundary value problem.
4. Exercise 13 in Section 3.3 (see also Exercise 19 in Section 6.2).
s, Exercise 21(a) in Section 6.2.
. 6. Exercise 22 in Section 6.2. =
7. A tautstring initially at rest along the x-axis has its cnds fixedat x =0and x =
(a) Find displacements in the string for an arbitrary forcing function F(x, ).
(b) Simplify the solution in (a) when F(x, t) is a time-independent, constant force Fo concentrated
atx = xq.
{(c) Simplify the solution in (b) furthcr if xo = L/2.
(d) What is the solution in (b} if x is a node of the mth normal mode of vibration of the string?
8. (a) What is the causal Green's function for problem (88)?
(b) Use the representation in (a) to show that G(x, t; X, T) satisfies the “reciprocity principle”

G(x,t; X, T) = G(X,¢t;x, T).

o)

: What does this mean physically?
{c) Use the representation in (a) to show that G(x,t; X, T) satisfies the “time- (ranslanon
property

Gx, X, T)=G(x,t + T; X, T + T)

(provided T > 0). What does this mean physically?

= In Exercises 9 and 10, use formulas (95a, b} to solve the two-dimensional vibration problem.
9. Exercise 6 in Section 6.3. 10. Exercise 16 in Section 9.2.

]
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Convergence of Fourier Series

In order to establish convergence of a Fourier series to the function that it represents,
we require a few preliminary results on trigonometric integrals. These results are
formulated so as to make them useful for Fourier integrals in Appendix B as well.

Result 1 (Riemann’s Theorem)

If f(x)is piecewise continuousona < x < b, then -

b b
lim j. f(x)sindxdx = 0 = lim j f(x)cos Ax dx. n
A= Ja Ao Ja

Proof: The interval a < x < b can be divided into a finite number of subintervals p < x < q in each of

which f(x) is continuous even at the end points, provided we use the limits from the interior as
values of f(x) at the end points. The theorem then follows if we can show that

q q
lim J f(x)sindxdx = 0 = lim j' f(x)cos Axdx

A=x Jp A—o Jp

for continuous f(x) on p < x < q. If we divide this interval into n equal parts by points x; =




Appendix A Convergence of Fourier Series A-1

p+(q—p/nj=0,...n, then

Xyet

J' S(x)sinixdx = Z f(x) sm Ax dx

~—'Xjet

= i (f(xj)fx/"sm Axdx + / [f(x) = f(x;)]sin lxdx)
i<o x:

x4
ot cos Ax; — cos Ax
= Z, f(x,)(——’ 7 1+ l)

+ Z JX " [f(x) — f(x;))sin Axdx.

When we use the triangle inequality, |a + b| < [a| + {b|, on each of these summations, and note
that [sin Ax| < |, we obtain

cos Ax; — cos Ax;
A

qu(x) sin Ax dx
» .

<1

n-1

+ % |10 - sexla

Clearly, |cos Ax; — cos Ax; | < [cos Ax;| + |cos ix; | < 2,and if we denote the maximum value
oflf(x)|onp<x <qbyM then

f f(x)sin Axdx

<2 e - s

7]

Because a continuous function [ f(x)] on a closed interval [p < x < q}is uniformly continuous*
thereon, we can state that corresponding to any number ¢ > 0, no matter how small, there exists
an N large enough that when n > N and x, <X < Xjypy

Lfx) = SOl < 50— ( D)’

For n > N, then,

n-l 2Mn ¢
+22(q (j+1"‘xl')=‘—/..—+"-

2
Finally, if 4 is chosen so large that 2Mn/4 < ¢/2, then

J’q Sf{x)sin Axdx| <

q
J f(x)sinixdx| < ¢
P

* A function f(x) is uniformly continuous on an interval I i given any ¢ > 0, there exists a 4 > 0 such that
whenever {x, — x,| < é and x, and x, are in |,

1f(x)) = flxall <&

© e —————
N
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that is, A can be chosen so large that the value of the integral can be made arbitrarily close to zero.
This is tantamount to saying that

* q
. lim J‘ f(x)sinAxdx =0
- . . i: o Jp
A similar proof yields the other limit. -

When A1 is set equal to nn/L, we obtain the following corollary to Result 1.

Result 2

If f(x) is piecewise continuous on 0 < x < 2L, then

2L 2L
lim j f(x)cos———dx =0 = lim j f(x)sin%’fdx. @)
0

n—=wo JO n— o

Proof:

If f(x) is piecewise continuoiis on 0 < x < b and has a right derivative at x =0, then

lim j f(x)s“‘"‘ dx =2 f(0+) @)

A+ o0

We begin by expressing the integral in the form

J Sx) sin /bc = J‘b (________f(x) - /O +)) sin Ax dx

X

sin ).x

+f0+ )j‘ @)

Now the function [ f(x) — f(0+)}/x is piecewise continuous on 0 < x < b [since f(x) is, and
provided we define the value at x = 0 by the limit that is the right derivative of f(x) at x = 0].
Hence, by Riemann’s theorem,

. lim fb(f—(’iiﬂm)smxdx:o
A~o JoO X

and the first integral on the right of (4) vanishes in the limit as A — co. Further, by the change of
variable u = Ax in the second integral, we find that

b
lim j‘ sin Ax dx = lim J‘ S—uﬂd
0 X 0 u

A~ A—

® sinu nt
= —du=—.
o U 2

Consequently, the limit of (4)as A — oo yields (3). ]

* This integral is quoted in many sources. Sce, for example, any edition of Standard Mathematical Tables by
Chemical Rubber Publishing Company.

h
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4 Result 3
If f(x)is piecewise continuous on a < x < b, then at every xina < x < batwhich f(x)hasaright
and left derivative,
. L[ sinA(x— + f(x—
| llm—J' f(t) in ( _L(X"‘) f( ) (5)
, PRy 2 x~—t 2 :
) Proof: We begin by subdividing the interval of integration,
4 sin A(x — sin A(x — sml(x t)
ff() b J.f() x d:+jf(t) ”
} and make the changes of variablesu = x —tandu =t — x, respectively:
* b o sind(x —t x-a sin Au b-x sin Au
J f(f)'———( )dt= e — w222 g 4 flx + u) du.
v a X -1t 0 u o u
For fixed x, f(x — u) is piecewise continuous in u on 0 < u < x — a and has a right derivative at
. u = 0 [namely, the negative of the left derivative of f(x) at x]. It follows, then, from Result-2
] that
* N sin 4 n
hmJ- Sx —u) udu=—f(x-—).
A= jo 2
A similar discussion yields
R in n
lim f Fo+ )y = L fxet),
A~o Jo u 2
and these two facts give (5). Ll
We are now prepared to prove Theorem 2 of Section 2.1.
~lesult 4
If f(x) is piecewise continuous and of period 2L, then at every x at which f(x) has a right and left
derivative, the Fourier series of f(x) converges to [ f(x +) + f(x—)1/2.
. Proof: The nth partial sum of the Fourier series of f(x) is

e
9
2

knx . knx
S(x)——i—+ Z (akcos—L—+b,‘ n-L—>
Substitutions from definitions (12) in Section 2.1 for a,, a;, and b, yield

l 2L n 1 2L k
S.(x) = 3L j‘ Sy de + kz‘ <cosk—:5 % f f(t)cos—’zdt
0 = 0

. knx 1 3L . knt
+Slnsz‘0 f([)Slant>

=%J‘2L[ @+ Z f(t)<cos—coskT+ sm]i;sinl%t-)]d,

P
2y
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I N SN A B kn(x — 1)
_ZJ f(()(i-f-k;cos—_—-—L )dt

[4]
L (n+ 1/2r(x — )
1 {3t L
- =—71" ' de!
- L 70 Zsin——n(x_t) t
2L

Since the integrand is of period 2L, we may integrate over any interval of length 2L. We choose
aninterval beginning at g, where a < x < a + 2L, and rearrange the integrand into the following
form:

\sin(n + 1/2)a(x —¢)

1 a+2L X — L .
S(x)=— t drt.
n( ) LJ“ f()zsinﬂ(x—t)} x—t
2L
In order to take limits as n — oo and apply Result 3, we require piecewise continuity of
X —t
F(t)= f(1)
2sin X =1
2L
ona <t < a+ 2L and existence of both of its one-sided derivatives at t = x (x fixed). This will
follow if
x—t
. n(x —t)
2sin———
2L

has these properties {since f(f) has, by assumption]. Since ¢ = x is the only point in the interval
a <t <a+ 2L at which the denominator of this function vanishes, it follows that it is indeed
piecewise continuous thereon. Furthermore, it is easily shown that this function has a right and
left derivative at t = x. By Result 3, then,

sin(n + 1/2n(x — 1)

. N N x—t L
lim S,(x) = lim — | t d
u:n:) ) ..Lr:LL f()-zsinn(x—-t) X—t f
2L
. (2n + Dr(x —1)

N B A 2L n

= h =—{F( F(x—)].

