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Preface

This text evolved, as have so many others, from notes used to teach partial differential
equations to advanced undergraduate mathematics students and graduate engineering
students. Major emphasis is placed on techniques for solving partial differential
equations found in physics and engineering, but discussions on existence and
unigueness of solutions are also included. Every opportunity is taken to show that
there may be more than one way to solve a particular problem and to discuss the
advantages of each solution relative to the others. In addition, physical interpretations
of mathematical solutions are stressed whenever possible.

Section 1.1 introduces partial differential equations and describes how initial
boundary value problems are associated with such equations. To distinguish between
physical assumptions leading to the various models of heat conduction, vibration,
potential problems, and so forth, and the mathematical techniques used to solve these
problems, models are developed in Sections 1.2-1.6, with no attempt at solutions. At
this stage, the reader concentrates only on how mathematics describes physical
phenomena. Once these ideas are firmly entrenched, it is then reasonable to proceed to
various solution technigues. It has been our experience that confusion often arises
when new mathematical techniques are prematurely applied to unfamiliar problems.
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Prefac

One of the most fundamental classical techniques for solving partial differentiz
equations is that of separation of variables, which leads, in the simplest of examples, t:
trigonometric Fourier series. Chapter 2 develops the theory of Fourier series to th
point where it is easily accessible to separation of variables in Chapter 3. Eigenfunctio:
expangions, are. used to handle nonhomogeneities in this chapter. The examples i
Chapter 3 also suggést the possibility of expansions other than trigonometric Fourie
series, and these are discussed in detail through Sturm-Liouville systems in Chapter ¢

The reader can proceed in a variety of ways through Chapters 5-9. One obviou
way is to follow the order of topics as presented. This begins in Chapter 5, witl
separation of variables on homogeneous problems that are more difficult than thos
encountered in Chapter 3. In this chapter we also illustrate how to verify serie
solutions of initial boundary value problems, and we discuss distinguishing propertie
of parabolic, elliptic, and hyperbolic partial differential equations. In Chapter 6, finit
Fourier transforms are presented as an alternative to eigenfunction expansions fo
nonhomogeneous problems. In Chapter 7 we discuss homogeneous and nonhomc
geneous problems on unbounded domains using separation of variables, Fourie
integrals, and Fourier transforms. Chapters 8 and 9 ‘essentially repeat material i
Chapters 4, 5, 6, and 7, but in polar, cylindrical, and spherical coordinates.

For those who prefer to study bounded domain problems in polar, cylindrical, an
spherical coordinates before considering problems on unbounded domains, we sugge:
one of three reorderings of sections in Chapters 5-9:

Chapter 8 Chapter 5 Chapter 5
Chapter 5 and Section 9.1  Chapter 6 Chapter 8
Chapter 6 and Section 9.2 Chapter 8 Section 9.1
Chapter 7 and Section 9.3 Sections 9.1 and 9.2 Chapter 6 and Section 9

Chapter 7 and Section 9.3  Chapter 7 and Section 9

To work through most sections of the book, students require a first course
ordinary differential equations and an introduction to advanced calculus. Sectio
10.3~-10.5, which deal with Laplace transform solutions of initial boundary val
problems, assume a working knowledge of complex variable theory. This chapter ca
also be adapted to the above schemes. Sections 10.1-10.4 can be covered at any tin
after Chapter 5. Section 10.5 requires material from Chapter 8.

Green's functions for ordinary and partial differential equations are discussed
Chapters 11 and 12. Green's functions for ordinary differential equations can 1
studied at any time. Chapter 12 utilizes separation techniques from Chapter 5 ar
Section 9.1. ’

We are of the opinion that exercises are of the utmost importance to a student
learning. There must be straightforward problems to reinforce fundamentals and mo:
difficult problems to challenge enterprising students. We have attempted to provic
more than enough of each type. Problems in each set of exercises are graded {rom eas
to difficult. and answers to selected exercises are provided at the back of the boo
Exercise sets in 16 sections (3.2, 3.3; 5.2.53.54:6.2,63:72,74:9.1,9.2,9.3,10.2, 10.
10.5; 11.4) stress applications. They have been divided into four parts:
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Part A— Heat Conduction
Part B— Vibrations

Part C— Potential, Steady-State Heat Conductibn, Static Deflections
of Membranes :

- Part D—General Resul&s™ "~ = .

Students interested in heat conduction should concentrate on problems from
Part A. Students interested in mechanical vibrations will find problems in Part B
particularly appropriate. All students can profit from problems in Part C, since
every problem therein, although stated in terms of one of the three applications, is
easily interpretable in terms of the other two. We recommend the exercises in Part D
to all students.
A student supplement containing solutions to many of the exercises is available
from the author.
The author wishes to acknowledge the students who provided initial motivation
for writing this book and the students who suffered through its many revisions.
Appreciation is also expressed to the reviewers, who made many valuable suggestions:

Philip S. Crooke, Vanderbilt University; William E. F itzgibbon, University of
Houston; Herman Gollwitzer, Drexel University; Euel W. Kennedy, Califor-
nia Polytechnic State University; Gilbert Lewis, Michigan Technological
University; Peter J. Olver, University of Minnesota at Minneapolis; William
Smith, Brigham Young University; Monty Strauss, Texas Tech University,
and Raymond D. Terry, California Polytechnic State University.

Finally, many thanks to the staff of PWS-KENT for their cooperation throughout the
duration of this project.

D.W.T.
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| Figure 1.1

x =1L

Other PDEs we shall consider include the one-dimensional wave equation for
displacement y(x,t) of vibrating strings,

Py _x 2y
ot p ox? ‘

(Section 1.3); the three-dimensional Poisson’s equation for potential V(x, y, z),
ke’ + v + f{’_
oxt  dy* ozt

(Section 1.6); and the beam-vibration equation for displacement y(x, t),

%y
+ E1S% = Fx) @)

(2)

= F(x,,2) ‘ 3

w 0%y
g ot?
(Section 1.5).
The order of a PDE is the highest-order partial derivative contained therein.
Equations (1a), (2), and (3) are therefore second order, and equation (4) is fourth order.
Since partial derivatives of multivariable functions are ordinary derivatives with
respect to one variable (the others being held constant), it might seem that the study of
partial differential equations should be an easy extension of the theory for ordinary
differential equations (ODEs). Such is not the case. Partial differential equations and
ordinary differential equations are approached in fundamentally different ways. To
understand why, recall that in your studies of ODEs it was customary to solve a certain
class of equations and thereafter to deal with applications involving equations in this
class. For example, a general solution of the second-order linear ODE

d*y dy
Py vy

is y(1) = Ay,(t) + By,(t), where A and B are arbitrary constants and y,(f) and y,(t) are
any two linearly independent solutions of the equation. Once y,(t) and y,(t) are known,
every solution of the equation is of the form Ay,(f) + By,(t) for some A and B. When
such an equation is found in an application, say a vibrating mass—spring system or an
LCR circuit, it is accompanied by two initial conditions that the solution y(t) must
satisfy. These conditions determine the values for 4 and B. What we are saying is that in
applications, ODEs are often solved by first finding general solutions and then using
subsidiary conditions to determine arbitrary constants.

It is very unusual to approach PDEs in this way, principally because arbitrary
constants in general solutions of ODEs are replaced by arbitrary functions in PDEs,
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Section 1.1 Introduction

and determination of these arbitrary functions using subsidiary conditions is usually
impossible. In other words, general solutions of PDEs are of limited utility in solving
applied PDEs. [The one major exception is wave equation (2), and this particular
situation is discussed in Section 1.7.] In general, then, it is necessary to consider a PDE
and any extra conditions that accompany the equation simultaneously. We must
proceed directly to a solution of the PDE and subsidiary conditions, as opposed to
PDE first and subsidiary conditions later.

Subsidiary conditions that accompany PDE:s are
ditions. For example, it is clear that the temperature
Figure 1.1 must also satisfy the boundary conditions

U(,t) = 100,
U(L,1) = 100,

since the ends of the rod, x = 0and x = L,arehelda
U(x,t) must satisfy the initial condition
U(x,0) = 10,
since its temperature at time t = 0 was 10°C throughout.
Partial differential equation (1), boundary conditions (1b, c),and initial condition
(1d) constitute the complete initial boundary value problem for temperature in the rod. It
is more precise to describe the problem as follows:

called initial or poundary con-
function U(x, ¢) for the rod in

(1b)
(1c)

t temperature 100°C. In addition,

(1d)

| %l:—:-k%:xgz, 0<x<L, t>0, (5a)
- U(0,t) = 100, t>0, (5b)
U(L,t) = 100, t>0, (5¢)

(5d)

U(x,0) = 10, 0<x<L.
ich conditions (1) must be satisfied, but,
why thisis the case, consider
ace variable x and the time

All that we have done is affix intervals on wh
perhaps unexpectedly, these intervals are all open. To see
first PDE (5a). Physiqally, Ulx,t)isa function of one sp

variable ¢, but mathematically, it is simply a function of two independent variables x

and t. It must satisfy PDE(S
be described by the inequalities 0 < x <
intervals open,

a)in some region of the xt-plane, and we take this region to
L and t > O (Figure 1.2). By keeping these

we avoid discussing the PDE on the boundary of the region. Otherwise

Figure l.i
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Example 1:

Figure 1.3

Solution:

Chapter 1  Derivation of Partial Differential Equations of Mathematical Physics

it would be necessary to consider one-sided derivatives with respect to x along x =0

‘and x = L, one-sided derivatives with respect to t along t = 0, and both types of one-
sided derivatives at (0,0) and (L,0). We take as a general principle that partial dif-
ferential equations are always considered on open' regions.

Replacement of ¢t >0and 0 < x < Lin (Sb-d) witht >0 and 0 < x < L would
lead to contradictions. Conditions (5b, c) would then require Ul(x, t) to have values
U(0, 0) = U(L,0) = 100, whereas (5d) would demand that U(0,0) = U(L,0) = 10. By
imposing boundary and initial conditions on open intervals, we eliminate such
mathematical contradictions. Realize, however, that although (5) contains no math-
ematical contradictions, it is physically impossible to change the temperature of the
ends of the rod instantaneously from 10°C to 100°C, and yet (5) does demand this. We
must therefore anticipate some type of anomaly in the solution to (5) near positions
x = 0and x = L at times close to t = 0.

It is not always necessary to use open intervals for boundary and initial conditions.
If the initial temperature in the rod were not constant but varied with x according to,
say, f(x) = 400x(L — x) + 100, it would not be necessary to heat the ends of the rod
suddenly to 100°C at time t = 0; they would already be at that temperature, since
£(0) = f(L) = 100. It would be necessary only to maintain them at 100°C thereafter.
In this case, it would be quite acceptable to replace the open intervals in (Sb-d) with

U(,t) = 100, t >0,
U(L,1) = 100, t=0,
U(x,0) = 400x(L — x) + 100, 0<x<L.

It will be our practice to state initial and boundary conditions on open intervals even
when closed intervals are acceptable.

The ends of a violin string of length L are fixed on the x-axis at positions x = 0 and
x = L. When the middle of the string is elevated to the position in Figure 1.3 and then
released from rest (at time ¢ = 0), subsequent displacements of particles of the string
must satisfy PDE (2), where tis the tension in the string and p is its linear density. What
are the boundary and initial conditions for y(x,1)?

LI ll 00 Linear Linear

| — X

x=90 L2 L

Since the ends of the string are fixed on the x-axis, boundary conditions are
y(0,1) =0, t>0

at x = O and y(L,t) =0, t>0

atx = L.

* A region of the xy-plane is said to be open if about every point in the region there can be drawn a circle such
that its interior contains only points of the region. A region in space is open if about every point in the region
there can be drawn a sphere such that its interior contains only points of the region.
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Figure 1.4

Section 1.1 Introduction

Because the string has the position shown in Figure 1.3 at time t = 0, y(x, t) must
satisfy the initial condition
‘ x/50 0<x<Lj2
y(x,0) = .
(L — x)/50 Lj2<x<L
In addition, the fact that the string is released from rest indicates that its velocity at time
t = 0 is equal to zero. Since velocity is the time rate of change of displacement, the
second initial condition is

M =0, 0<x<UL.
ot

There would be no conflict in replacing each of the open intervals in these four
conditions with closed intervals. »

In problem (5), boundary conditions (5b, ¢) specify the temperature of the rod atits
ends, x =0 and x = L. Likewise, in Example 1, the boundary conditions specify the
displacement of the string at its ends. These are examples of what are called Dirichlet
boundary conditions.(A Dirichlet boundary condition specifies the value of the
unknown function on a physical boundary. As another example, consider the two-
dimensional version of Poisson’s equation (3),

X L 4 .

—(_3—)(—2_ + 5;2‘ = F(x, yh (x, y)mn R, (6a)
for the region R in Figure 1.4. [F(x,y) is a given function.] In compliance with our
previous remarks, R is the open region consisting of all points interior to the bounding
curve B(R) but not including B(R) itself. A Dirichlet boundary condition specifies the

value for V(x,y) on B(R):
Vix,y) = Gxy),  (xy)on BR) (6b)

G(x, y) some given function. Poisson’s equation (6a) together with boundary condition
(6b) is called a boundary value problem. :
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Example 2:

Solution:

§
<

Chapter 1 Derivation of Partial Differential Equations of Mathematical Physics

Two other types of boundary conditions arise frequently in applications—
Neumann and Robin/A Neumann boundary condition for equation (6a) specifies the

f change of V(x,y) at poi in a direction outw rpen-
dicular) to b
v
—_n_ = G(X, Y), (X, Y) on ﬂ(R)r (7a)

where n is understood to be a measuré of distance at (x, y)ina direction perpendicular
to B(R)(Figure 1.4). Because 0V/0n isin reality the directional derivative of V along the
outward normal to B(R), (7a) may be expressed in the equivalent form

Wi =Gy, oy onBR) (7b)

where VV is the gradient of ¥ at (x,y)and a'is the unit outward normal vector to B(R)
at (x, y)-

A Robin boundary condition is a linear combination of a Dirichlet and a Neumann
condition. For equation (6a), it takes the form

l%% + hV = G(x,y) (x,y) on B(R), (8a)

where I and h are nonzero constants. What is important is not the individual values

of | and h but their ratio, I/h or hfl; division of (8a) by [ or h leads to boundary
conditions

v (k) _ G
Lo ( I)v JOED - (x5) on BR) (8b)
and (;!)%‘V,T +V= g(%y—), (x,y) on B(R), 80)

both of which are equivalent to (8a). The advantage of (8a), however, is that solutions
of problems with Dirichlet and Neumann boundary conditions are easily obtained
from those with Robin conditions by specifying | =0, h=1 and h=0,1=1
respectively. Boundary conditions (6b), (7), and (8) are said to be homogeneous if
G(x, y) = 0; otherwise, they are said to be nonhomogeneous. Physical interpretations

of Neumann and Robin boundary conditions are discussed in Sections 1.2-1.7.