L}lﬂnlnj; F(t) — dt 2L[F(r+)+ (x-)]

* We have used the identity

sin(n + 1,210

| .

-+ coskd =
2 g; 2sin(0:2)

This formula can be established by expressing cos k0 as a complex exponential (¢*? + ¢***)/2 and summing

the two resulting geometric series. The identity is regarded in the limit sense at angles for which sin(0/2) = 0.
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Appendix A Convergence of Fourier Series

Since F(x +) = lim,.,. F(¢) = f(x+)(L/x), and similarly for F(x —), it follows that
. n (L L
"an:o Sa(x) = E(;f(x+) + ;f(«“‘))

_ G Sy
bk L)
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Convergence of Fourier Integrals

In order to establish convergence of a Fourier integral to the function that it represents,
we require some preliminary results on trigonometric integrals. They parallel and
utilize analogous properties in Appendix A.

Result 1 (Riemann’'s Theorem)

If f(x) is piecewise continuous on every finite interval and absolutely integrable on —o0 <
x < oo, then

lim J. f(x)sinAxdx =0 = lim j f(x)cos Ax dx. (1)

A—=® J-o Ao J~-m

Proof: Since

lim jm f(x)sin Axdx = lim (lim jr f(x)sin Ax dx),
A

A= |- —o\ro»o J-5
s 0

and the limit on r and s is absolutely and uniformly convergent with respect to /, limits may be
reversed:

A= J-o r=o \A—=2 J -5
s

lim j‘m S(x)sinixdx = lim(lim Jr S(x)sin lxdx).

But Riemann's theorem for finite intervals (Result 1 in Appendix A) implies that the integral on

the right vanishes for all r and s. u

A-6
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Appendix B Convergence of Fourier Integrals A-7

Result 2
g If f(x) is piecewise continuous on every finite interval and absolutely integrable on —o0 <
. x < 00, then at every x at which f(x) has a tig_ht and left derivative,
i sin l x — -x+ + f{x—

lim — f fySR 2=y, St +TET) @

A+ T 2
Proof: For each fixed x, the function

sin ).(x 1)

7 F() = f(1)-

is piecewise continuous in ¢ on every finite interval [provnded we define F(x) by the limit as ¢
approaches x]. Further, since .

sin A{x —
RO = 1ALf (@) ﬁ < AHS@L
5 and f(¢) is absolutely integrable on —co <t < oo, it follows that the improper integral

®° ® sind{x — ¢
J‘ F(t)dt = J S (t)(—)-dt
- ~ o x—t
converges. If a and b are numbers such that a < x < b, then

f ® FQdi — (ﬂi‘f’;—f"") sj F(o)dt

+ J.bF(t)dt—- n(im—);fﬁ—"—))l + I |F(£)] dt.
a b

- J Pl < J Ilf(t)l it < 10 J Lf (o)l de.

._tl

-0

Given any ¢ > 0, there exists a(e) < 0, independent of 4, such that

r |F(t)] dt S—Lr |f ()] dt <§.
X —a

Similarly, there exists b(¢) > 0 such that

© €
L |F(t)]dt < 3

g Since f(t) is piecewise continuous on a < t < b and has both one-sided derivatives at ¢ = x,
a < x < b, we have from Result 3 in Appendix A that

i L Imsm/(xt 0 g S) ),

A+ T

sl

1

“ererera
R

s
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that is, there exists A(¢) such that whenever A > Ag),

b osini(x — 1) flx+)+ f(x=)
L‘{g)_————‘ dt — n<—-———————————2 )

<E
3

X —

Combining these three results, we have, for 4 > A(e),

r F()dt — n(ﬂi‘—ﬂ;—ﬂ’-‘:—)N <

Since ¢ can be made arbitrarily small, it follows that

fim H:,f(‘)smi(i:t)"‘=ﬂx+);f(x_)‘

A~ o

We can now establish Theorem 1 in Section 72,

Result 3 (Fourier Integral Theorem)

If f(x) is piecewise continuous on every finite interval and absolutely integrable on —oo <
x < oo, then at every x at which f(x) hasa right and left derivative,

ﬂi‘iﬁz"—f“‘—'ﬁ = f [A(3)cos Ax + B(A)sin Ax] d2 @a)
0
when A(A) = - J S(x)cos Axdx, B(A) = 1; J f(x)sin Ax dx. (3b)
Proof: By Result 2, we may write

Sle4) + flx—) _ im l_j“” f(t)sina(x - t)dt

2 = x—t

Since J cos A(x — 1)dA =

0

sind(x —)|* _sina(x — 1)
x e +

—t Jo x—t
it follows that

S+ fe=) g L r f(:)(rcos;.(x - z)d;.)dz

2 a0 0

= lim ! Jn ‘rf(t)cos Alx — tydAde.

a0 T Jj-n Jo

Since Jm f(t)cos A(x — t)dt
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Appendix B Convergence of Fourier Integrals A-9

is uniformly convergent with respect to 4, we may interchange the order of integration and write

S +) L00) g if:[” f(tycos Ax — 1) deda

a=+o N Jo

_! F r S(®)cos Ax — 1) dedi
Jo -®

il

A= ai

f f S(t)[cos Ax cos At + sin Ax sin At] de dA.
(] ~®

This is the result in equation (3).

—
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Vector Analysis

In this appendix we briefly mention the theorems from vector analysis that are used
throughout the book.
When f(x, y, z) is a scalar function with first partial derivatives in some region V of
space, its gradient is a vector-valued function defined by
of » Of 2 Of 2
=Vf=—i+-—j+—k 1
grad f = Vf 6x|+6yj+6z (1)
This is a very important vector in applied mathematics, principally due to the proper-
ties stated in the following theorem.

A-10

The directional derivative of a function f(x, y, z) in any direction is the component of Vf in that

direction. Furthermore, f(x, y, z) increases most rapidly in the direction Vf,and its rate of change
in this direction is | Vf|.

When F(x, y,z) = P(x,y, 2+ 0(x, 9, 2)] + R(x,y, z)ﬁ is a vector function with first
partial derivatives, its divergence and curl are defined as
éP  8Q OR

divF=V - F=—+—+—
v ax +6y + e (2)
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R Q\. [oP @8R\, [8Q OP\-
curlF=V x F (6y 6z>|+(az 6x>"+<5x 6y) (3)

The gradient, divergence, and curl.are linear operators that satisfy the following

identities: - =7 —

V(f9) = Vg + gVf, (4a)

V.- (fF)=Vf-F + fV.F, (ab)
Vx(fF)=Vf xF + f(V x F), (40)
VEFxG)=G-(VxF)—F-(VxG), (4d)
V x (Vf) =0, (4e)

V-(VxF)=0, (4f)

provided f(x, y, z) and the components of vectors are sufficiently differentiable.
The line integral '

fF-dr:J Pdx + Qdy + Rd:z
c c

of a continuous vector function F = Pi + Qj + Rk along a smooth curve C can always
be evaluated by substituting from parametric equations for C and evaluating the
resulting definite integral. For example, the value of

J' ydx + xdy + zdz
c

along the curve C: x = ¢, y =t + 1, z = 3t, 0 <t <1, can be calculated with the
definite integral

1 1 1
J (¢ + 1)(2tde) + t2de + 3t(3dy) =j (3t? + L1t)dt =—23.
1)

0

Inthe event that a line integral is independent of path, and this occurs when F is the
gradient of some scalar function f(x, y, z), the value of the line integral is the difference
in the values of f(x,y,z) at terminal and initial points. The above line integral is
independent of path, since V(xy + z%/2) = yi + xj + zk, and therefore