What form do Robin boundary conditions take for the heat conduction problem
described by equations (5a-d)?

At the end x = L of the rod, the outward normal is in the positive x-direction.

Consequently, at x = L,&U/én = ¢U/ix, and the general Robin boundary condition
there is

UL,
Qcét”+muwn=amy (> 0.

* A ™" over a vector indicates that the vector is of unit length.
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Section 1.1 Introduction

ard normal at x = 0 is in the negative x-direction, it follows that

Because the outw
d a Robin boundary condition there takes the form

dU(0,1)/on = —aUu(0,1)/0x, an
I,ngﬁ+h,U(0,t)=G‘(t), t>0. -

In order that an (initial) boundary value problem adequately represent a physical
situation, its solution should have certain propenics. First, there should bea solutionto
the (initial) boundary value problem. Second, this solution should be unique; that is,
the problem should not have more than one solution. For example, if problem (5)
had more than on¢ solution, how could it possibly be an accurate description of the
temperature in the rod? Solutions should also have on¢ further property, which we
explain through problem (6). The solution of this problem depends on the functions
F(x,y)and G(x, y). In practice, these quantities may not be known exactly; they may, for
instance, be obtained from physical measurements. It would be reasonable to expect

that small changes in either F(x,y) or G(x,y) should _not appreciably affect V(x, ).
d to what is called a f‘well-posed” problem. An (initial)

three conditions lea
boundary valuewﬂ‘mp posed if

(1)ithasa solution;
(2) the solution is unique;

(3) the solution depends continuo
data (i.e., small changes in source terms and initial and

small changes in the solution).

All stable physical situations should be modeled by well-posed problems.
f solutions; continuous

In this book we discuss only existence and uniqueness O
dependence of solutions on source terms and subsidiary data is beyond our sCOpe.
Existence of solutions can be approached in two ways. One might be interested in
knowing whether a particular initial boundary value problem has a solution but might
not be atall interested in what the solution is. Thisis “existence” in its purest sense. Our

gpproach is more pragmatic. We discuss different ways to solve (initial) boundary value
problems, and if one of these methods succeeds in giving 2 solution to a problem, then

clearly «existence” of a solution has been established. It is important to know that a

problem has only one solution, however, since then, and only then, may we conclude
that once a solutio he problem. Uniqueness

usly on source terms and initial and boundary
boundary data produce

n has been found, it must be the solution tot

is discussed in Sections 5.6-5.8. Ve

In Sections 1.2—-1.6 we derive partial differential equations that arise in physics and
engineering. Each section is self-contained and may therefore be read independently of
the others. This means that readers interested in heat conduction could study Sec-
tion 1.2 and omit Section 1.3-1.6 without fear of missing any general ideas concerning
PDEs. Likewise, readers interested in mechanical vibrations could omit Section 1.2and

1.6 and concentrate on Sections 1.3-1.5.
Arising in many of these applications i
Laplacian of a function V(x,y)of Cartesian coordinates x a
v %V
. (9a)

V= ey
ox? * dy?

s the “Laplacian” of a function. The
nd y is defined as
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Figure 1.5

Figure 1.6

Chapter 1  Derivation of Partial Differential Equations of Mathematical Physics

and, if V(x, y,2) is a function of three variables, as
L N Ll A I 4

2 e em— — e
V= 57 +57

(9b)

When a function is expressed in polar, cylindrical, or spherical coordinates, its La-
placian is more complicated to calculate. We list the formulas here, leaving verifica-

tion to Exercises 9 and 10. In polar coordinates (r, 0) (Figure 1.5),

v 1V 1YW
2 — —— — .
VV—6r2+r or r? ae*’
in cylindrical coordinates (r, 6, z),
v tav 13w oW
y OV YOV 2OV CF.
‘ viv art i T T
and in spherical coordinates (r, 0, ¢) (Figure 1.6),
i ) 4 1 i) ov 1 v
2 _ e— — ——— —————. | — 1 e
vy or? " +rzsindt a¢(s'"¢a¢>

The PDE obtained by setting the Laplacian of a function equal to zero,

Vi =0,
is called Laplace’s equation.
f * 0)
’
e X

|
(r. 6, $)
—_

risin’¢ 007

(10a)

(10b)

(10¢)

(11)
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Exercises for Section 1.1

Exercises 1.1

Onthe regions in Exercises 1-7 what form do Dirichlet, Neumann, and Robin boundary conditions

3 take for the PDE?
v v
1, — + —5 = F(x, ), , O<y<ll
ax2+ay2 xy), 0<x<L y
F I 2 )
v 2.—(_)—;2—+5}’-1+727+V=F(x.y,z), 0<x<L, y>0, z>0
2 1 2
3 o 16V+ 9—‘—/-=F(r,0), O<r<r, —n<fsm (r.B)polarcoordinates

= I A TR
otV 1av 1o
4. —672—4-;-6—" r—,—;’a—z-—F(r,O), O<r<ry, 0<f<n
v 1oVt av W
.—a;z—+;—a-r—+;5—a—(—)7+a—zz—=}7(r,0,z), O<r<r, —-nx<bsm z>0, (r6,2)
cylindrical coordinates
v 20V 1 0 v 1 v
6. VL2 L sing—— ) tagag a0r 0 ,
5 T T itsing a¢(s’“¢a¢)+r2sin2¢ sg7 = Fn0.0) O<r=ro
: —n<l<m O<¢<m, (r, 8, $) spherical coordinates
) 7. Use the same PDE as in Exercise 6, but on the region

0<r<ry, —n <8<, 0<¢<%.

8. When a boundary value problem (but not an initial boundary value problem) has a Neumann
boundary condition on all parts of its boundary, it must satisfy a consistency condition. In this
exercise, we derive this condition for two- and three-dimensional problems. '

{a) Consider the two-dimensional boundary value problem consisting of Poisson's equation
(6a) and Neumann boundary condition (7a). Use Green’s theorem in the plane to show that

<§> G(x,y)ds = ﬂ. F(x, y)dA. (12a)
B(R) R

(Green’s theorem is stated in Appendix C.) The left side of this equation is the line integral of
G(x, y) around the bounding curve B(R), and the right side is the double integral of F(x,y)
£ over R. Thus, the “source term” F(x,y)in (6a)and the boundary data G{x, y) in (7a) cannot be
specified independently; they must satisfy consistency condition (12a). Physical interpre-
tations of this condition will be given later (see, for example, Exercise 23 in Section 1.2).
(b) Show that the analog of (12a) for the three-dimensional boundary value problem

sty v oW

,‘ a‘z-"‘?);?'*"gz_z‘ = F(X,Y,Z), (X,,V,Z) mn V,

ov

. " = G(x,),2) (x,y,z)on V)

is jj G(x,y,z)dS = ”‘j' F(x,y,z)dV. (12b)
d 1%} v

(You will need the divergence theorem from Appendix C.)
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1.2

Chapter 1 Derivation of Partial Differential Equations of Mathematical Physics

_ In this exercise we verify expression (102) for the Laplacian in polar coordinates. Formula (10b)is

then obvious.
(a) Verify that when a function V(x, y) is expressed in polar coordinates r and 0, its Cartesian
derivatives 8V/dx and 8V/8y may be calculated according to
gg_av or oV o0 6V_6V 6r+6V00
ax _ or ox 00 ax” dy r ay = 90 dy
(b) Obtain formulas for dr/dx, ar/dy, 08/0x, and 20/dy from the relations x = rcos8 and

y = rsin 8 between polar and Cartesian coordinates, and use them to show that

ili--cos()av _EEQQK i‘i—s'n()av +cosB v
ox o r 00’ ay e T r 06

(¢} Use the results in {b) to calculate the following expressions for second partial derivatives of
V with respect to x and y:

oV 3 3V sin?0 oV sin?0 9%V
EJC—{=COS 05"-2—4‘-—'—‘—674' ;2 W
2sin8cos0§!__2sincos@ _Qz_‘_/_

r? 00 r or 80’

v ., 0% cos@ 8V cos?0 2’V
T = S
~25in6cos0€l_’_+2sin9cose v

r? 26 r orof’
(d) Finally, add the results in (c) to obtain (10a). '
Use the technique of Exercise 9 to obtain (10c).

Heat Conduction

In this section we develop the mathematics necessary to describe conductive heat flow
in various physical media—rods, plates, and three-dimensional bodies. We could
begin with one-dimensional flow, such as that in the rod of Figure 1.1, and generalize
later to plates and volumes. Alternatively, we could begin with three-dimensional heat
flow and specialize later to plates and rods. We find the latter approach more
satisfactory; it does not require special physical apparatus to ensure heat flow in only
one or two directions. Furthermore, the mathematical and physical quantities that
describe heat flow have units that are more natural ina three-dimensional setting.
When we consider temperature at various points in some body (say the human
body), seldom is it constant; temperature normally varies from point to point and
changes with time. Experience has shown that when temperature does vary, heat flows
by conduction. Heat can flow by other means as well, namely by convection and by
radiation. Heat received by the earth from the sun is due to radiation. We do not

consider heat transfer by radiation in this book. The engine of a car illustrates the
difference between convective and conductive heat flow. In order to keep the engine
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cool, water carries heat from the engine to the radiator through hoses; it is the motion
of the water that transfers heat from engine to radiator. This is called convective heat
transfer. Heat will also pass through the walls of the engine to be dissipated into the air.
The process by which heat is moved from molecule to molecule in the engine wall is
called heat transfer by condqun, it is due to vibrations of molecules, the vibrations
increasing with higher and hlghcr tempe’r‘ﬁlures In this book we discuss only heat
transfer by conduction. To describe conductive heat flow in a medium, and ultimately
obtain a PDE that determines temperature in the medium, we introduce the heat flux
vector:

The heat flux vector qfr, #) is a vector function of positionr and time £. Its direc(iéﬁ corresponds
to the direction of heat flow at position r and time ¢, and its magnitude is equal to the amount of
heat per unit time crossing unit area normal to the direction of g.

This vector, which has units of watts per square meter (W/m?), is defined at every
point in a conducting medium except possibly at sources or sinks of heat(Figure 1.7).

z

to q(r, ¢#):

O’.—-———v q(l‘. t)

( Unit area normal

A medium is said to be isotropic if, when any point within it is heated, heat spreads
out equally in all directions. In ‘other words, isotropic media have no preferred
directions for heat flow. It has been shown experimentally that in an isotropic medium,
heat flows in the direction in which temperature decreases most rapidly, and the
amount of heat flowing in that direction is proportional to the rate of change of
temperature in that direction. This is called Fourier's law of heat conduction. Mathe-
matically, if U(r,t) is the temperature distribution in the medium, then its gradient,
VU, points in the direction in which the function U increases most rapidly and |VU|
is the maximum rate of increase. Consequently, Fourier’s law of heat conductxon in
an isotropic medium can be stated vectorially as

46, 1) = —KkVU; (13)

where k > 0 is the “constant” of proportionality called the thermal conductivity of the
medium. It has units of watts per meter per degree Kelvin or Celsius (W/mK). In gen-
eral, thermal conductivity may depend both on the temperature of and the position in
the medium. If, however, the range of temperature is “limited” (and we shall consider
only this case), the variation of x with temperature is negligible and x becomes a
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Table 1.1
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Thermal Properties of Some Materials

Specific Thermal Thermal
Density Heat Conductivity Diffusivity

Material (kg/m°) (Ws/kgK) (W/mK) at 273 K (m?*/s)
Coppes. .-, . 8950 381 390 114 x 107
Mild steel 7884 460 45 124 x 107
Pyrex glass 2413 837 1.18 - 0.584 x 107*
Water 1000 1000 0.600 0.600 x 107
Asbestos 579 1047 0.15 . 0.247 x 107¢

function of position only, k = x(r). The medium is said to be homogeneous if x i
independent of position, in which case x becomes a numerical constant. Rough value:
for thermal conductivities of various homogeneous materials are given in Table 1.1
The larger the value of k, the more readily the material conducts heat. Other therma
properties are also included.

To obtain a PDE governing temperature in a medium, we consider an imaginar:
surface S bounding a portion of the medium of volume V (Figure 1.8). Heat is added tc
(or removed from) V in two ways—across S and by internal heat sources or sinks
When ¢(r, t) is the amount of heat generated (or removed) per unit time per unit volum«
at position r and time t, the total heat generation per unit time within V is expressed b}

the triple integral
Jjj g(r,0)dV. (14
| 4

The amount of heat flowing into V through S per unit time is given by the surfac
integral on the left side of the equation

V[\J‘q.(.-ﬁ)dS..-:J-Jl KVU'ﬁdS, (15
s : s

where it is the unit outward-pointing normal to S. Equation (13) has been used to obtair
the integral on the right. The total heat represented by (14) and (15) changes th.
temperature of points (x,y,z) in ¥ by an amount dU/dt in unit time. The hea

requirement for this change is
&u »
. —spdV, 16
JIl. % ‘

where p and s are the density and specific heat of the medium. (Specific heat is th
amount of heat required to produce unit temperature change in unit mass.) Energ;
balance requires that (16) be equal to (14) plus (15):

m f'__”spdhm g(r,ndm” <VU -
vy CI v s

ds, 17

=
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and when the divergence theorem (see Appendix C) is applied to the surface integral,

the result is
J:U (psaa—ltj—g(r,t)—V-(xVU))dV=O. (18)
4 .