PERYCR R TR
fydx+xdy+zdz={xy+——-}
¢

(0,1,0) B
JY F.fdS
s

of a vector function F(x, y,z) over a smooth surface S with unit normal vector i is
usually evaluated by projecting the surface in a one-to-one fashion onto a coordinate
plane, expressing F - fi and dS in terms of coordinates in this plane, and evaluating the
resulting double integral. For example, when F = x2)i + xzj and when i is the upper

The surface integral
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Figure C.1

Appendix C  Vector Analysis

normal to the surface S:z = 4 — x* — y%,z = 0, itis appropriate to project S onto the
xy-plane (Figure C.1). The unit upper normal to S is :

. Ve-4+xr+yY)  @x2pl)
REWE 4+ 2 + PN 1+ ax + a7

The relationship between a rectangular area dy dx in the xy-plane and its projection dS
onSis

aZ 2 0z 2 \/————2——'—
= | — — = 4y? .
ds l+<ax) +(6y) dydx { + 4x2 + 4y*dydx

‘Since S projects onto the circle x* + y? < 4, the value of the surface integral of FoverS
is

r2 pYE-xT 2x. 2y, 1
ﬁ F-idS = (xly,xz,O)-_—(ﬁ—&—)——\/l T ax? + dyldydx
s 2 l-vame J1+ 4x? + 4y?

r2 (Ya-xl

= (2x3y + 2xyz)dydx
T -

J-2J-v

r2 VAT

= [2x%y + 2xy(d — x* — y*)])dydx

-2 J-vq=x3

When a surface does not project in a one-to-one fashion onto a coordinate plane
(such would be the case, for example, if the surface were closed), it must be divided into
subsurfaces that do project one-to-one. Alternatively, if the surface is indeed closed, the
surface integral can be replaced by a triple integral over its interior. Thisis the result of

. the following theorem.
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heorem 2 (Divergence Theorem)

gure C.2

Let S be a piecewise smooth surface enclosing a volume V. Let F(x, y,z) be a vector function
whose components have continuous first partial derivatives inside and on S. If @ is the unit
outward-pointing normal to §, then ERi

@F.ﬁdS=va-qu 5)
S | 4

For example, consider evaluating the surface integral of F = xi + yj + zk over
the surface S that encloses the volume described by x2 + y* < 4, 0 < z < 2 (Figure
C.2). To do so by surface integrals would require that the top and bottom of the
cylinder be projected onto the xy-plane and that the cylindrical side be divided into two

parts, each of which projects one-to-one onto the xz-plane (or yz-plane). Alternatlvely, '
the divergence theorem yields

@ F-ﬁdS=J‘” V-FdV:J:U (l+l+l)dV=3IjJ dV =3(volume of V)=24x.
s v v v

\J

(>
N

——t—

If weset F = uVvin(5), where u and v are arbitrary functions of x, y, and z, and use
identity (4b), we immediately obtain

@ (uVvv)-idS = J.U‘ (uV2v + Yu - Vo) dV. (6)
s v

This result is called Green's first identity. When u and v are interchanged in (6) and the
equations are subtracted, the result is called Green’s second identity:

ﬁ (uVv — vVu) - i dS = J“”‘ (uV — vVu)dV. 7
s v

Stokes’s theorem relates line integrals around closed curves to surface integrals
over surfaces that have the curves as boundaries.
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Theorem 3 (Stokes’s Theorem)

Let C be a closed, piecewise smooth, non-self .intersecting curve, and let S be a piecewise smooth
(orientable) surface with C as boundary (Figure C.3). Let F be a vector function whose
components have ¢ofitinuous first partial derivatives in a region that contains S and C in its

interior. Then,
§F-dr='U(VxF)-ﬁdS, (8)
c s

where i is the unit normal to § chosen in the following way. If when moving along C, the surface S
is on the left side, then @i must be chosen as the unit normal on that side. On the other hand, if
when moving along C, the surface is on the right, then i must be chosen on the opposite side of S.

z

F

Figure C.3 e -

For example, consider the line integral
§ y2dx + xydy + xzdz,
c

where C is the curve of intersection of the surfaces x* + y? = 2yand y = z,directed so
that y increases when x is positive (Figure C.4). If we choose § as that part of the plane
y = z interior to C, then

Vz-—y _(O,-L1)
V- V2

Since V x F = (0, —z, —y), it follows by Stokes’s theorem that
0,—1,1
©O.-LY g

2dx + xyd +xzdz=‘J~JA 0,—~z,—y
iy ydy s( ) 7

~
n=

since z = y at every point of S.
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Figure C.4

Figure C.5
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When C is a curve in the xy-plane (directed counterclockwise) and S is f:hosen as
that part 4 of the xy-plane interior to C, we obtain Green’s theorem as a special case of
Stokes's theorem (Figure C.5):

§ F-.dr = § P(x, y)dx + Q(x,y)dy
c c

aQ P
= = 9
J‘J‘A(ax ay)dydx. 9)

The two-dimensional version of Green's first identity is obtained from (9) by
setting P = —udv/dy and Q = udv/dx, where u and v are functions of x and y:

§ (uVv)-fids = J.J (uV?v + Vu - Vo)dA. (10)
c A
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Interchanging u and v and subtracting gives the two-dimensional second identity,
§ (uVv — vVu) - fids = J‘j- WV —vViu)dA. (11)
c 4

An alternative f&fm -of Green's theorem, which casts it as a two-dimensional
version of the divergence theorem, is

§F-ﬁds=”‘V-FdA, (12)
c A

where ii is the outward-pointing normal to C.




;S

":'Z?ection 1.1

@ YO,z = fily.2)y>0,z>0;
V(L,y,2) = f(y.2),y > 0,2 > 0;

* V(x,0,2) = f3(x,2,0 < x < L,z> 0,

5 V(X'.V.O)=f;(xv}’)s0<x < L-Jr'>0

"‘aV(o',V,Z)

&

. (b) ——— = L2 y>0,2>0

3 WLyd) (2, y>0,2>0;

& ox

w :-a—y(%(?!—z!=f,(x,z).0<x<[4,z>0;
# _______——6V;:,y,0) = f(x,y,0<x<L,y>0
? © —’lay(%ﬂ + V(0,y,2) = fi(y2),
= y>0,2z>0;

2 2R vy = A0

i y>0,z>0

. —l,w + hyV(x,0,2) = f3(x,2),
0<x<l}j,z>0;

L e N S )

dz

O<x<L,y>0

# (@) Vire,0) = f1(3),0 < 0 < m; V(r,0) = f,(r),
O<r<rg; Virn) = f3(,0<r <ry

i ®) aVir,,9) = fi(6),0<6<n;

or

1 oV(r,0) )
~: "% = fHir, 0 <r<ry:
L oVir,n)
;T—f,(r),0<r<ro

V(rq,0)
or

© I, + 0 V(re.0) = f(6),0< 8 < m;

I, aV(r,0)
Tr o
1y dV(r,n)
T30

. n

7. @) V(r0.0,4) = £,(0,4), —n <0< 0 <o

V(r,a. ;) = f(r0,0<r<ry, —n<f<n

0V(r,.0,¢)
or

wvi(r,0,1/2)
o

4 V(’O ' 0! ¢)
or

+ hV(r,0) = (N0 <r <ry;

+ hV(r )= f3(),0<r<r

(b) =f\(0'¢)) _7‘<OS7[,0_<_¢<§,

l =fz("v0);0<"<fo»—7t<9$7t
r

(c) l| + hlV(rOvo' ¢) = fl(e' ¢)-

—n<0$n,0$¢<;;

1, aV(r,8,n/2
72 ("Tn/) + th(’.ov 1‘;‘) = fz("e)v

O<r<ry, —n<l<n

Section 1.2

ou U
3=k . = .
5 vkax1,0<x<L.t>0.U,(0.t) 0,t>0;
U(L,0) =100,t > 0; U(x,0) = f(x),0 < x < L
a 2
5'8—?=k%’0<x<1"t>0’
cU

—K—=— 4+ U = Uy, x = 0,1 > 0,
cX

é
K~
ox
O<x<L

+p,U=pU,x=Lt>0;Ux0 = f(x),

A-17




A-18 Answers to Selected Exercises
au U au
7.3;-—ka 2,0<x<L,¢>0, —x-é;—Qo,
_ U Q) .
x-—0,t>0,xax—- 1 x=L,t>0

U(x0)=f(x)0<x<L

10.

.- s

U k(alu 1Y) 1620) kg(r)

FTiEh VR il R

0<r<ro.—n<05n t>0; xaau+pu 0,

r=rg, —n<0<nt>0,U(r00 = f(r,0),

. 0<r<rg, —n<0<m where

12.

16.

20.

21.

22.

0 O<r<r;
g =49 r<r<n
0 ry<r<ry

ou U taU U W
o (F*?aT* =ao=+al)’
0<r<ro,—n<0$7r,0<z<Lt>0
,(r00t)—00<r<ro,—-1t<BS1t,t>0
Uf(r,0,L,1)=0,0<r <ry, —~n<f<nt>0
Ulre,8,2,0) = f(6,8), —n <8 <mn0<z<L,
t>0; U(r,0,2,0) = f(r.0,2),0 <r <rq, -
Za<l<n,0<z<L
U WU 10U " 18 0
a (?*:E*ﬁa—ef)' <r<fo
0<fB<mt>0;Ulre,0,)=00<8<mt>0
—kr Wy(r,0,8) = q,0.<r <ro, t >0
kr-Wy(r,m,t) = ¢,0 <r <rg,t>0;
Ur,0,0)= fr.?),0<r<r,,0<8<xn
(U — Up)x
L
—qoX
K

+ U,

+ C, C arbitrary, provided q; = —qo

(a) True; (b) Not necessarily true
_KA(Uoul — Uin)_

26.

(a) I ; (b) 660 W

27, @ G =Yl 536 4 100 W
r ln(roul/rm)

33. (a) U, Dc + buin(b/r)] + buU,In(r/a}

34.

K + buln(b/a)

—1%? 12 l+2l b 2 U
axnla's | anialo\rx | k% \a bu“+""

0<r<a r In b + I U
=77 " 2k*nlate \r) 2n’a’sbu* + e
asr<b

Section 1.3

2 2
Ty _ 29 Eg+g’0<x<L.t>0,

Sl v B

(g<0,ﬂ>0);—36;—+k,y=0,x=0.t>0;

r-g% +kyy=0x=0L,t>0;yx0) = f(x)h

0<x<Ly(x,0)=g(x)0<x<L

6.‘;: g{,0<x<Lt>0y(Ot)-—0t>0
Ei’-l-(aL—’t-)—=F,t>O;y(x,0)=0.0<x<L;
y(60=00<x<L

9.%-:%4 32{+g,0<x<r, ¢>0(g <O);

y(O,t) = (Lvt) = O’t > 0; y(x10) = ,V:(x-o) =0 s
O<x<L

L —
Static deﬂcction: y= g_x(_i_x)_
2c
az al
II'W_C a———+g.0<x<L t>0(g <0);
L,
70,6 = 0, ¢ > 0; r‘MX D _Ege>0
y(x,0) = y(x,0) =00 <x <L
. . gx(2L — x)
Static deflection: y = By + Fx/t
LZ
13. L+ %.C—z
oL’ larea of b
14. L + 2% + ALpg/k; A = cross-sectional area of bar
Section 1.4
8z 10z 1 3*2 -—pg
4o -t = ——
a2 +rc’r+ Ty p ,0<r<r,0<l<ua

(g<0);zr,0)=0,0<r<ryz{r,a)=
0<r<ryz{r,0)=f(0),0<0<u
5&_ (62 +loz+laz B
e\t ratrw) Y T
O<r<r,—-n<0<mt>0(g<0,8>0)
2(r,0,) =0, —n <0 <mt>0; 2(r,0,0) = f(r,0),
0O<r<r, —n<0<m2(rn6,00=00<r<r,
-n<b<n

pg(ry —r?)

8. z(r) = P
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¥ v ooy, =S . IL L 2 3[4+ anx n . nmx
9. (@) z" +r 1z =-—?—,0<T<fz,2(f2)=0 6.T+—’[—i—n§l(——“nz—COST+;SlnT
k(Oryr? — 4r3 — 53 t o1

() Orar 36: ra) 9. | + sinx — cos 2x 11 3 + 5cos4x
- 37 = 1
; 14, = —- _sinx — — 2
* Section 1.5 x 2T .Z:l o

6’ 4 Lz 2Lz - (_ l). —nxxi
-1‘; l'a‘1+c3{ 9.0<x<L,t>0 cz=€£ 16. No 17‘T+7.=§:———"2 e i
i ¥0,0) = y,(0,6) =0,t > 0; y“(L )= y,,,(L t)= -1 = . Y ///~

t> 0 y(xoo) f(x) 0<x L yt(xvo) 18. 2 n*n? +4 €
2 O<x<L N e TR
B d‘y -
% S. (a) o = E O<x<L, Section 2.2

¥0) = ,V"(o) 0= y(L)=y"(L) n 48
222 ———cos(2n — |
) = FXO° = 2Lx 4+ L) 7 T oo~
h 24EI . 212 ) 8L = (—1)° x

®92x10""m (o 1.68 x 10° N/m 'T —he 7,2‘ T oS-
T 2 (~1)" . nnx 1, 2nx
6. 2L —  9.-sin==
' Section 1.6 n .Zl snTm %gsinTg
T v 8L = | (2n — ax

Lot T 7=00<x<LO0O<y<L;VO0y=0 ~ 10—% .zx(Zn—l)’ N )
i O<y< L‘ V(L,y)=100,0 <y < L% V(x,0) = . L o 1 (Zn/:l)nx
& Q0<x<lL; V(x,L')=100,0 < x < L 1. - 2 zl cos L
o5 13 L Lz i L cosZn_nx
‘Section 1.8 S S L e
i .. 1 n t 2 & (~=)"* (2n-nx

2, Elllptlc, w,, + w“=(z)[—3w,—6w,,+(i— V)W] 15. E ;"Zl -1 cos L

& Hyperb:lic, 16. % —% 3 s 2nx
% =X - ast -

W (8)[(3 +2J2)w, 40 2\/i)w,,] 19. (a) Yes; (b} Not necessarily

~(w, + w,) © + —w, 21. (b) Yes 22. (b) Yes
= —— w =——
' 6n + 6v € Wor T W =35

Section 2.3
2. (b) No

4. (a) Does not generally converge uniformly
(b) Does not generally converge uniformly
(c) Does converge uniformly

Section 3.1
1. Linear and homogeneous
3. Not linear

2. Not linear

™8
) —
(]

=3

w

=
E

=

|
(=
2.

3
~|
N’

4. Not linear

E ]

S. Linear and homogeneous
6. Linear and nonhomogeneous
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7. Linear and nonhomogeneous
8. Not linear
9. Linear and homogeneous

10. Linear and homogeneous

Section 3.2
1. Up

_ AL &
3.(a)n ;

( " SYRYTR]
" - 2
Z (2n~ 11 3x2ke/LE, 0‘

1! n= 1 2
—4K 2 (—‘ 1) e
N a=1 2n — 1|
4x o (- l)"
= = —k,0,k:;0, 0,0
T .Z] n — ) .
4k & ( ) —(zu—l)%*‘kuu.
5. (a) ; =1 2n — l '

AL = (-1)"*'  (@n— lnct
S S l)zcos T sin
8L = |
‘7o L ,(2n—1)‘s'" L

l)n+ 1
-(lu l)lehlLl ‘n

(2n — )nx

L

(b) —x

(2n — )nx

L

. (2n— et . (2n — 1)ax
sin —————

L

- = . nmct) ., nrx
10. z (a cos——~ + b, m—L——>sm-L—, where

a, = EJ‘ f(x)sm———-dx.