For this integral to vanish for an arbitrary volume V, in particular for an arbitrarily
small volume, the integrand must vanish at each point of V; that is, U must satisfy
the PDE v
ou :
psﬁ —gr,t)—V-(xVU)=0. (19)
In actual fact, this conclusion is correct only when we know that the integrand in'(18) is
a continuous function throughout V. When this is not the case, (19) may not be valid at
every point of V. It will, however, be true in each subregion of V in which the integrand
is continuous. Since (18) must be valid even when its integrand is discontinuous;’itis a
more general statement of energy balance than (19). '
r4

X

Equation (19) is the PDE for heat conduction in an isotropic medium. If the
medium is also homogeneous, we define k = k/(sp) as the thermal diffusivity of the
medium, in which case (19) reduces to

f—(£=I<(V2U’+ M). (20)
ct K

The units of k are meters squared per second (m?/s); typical values are given in
Table 1.1. .

Accompanying the PDE of heat conduction in any given problem will be initial
‘and/or boundary conditions. An initial condition describes the temperature through-
out the extent of the medium, R, at some initial time (usually ¢ = 0): '

U(r,0) = f(r), rin R, (21)

f(r) some given function of position.
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The three types of boundary conditions that we consider are those introduced in

Section !.1— Dirichlet, Neumann, and Robin. A Dirichlet condition prescribes
temperature on the boundary f(R) of R:
-t ) U = F(r,1), r on fi(R), t >0, (22)

TT S

F(r,t) a given function.

Sometimes in applications we know that a certain amount of heat is being
conducted across #(R); that is, we know that the heat flux vector g on S(R)is normai to
B(R), and its magnitude is specified (Figure 1.9). Suppose in this situation that we -
represent q on B(R) by q = q(r, )i, where g(r, ) is the component of q in direction fi(q is
negative when heat is added to R and positive when heat is extracted). Fourier's law{13)
on B(R) yields

gh = —xVU, r on f3(R), t>0, (23)

and scalar products with i give

U qrny)

= . r on B(R), t>0. (24)
én

In other words, specification of heat flow across f(R) leads to a Neumann boundary
condition. In particular, if a bounding surface is insulated, the heat flux vector thereon
vanishes and consequently that surface satisfies a homogeneous Neumann boundary
condition

U

e

0, r on B(R), t>0. (25)

A Robin boundary condition is a linear combination of a Dirichlet and a
Neumann condition:

cU

l + hU = F(r,1), r on B(R), t >0 (26)

én
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Dirichlet and Neumann boundary conditions are obtained by setting I and h,
respectively, equal to zero. To show that Robin boundary conditions are physically
realistic, suppose the conducting material transfers heat to or from a surrounding
medium according to Newton's faw of cooling (heal transfer proportional to tem-
perature difference). Then -

ou

—-xa—n = u(U — U,), u>0, r on B(R), t>0, (27a)

where U, is the temperature of the surrounding medium, or

oU
Ko + pU = pU, = F(r,1), r on (R), t>0. ' (27b)
The constant of proportionality u is called the surface heat transfer coefficient. This is
clearly a Robin condition. Homogeneous Robin conditions

U )
K +ulU =0, r on B(R), t>0 (28)
n
describe heat transfer according to Newton's law of cooling to media at tempera-
ture zero.
The initial boundary value problem of heat conduction in a homogeneous,
isotropic medium can thus be stated as

v k[V U +9&8 ‘)], rinR, >0, (292)
ot K

Boundary conditions, if applicable, (29b)

Initial condition U(r,0) = f(r), r in R, if applicable. (29¢)

If boundary conditions (29b) and heat sources g(r, ) in (29a) are independent of
time, there may exist solutions of (29a, b) that are also independent of time. Such
solutions are called steady-state solutions; they satisfy

VU = —@, rin R, {30a)

Boundary conditions, if applicable. (30b)

For example, suppose a conducting sphere of radius a (Figure 1.10) has at time t = 0
some temperature distribution f(r, 0, ¢), where r, 6, and ¢ are the spherical coordinates
shown in Figure 1.6. If the sphere is suddenly packed on the outside with perfect
insulation, and no heat generation occurs within the sphere, the temperature distri-
bution U(r, 8, ¢, ) thereafter must satisfy the initial boundary value problem

cU
Ct—kV2 O<r<a, O<p<m, —nrn<l<mn >0, (31a)

oU(a,0,¢,1)
ér
U,0,¢,0)= f(r,0.¢), 0<r<a, 0<¢p<n, —-n<l<n (31¢)

=0, 0<¢p<n -n<l<m t>0, (31b)
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Figure 1.10

Example 3:

Solution:
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Steady-state solutions U(r,0, ¢) for this problem, if there are any, must satisfy
ViU =0, 0<r<a, 0< ¢ <m, —n<fB<m, (32a)
cU(a,0,9)

.- 0T

0, 0<¢<mn, n<@<nm. (32b)

Obviously, a solution of (32)is U = C, C any constant whatsoever. Thus, constant
functions are steady-state solutions for problem (31). We can realize the physical
significance of steady-state solutions and determine a useful value for C if we return
to initial boundary value problem (31). Physically it is clear that because no heat can
enter or leave the sphere, heat will eventually redistribute itself until the temperature
at every point in the sphere becomes the same constant value. [In Section 9.1 we prove
that the value of this constant is the average value U of f(r,0,$) over the sphere.] In
other words, the useful steady-state solution will be U = U. Later we shall see that the
solution of (31) contains two parts. One is the steady-state (time-independent) part
U = U; the other is a transient (time-dependent) part that describes the transition
from initial temperature f(r, 0, ¢) to final temperature U.

When g(r) in Poisson’s equation (30a) is identically zero (i.e., no internal heat
generation occurs within R), the PDE reduces to Laplace’s equation. Problem (30) then
reads

ViU =0, rinR, (33a)
Boundary conditions, if applicable. (33b)

Problems (30) and (33) are called boundary value problems rather than initial
boundary value problems, since no initial conditions are present.

Formulate the initial boundary value problem for the temperature in a cylindrical rod
with insulated sides and with flat ends at x = 0 and x = L. Theend at x = 0 is kept at
temperature 60°C; the end at x = L is insulated; and at time ¢ = 0 the temperature
distribution throughout the rod is f(x), 0 < x < L. Assume no internal heat gen-
eration. Are there steady-state solutions for this problem?

Notwithstanding the fact that the rod is three-dimensional, we note that because all
cross sections are identical, the sides are insulated, and the initial temperature
distribution is a function of x alone, heat flows only in the x-direction. In other words,
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the heat conduction problem is one-dimensional, namely

éu U
—ét—=kw, 0<X<L, t>0,
_ U(0,1) 60, > 0,
aL(LLI_)=(), _ I>O,
0x

U(x,0) = f(x), O0<x<L.
Steady-state solutions W(x) for this problem must satisfy
, ¢_12_¢ )
dx?
Y(0) =060, Y'(L)=0.

The general solution of this ODE is y(x) = Ax + B, and the boundary conditions
require that

0, 0<x<L,

60 = B, 0 = 4;

that is, Y(x) = 60. After a very long time, the temperature in the rod will become 60°C
throughout. u

Exercises 1.2

1. (a) A cylindrical, homogeneous, isotropic rod has flat ends at x = 0 and x = L and insulated
sides. Initially the temperature distribution in the rod is a function of x only, and heat
generation at points x in the rod takes place uniformly over the cross section at x. Apply an
energy balance to a segment of the rod from a fixed point x = a to an arbitrary value x to
show that the PDE governing temperature U(x, t) in the rod is

ouU U

k
s

where g(x, ) is the amount of heat per unit volume per unit time generated at position x and
time t.

(b) What form do Robin boundary conditions take at x = 0 and x = L?

In Exercises 219, set up, but do not solve, an (initial) boundary value problem for the required
temperature. Assume that the medium is isotropic and homogeneous.

2. A cylindrical rod has flat ends at x = 0 and x = L and insulated sides. At time t =0 its
temperature is a function f(x), 0 < x <.L, of x only. If both ends are kept at 100°C for ¢t > 0,

fqrmulate the initial boundary value problem for temperature U(x,1) in the rod for.0 < x < L
and t > 0.

3. Repeat Exercise 2 except that the end at x = 0 is insulated.

4. Repeat Exercise 2 except that the temperature at end x = L is changed from 0°C to 100°C at a
constant rate over a period of T seconds and maintained at 100°C thereafter.
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11.

12.
13.

14.

15..
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Repeat Exercise 2 except that heat is transferred according to Newton's law of cooling from the
ends x = 0 and v = L into media at temperatures Ly and U, . respectively.

Repeat Exercise 2 except that both ends are insulated and at each point in the rod heat is
generated at a rate y{x.() per unit volume per unit time. What is g(x,!) if heat generation is
g calories peF cubic centimeter per minute over that part of the rod between x = L/4 and x =
3L/4 and is zero otherwise?

Repeat Exercise 2 except that heat is added to the end x = 0 at a constant rate Qo >0 W/m?
uniformly over the end and is removed at a variable rate Q. (1) > O Watx =1L uniformly over
the end.

. The top and bottom of 2 horizontal rectangular plate 0 < x < L, 0 <y < L' are insulated. At

time t = 0 its temperature is a function f(x,y) of x and y only. If the edges x =0 and y=L'
are kept at 50°C for 1 > 0 and the edges y = 0 and x = L are insulated, formulate the initial
boundary value problem for temperature U(x, y.1) inthe plate for0 < x < L,0 <y < L', and
t>0.

Repeat Exercise 8 except that along v = 0 heat is transferred according to Newton's law of
cooling into a medium with temperature f,{t), and heat is generated at a rate e* joules per cubic
meter per second at every point in the plate for the first T seconds.

The top and bottom of a horizontal circular plate0 < r <ry, —m <0 < mare insulated. At time
¢ = 0 its temperature is a function f(r,0) of polar coordinates r and 0 only. For t > 0, heat is
transferred along its edge according to Newton's law of cooling into a medium at temperature
zero, and heat is generated at constant rate ¢4 W/m? inside the ring 0 <r, <r <r; <ro.
Formulate the initial boundary value problem for temperature in the plate.

A right circular cylinder of tength L and radius r, has its axis along the z-axis with flat faces in the
planes z =0 and z = L. At time 1 = 0 its temperature is a function f(r, 0) of r and 0 only. For
! > 0, faces z = 0 and z = L are insulated, and r = ry is kept at temperature f,(0,1). Formulate
the initial boundary value problem for temperature in the cylinder.

Repeat Exercise 11 except that f(r,0) is replaced by f(r,0,2).

Repeat Exercise 11 except that the ends z = 0 and z = L are kept at 100°C for t > 0 and the
cylindrical side is insulated.

Repeat Exercise 11 except that heat is transferred according to Newton's law of cooling from the
top and cylindrical faces into air at temperature 20°C. Initially, temperature is a function f(r)
of r only.

Repeat Exercise 11 except that the initial temperature is a function f(r)of ronlyand r =ro s

" kept at temperature S

16.

17.

18.

19.

The top and bottom of a horizontal semicircular plate 0 < r <r, 0 <0< mare insulated. At
time t = 0. its temperature is f(r, 0). For ¢t > 0, the curved edge of the plate is insulated, but along
the straight edge, heat is added at a constant rate-q > 0 W/m?. Formulate the initial boundary
value problem for temperature in the plate.

Repeat Exercise 16 except thatalong r = rg. heat is extracted at a constant rate ¢ > 0 W/m? and
along the straight edge, heat is exchanged according 1o Newton's law of cooling with an
environment at constant temperature Uy.

A sphere of radius r, has an initial temperature {t = 01 of 100°C. I, for t > 0, it transfers heat
according to Newton's law of cooling to an environment at constant temperature 10 C, what is
the initial boundary value problem for temperature in the sphere?

A hemisphere of radius r, has its flat face in the xy-plane. The curved face of the sphere is
insulated. If the heat flux vector on the face = = Oisq = f(r. 0}k, formulate the boundary value
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problem for steady-state temperature in the hemisphere. Can f(r, 0) be arbitrarily specified? [Sce
Exercise 8(b) in Section 1.1.]

homogeneous, isotropic rod with insulated sides has its ends x =0 and x = L held at
temperatures U, and Uy, respectively. If'no heat is generated in the rod, can there be a steady-
stale_temperature distribution in thé red?

Heat is added (or removed) at theends x = 0 a;l‘gx = L of a homogeneous, isotropic rod with

insulated sides at constant rates g, and g, respectively. Can there be a steady-state temperature
distribution in the rod?

Discuss each of the following statements for temperature in a homogeneous, isotropic rod with

insulated sides:

(a) If temperature at points in the rod changes in time, heat must flow in the rod.

(b) If heat flows in the rod, temperature at points in the rod must change in time.

(a) Suppose there is a steady-state temperature distribution in a region R of the xy-plane that
satisfies Poisson’s equation V*U = —g(x, y)/x. Suppose further that the boundary condition
on the boundary B(R) of R is of Neumann type, cU/én = f(x, y) for (x, y} on f(R). Use the
result of Exercise 8 in Section 1.1 (or Green's theorem) to show that f(x, y) and g(x, y) must

satisfy the consistency condition
Xy
f(x,y)ds = L[ _g_(_L)dA
R K

What is the physical significance of this requirement?
(b) What is the three-dimensional analog of the result in (a)?