2 {t 4
b, =— g(x)sinn—-——dx
nac Jo L
b o t t
132 +2 of 4 "; (a,.cos ——m;f + b,sin ———m;f )cos ——"zx.
2
where a, = j f(x)cos——dx
2 [t nn 2 (t
= L g{(x)cos ———L dx by = E g(x)dx
L*—-L 4L*-1L) 1 (2n — l)nrct
16. -
2 nl 251 (20— l)z L
(2n — l)nx
X €O§ ———
: L
400 &
17. — z 1(2 L
i n—
(2n - 1)si nh—l———n—
L
2n — - -
y Smh( n — (L — x) Sin(Zn l)yny

L L

400L"' = 1
o)

20. —
(2n — WnL

Ll
oh 2n — Ya(L — x) sin(2'1 — )ny
L L'
21. 100x + B; 100x — SOL 22. No
4qL | 2n - )al' /
4, —— h
g Lo L

bid K a=1
Qn— )r(L'—= y) . (2n— l)nx
sin

"=!(2n - 1)*cosh

x sinh L T
——2k nnL' nn(L'—y) . nnx
O sinh——=— L sin—
sch I sin—
2kL x 1 L L—
Z:; mt s hnn( - t)sinnz'):

Section 3.3

(U —U)x 2 & U +(=1)""'U,
L - ;; ,,;1 n

nex  [*x(L — x)

LT 24%«k

+ 4 i 20 L3
.2\ =1 (2n = )3n?Alox

(2n — )nx
L

3. Uo+

- 2 2 -
x e ~Mikligin

- - 1122 1.
X e (2n - 12x2kt/L sin

kit k
6. 20 7.20 + ——(1 — ™2
+ Aok + 2A1m\'1( e

& lo - - 1)2x2 2
Z( e {2n - 1)2x2ke/L:
=1 2n—1

* x(2n — 1)[2n — 1)k — aL?]

X [e-zt g Qn- ll%‘kllL’]) sin(zn _Ll)nx

kx{x — L k2 ct . nnct
13.——%—)6—2-—)+ Z (a,,cosﬁl;j—+b,,sm—7;—‘c—)

. nnx kx(L —
X Sin——, @y = J(f()+ 29 )

2 L
X smﬂgd\ b, = —nT:L g(x)sin'—lz—dx

15. (a) No;
Fx 8LF & (-1)
E + n2E ,.Z‘l (2n — 1)?
" Sin(2n — 1)nx cos(zn — l)nct
2L 2L

(c)

ol



Answers to Selected Exercises

¥ (p + k)gx 4(p + kgL*
HEEEE T e LI Y SN S 5 Al L
g A L) -
x 1 . 2n—Dax  2n - 1)l
; x .; PR 73
(Lz —x%) 16L* & {
+ 2 7 S@n—1)
m (g( I +2(-1)"+(2n— l)n)
§ x sech (2n — aL cosh(zn — (L' - y)
2L 2L
F (2n — l)nax
: X COS T
Section 4.1
3n7: "20 1 cos nanx
& 16" "\V2 4
2n — 1)2n?
o 5. (_n4_)___ > 0; \/_ __l)ﬁ
. nn? J2 na(x — 1)
‘ 7 —— A= )sin————~
81 ,n>0,(3)sm 5
|
8. nn? + "> 0; V2 e sin(nnx)
nin? nnx nnx
10. >0 _ in—
X ,n20;1, Acos I + Bsin L
14. Sometimes
Section 4.2
2.
g sin 4L cos 4L

— hl h2 1\t
o 2 2 K 2
[l NZX‘?‘

(=" hyly) (=1*12,

Dy

S+ (/L) i+ (/L)
(=14, (= 1yhy/1,)
NFEENTHTNE L JEEmL)

G (= 1)** Yy /ly) (=114,

A2+ (/1) il + /)

0 (1

- (continued)

A-21
sin 4,L cosd L
(=0""'4, (—1)"(hy/1)
. Vi + (ha/13) VA + (hy/1h)
-~ - _ D-.Hl 0
0 -1

AL = (n(—-1y*' 2 Qn'— nx
7 ;<2n——l "(2n—1)1)°°s 3L

16L @ ((—1)**! 2., \. (2n—l)rx
-5 X ((Zn— 0 (2n— 1)’)5"‘ L

(n > 0); ’ ™~
\/——e x nn nn
cos——+ m
Jninl 4 LZ(L L L )

16 @n—1)? [2 . (2n — ninx
"4ty Vmp® 2inb
18. 9. 84006. 39.3603, 88.5606, 157.441
2 (-1 @2n— Dax
20.()7["2‘ 2n_lcos 7 ;
@1, —1

22, No 24. Yes 25. Yes

11. 0, l+

(b) 0;

Section 4.3

7. X"4+2X=00<x<L,
X(@0)=0=X'(L) + 200X (L),
Y+ pY=0,0<y<L,
Y'©0)=0=Y'(L)

9. X"+ X =0,0<x <L,
X(0)=0=X'(L)
Y(0)=0=Y(L)

Y +82Y=00<y<L,

Section 5.2

Lawmwmgm@ﬁz

"l 2L

)nx
C"—\/>J‘ f(X) OSTdX

4L, = 1 u C(@n=1)r
6.(b) Z NPTt 1)2(("” + 2sin " — )

(2n — Yret in(zn — ax
L 2L

X COos
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6L} & 1 4 .
o n3c nzl 2n — 1)3((2n — n (—l)>
. Sin(2n — N)nct ,n(2n — nx
L L

-- -
TT S

7. (a) z (a,cos w,t + b,sinw t)f n%,
a=1
o = ninic? +k
n T Lz P‘

2 [t . nnx

a, = \/{-L f (»x)sm——L—dx.

L L

b, =—-2/——J‘ g(x)sin"—zt—)—c-dx

w, Jo L
Section 5.3

4L @ 1

2.0 50 + 5 ¥ G 1 sinh(@n — D

@n - Hny (2n— lnx
sh 3 cos L
(&) No solution

3.0 filx—L)+

-6. (a) i a,r" \/zsin no,
A=l

al j [ ——sm no d6

4= 1 [P\
=Y E"—T(’&) sin(2n — 1)6;

N u=t
4—'I'an"(i)
n a
2 42 1 r\*
22 - 2
3 n.g‘,‘in‘——l(a) cos 2n0

1 o
R

2
a,= R‘"’ZJ’ f(())—l—sin%qd()

0
17. () Y ar"?
a=1

o m
(<) sm 9
o |-
2

V, + V _ : _.{2arsinf
20. —‘-2——2— + YV, — V;)Tan l(az —~ r1>
Section 5.4

2 S A nnx . mn

1. cmne-(n‘/Lz +m L w2kt y

JLL L sin—-sin=p=

2 L rL
c,,,.=-————§ j f(x, y)snn——E—SIn———dxdy

JLL' Jo

16U, & & PRiLE L 1)L+ (2m = 1AL

- «..; ,.;. 2n—2m — 1)
_n(2n ~ U)nx sin(2m — l)nz
L 2L"
4U, @ e G-kt - (n — l)nx
7 —;.2, S )
(__ l)n'hn
SNCES Zl % @n = 2@m - 1)
enJ@n — 1) + (2m — 1)t
0S L
x Sin(2n -~ )nx Si“(2m — L)ay
L L

7. 3 4L i 1
2K 451 (2n — 1)251nh(2n - n

— (L —2) (2n — )nx
X (Q cosh ———————-—-L + qcosh — )

sin(2n — Dny
L

Section 5.5
3. W == constant
@n - 1)2n*  m'n?