B(R)

In Exercise | we developed the one-dimensional heat conduction equation based on energy
balance for a small segment of the rod. In this exercise we use the PDE to discuss energy balance
for the entire rod. Multiply the PDE in Exercise 1 by Ax/k (A is the cross-sectional area of the
rod), integrate with respect to x over the length 0 < x < L of the rod, and integrate with respect
to  from ¢ = 0 to an arbitrary value of t, to obtain the following result:

L L
I ApsU(x, t)dx —-J ApsU(x,0)dx
o 0

t A t 3 t L
= j AKSEC%—’—er - J. Axcu_\ﬂ)-dt + J j Ag(x,t)dx dt.
; o

0 0 cx o

Interpret each term in this equation physmally, and hence deduce that the equation is a statement
of energy balance for the-rod.

Repeat Exercise 24 to obtain an energy balance for'a volume V using PDE (20).

(a) The inside temperature of a flat wall is a constant U;,"C and the outside temperature is a
constant U,,, C. If the wall is considered as part of an infinite slab that is in a steady-state
temperature situation. find an expression for the amount of heat lost through an area A4 of the
wall per unit time. Is this expression inversely proportional to the thickness of the wall?
Evaluate the result in (a) il A is 15 m?2, the thickness of the wall is 10 cm, the thermal
conductivity of the material in the wall is 0.11 W/mK, U,,, = — 20°C, and U, = 20°C.

(a) Steam is passed through a pipe with inner radius r;, and outer radiusr,,. The temperature of
the inner wall is a constant U,, C and that on the outer wallis a constant U, C. If the pipe is
considered part of an mﬁmth) long pipe that is in a steady-state temperature situation, find
an expression for the amount of heat per unit area per unit time flowing radially outward.

(b

~—
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(b) How much heat (per second) is lost at the outer surface of the pipe in a section 2 m long
if r, =375cm,r,, = 50cm, U,, = 205°C, U,,, = 195°C, and x = 54 W/mK?

(c) Hlustrate that the same amount of heat is transferred through the inner wall of the section.
Must thig be the case?

A homogeﬁéo’ﬁ's', isotropie rod with insulated sides has temperature sin(nnx/L), n a positive

integer, at time ¢ = 0. For time ¢ > O its ends at x = 0 and x = L are held at temperature 0°C.

(a) Find the initial boundary value problem for temperature in the rod and verify that a solu-
tion is

. hmx

U(x, t) = e =il gin ——

(b) Find the rate of heat flow across cross sections of the rod at x = 0,x=L/2,and x = L by
calculating

: L ,
lim q(x,1), q(—-, t>, lim q(x,t).
x—+0* 2 x—=L-

(c) Calculate limits of the heat flows in (b) as t —+ 0" and ¢ — c0.

(a) When two media with different thermal conductivities x, and k, are brought into intimate
contact, heat flows from the hotter to the cooler medium. Assuming that heat transfer follows
Newton’s law of cooling, show that the following boundary conditions must be satisfied by
the temperatures in the media at the interface:

U0
~0 07 v - v+,
ou(0 . oU(0— U0+
o s wwon ~ve-y, - 0D O

where n is a coordinate perpendicular to the interface with positive direction from medium 1
into medium 2. Are these conditions independent?

(b} What do these conditions become in the event that u is so high that there is essentially no
resistance to heat flow aéross the interface?

(a) A homogeneous, isotropic sphere of radius R is heated uniformly from heat sources within
at the rate of Q watts per cubic meter. Heat is transferred to a surrounding medium at con-
stant temperature U, according to Newton's law of cooling until a steady-state situation
is achieved. Find the steady-state temperature distribution in the sphere.

(b) What is the initial boundary value problem for temperature in the sphere for t > 0 if

the heat sources are turned off at time t = 0 and the steady-state situation has been
achieved?

A thin wire of uniform cross section radiates heat from its sides (not ends) at a rate per unit area
per unit time that is proportional to the difference between the temperature of the wire on its
surface and that of its surroundings. It follows that variations in temperature should occur over
cross sections of the wire. In many applications, these variations are sufficiently small that they
may be considered negligible. In such a case, temperature at points in the wire is a function of
time ¢ and only one space variable along the wire, which we take as x, U = U(x,t). Temperature
problems of this type are called thin-wire problems. By considering heat flow into, and out of, the
segment of the wire from a fixed point x = a to an arbitrary x, show that the PDE for thin-wire
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problems is

cU oW k
— =k — WU = U,) + —g(x 1),
ét éx? ( ) K g(1)
whege h > O is a constant and U,,;.-_is‘ thie temperature of the medium surrounding the wire.
32. Heat generation within a rod can be effected by passing an electric current along the length of the
rod. Show that when the current is /,
2

1
gix,t) = s

where g is the electrical conductivity of the material of the rod and A is its cross-sectional area.
33. A cylindrical pipe of inner and outer radii a and b is sufficiently long that end effects may be

neglected. The temperature of the inner wall is a constant U, and heat is transferred at the outer

wall to a medium at constant temperature U, < U, with surface heat transfer coefficient p.

(a) Find U as a function of r when the steady-state situation has been achieved.

(b) Show that the amount of heat flowing radially through a unit length of the pipe at any radius
a<r<bis

2rnuxb(U, — U,)
K + pbIn(b/a) ’

34. Along, straight wire of circular cross section has thermal conductivity x and carries a current L.
Surrounding the wire is insulation with thermal conductivity k*, b — a units thick. I r is a radial
coordinate measured from the center of the wire, the wire occupies the region 0 < r <4, and the
insulation, a < r < b. Heat transfer takes placeatr = binto a medium at constant temperature
U,, with surface heat transfer coefficent u*. F ind the steady-state temperature U(r)in the wire and
insulation under the assumption that U(r) must be continuous at r = a. [Hint: See Exercise 32 for
g(r) and Exercise 29 for the additional boundary condition at the wire-insulation interface.

35. Repeat Exercise 34 except that continuity of U(r)atr = a is replaced by the condition that heat
transfer from the wire to the insulation occurs according to Newton’s law of cooling with surface
heat transfer coefficient u.

1.3 Transverse Vibrations of Strings;
Longitudinal and Angular Vibrations of Bars

In this section we discuss three vibration problems that all give rise to the same
mathematical representation.

Transverse Vibrations of Strings

A perfectly flexible string (such as, perhaps, a violin string) is stretched tightly between
two fixed points x =0 and x = L on the x-axis (Figure 1.11). Suppose_the string
is somehow set into motion in the xy-plane (possibly by pulling vertically on the -
midpoint of the string and then releasing it). Our objective is to study the subsequent
motion of the string. When the string is very taut and displacements are small,
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Figure 1.11

Figure 1.12
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horizontal displacements of particles of the string are negligible compared with vertical
displacements: that is, displacements may be taken as purely transverse, representable
in the form y(x. 1)

| g =

e e e

Tosw (1 5in By

To find a PDE for y(x, t), we analyze the forces on a segment of the string from a
fixed position x = a to an arbitrary position x (Figure 1.12). We denote by t(x,!) the
magnitude of the tension in the string at position x and time L. Because the string is
perfectly flexible, tension in the string is always in the tangential direction of the string.
This means that the y-component of the resulting force due to tension at the ends of the
segment is (7sin 0);, -, — (r5in )= We group all other forces acting on the segment
into one function by letting F(x,) be the y-component of the sum of all external forces
acting on the string per unit length in the x-direction. The total of all external forces

acting on the segment then has y-component

j. F(,n)dC.

Newton's second law states that the time rate of change of the momentum of the
segment of the string must be equal to the resultant force thereon:

e [xeviEny . ey, 0\
H(I & P ”( ox ) "C)

= (T sin 9)l1=x - (T sin e)|x=a + j‘ F(C$ t)d<:9 (34)

where p(x.t) is the density of the string (mass per unit length). The quantity
o1+ [@¥(S 1)/éx]? dg is the length of string that projects onto a length d{ along the
x-axis. Multiplication by p({.0)¢y(C, 1)/ Ct gives the momentum of this infinitesimal
length of string, and integration yields the momentum of that segment of the string
from x = a to an arbitrary position x. If we differentiate this equation with respect
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to x, we obtain

¢ [ &y y\? J ., .

—|p= =] }== F(x,1). 35

pr <p 7 1 +(6x> ) ax(tsxn9)+‘ (x,1) (35)
When vibrations of the string aresuch that the slope of the displaced string, dy/dx, is

very' much less than unity (and this is the only case that we consider), the radical may be

dropped from the equation and sin 8 approximated by tan 8 = dy/dx. The resulting
PDE for y(x,t) is '

o ( 9y é ([ oy
- Tl = X 36
ot (p at) ox (t Bx) +Fx0) (36)

For most applications, both the density of and the tension in the string may be taken as
constant, in which case (36) reduces to

2

) ¢t = (37)

T
p.

_ This is the mathematical model for small transverse vibrations of a taut string; it is

called the one-dimensional wave equation. In its derivation we have assumed that the
slope of the string at every point is always very much less than 1 and that tension and
density are constant.

When the only external force acting on the string is gravity, F(x, t) takes the form

F=pg, g<0. (38)
Other possibilities include a damping force proportional to velocity,
d
F=—p2, B> (39)

and a restoring force proportional to displacement,
F = —ky, k>0. (40)

Accompanying the wave equation will be initial and/or boundary conditions.
Initial conditions describe the displacement and velocity of the string at some initial

‘time (usually t = 0):

yx,0)= f(x), xinl, (41a)

Cy(x,0 .
G}(C‘Yr - (0" =g(x), xinl, (41b)

where / is the interval over which the string is stretched. In Figure 1.11,/is0 < x < L,
But other intervals are also possible. Interval [ also dictates the number of boundary
conditions. There are three possibilities, depending upon whether the string is of finite

' Subscripts are often used to denote partial derivatives. In (41b), y, denotes ¢y;¢ét. In a similar way, we may
use the notation y,, in place of ¢2y¢r2.
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length, of “semi-infinite” length, or of “infinite” length. If the string is of finite length,
the interval I is customarily taken as 0 < x < L and two boundary conditions result,
one at each end. The string is said to be of semi-infinite length, or the problem is
‘semi-infinite, if the string has only one end that satisfies some prescribed condition.
The intervAl-Fin this case is always chosen as 0 < x < 00, and the one boundary
condition is at x = 0. The string is said to be of infinite length, or the problem is
infinite, if the string has no ends. In this case interval I becomes —o0 < x < and
there are no boundary conditions. ’ .

It might be argued that there is no such thing as a semi-infinitely long or infinitely

" long string, and we must agree. There are, however, situations in which the model of a

semi-infinite or infinite string is definitely advantageous. For example, suppose a fairly
jong string (withends at x = Oand x = L})is initially at rest along the x-axis. Suddenly,
something disturbs the string at its midpoint, x = L/2 (perhaps it is struck by an
object). The effect of this disturbance travels along the string in both directions toward
x = 0 and x = L. Before the disturbance reaches x = 0 and x = L, the string reacts
exactly as if it had no ends whatsoever. If we are interested only in these initial
disturbances, and consideration of the “infinite” problem provides straightforward
explanations, it is an advantage to analyze the “infinite” problem rather than the finite
one.

We consider only three types of boundary conditions at an end of the string—
Dirichlet, Neumann, and Robin. When the string has an end at x = 0, a Dirichlet
boundary condition takes the form

¥(0,1) = fi(r), t>0. (42a)

It states that the end x = O of the string is caused by some external mechanism to
perform the vertical motion described by f,(1). Similarly, if the string has an end at
x = L, a Dirichlet condition

yL,y=f(), t>0 (42b)

indicates that this end has a vertical displacement described by f5(t). For the string in
Figure L11, f,(t) = f5() = 0.

Instead of prescribing the motion of the end x = 0 of the string, suppose that this
end is attached to a mass m (Figure 1.13) and, furthermore, that motion of the mass is
restricted to be vertical by a containing tube. The vertical component of the tension
of the string acting on m at x =0 is 7(0,¢)sin¥, which for small slopes can be
approximated by

oy(0,t
7(0,1)sin @ = 1(0,1)tan 8 = ©(0,¢) yé‘ ). 43)
Consequently, when Newton's second law is applied to the motion of m,
52 2(0
mZ f,t?’l) = 1(0, t)C—)%jt—) + fil), >0, (44)

where f,(1) represents the y-component of all other forces acting on m.
If m is sufficiently small that it may be taken as negligible (for instance, as with a
very light loop around a vertical rod), this equation takes the form
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cy0,0) _ 1

0x 7(0, 1)

filn, >0, (45)

a Neumann boundary condition. In particular, if the massless end of the string is free to
slide vertically with no forces acting on it except tension in the string, it satisfies a
homogeneous Neumann condition” = —

ay(0,1) _
ox 0

What this equation says is that when the end of a taut string is free of extcrhal forces,

the slope of the string there will always be zero.
¥

(46)

Tangent line to
string at x = 0

Mass i, e

p -~
Containing tube

Similarly, if the string has a massless end at x = L that is subjected to a vertical
force with component f3(z), the boundary condition there is once again Neumann:
ay(L,t 1
4 (ax ) gl >0 47)
What we have shown, then, is that Neumann boundary conditions result when the ends
of the string, taken as massless, move vertically under the influence of forces that are
specified as functions of time.

Robin boundary conditions, which are linear combinations of Dirichlet and
Neumann conditions, arise when the ends of the string are attached to springs that are
unstretched on the x-axis (Figure 1.14). When this is the case at x = 0, equation (44)
becomes

a%y(0,1) éy(0,t)

y(z ) = 1.'(0, t)_}'l_(—) - k}'(or t) + fl(t)7 (48)
ot ox

where f,(t) now represents all external forces acting on'm other than the spring and

tension in the string. For a massless end (m = 0) and constant tension 1, (48) takes the
form : ’

m

d
: —r—a—%+ky=fl(t), x=0, >0 (49a)

Similarly, attaching the end x = L to a spring gives the Robin condition

é
T_a._;vz + ky = f,(1), x=1L, t>0. (49b)
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Figure 1.14

Example 4:

Solution:
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Mass m

Position af-mr when - __—| x
spring is unstretched

NN\

The initial boundary value problem for the vibrating string consists of the one-
dimensional wave equation together with two initial conditions and/or zero, one, or
two boundary conditions: :

*y  ,8%  F(x,1)

—a—t;=c FI% > xinl, t>0, (50a)
Boundary conditions, if applicable, (50b)
y(x,0) = f(x), x in I, if applicable, (50¢)
y,(x,0) = g(x), xin I, if applicable. (50d)

When the boundary conditions and external force F are independent of time, there
may exist solutions of (50a, b) that are also independent of time. Such solutions, called
static deflections, satisfy the boundary value problem

2
:x—{ = — E(ri) xinl, (51a)
_ Boundary conditions. (51b)

No vibrations occur; the string remains in static equilibrium under the forces present.
We shall see that the solution of (50) divides into two parts: the static deflection part
plus a second part that represents vibrations about the static solution.

Formulate the initial boundary value problem for transverse vibrations of a string
stretched tightly along the x-axis between x = 0 and x = L. The end x = 0 is free to
move without friction along a vertical support, and the end x = L is fixed on the x-axis.
Initially, the string is released from rest at a position described by the function f(x),
0 < x < L. Take gravity into account. Are there static deflections for this problem?

The initial boundary value problem for displacements y(x, r) of points in the string is

cty ¢y :
— =¢l—= — 981, 0O<x<L, t >0,
ér? éx?




Figure 1.15

Section 1.3 Vibrations of Strings and Bars 27

y(L,1)=0, t >0,
¥(x,0) = f(x), O0<x<lL,
¢y(x,0)
ct

The PDE is a result of equatigr.ls:(fi?) andT38), and the boundary condition at x = Qs
equation (46). Static deflections must satisfy

2
0=c21(—’2'—9.8:, 0<x<lL,
y'(©0) =0, yL) =90,

the solution of which is

=0, O0<x<L.

981, o,
Yo = 55 (x2 = L)

(Figure 1.15). This is the position that the string would occupy were it to hang
motionless under gravity. Notice, in particular, that the parabola has zero slope at its
free end, x = 0.

v

9.8t 2
yE (x L")

It is a standard example in ODE:s to find the shape of a string that hangs between
two points under the influence of gravity. The solution, called a catenary, is a
hyperbolic cosine function, not a parabola as derived in Example 4. The difference lies
in the assumptions leading to the ODEs describing the two situations. In Example 4, it
is assumed that tension 7 in the string is constant, and this leads to the differential
equation d*y/dx? = 9.81p/t for static deflections. For the catenary problem, the string
is not sufficiently taut that tension is constant. This leads to the differential equation

d?y/dx? = (9.81p/1)\/1 + (dy/dx)?, where T is tension at only the lowest point in the
string. .

Longitudinal Vibrations of Bars

In Figure 1.16 we show a circular bar of natural length L lying along the x-axis.
Suppose that the end x = Qisclamped at that position and the end x = L is struck with
a hammer. This will set up longitudinal vibrations in the bar. We show that the one-
dimensional wave equation. which describes transverse vibrations of a taut string, also
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Figure 1.16

Figure 1.17
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describes these longitudinal vibrations of the bar. Although we have drawn the bar ina
horizontal position, it could equally well be vertical. We denote by x the positions of
cross sections of the bar when the bar is in an unstrained state, and we denote by y(x, 1}
the positions of cross sections relative to their unstrained positions (Figure 1.17). Itis
assumed ghat cross sections remain plane during vibrations.

——

This end of bar

Bar of circular cross section
clamped atx = 0
\

in unstrained state

o
’,'// : .

x =0 X v =L

- va, ) = ¥x. 0N — ¥(L. 1D
7
/"/
X

x=0a x ! x =L

\ Position of cross section
normally at x

Consider the segment of the bar that in an unstrained state occupies the region
between x = a (a some fixed number) and an arbitrary position x. At time t, this
segment is stretched an amount y(x,t) — y(a,t). Hooke's law states that the force
exerted across the segment due to this extension (or compression) is given by

4 E<y(x, 1) — ya, t)), 52)

X —a

where A is the cross-sectional area of the bar and E is Young's modulus of elasticity of
the material in tension-and compression. It follows (by limits as x — a) that the internal
force exerted on the face at x = a by that part of the bar to its right at time ¢ has
component

Cyla, 1)

3 (53)
éx

AE

[The internal force on the face at x = a due to that part of the bar to its left has
component — AECy(a, t)/dx.]

We now apply Newton's second law to the motion of the above segment of the bar:

(‘4.. X N X x x v‘ -
At o poay +J F(C,t)AdC:%(J 5)’(:,[ ’)p(g,z)Adc), (54)
: R 5

el
¢x éx o

a

where p(x,t) is the density of the bar (mass per unit volume) and F(x.1) is the
x-component of all external forces acting on the bar per unit volume. It is assumed

[

——y

- —a
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that these external forces are constant over each cross section of the bar. Differentia-
tion of this equation with respect to x and division by A give

2

0%y _ a( dy
Eé;—z"{‘F(X,l) ( a[) l (55)

In n10st applications, p can be fakéd as constant, in which case (55) reduces to the one-
dimensional wave equation

(56)

Initial conditions that accompany PDE (56) describe the displacement and
velocity of cross sections of the bar at some initial time, usually t = 0 [see equations
(41a, b)]. Boundary conditions must also be specified. When the bar is of finite length
(0 < x < L), two boundary conditions occur, one at each end. If the bar is ‘of semi-
infinite length (0 < x < 00), only the end x = 0 satisfies a boundary condition; and
when the bar is of infinite length, no boundary conditions are present. Dirichlet
boundary conditions are of form (42a, b); they specify displacements y(0, t) and y(L, t)
of the ends of the bar. Neumann boundary conditions result when longitudinal forces
that are prescribed functions of time are applied to the faces of the bar. To see this, note
that the force exerted on the face x = 0 by the bar (to the right) is AEdy(0,t)/dx.
Consequently, if the end x = 0 of the bar is subjected to an external force with
x-component f;(t), then taking the face as massless, Newton’s second law for the
face gives

g 209

AE 3 + fi()=0 (57a)

ay(0,1)
ax

a Neumann condition. Similarly, if the bar has an end at x = L with external force f5(¢),
the Neumann boundary condition there is

oy(L,y) _ 1 '
et —A—b:fz(t)’ t>0. (58)

or

ﬁ fi(o), t>0, (57b)

Homogeneous Neumann boundary conditions describe free ends.
Were we to attach the end of the bar at x = 0 to the origin by a spring (of constant

k > 0) so that the spring were unstretched when the end is at x = 0, (57a) would be
replaced by ;

an(ﬁo’ n._ ky(0,1) = 0, t>0

or 6y(0 t)

+ ky(0,1) = t>0. (59a)
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This is 1 homogencous Robin condition. Similarly. when end x = L is attached to a
spring. the resulting boundary condition is the homogencous Robin condition
cvtL.on

AE—
. (B Y

+ ky(L.1) = 0. 1> 0. (59b)

The initin} boundary value problem for jongitudinal displacements in the bar
consists of the one-dimensional wave equation (56) together with two initial conditions
and zero. one, or two boundary conditions. a problem identical to that for string
vibrations.

Angular Vibrations of Bars

Angular vibrations of a bar also give rise to the above mathematical problem. Let x
denote distance from some fixed reference point 0 cross sections of a cylindrical elastic
bar (Figure 1.18). At time ¢, the angular displacement of the section labeled x from its
torque-free position is denoted by y(x. 1) where it is assumed that in each cross section,
lines that are radial in the bar before torque is applied remain straight after the bar is
twisted. At this time. the segment of the bar between «¢ and x has its right face twisted
relative to its left facc by an amount y{x.1) — v(d.1). The torque exerted across the

element is then

IE(_‘.(,\'. 1) — yla. {)>‘ (60)
N—d

where [ is the moment of inertia of the cross-sectional area about the axis of the bar
and E is Young's modulus of elasticity of the material in shear. It follows (by limits) that
the internal torque exerted on the face at x = 4 by that part of the bar to its right at

time f is

E()'S(:.I). 61)
cx

at x = a due to that part of the bar to its left is

[The internal torque on the face
—~1ECY(a.1) (x.]

16, in addition. an external torque per unit fength tivy acts. and pixais the
density (mass per unit volume) of the bar. then the PDE for angutar vibrations of th
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bar can be obtained from Newton's second law applied to the element between a and x:

g0 g @ j e z>d4—~(f 16,0 2% "dc). (62)
éx éx

Differentiation of this equalion with rcspect to x and division by [ give

oty 1(x, t) d 6y
Ea‘” T a:( at €

When p is constant, (63) reduces to the one-dimensional wave equation

%y L%y  tx0)
e PO I

¢’ = (64)

,_E
P

Accompanying this PDE will be two initial conditions and/or zero, one, or two
boundary conditions.

Exercises 1.3

In Exercises 1-12, set up, but do not solve, an (initial) boundary value problem for the required
displacement. Assume that density of and tension in the string are constant (or that Young's
modulus and density-are constant in the bar).

1.

A taut string has its ends fixed at x = 0 and x = L on the x-axis. It is given an initial displacement
att =0of f(x),0 < x < L and initial velocity g(x), 0 < x < L. Formulate the initial boundary
value problem for displacement y(x, t) of the stringfor0 <x < L and t > 0.

. Repeat Exercise 1 except that the end at x = L is free to slide without friction along a vertical

support.

Repeat Exercise 1 where oscillations take place in a medium that creates a damping force
proportional to velocity and the ends of the string are elastically connected to the x-axis.
Furthermore, do not neglect the weight of the string.

Repeat Exercise 1 except that a vertical force F(t) = cos wt, t > 0, acts on the end x = 0 of the
string and the string is initially at rest along the x-axis.

Repeat Exercise 3 except that the force F(t) in Exercise 4 also acts on the end x = 0.

6. A horizontal cylindrical bar is originally at rest and unstrained along the x-axis between x = 0

and x = L. For time ¢ > 0, the left end is fixed and the right end is subjected to a constant
elongating force per unit area F parallel to the bar. Formulate the initial boundary value problem
for displacements y(x,t) of cross sections of the bar.

A bar of unstrained length L is clamped along its length, turned to the vertical position, and hung
fromitsend x = 0. At time ¢ = 0, the clamp is removed and gravity is therefore permitted to act

on the bar. Formulate an initial boundary value problem for displacements y(x.,f) of cross
sections of the bar.

. Repeat Exercise 7 except that the top of the bar is attached to'a spring with constantk. Let x = 0

correspond to the top of the bar when the spring is in the unstretched position at¢ = 0.
The ends of a taut string are fixed at x = 0 and x = L on the %-axis. The string is initially at rest
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10.

11.

12,

13.

14.

15.

16.

17.
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along the x-axis, then is allowed to drop under its own weight. Formulate an initial boundary

value problem for displacements of the string. What are the static deflections for this string?

Repeat Exercise 9 except that motion takes place in a medium that creates a damping force

proportional to velocity.

Repeat Exergise 9 except that the end of the string at x = L is looped around a smooth vertical

support and a constant vertical force F, acts on this loop. What are the static deflections for the

string?

An unstrained elastic bar falls vertically under gravity with its axis vertical. When its velocity is v

(which we take as time ¢ = 0), it strikes a solid object and remains in contact with it thereafter.

Formulate an initial boundary value problem for displacements of cross sections of the bar.

A cylindrical bar has unstrained length L. If it is hung vertically from one end so that no

oscillations occur, what is its length?

The bar in Exercise 13 is hung from a spring with constant k > 0. How far below x = 0 (the

position of the lower end of the spring in the unstretched position) will the lower end of the

bar lie?

Verify that Robin and Neumann conditions at x = L take the forms (49b) and (47) for massless

ends.

The end x = 0 of a horizontal bar of length L is kept fixed, and the other end has a mass m

attached to it. The mass m is then subjected to a horizontal periodic force F = Fysinwt. If the bar

is initially unstrained and at rest, set up the initial boundary value problem for longitudinal

displacements in the bar.

The one-dimensional wave equation (37) for vibrations of a taut string was derived by applying

Newton's second law to a segment of the string, In this exercise, we use the PDE to discuss energy

balance for the entire string (assumed finite in length).

(a) Multiply the PDE by dy/dt, integrate the result with respect to x over the length of the string
0 < x < L, and use integration by parts to obtain

1 (o foyN2 0 (dyY dy oyl*- LF(x,t) dy
= —{= —(==1] ldx = c?{== — *— ——dx.
ZL [az(az) +e a:(ax X = ox @ 0+ o P azd"
(b) Integrate the result in (a) with respect to time from ¢t = 0 to an arbitrary ¢ to show that
L 2 L 2 L 2
p [0y t(dy _[*e(oyx,0)
L 2(6:) dx + L 2(6x) dx = L_ 2< a )
Lt (3y(x,00\?
Z i d
+ L 2( x )Y

. J" (T oy(L, t)> ay(L,1) i
ot

o ox
! 9y(0,1)\ 2y(0, 1)
+L<—t Em ) 3 dt
1 L ay
+ F(x,t)—=dxdt.
L L ) ot

Interpret each of these terms physically and thereby conclude that the equation is a
statement of work-energy balance. It is often called the “energy equation™ for the string.
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. Show that when the cross-sectional area of the bar in Figure 1.16 varies with position, equa-

tion (56) is replaced by

oty ¢ @ dy F(x,1) , E
57_2(7)5;<A(x)_3;>+—_p s =0

provided expression (53) still gives Tofcts across-eross sections of the bar.

. A bar of unstrained length L is clamped at end x = 0. For time ¢ < 0, it is at rest, subjected to a

force with x-component F distributed uniformly over the other end. If the force is removed at
time ¢ = 0, formulate the initial boundary value problem for subsequent displacements in the bar.