4, lz ——T{L-z—_ + T
W = 2 sin(z'l — D sin'—"—"l
LL 2L L
6. 12 _(@n— 1)t (@m-— 1)’
T aL? 4L
W, = 2 c(',s(Zn — )nx Sin(2m — )ny
[L.L 2L 2L

Section 6.1
82} ey 2
T @n - i 2( R Sy 1)1:)

2J2L

6. (_2_:__)73—_-—17[(—1)"*‘(2n — fnsinL —2L]
N nt
7f(0)“-7——‘ S = ————‘L_z(l“'( 1 tef)

9. f(A) = \[%,f'(z.n) =0forn#2
13.2J2

11.2x 12. —3x? 14. 2x — 1
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3 Section 6.2
: ULx o ~ulxlke/L? nnx
1. Lt .; cae sin——,
" -1y, 2 (* )
W C.=-——-———( l) L 4 — f(x)smn_nx.dx
‘ nn L }Jo L

% 2. See the answer to Exercise 9 in Section 3.3.
8U, & (—1)me~@n-1xluaLy

o S Uy +—5

e P YR

x sin(2:! — )nx
2L
T 10 QgL & 1 — e e sin anb sin nnx
“kr? 5 n? L L
qx 8 & (—)(Upk +4L)
14. — + Uy + —— —_—
- w Tl .;l (2n - 1)?
x e-n-tieitaary gip (21 — Dmx

L
-0 SaL g
kn? S (2n—1)?

x e-(z--n!-m/ui.l) cos(zn — l)nx
2L

15. (@) Up +

e

8qL = 1
B Uy 4 —5 ¥ s
® o+ a3 ,.;l(Zn-—l)‘ A
X (e—(zu-u!-u«—mmau) _ e-—(zn—nlxlt:/(u.’))

x cos(Zn — Drx
. 2L
E © U,
. 23 4F, Lt = 1
O e & @n—-0@n - Dinicl — 'L
M sin Lo . Qn— e
(2n — )ne L
¥ 2n—1
. X sin(—"——)E for the nonresonance case. When
w=mnc/L, teplace the mth term in the above series
with 2FL ([ L _inmnct [cosmnct sinmnx
: minipc\mnc L L - L

25. (2n — )nc

9, MEC
2L ) 2L )

; nnc .
w31, =% or¢=2£5; if w=¢ and A4, = B,, then

(2n — Dnc

P w=¢= T ;if o = ¢ and 4, = — By, then

A-23

38. f(cho + g) + M(x) - l{M(x +ct) + M(x —c1)],
2\ L 2

where M(x) is the even, 2L-periodic extension of
Fox?

=" 3f7  —
ox(L —x) 4gL?

2%y Eon’
(2n _L Dy + sinh &= l)z(L =)
(2n — 1)zl

L

42. (a)

sinh

s

! (2n — 1)*sinh

in (2n — )nx

XS§ L

L' —
R +sinhw
gon? ,.:Z‘l n? t- nal'
L

(b)

sinh

. nnx L . nux
x sin—, o, = | o(x)sin—dx
L ° L

viinh Y
L’ g Iy Lsinh =7 i X
gon 5y nd ., neL! ¥ L
sth

()

Section 6.3
2 @
2. (a) -L'_ni .Zl
(nzL'n‘[U, + Uy(=1)"*1] )
]

— L3¢, + k1 @)1 + (- 1)"*!
3

n
atetginy . AEx | BLAL!
x(l—-e "‘”‘)sm——I:-+ =
K2'¢ (1) — k'
n=1aS1 20 — D20 — 1)’L? + m?L?)
n(2n — D)nx
L

O O

X

x (1 — g~ l@n-1L? +m1/L~11x2k:)si

(U, - Uy) 2.2 U+ (="
Ak Bt LAVl A TERT
L T a1 n

nnx

—nlxlL? G

X e
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A-24

164L & &

pﬂz m=1a=1

en@2n — )2+ @2m — 1)%¢

L -

6.

cos wt — COS

(2n — I)(2m - 1)
x {ctn?[(2n - 1)? + 2m - 1)*] — w?L?}
Qn—nx . 2m— )ymy -
sin
L L
7. Samc solution as for Exercise 6 except that the
— { and n = 1 term is replaced with

4ﬁAL . ﬁnct . mx . Ry
¢ sin———sin—sin——
pnic L L L
10. Same solution as for Exercise 6 except that the
(m,n) =(1,3) and (m,n) = (3,1) terms are replaced
with : .

x sin

8AL . \/l—()nct

tsin
3/10pn%c L

x { sin i sin 3ny + sin 3mx sin 24
L L L L

Section 7.2

1]

2 = e—k).’l
2~ I (2sin AL — AL(1 + cos AL))cos AxdA

L
s. j w(L — u)e ™ =AY gy

2Jknt Jo

1 @
5 Tt j' f(u)(e-(u—x)zl(un _ e—'("”w“"))du

l xta

11, -Ej' g(u)du, where g(x) is extended as an odd
x—ct

function

V. in(n:
13. (b) 2Yo fan-t —————-—S.m(" x/L)
n sinh(ry/L)

2 (=t ila + b — 2 ib —
15. — :cos/—(f———-—f—)sini(————a—)d/
n o 4 2 2

4 [~ 1

17. Tl — (sin ja — ascos ia)cos Axdi
nat ) A

1 ®©
-1 - -
19, ———= | e *#R cos AxdA
o

*1
20. j. z(sin b — sin /aycos AxdA;

© {
j- z(cos la — cos ib)sinixdZ

Section 7.3
5. () F{ ™)} = (i) F{fx)}

10. (b) F{f(x)} = (%)f () Pl S} = ('-2[-)] (@)
I B

‘0wt +at “(a + i) *!
14. -2—e""”"*"”z sin wb —a

w 2

16 _49_ wa . —4b 4

e sin? 5 17. —;(;;cosaw + pepe sinaw

1 1
19. :u—(cos aw — cos bw), —(sin bw — sinaw)

4b aw\ 4b . ,faw
20, —5 sinac sin? ; —3 coswesin®y —-
aw? 2 ) aw 2

2[ -8x
2. (a) () {( 2)e x20

x<0
(bja)(x — a)[H(x — a) — 1] x>0
(i { x<0
(b} No
Section 7.4

x+a 1 x—a
1. (b) (i) erf (———) - —erf( )
aJkt) 2 \2Jke
i x+a 1 x—a
@) 1 — —crf( ) + —erf! )
1 \adke) 2 \2ke

. X
2. (@ U erfc( )
2Jke

QO —x2{(4kt X
[ f ! “"“’"“(zﬁ?)]

x _ x
4. (b) U, erf( ); (c) Uerfc( )
" \2ke 27kt

10.@@ Y G e "*Lsin —L:‘—,.
a=1

Co=11 jf(y)sm——dy
i 2 j g(w)smhwy

sin wx dw,
sinhwlL

glw) = j‘r g(x)sinwx dx
(V)
i) 2 j jwsinh ol = y)

sin wx dw,
sinhwlL'

glw) = j g(x}sin wx dx
o

(iv) Sum of solutions in (1), (i), and (iii)
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w12 (a) Uo;
: 4L'Q & (- nH! ~(2n - L/l
¥ &+ .Z‘n @n -1y ¢

(2n — ny
0§ —————

‘1? L| -
(c) Uul
Vx 1 _ (sin(L—x)+ sin x
';:3 15. L + Se ( Sin L 1
E . ): Vl-( l). Lz[l +( 1)“"] e oL
n & ne(n®n® — L?)
¥ X sm'—'lt—x-
B L

T2 ) ETam"(i;-)

by
® S
; 18. (I)—'J' O(X—u)z-{-y du

o+ l-Tan“(i>
2 = y

A-25

Section 8.3

3. (a) 0.9604 (b) 0.6201 (c) 0.3688
(d) 0.0955 (e) 0.4448 (f) —0.2769
(g) 0. 4333 (h) 0.1190

Sectwn 8.4
5 (A"
2@ 23 Y )
J(Aa?)
(6) 2vr z Gt ) — V1, 2)

3 i i Jx(}’-l"z)lo(l 5] - when I, =0,

fa =t z.[x +( ) ]Uo(z ra]?
Ads
2 2 Jo().,,r)

2y 2 whenh, =0, —LRy(r)
Tz a=1 /-.Jl('lu’z) : \/E ¢

nz* 2 _, . fnmr
5.(b) ——: [——r sy —
r r ra

- \/—\/l + A3

6. (b) /373 e sinA,r
Section 8.2 7. (b) (rN) 'sin ).,,r,
1.(a) 120 (b) 29812 (o) 7.3619 Nt =1+ hara/ly — 1
iy (d) —5.7386 (e) 0.6891 (F) —1.0276 2 A+ (1 - _hzrzllz)’
8.
4 Condition Eigenvalue
atr=r, Equation NR,.. 2N?
. . J e 12(A 12\ [2hyryfly — 12
bl #0 0= 2rsSsialir) A O e e Y ey
o (2h1r2 —.1y .. ( Jr fmal2 24 pal2
+\—F +1/2 Ary)
_. )
l:" Joe 12l : 1/2\? 1y
Lohy=0 0= 2irgd. i) ASTE\ Gl SR IS il E WY BRI W [V ST RN L
S vl Jr T2 2A T2
m+ 17217
Zf . ‘Im+ (;'mnr
=0 0 = Jpi12(4r3) _—L’l‘—_) Pl el "z)] —‘"z[Jmn/z("mnrz)]
Jr

Section 8.5
3x? — 1 S5x® — 3x 35x* —30x2+3
2, 2 ’ 8

‘

1. 1, x,

63x5 — 70x® + 15x 231x® — 315x* + 105x% — 5

8 ’ 16

, OXI =100 3x (5 =390, 53,2

10. ( ——-—2———— 7 3 3 3

(3¢ = 30x2 4 3)Q _ 35 55x .
8 8 24
5x? 3Sx’
(@) PyQo — PJQO - = + 3 P.Qo —

2

s
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Section 8.6
1 & (=1)"'Qn—2)(@dn —1)

2+,. 2¥nt(n — 1)!

. i}( ﬁ) L0
5 ((ﬁ)P‘(°°s "”)

1 (= 1)"~1@2n - 2)dn + 1)

2°°s¢+.§_:. 23 T — )n + 1)

— 1) Y20 — 2)!(dn + 1)
220!("_[)'(" + l)' Pzn(COS(ﬁ)

S. A, =2n (Zn— 1),n=1;V4n — 1 Py, (cos ¢)

Plu— I(COS ¢)

Py, (cos )

i L ¢
>~ ~|— #l—-
"Ms

o =2n(2n + 1), n > 0; /4n + { P, (cos ¢)
Section 9.1
—u,‘,:
1. (b) =22 2U° "’0(;‘ r)

ry o=t A i(4ar2)
8 & 1 _uy Jo(4a1)
S r Z ).’e Ji(d,ry)

2a=144

2. (b) ':— J J rf(r)dr d6 = average value of f(r)
0

2 J-=
over the circle r < ry

6. \/—ZA '“"JO(M;) where

J. rf (1) Jo(A,7)dr

A Jxl)
3 i e~ MAL+Qm- nixarhy Yo\l Jo(44r)
L om=ta= Ji(4qr2)
xcos@_;‘_)"_z .

2L T LA )

Lfn 2m — 1
xJ‘ J rf(r.z)Jo(i,,r)cos(—ﬁ————)Edrdz
o Jo 2L

Wehyly 2

9() Zhl

r, a=1

—ka? .
e J(Aar)
132 +
ll"‘n JO(."'nrl)
A+l
Uy & (1) - x’kwxsm'mr
I a=1 n ry

(=1 SAZrd + (1 — pry/x)?

ez
K K

(\[Emcosd’)) =

s

4LI‘§ &, ! — 1) 1 (2m — 1)nz
16. —(2m— 1)2x2ke/(4L )co
i D W T $TaL

2L & & e—k(l.‘.+(2m-l)’n‘/(lL‘)ll

TR AW em -1
Jo(4L1) (2m — 1)nz
Jo(). ) T
17. (@ r;.l,(l =) J‘ rf (N Jo(Ar)dr
19. 3 i -—J—°(—}"'—)——cosc}.,,t

F2a=1 13-’1(1-’2)
0 & Jo(4,r)

20. ?r—; L msm CA,,!
. Jo(kr)
24. (b) No; (c) Tolkr)
U ux & 1
27. (b} r ,.; (u® + Alc?)sinh AL
. Jo(4a1)
x sinh A, (L — 2
¢ = 5@
1 =2 (=1 Y4n - 1)(2n - 2)!
29. Vo3 + .Z:. 25%i(n — 1)!
r 2n-1
x (_) e to)
ra
Vo + Vi —1)"4n — 1)(2n — 2!
30. - Z 2 i(n — 1)1
( ) PZu-— l(cos ¢)
4U, & 1 I,(@n — Vmr/L] . (2n — Unz
33.W) == ¥ 5 T.[n = Dry/L] L
2 2 nnr nnz
3.(c) Ao+ T "; Ay (——L—)cos I where
1 L
Ag = T L f(z)dz,
1
A, = m'{ f(z)cos———dz
(d) Uy

35. (c) 2 i =l (2n)'<r> P, (cos @) r < a;

dneqa oo 22(nY)?

9 Z — 1)t (;) Pycos¢)r>a

Anegr .S 22(n)?
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t

& (—U"”(in -2t

Q r
36. {(c) 27;500(1 - ;COS¢ + “Z:l 27 Tnin = 1)1
2a
X (C) Py(cos 4’)), r<a Q
4 4neqa
©  (—=1)"Q2n)! [aP"*!
X n;o 21"n!(n + l)! (;) PZn(COS ¢),
r>a
Section 9.2
Q 2 2 _ Z_Q_. © e—u:; Jo()."r)
=0 4kr, (2r® = r3 + 8k Kry .; A2 Joldara)
29 & 1 — e—u,’,t Jo(Aar)
3.(b) rK :2:1 FE LG
—kA2
i 2,2 _E_ 2 e kAge ‘,O(l.r)
(<) 4x("z r) ka1 A3 L4
4. (b) _kg_t_
K

2 & (g + kU AR\ (1 — e\ Jo(dar)
5. —
® g‘t(ﬂ‘ +xA7 22 ) Jo(Aard)

2
© Ug+5 (r’+2—ri—£—>
K M K

2u & g+ xU,ik et (A0
4 til) o an JolAars)

ra2 a=1

A g & (=1 _agga . nRF
6. (b) '&(f% - 2) + n—f';";l -—n-s—e bl 181!\-;'
2 - 22, .
(© f:(l +22 z = L] gtk smn—m-)
r a=1 n ry
3k 2
7. (b) f‘ Ji (5r1—3r§)+_f‘—
Kry 10:<r2 Kr,r
—1 A+l
x Z ¢ ;3 JU+ it
n=1 "
e M sin A, r
25m0 = 1 —e““" Jy (2,1
ry a=1 Au Jo(4aT2)

16. Eﬁ‘ﬁ i cA, smwt —wsmc) t Jold.r)
2 J (/‘-.."z)

rs a=1t -—(_[).
A(—c;.,,,t COS Cpt + SiN CApt)o{Anr)
ryimd il 2)
24 2 A,SiNCAnt — Ansinci Jo(4,1)
- 1 ;2

"
Py a=1 A ™ Jild,r)
atm

W =l

W # Chys

A-27
20. F L
. Orﬂ #'iy n, 2 )
408t & r?
R .z,(2n—l)[(2n—-l)‘n2—4ﬂ]
= [ ~(r>“~ i - 2] @n—1)nb
x|t={= n——
o B
n
whenﬂ——z-
——l 79 )sin26
r
2

o & r
t e B o= Dlen =1 =~ 1]

r 4n—4
x [l —(—-)' . ]sin 2(2n - 1)6;
To

when f = =,

e A (I
m L@ -4al Ve

x sin(2n — 1)8;

when § = 3—15
2 4(3 2
dar To -1 sinﬁ - 2'—-ln <L>
8en r 3 3me \ro
®© l‘z
sin20 42 Py e

[ ( )“" 2”’] . 2(2n - 1)0
x{l—{— sin
ro 3

23. (a) grzﬁ 2q + 28Q

) 2L gr + grcos(f — 6) 2qﬁ2r2
\[B 4k ksin f K7
2 (rfry)™" "_Tiq
x "Z:‘ rntnt = ﬁz)cos 3
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Abel's test, 93
Analytic function, 366
Approximation
in mean square sense, 101, 167
by partial sums, 79
Associated Legendre
equation, 313
function, 313
Asymptotic behavior of Bessel function,
346 ‘
Average value, 72, 186, 333
Axially symmetric, 184

Beam equation, 42

Bessel functions, 291-300
asymptotic formula for, 346
derivatives of, 297
differential equation for, 291
first kind, 292 .
generating function for, 299
graphs of, 292, 296
modified, 300
norms of, 302, 305
orthogonality of, 302, 304
power series for, 292
tecurrence relations for, 297
second kind, 294, 296
series of, 302, 306
zeros of, 298 ,

Bessel’s differential equation, 291
modified, 300

Bessel's inequality, 94, 166

Boundary condition
Dirichlet, §
homogeneous, 6
Neumann, 6
nonhomogeneous, 6
Robin, 6