. In this exercise we derive the PDE for small vibrations of a suspended heavy cable. Consider a

heavy cable of uniform density p (mass/length) and length L suspended vertically from one end.
Take the origin of coordinates at the position of equilibrium of the lower end of the cable and the
positive x-axis along the cable. Denote by y(x,) small horizontal deflections of points in the
cable from equilibrium.

(a) Apply Newton's second law to a segment of the cable to obtain the PDE for smail deflections

a2 g ) F

2y _ g2 ()L,

ot ox\ 0x p
where g < 0 is the acceleration due to gravity and F is the y-component of :"fall external
horizontal forces per unit length in the x-direction.

(b) What boundary condition must y(x, ) satisfy?

Transverse Vibrations of Membranes

In this section we study vibrations of perfectly flexible membranes stretched over
regions of the xy-plane (Figure 1.19). When the membrane is very taut and displace-
ments are small, the horizontal components of these displacements are negligible
compared with vertical components; that is, displacements may be taken as purely
transverse, representable in the form z(x, y, t).

Tension normal to curve, but
in tangent plane to membrane

/ Vibrating

¥ membrane
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Figure 1.20
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In discussing transverse vibrations of strings, tension played an integral role. No
less important is the tension in a membrane. Supposc a Jine of unit length is drawn in
any direction ata point P'inthe xy-plane and projected onto a curve on the membrane
(Figure 1.19). The material on one side of the curve exerts a force on the material on the
other sidesthe force acting normal to the curve and in the tangent plane of the surface
at P. This force is called the tension 7 of the membrane.

Ay + ayi2)

To obtain a PDE for displacements 2(x, y,t) of the membrane, we examine forces
acting on an element of the membrane that projects onto a small rectangle in the
xy-plane (Figure 1.20). The vettical component of the tension force on the element is
obtained by taking vertical components of the tensions on the boundaries. The tension
at the point on the membrane corresponding to the point (x, y + Ay/?2)in the xy-plane
acts in the tangential direction of the curve ,

X=X (fixed), y=" z = z(x, y,t),

namely, (0, 1, %Z—) (65)

Y/ iz y +8512.0

.

A unit vector in this direction is

0,1,8z/8
( z/3y) ©66)

O hezioy)
1 4 (62/Ey)* lry + 3312.0

When vibrations of the membrane are such that éz/Cyis very much less than unity (and
we consider only this case), the denominator in (66) may be approximated by 1, and
(66) is replaced by (63). The vertical component of the tension force acting along that
part of the boundary containing the point {x, y + Ay/2, z) may therefore be approxi-

mated by

éz ~ - 0z
Tyix.y + A2 (0, 1, ——) Ax k= (‘C——-> Ax. 67) )
foxey e ay12.0 Y Jixoy + ay:2n Gy )iz y+ axiz.n i
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A similar analysis may be made on the remaining three boundarics. resulting in a total
vertical force on the clement (due to tension) of approximately

(z 2
[(T —.—) - <1’ _—) ]A.\‘
iy 3x.2.00 CY/lixy - ay-2.0

[
- TN - - -
c: — ¢z
+ [(t —.—) - (t T) }Ay. (68}
CX Jx +8x:2.5.0 CX Jjx~axi2.5.00

When Newton's second law (force equals time rate of change of momentum) is applied

to this element of the membrane, the result is

bl al
z (z
l(x.y + 512,10 CY\ix.y-aypr2.0

cy
cz oz

o [ A - NN
CX Jix + Axi2. 5.1 éx ltx— Ax/2.y.1)

¢f ¢z
FAxAy=—|p—AxAy], 69
+ oy 5,(”;, Y y) (69)

where p is the density of the membrane (mass per unit area) and F is the sum of all
vertical external forces on the membrane per unit area in.the xy-plane. If we divide both
sides of this equation by Ax Ay and take limits as Ax and Ay approach zero,

( [‘z) ( (?z)
T =l R
1 (’)‘ x.y+Ayi2.1) Ey [(x.y — Ay/2.1)

lim P( 63) im
(P )=
.lx—'OCt p(" Ay—0 A,V
Ay 0
( Ez) ( c’-z)
T+ il B e
+ lim CX Jix+ ax/2.5.0) CX Jyx - axi2.y. +F
Ax—0 Ax N
or éf ¢z é rc"z + ¢ éz +F 70)
VP )T\t v i .
ét prl cy\ ¢y cx\ ¢x

For most applications, both the density of and the tension in the membrane may be

taken as constant. in which case (70) reduces to

TN o B F ,
T =C T3 +tz3)+—. 7= (71)
ér? éxtooavt) o op p

"This is the PDE for transverse vibrations of the membrane, called the nwo-dimensional

ware equation.
For an external force due only to gravity.
(72)

F = py. g <0:
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for a damping force proportional to velocity,

2
F=—ﬂ—£,- g >0 (73)

and for a re’s'td?fng force-proportional to displacement,
= —kz, k>0 (74)

Initial conditions that accompany (71) describe the displacement and velocity of the
membrane at some initial time (usually ¢ = 0):

2(x,5,0) = f(x,y), (x,y)inR, (75a)
a—zi%y—’g =g(x,y, (oy)inR, (75b)

where R is the region in the xy-plane onto which the membrane projects. A Dirichiet
boundary condition for (71) prescribes the value of z(x, y, t) on the boundary B(R)of R,

ot = fent,  (xyonpR), >0, (76)

f(x, y,1) some given function.

Suppose instead that the edge of the membrane can move vertically and that it is
subjected to an external vertical force f(x, y, t) per unit length. The edge is also acted on
by the tension in the membrane, and the magnitude of the z-component of the tension
acting across a unit length along B(R) is |t0z/dn|, where n is a coordinate measuring
distance in the xy-plane normalto #(R) (Figure 1.21). Consequently, if we take the edge
of the membrane as massless, Newton's second law for vertical components of forces
on an element ds of B(R) gives

—<t?-z—) ds + f(x,y,t)ds =0 (77a)
on/\sry

dz 1
or e ;f(x, ¥ t) (x,y) on B(R), t>0. (77b)

This is a nonhomogeneous Neumann boundary condition. When the only force acting
on the edge of the membrane is that due to tension, z(x, y,t) must satisfy a homo-
geneous Neumann condition,

0z

n =0, (x,y) on B(R), t > 0. (78)

Another possibility is to have the edge of the membrane elastically attached to the

xy-plane in such a way that the restoring force per unit length along B(R) is pro-
portional to displacement. Then, according to (77a),

—(t %E>ds + [—kz + f(x,y,1)}ds = 0, (x,y) on B(R), t>0, (79a)
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where k > 0,and f(x, y, t) now represents all external forces acting on #(R) other than
tension and the restoring force. Equation {79a) can be written in the equivalent form

‘t% + kz = f(x,y,1), (x, y) on B(R), t>0, (79b)

a Robin condition.

T o

BR)

Unit length
along B(R)

=

Magnitude of z-component of tension
along this arc is equal to |13z/3n|

The initial boundary value problem for displacements in the membrane is

2 2 2
gt_f=c2<(‘;c—i+g;§)+”"’y’”, () inR, >0, (80a)
Boundary conditions, (80b)
2(x,5,0) = f(x,y), (xy)inR, (80¢)
z(x,5,0) = g(x,y), (x,y)inR (80d)

If boundary conditions (80b) and external force F(x, y, t) are independent of time,
there may exist solutions of (80a, b) that are also independent of time. Such solutions,
called static deflections, satisfy Poisson’s equation

F(x,
Viz= —(+w (81a)
and Boundary conditions. (81b)

If, in addition, no external forces are present, the PDE reduces to Laplaicc‘s equation

Viz =0 (82)
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An important technique in solving the two-dimensional wave equation is the
method of separation of variables, a method we shall deal with at length in Section 3.2.
In this method it is assumed that displacement can be separated into a function of x and
y multiplied by a function of time t, z(x, y,t) = u(x, y)T(1). Substitution of this into
equation (88d)when F =0 gives

d*T o%u d%u
u(x’y)—dt—z = 02(5;7 T(t) + 5;5 T(I))

1 d®T ¢%(d*u d%u
Far = w\a 5 (®3)

Because the left side of this équation is a function of only t and the right side is a
function of x and y, it follows that each must be equal to a constant, say —k. Then

u(x, y) must satisfy
c? [(d%u N tu\ _ —k
u\ox? = oy

k
or Vu + Fu= 0. (84)

This equation is called the two-dimensional Helmholtz equation. In the present context,
it is also called the reduced wave equation. In essence, it describes the amplitude of the
oscillations of each point in the membrane; T(t) contains the time dependence of the

vibrations. Boundary conditions for the wave equation will yield boundary conditions
for the Helmholtz equation.

Exercises 1.4

In Exercises 1-7, set up, but do-not solve, an (initial) boundary value problem for the required
displacement. Assume that density of and tension in the membrane are constant.

1.

A vibrating circular membrane of radiusr, is givenan initial displacement f(r, 0) and zero initial
velocity. If its edge r = r, is fixed on the xy-plane, formulate an initial boundary value problem
for subsequent displacements of the membrane. Assume that no external forces act on the
membrane.

. Repeat Exercise 1 except that f(r,6) is replaced by f(r).

A circular membrane of radius r, is in a static position with radiallines 0 = Oand 0 = x clamped
on the xy-plane. If the displacement of the edge r = r, is f(0) for 0 <0 < 2, formulate the
boundary value problem for displacement inthe sector 0 < 0 < x. Would there be any restriction
on f(0)?

. Repeat Exercise 3 except that gravity acts on the membrane.

.- Repeat Exercise | except that gravity, as well as a damping force proportional to velocity, acts on

the membrane.
. A rectangular membrane is initially (¢ = 0) at rest over theregion0 < x < L,0<y<L'in the

xy-plane. For time ¢ > 0.a periodic force per unit area cos mt acts at all points in the membrane.
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If the edge of the membrane is fixed on the xy-plane, formulate an initial boundary value
problem for displacements of the membrane.

Repeat Exercise 6 except that the boundaries x = 0 and x = L are elastically connected to the
xy-plane and the boundaries y = 0 and y = L’ are forced to exhibit motion described by f,(x,¢)
and fz(x 1), respectively. g

A circular membrane of radius ry has its edge r =T, fixed on the xy-plane. If gravity and tension
are the only forces acting on the membrane, what are the static deflections of points of the
membrane?

In this exercise we replace gravity in Exercise 8 with an arbitrary (but continuous) function f(r);
that is, assume that the only forces acting on the membrane are tension and a force per unit area
with y-component f(r).

(a) What is the boundary value problem for static deflections z{r) of the membrane?
(b) Show that z’(r) must be of the form

z'(ry = jrf (r)dr.

(c) Express the antiderivative in (b) as a definite integral

2'(r) = —:—J. uf(u)du

and integrate once more to find z(r) in the form

2r) = 1” j Y fu)dudv — J Jvff(u)dudv).
t\Jo JoV oJo?

(d) Interchange orders of integration to obtain

z(r)=%<L uf(u)ln( >du—£uf(u)ln<£>du).

(e) Verify that the result in {d) yields the solution to Exercise 8 when f(r) =
(f) Find deflections when f(r) = k(r — r,), k > 0 a constant.

The two-dimensional wave equation (71) was derived by applying Newton’s second law to a
segment of the membrane. In this exercise we use the PDE to discuss energy balance for the entire
membrane.

(a) Multiply (71) by &2/t and integrate over the region R in the xy-plane onto which the
membrane projects to show that

1 & [éz\? 5 &z (%2 | &2 F(x,y,t) 0z
HREE(EF) dd=c Hk‘e?(ex 2" )"" ﬂrp—a““'

(b) Verify that for = a function of x, y, and 1,
¢z ¢z 1 ¢
",‘—'VZ.".'=V' :—VZ —-:—'VZ'Z‘
' ct ct 20t

and use this identity together with Green's theorem to rewrite the result in (a)in the form

1 éfez\2 ¢ 0z ¢z F(x,y,t) 0z
R S lda=cp L& 200D %4
2JJR|:9’<5'> ! l]dA ‘ 3%(:05‘ E"ds+JjR P, @‘dA
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(¢} Integrate the result in(b) with respect to time from t = 0 to an arbitrary ¢ to obtain

p(ez\ toa g ([ [2(0229Y Lo ,
JJ@[2<51) 3V ]d’“ﬂk[z<——-—‘@, + 219200 O |4
- - Lt [ 92 oz ' 2
+ 1— |—dsdt + F(x,y,t)-dAdt.
L 4;";’-( é‘n)ét ' L”x ey

Interpret each term in this result physically, and hence obtain a physical interpretation of the
equation as a whole. It is often called the “energy equation” for the membrane.

1.5 Transverse Vibrations of Beams

In this section we study vertical oscillations of horizontal beams (Figure 1.22). It is
assumed that the beam is symmetric about the xy-plane and that all cross sections
(which would be plane in the absence of any loading) remain plane during vibrations.
Displacements are then described by the position y(x, t) of the neutral axis.

Figure 1.22

Stretches and compressions in various parts of the beam lead to internal forces and
moments. It has been shown experimentally that the bending moment M(x,t) on the
right face of the cross section of the beam at position x due to the rest of the beam to
its right is related to the signed curvature k(x, () of the neutral axis by the equation

M = Elxk, (85)

where E = E(x) > 0 is Young’s modulus of elasticity (depending on the material in
the beam) and I = I(x) is the moment of inertia of the cross section of the beam

(Figure 1.23). It is shown in elementary calculus that
atyjéx?
K =7z TP (86)
()]
cx

but if we assume that vibrations produce only small slopes. then ¢y/éx « 1, and we
may take

(9]
‘e

(87)

|

o
~<
o
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Consequently, for vibrations producing small slopes, bending moments are related to
curvature by
M0 = E12Y

(x,t) = ax—z (88)
Since 9%y/dx? is positive wh&ii {ie beam-is concave upward (as in Figure 1.23), it
follows that M must be positive on the right face for the direction shown. The moment
on the left face of the same cross section due to the material in the beam on its left is
therefore —M(x,t) = — E13%y/dx>.

)

oy
M(x, t) = El anl

o L
a’

Shear forces also act on any cross section. We denote by Q(x, t) the y-component of
the shear force acting on the right face of the cross section at position x due to that part
of the beam to its right. Then —Q(x, t) is the shear force acting on the left face. Shear
and bending moments are related. To see how, we apply Newton’s second law for
rotational motion of a segment of the beam from a fixed value x = a to an arbitrary
value x (Figure 1.24); the sum of all moments of all forces on the segment must equal
the moment of inertia multiplied by the angular acceleration. Since motion about the

line x = X through the center of mass of the segment is strictly translational, moments
about x = X yield

0 = M(x,t) — M(a,t) + (x — F)Q(x, ) — (a — ¥)Q(a,?)

+ r(c _ R)FC 0L, (89)

~M(x, ) = —El

where F(x,t) is the sum of all vertical forces on the beam per unit x-length.
Differentiation of this equation with respect to x gives

IM(x,t

_. 00(x,t) J0x 9%
0 Ee (X_X)T+(l —-a—x>Q(x,t)+Q(a,t)ax
* 0% _
+ J - SEFQO4C + (x ~ DF(x,0) (90)
If we now take limits as x approaches a, X approachéé-a also, and
M )
0=2 a(f D 4 0w, 91)

Because ais arbitrary, we obtain the following relationship between shear and bending
moments:

_ OM(x,t)
Qx,t) = x (92)




42

Figure 1.24

Chapter 1 Derivation of Partial Differential Equations of Mathematical Physics
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Vibrations of the beam are determined by the interactions of the internal bending
moments and shear forces with the exterior loading w{x, t) per unit x-length (including
the weight of the beam) and all external forces F(x, () per unit x-length {(including
loading). The function w(x, t) is the y-component of the loading and as such is negative,
while F(x, t), the y-component of all external forces, may be positive, negative, or zero.
To describe these interactions, we apply Newton's second law to the vertical trans-
lational motion of the segment of the beam in Figure 1.24:

%(}u SWS, w d{) = J"‘ F(L 0 d + Q(x,t) — Q(a,t), (g < 0). (93)

« Ct g N

The integral on the left is the momentum of the segment—wd{/g is the mass of an
element of the beam of length d{ along the x-axis, and multiplication by velocity
dy (L, 1)/ &t gives momentum. The integral on the right is the sum of all external forces
on the segment, and Q(x,¢) and Q(a, t) are the shear forces on the faces at x and a,
respectively. Differentiation of this equation with respect to x gives

0 (w dy cQ
g(woyy_ . 94
L’t(g az) Fe + 3¢ @4

Substitutions for ¢Q/éx and M from equations (92) and (88) yield the PDE satisfied by
transverse vibrations of the beam:

1 ‘Z AZ
f—(‘l e—y> + %(Eic——z> = F(x,1). (95)
ct\g ét éx {x

When E and [ are independent of x and w(x.1) is independent of ¢, the PDE can be
written in the simplified form

w ¢y v F

w &y Sy B (96)
Elg ¢t ox*t El

In many applications, the internal forces in the beam are so large that the effect of
F is negligible. In such cases, (96) may be replaced by the “homogeneous™ cquation

* A general definition of what it means for a PDE to be homogeneous is given in Section 3.1.
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w d%y + 'y

Elg &t*  ox*

This is illustrated in Exercise 5, where it is shown that when F(x) is due only to the
weight of the beam itself, static deflections are very smalil.

Accompanying (96) or (97F wilt be twa. initial conditions that describe the
displacement and velocity of the beam at some initial time (usually ¢ = 0):

0. 97)

yx,0) = f(x), O<x<lL, (98a)
y(x0) =g(x) O0<x<lL. (98b)
4
Simple support /
- x

—

Various types of boundary conditions may exist at each end of the beam. If the end
x = Q1is “simply supported” (Figure 1.25), displacement and curvature (moment) there
are both zero: ’

0,8 =0, 6231)(‘02, Y (99)
If this end is “built in” horizontélly (Figure 1.26), displacement and slope vanish:
¥(0,1) =0, & gi’ 90 (100)
Finally, if this end is “free” (Figure 1.27), curvature and shear are both zero:
90,0 _ 0 20,9 = 0. (101)

ox? ’ ax3

e

Built in horizontally
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Free end =2~ -

—

— X 7

Similar conditions exist at the end x = L.

Exercises 1.5

In Exercises -4, set up, but do not solve, an (initial) boundary value problem for the required
displacement. Assume that Young's modulus E and the moment of inertia I of the cross section of

the beam are both constant.

1. A horizontal beam of length L has flatends at x = Oand x = L. At time ¢ = 0, it is at rest butits
neutral axis is deflected according to the function f{x),0 < x < L. It is then released from this
position. The left end of the beam is built in horizontally, and the right end is free.

2. Repeat Exercise 1 except that both ends are simply supported on the x-axis.

3. Repeat Exercise | except that a mass mis distributed uniformly along the beam and both ends are
built in horizontaily.

4. Abeam of length Lis clamped horizontally at x = Oand is cantilevered (not supportedjat x = L.
For time ¢ < 0, it is deflected, but motionless, under a downward force of magnitude Fat x = L
and its own weight. At time ¢ = 0, this force is removed. [Hint: In the static situation, the
boundary conditions at x = L are y"“(L) = 0 and y(L) = F/(EI).]

5. In this exercise we illustrate that for small external forces, the nonhomogeneous term [FAED]}in
equation (96) may be neglected.

(a) What is the boundary value problem for static deflections of a beam of length L, simply
supported at both ends? Solve this problem when the external force is constant.

(b) Suppose now that F is due only to the weight of the beam itself. Find the maximum deflectior
of the beam using the following data:

E =21 x 10" N/m?, p = 185 x 10*kg/m?, L =5m,
I =65kg-m?, Cross-sectional area = 0.02 m?.

(&) What constant force (per unit x-lengthj over the beam would create a maximum deflection o
1 em? How large is this compared with the weight per unit length of the beam?

6. Show that when the ends of the beam in Exercise 5 are clamped horizontally, the maximun
deflection is only one-fifth that for the simply supported beam.
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1.6 Electrostatic Potential

(103)
where r is the vector from Q to 4 = 1 (Figure 1.28).1tis straightforward to show that the
curl and divergence of this vector field vanish;

VxE= 0, (104a)
V-E=0. (104b)

A vanishing cur] implies the existence (in a suitably defined domain not containing Q)
of a potential function v satisfying .

E=_vyy (10s)
Combine this with (104b), and we find that ¥ mug; satisfy Laplace’s €quation
Vv =, (106)
Forsucha simple charge dlstnbutnon, 1t1s easily shown [from ( 105)] that to an additive
constant,
V= \Q . (107)
4neyr
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{104a). in which case the potential function V associated with the field is once again
defined by (105). Unfortunately, however, we do not know E (as we did for the point
charge) and therefore cannot solve (105) for V. To find an cquation determining V that
does not cogtain E. we use another of Maxwell's cquations that requires the electric
displacement D to satisfy™

V-D=g (108)

at each point in the medium. When the medium is isotropic with constant permittivity
¢. then D and E are related by

D = ¢E, (109)

and hence E must satisfy

V-E=

‘j_ (110)
€

Between equations (105) and (I 10) we may eliminate E, the result being Poisson’s
equation

ViV = — (111)

g
€

In other words, the electrostatic potential function V associated with an electrostatic
field E must satisfy (111) at every point interior to the charge distribution. At points
outside the charge distribution, ¢ vanishes and V satisfies Laplace's equation (106).

Equations (106) and (1 11) are not, by themselves, sufficient to determine V. Itis
necessary to specify boundary conditions as well. A Dirichlet boundary condition
specifies V(x, y,z) on the bounding surface B(R) of the medium:

Vix, 32 = flqy2) (x.y.2) on B(R), (112)

f(x.v.2) a given function. A Neumann boundary condition prescribes the directional
derivative of V(x, y,z) normal to the bounding surface:

v .

e VV-i= flx,y:) {x.y.z) on B(R), (113)
where ii is the unit outward normal to (R). Since vV = — E.itfollows that specification
of the electrostatic force on a bounding surface yields a Neumann boundary condition.
If 2 bounding surface is free of electrostatic forces, it satisfies a homogeneous Neumann
boundary condition.

A Robin boundary condition is a linear combination of a Dirichlet and a
Neumann condition:
v
!T’— + hV = f(x.y.oh {x.v.z) on B(R). (114)
ot
Dirichlet and Neumann boundary conditions arc obtained by setting [ and h equal to
zero, respectively.
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Exercises 1.6

In Exercises I and 2, set up, but do not solve, a boundary value problem Jor the required potential.
1. Region R in space is bounded by the planes x = 0,y =0,x = L,and y = L. If the planes y = 0
and x = 0 are held at zero potential, whereas x = L and y = L' are maintained at a potential of

100, what is the boundary value proBigmifor poteatial in R?

2. Repeat Exercise 1 except that a uniform charge (with density o) is spread over the volume
L/4<x<3L/4L'/4<y<3L/4
) 3. A region R of space has a subregion R occupied by charge with density a(x, y, z) coulombs per
k cubic meter, assumed continuous (Figure 1.29). Consider the function ¥(x,y, z) defined by

Vix,y,2) = J‘” olX. ¥,2) dZdy dX.
fdnegJ(x — X)) +(y - )+ (- Z)?

Coordinates (X, Y, Z) identify points in R.

@) When (x,y,z) is in R but not in R, V(x,y.2) is clearly well defined. By using spherical
coordinates originating at (x, y, z) for integration variables, show that when(x, y, z)isin R, the
improper integral converges. In other words, V(x, y,z) is well defined throughout all R.

(b) Byinterchanging the order of differentiations with respect to x, y, and z and integrations with
respect to X, Y, and Z, show that when (x, y, z)isin R, butnotin R, V(x, y, z) satisfies Laplace’s
equation (106).

To prove that V(x, y, z) satisfies Poisson’s equation (111) when (x, y, z) is in R requires the theory

of “generalized functions.” Parts of this theory are introduced in Chapters 11 and 12, but the

development is not carried far enough to permit verification of the integral as a solution to

Poisson’s equation. This is not really a problem, however, because the integral representation of

V(x,y,2) is of limited utility anyway. Seldom can the integral be evaluated in closed form. In
addition, the integral does not take into account any boundary conditions that may be present,
and there is no obvious way to modify the integral in order to encompass boundary conditions.

z

Figure 1.29 £

1.7 General Solutions of Partial Differential Equations

When boundary and/or initial conditions accompany an ODE, we often find a general
solution and then use the subsidiary conditions to determine the arbitrary constants.
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This procedure seldom works for PDEs. Arbitrary constants in ODEs are replaced
by arbitrary functions in PDEs, and to use initial and/or boundary conditions to
determine these functions is usually impossible. We give one very simple example
to illustrate the direction the analysis might take in using a general solution for
a PDE to soive-an initial boundary value problem. The one-dimensional vibration
problem

33}' zazy

57=c Fel 0<x<L, t >0, (115a)
y(0,1) =0, t>0, . (115b)
WL, t) =0, t>0, } (115¢)
y(x,0) = f(x), O0<x<L, (115d)
y(x,0) = g(x), 0<x<lL, (115e)

describes free oscillations of a taut string with fixed ends. For consistency, we assume

that the. initial displacement and velocity functions satisfy f(0) = g(0) = f(L) =

g(L) =0. By changing independent variables accordingto v =x + ctand n = x — ct
and denoting y[x(v, 7),t(v, 7)] by w(v,n), the wave equation (115a) is replaced by

0w
=0 116
ovon (116)
(see Exercise 1 for details). The general solution of this PDE is
w(v,n) = F(v) + G(n), (117)

where F and G are arbitrary but continuous functions with continuous first
derivatives. As a result, the general solution of (115a) is

y(x,t) = F(x + ct) + G(x — ct). (118)
It now remains to determine the exact form of these functions. Application of initial
conditions (115d) and (115¢) requires that
f(x) = F(x) + G(x), 0<x<L,
g(x) = cF'(x) — cG'{x), 0<x<L.

When the first of these is differentiated with respect to x and combined with the second,

1
F'(x) = -Z—C[Cf'(x) + g(x)]

and therefore

~

1 T
R0 =309 + 3, | 9Qd+D.

Q

1 1~
Gl = 5 /(9 ~ 5= jo GO dL — D
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(D an arbitrary constant). When x is replaced by x + ctin F(x) and by x — ctin G(x), we
obtain

x+ct

1 |
Y6 t) =3 f(x +ct) + ZJ g({)d{ + D

0o

IS B A
+§f(x—ct)—%]: 9Q)d{ — D

x+ct

~ U+ e+ 5 [ s (119)

At first sight, (119) would seem to be the complete solution of (115), but this would be
very strange, since boundary conditions (115b, c) have not been used, and the solu-
tion of an initial boundary value problem cannot be independent of its boundary
conditions. The reason that (119) is not a complete solution is that f and g are defined
only for 0 < x < L, and yet for (119) to represent y(x, ) for all x and ¢, these functions
must be defined for all real numbers. The boundary conditions will show us how to
extend the domains of f and g beyond the interval 0 < x < L. Boundary condition
(115b) demands that :

(2]

1 1
0 =50 () + f(=ct)] + ZJ dg(C)dC,

and this equation is satisfied if we separately set

[44

flet) + fl—ct) =0, J S0l = 0.

These imply that f(x) and g(x) must be extended from their original domain of
definition 0 < x < L as odd functions. The functions are now defined for —L < x < L.
Finally, boundary condition (115c¢) at x = L is satisfied if we choose

L+
0= f(L +ct)+ f(L— ct), 0=J‘ g(8)deg.
L-ct
These imply that the odd extensions of f and g must also be 2L-periodic, and this
completes definitions of f and g for all real arguments.