Boundary value problem, 5

Canonical form, 59
for elliptic equation, 59

for hyperbolic equation, 59, 62

for parabolic equation, 59
Cauchy~Euler equation, 185, 328
Cauchy integral formula, 367
Cauchy residue theorem, 370
Cauchy-Riemann equations, 366
Causal Green's function, 437

for heat equation, 475

for wave equation, 479
Characteristic curves

for hyperbolic equation, 60

for parabolic equation, 63
Classical solution, 408
Classification of PDEs, 57
Complex Fourier series, 82, 84
Conduction of heat, 10
Conductivity, thermal, 11
Contour integral, 367, 370
Convection, 11
Convergence

of Fourier Bessel series, 302, 306

of Fourier cosine series, 84

of Fourier Legendre series, 318

of Fourier series, 73, 74, 79, A-3

of Fourier sine series, 85

in the mean, 100

pointwise, 73

uniform, 91
Convolution

for Fourier transforms, 270

for Laplace transforms, 356
Coordinate systems

cylindrical, 8

polar, 8

spherical, 8
Cosine integral formula, 256
Cosine series. See Fourier cosine series
Cosine transform. See Fourier cosine

transform

d'Alembert's solution
for finite string, 49
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d'Alembert's solution (continued)
for semi-infinite string, 259, 280
Delta function. See Dirac delta function
Differential equation
Bessel's, 291 .
Cauchy-Euler, £85,328 - __
Frobenius method for, 288
homogeneous, 103, 287
Legendre’s, 308
linear, 102, 287
nonhomogeneous, 103
order, 2
series solution of, 288
Differentiation of series, 79, 94
Diffusivity, thermal, 13
Dirac delta function, 400
multidimensional, 440
Directional derivative, 6
Dirichlet boundary condition, 5
Dirichlet boundary value problem
for a box, 196
for a circle, 184, 457
for a circular annulus, 188
for a cylinder, 333
for a rectangle, 187, 458
for a sphere, 327
Discontinuities, propagation, 217
Divergence theorem, A-13

Eigenfunction expansion, 130, 150
Eigenfunctions, 142
linear independence of, 146, 149
orthogonality of, 142
Sturm-Liouville systems for, 142
Eigenvalue problem. See also Sturm-
Liouville system
multidimensional, 197
Eigenvalues
continuous, 253
discrete, 142
real, 142
zero, 142,152
Elasticity, modulus of, 28, 30, 40
Elliptic PDEs, 57, 64
Energy
for heat equation, 19
for wave equation, 32
Error function, 361, 385
Even extension, 87
Even function, 84
Existence of solution, 7

Finite Fourier transform, 222
Finite Hankel transform, 335

Fourier Bessel series, 302, 306
Fourier coefficients

complex, 82, 84

generalized, 151
Fourier cosine integral formula, 256
Fourier cosine series, 84
Fourier cosine transform, 267
Fourier integral formula, 254, A-8
Fourier Legendre series, 318
Fourier series

coefficients of, 72

complex form for, 82, 84

convergence in the mean of, 100

cosine, 84

differentiation of, 79

generalized, 151

integration of, 98

partial sums of, 79

pointwise convergence of, 73,74, 79, A-3

sine, 85 ,
uniform convergence of, 95
Fourier sine integral formula, 256
Fourier sine series, 85
Fourier sine transform, 268
Fourier’s law of heat conduction, 11
Fourier transform, 266
convolution, 270
Frobenius method, 288
Functions
Bessel. See Bessel functions
error, 361, 385
even, 84
gamma, 289
generating for Bessel functions, 299
generating for Legendre polynomials,
310
Legendre. See Legendre functions
normalized, 146
odd, 84
orthogonal, 70
piecewise continuous, 73
piecewise smooth, 73
scalar product of, 70
weight, 70, 142
Fundamental mode, 174

Gamma function, 289
Gaussian, 255
Generalized
Fourier coefficients, 151
Fourier series, 151
General solution, 47
Generating function. See Functions
Gibbs phenomenon, 79
Gradient, 6, 11, A-10
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Green's first identity, A-13, A-15
Green's formula, 407
Green'’s function
causal, 437, 475, 479
discontinuity of, 451

modified, 428, 463 -

for ODEs, 406
for PDEs, 443, 463,471,474, 478
symmetry, 415, 444
Green's second identity, A-13, A-16
Green'’s theorem, A-15 -

Hankel transform, 335, 346
Heat equation, {3

Heat flux, 11

Heat transfer coefficient, 15
Heaviside function, 263 _
Helmbholtz equation, 38, 442, 443
Hyperbolic equation, 57, 59, 217

Images, method of, 451

Impulse function, 437

Indicial equation, 288, 291

Initial condition, 3

Initial value problem, 252
Insulated boundary condition, 14
Isotropic, 11

Jump condition, 405, 408

Lagrange’s identity, 407

Laplace’s equation, 8, 67, 210

Laplace transform, 351
convolutions for, 356
definition of, 351
of derivatives, 354
inversion by residues, 370
inversion integral for, 367
properties of, 353

Laurent series, 371

Legendre functions
associated, 313
differential equation for, 308
orthogonality of, 316
second kind, 310
series of, 318

Legendre polynomials, 309
derivatives of, 311
differential equation for, 308
generating function for, 310
norms of, 317
orthogonality of, 316
recurrence relations for, 311
Rodrigues’ formula for, 312
series of, 318

A-35

Leibniz's rule, 312

I'Hépital's rule, 373

Linear equation, 102

Linear independence of eigenfunctions, 146,
149

- Linear operator, 103

Maximum principle, 207, 215
Maxwell’s reciprocity, 415

Membrane, 33

Minimum principle, 208, 215

Mixed boundary value problem, 472
Modes of vibration, 174, 181, 192
Modified Bessel function, 300
Modified Green's function, 428,463
M-test, Weierstrass, 91

Natural frequency, 236
Neumann boundary value problem, 463
Neumann condition, 6
Newton's law of cooling, 15
Nodal curve, 192, 331, 332
Node, 175, 181
Nonhomogencous
boundary condition, 6
equation, 103
Normal derivative, 6
Normalized function, 146
Normal mode of vibration, 174, 181, 192
Normal vector, 6

Odd extension, 86
Odd function, 85
One-sided
derivative, 73
limit, 74
Order, 2
Ordinary point, 287
Orthogonality
of eigenfunctions, 142
of functions, 70
of vectors, 70
Orthonormal sets of eigenfunctions, 71

Parabolic equation, 57, 62, 202
Parseval’s theorem, 97, 167, 274
Periodic boundary conditions, 407
Periodic extension, 87

Piecewise continuous function, 73
Piecewise smooth function, 73
Pointwise convergence, 73
Poisson’s equation, 2, 5

Poisson’s integral formula, 186, 458
Pole, 371

Product solutions, 195, 330
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Recurrence relations

for Bessel functions, 297

for Legendre polynomials, 311
Regular singular point, 288
Residues, ¥10.-.. .
Resonance, 237, 241, 250, 345
Riemann’s theorem, A, A-6
Robin

boundary condition, 6

boundary value problem, 471
Rodrigues’ formula, 312

Schwarz's inequality, 96, 99
Self-adjoint operator, 406
Separation constant, 106
Separation of variables, 105
Shift theorem
for Fourier transforms, 269
for Laplace transforms, 353
Sine integral formula, 256
Sine series, 85
Sine transform, 268
Singular point, 287
Specific heat, 13
Spherical coordinates, 8
Steady-state, 15
Stokes's theorem, A-14
Sturm comparison theorem, 162, 298
Sturm-Liouville system, 142
periodic, 144
proper, 152
regular, 142
singular, 144
Superposition principles, 103

Tension
in membrane, 34
in string, 22
Thermal conductivity, 11
Thermal diffusivity, 13
Transform
Fourier, 266
Fourier cosine, 267
Fourier sine, 268
Hankel, 335, 346
Laplace, 351
Tricomi’s equation, 67

Uniform convergence, 91
Uniqueness, 7, 204, 212,218

Variation of parameters, 128
Vibrating

bar,.27, 30

beam, 40

membrane, 33

string, 21

Wave equation, 23, 29, 31, 35
Weber’s Bessel function, 294, 296
Weierstrass M-test, 91

Weight function, 70, 142
Well-posed problem, 7

Zeros
of Bessel functions, 298
of eigenfunctions, 163