The function in (119) can now be used to calculate the position of the string for any
xin0 < x < Land any time ¢ > 0; it is called d "Alembert s solution of initial boundary
value problem (115).

As was stated earlier, this is a particularly simple example, and analyses of this
type are not usually possible. For this reason, it is unusual to solve initial boundary
value problems by finding a general solution for the PDE and attempting to use
initial and/or boundary conditions to determine the arbitrary functions. More direct
methods must be devised.

Notwithstanding the fact that general solutions of PDEs are seldom of use in
solving initial boundary value problems, d’Alembert's solution (119) of (115) provides
considerable insight into the behavior of vibrating strings that are free of external
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forces. Consider first a taut string that at time ¢ = 0 is released from rest [g(x) = 0]
from the position in Figure 1.30(a) [ f(x) = 0 for jx — L/2} = L/16]. This is not a
particularly realistic initial displacement in view of the assumptions in Section 1.3 that
displacements and slopes must be small. But because our discussion is independent of
f(x), we have purposely exaggerated the initial shape in order that our graphical
representations be unfifistakable. According to d'Alembert’s solution (119), subsequent
displacements of the string are defined by

y(x, 1) = %[f(x +ct) + f(x - ct)], (120)

and it is quite simple to obtain a pictorial history of the string using this function. For
any given time ¢, the graph of f(x + ct)/2 is one-half that of f(x) translated ct units
to the left; f(x — ct)/2 is one-half of f(x) shifted ct units to the right. The position of
the string at this particular time is the sum of these two graphs. We have shown
this procedure for the times t = L/(64c), L/(32c), 3L/(64c¢), L/(16¢), and L/(8c¢) in Fig-
ures 1.30(b), (c), (d), (e), and (f), respectively. The dotted curves represent S(x + ct)/2,
the dashed curves f(x — ct)/2, and the solid curves y(x, ).
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Solution:
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(o) I L x
3 L

: 2 L

: Stri ==

o \/ ring at 1 =~

In Figures 1.30(g), (h), (i), (j), and (k), where we have continued this graphical
construction at times ¢ = 7TL/(16¢), 29L/(64c), 15L/(32¢), 31L/(64c), and L/(2c¢), respec-
tively, we have used the fact that f(x) must be extended as an odd, 2L-periodic
function. At ¢ = L/(2c), the string is completely horizontal. Figures 1.30(1), (m), (n), and
(o) show the string at four additional times. This procedure clearly yields the position of
the string at any required time.

What is most interesting is that these graphs suggest the following physical
description for the motion of the string. Figures 1.30(a)—(g) indicate that the initial
deflection f(x) in the string divides into two parts, each equal to one-half of f(x), one
traveling to the left with velocity —¢ and the other traveling to the right with velocity c.
Figures 1.30(h)—(o) suggest that when these disturbances reach the fixed ends of the
string at time 7L/(16c), they are reflected there with a reversal of sign. The refiected
disturbance then combines with the original disturbance to yield the total deflection.
Reflected disturbances then travel toward one another at speed ¢, eventually combining
at time ¢t = L/c to give a disturbance identical to that in Figure 1.30(a), but with a
reversal in sign.

For times t > L/c, the disturbances separate again, travel to the ends of the string,
are reflected there, and recombine at ¢ = 2L/c to yield the initial position in Fig-
ure 1.30(a). : _

For times ¢ > 2L/c, the two disturbances continue to travel back and forth along
the string, interfering constructively near the center of the string and destructively at
the ends. :

All of these things happen very quickly. For instance, if the tension in a 1-m string
with density p = 2.0 g/m is 50 N, then 2L/c = 0.0126. Thus, the initial displacement
separates into two parts, and these two disturbances travel twice the length of the string
and recombine to give the initial displacement in 0.0126 s. In other words, all of this
happens 1/0.0126 = 79 times each second, too fast for the human eye, but not for
sophisticated cameras.

Find the position of the string described by (120) at time ¢ = 1023L/(32¢) when f(x) is
as shown in Figure 1.30(a).

In each time interval of length 2L/c after t = 0, the initial disturbance separates into
two parts; each part travels to an end of the string and is reflected, then travels to the
other end of the string and is reflected, and the parts then recombine to form f(x) once
again. Since 1023L/(32c) = 15(2L/c) + 63L/(32c), the position of the string at time
t = 1023L/(32c) is identical to that at t = 63L/(32¢). But this is 63/64 of the time fora
complete cycle; that is, the two waves will be in the positions shown in Figure 1.31(a).
These are combined to give the position of the string in Figure 1.31(b).
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An alternative procedure is to write (120) at ¢ = 1023L/(32¢) in the form

1023L\ 1f 1023L 1023L
y("’ 3% )= _f<x+ 32 )+f("" 2 )]
- L L
= _f(x +16(2L) — 55) + f(x — 16(2L) + 55)]
- L L
(x-5)+1(5))

since f(x) is 2L-periodic [ f(x + 2L) = f(x)]. These functions are shown in Fig-
ure 1.31(a) and added in 1.31(b). =

N e DI N =

The above discussion and example have illustrated that the motion of a string with
initial displacement f(x) as shown in Figure 1.30(a) and zero initial velocity is easily
described. For more complicated functions f(x), such as in Figure 1.32, the principles
are the same; the only difference is that reflections at the ends of the string begin
immediately. Examples of this are given in Exercises 3 and 4.

v

L

These ideas may also be extended to the situation in which the string is given a

nonzero initial velocity g(x), but no initial displacement, f(x) = 0. In this case, (119)
yields

1 x+ct
y(x, 1) = % J‘I_“ g0y d¢ (121a)

as the displacement of the string at position x and time t. Suppose, for example, that

0 0<x<T7L/16
glx) =k  7L/16 < x < 9L/16,
0 9L/16<x<L
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Figure 1.33

Figure 1.34
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where k > 0 is a constant (Figure 1.33). (It is not obviously so, but such an initial
velocity can be achieved by striking that part of the string 7L/16 < x < 9L/16 with a

hammer.)

vo= g es L

If we denote by G(x) the antiderivative

60 =52 |, st

[+]
y{(x, t) can be expressed in the form
y(x.1) = G(x + ct) — G(x — ct), (121b)

where, because g(x) is extended as an odd, 2L-periodic function [Figure 1.34(a)], the
graph of G(x)is as shown in Figure 1.34(b). The position of the string at any given time
can now be obtained by the (destructive) combination of the left-traveling wave
G(x + ct) and the right-traveling wave G(x — ct). Results are shown for various times
in Figure 1.35.
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When a string has both an initial displacement f(x) and an initial velocity g(x),
graphical techniques may still be used to determine the solution of (115). We express
y(x, t) in the form y(x,t) = u(x, t) + v(x, t), where u(x, t) and v(x,1) satisfy the problems

u  ,0% v  ,0%
a2 T - C ot
u(0,1) =0 v(0,) =0
u(L,ty=0 o(L,t)=0
u(x,0) = f(x) v(x,0) =0

u,(x,0y =0 v,(x,0) = g(x).

Exercises 1.7

1. Show that the transformation of independent variables v = x + ct and n = x — ct replaces the
wave equation (115a) with (116).

2. Determine the position of the string in Figure 1.30(a) when (a) t = L/c; (b) t = 21L/(8¢).

3. Use the graphical techniques of this section to determine the displacements of a string with zerc
initial velocity and initial displacement

x/8 0<x<L/2
o=
(L-x)/8 L/2<x<L
at the {ollowing times:
@) 1 = L/(8¢) (b) t = L/(4c) () t =3L/(8<c) (d) t = L/(2c)
(e) t = 5L/(8c) (f) t =3L/(4c) (g) t = TL/(8c) th) t =L/c
4. Repeat Exercise 3 with f{x) = sin(2nx/L),0 < x < L.
5. Use the graphical techniques of this section to determine the displacements of a string with zer«
initial displacement and initial velocity
» 0 O0<x<L/4
g{x)y=1¢1 L'4d<x<3L/4
0 ILid<x<L
for the times in Exercise 3.
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6. Repeat Exercise 5 with

0 0<x<L/8

i L/8<x<3L/8
g(x).=40 3L/8 < x < 5L/8.
ST TSL/8 <x < TL/8

0 7L/S<x<L

1.8 Classification of Second-Order Partial Differential Equations

The material in this section is not essential at this point in our discussions. It can be
considered at any time, since it is neither a prerequisite for subsequent discussions nor
dependent on them. We include it here because it acts somewhat as a justification for
the approach that we take in the remainder of the book. We intend solving the initial
boundary value problems in Sections 1.2-1.6 using the techniques of separation of
variables; Fourier transforms, both finite and infinite; Laplace transforms; and Green's
functions. Second-order PDEs play a prominent role in these problems; the only
application we have seen so far that gives rise to a PDE that is not second order is that
for beam vibrations. What we illustrate here is that ali linear second-order PDEs (we
define this term shortly) are basically of three types. These types correspond generally
to Poisson’s equation, the wave equation, and the heat conduction equation.
Consequently, once we learn how to apply the above techniques to these three
equations, we have essentially learned how to handle all second-order linear equations.
For purposes of classification, it is not necessary to restrict consideration to linear
equations. The classification is also valid for equations that are linear only in their
second derivatives. Such equations, in two independent variables, are of the form

a(x, y)ue, + b(x, Yy, + c(x, Y)u,, = f(x,y,u,u.,u,), (122)

where f is any function of its arguments whatsoever. It is assumed that a, b, and ¢ have
continuous first partial derivatives in some domain D and that these coefficient
functions do not all vanish simultaneously. We classify such PDEs into one of three
types—elliptic, parabolic, or hyperbolic—and each type of PDE displays character-
istics quite distinct from the others. This classification is stated as follows:

Partial differential equation (122) is said to be hyperbolic at a point (x, y) if

b% — 4ac > 0; (123a)
parabolic at a point (x, y) if

b* — dac = 0; (123t
and elliptic at a point (x, y) if

b* — dac < 0. (1230)

This classification is a pointwise one so that a PDE may change its type from point
to point. The one-dimensional wave equation (37) is hyperbolic at all points; the
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one-dimensional heat conduction equation in Example 3 of Section 1.2 is parabolic;
and Poisson’s equation (6a) is elliptic.
We shall show that by means of a change of independent variables
v=wxy,  n=nlxy) _ (124)

PDE(122)can be transfrmed into simpler forms. We require that functions v(x, y) and
n(x, y) have continuous second partial derivatives in D and that the Jacobian

o(v,n)
a(x,y)

in order that the original variables x and y be retrievable:

#0 (125)

x = x(v,n), y =ylv,n). (126)

When we replace x and y by v and 5, we denote the dependent variable by
w(v,n) = u[x(v,n), y(v,)]. It follows, then, that u(x, y) = wlv(x, y),n(x, )], and chain
rules for partial derivatives permit us to express derivatives of u(x, y) with respect to
x and y in terms of derivatives of w with respect to v and n:

Uy =w,v, + won,, u, = w,v, + wpn,
and Uex = (W Ve + Wil )V, + WV, + (WooVe + W )0, + Wollyy,
Uy = (WoyVy + Wity )V, + WiV, + (Woo ¥y + Wo ), + Wotly,
Uy, = (Weo ¥y + Wout )V, + WV, + (We v, + wen ), + wn,, .
The PDE in w as a function of v and n equivalent to (122) is therefore
(avg + bv,v, + cviw,, + [2aven, + b(van, + vym,) + 2cv,h,1w,,
+ (anl + by, + cntyw,, + (ave, + by, + cv,)w,
+(an., + by, + eny Yw, = [Tx(v,n), y(v,0), W, W, v + W, Wy, + won, ]

or aw,, + fw, + yw,, = F(v,n, w,w,,w,), (127a)
where a=av?+ bv,v, + cvl,
B = 2av.n, + b(v,n, + vyn,) + 2cvyn,, (127b)
Y =an: + by, + on}
and F(\‘J, now,w,,wo) = (v, ), y(von) w, wov, + won, wov, + won,]

—(avy, + by + cv)w,
—(an, + bn,, + cny)w,. (127¢)

[t is a simple exercise to show that

2 2
B2 — 4ay = (b2 — 4ac)<f((:v_’z))> , (128)
clx.y

a result that proves that our classification of PDEs is invariant under a real
transformation of independent variables.
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We now suppose that PDE (122) is of the same type at every point (x, y) in D and
show that hyperbolic PDEs can be transformed into the canonical form

w,, = F(v,n,w, Wy, W), (129a)
parabolic PDEs can be transformed into the canonical form

} T Wy = F, W, Wy W) (129b)

and elliptic PDEs can be transformed into the form

W, + Wy, = F v, 1, W, w,, w,). (129¢)

Hyperbolic Equations

For hyperbolic PDEs, we claim the existence of a transformation (124) that reduces the
PDE to canonical form (129a). This is possible if functions v(x, y) and n(x, y) can be
found to satisfy

0 =a=avl+bvy, +cvj, (130a)
0=y =an? + bnn, +cnp (130b)
2
or 0= a(z’i> + bx"— +c (131a)
Yy Vy
2
0= a("—") + bE +c; (131b)
ny ny

that is, the ratios v./v, and #,/n, must satisfy the same equation,
aA? +bdl+c=0. (132)

Since b2 — dac > 0, there are two distinct solutions, 4, = A(x,y) and 4, = 4,(x, y),
of this quadratic. Consequently, when functions v(x,y) and #(x, y) satisfy the first-
order PDEs

Ve = )~1(x’ }’)Vy. Nx = '12()‘»}’)'1,, {133)
the PDE in w as a function of v and 5 is reduced to the form
Bw,, = F(v,n,w, w,,w,). (134)

Since B2 — doy = B = (b? — 4ac)[3(v,n)/d(x,y)]* # O, we may divide by B and obtain
the canonical form for a hyperbolic PDE.

Because of the form of PDEs (133), solutions can be obtained with ODEs. Indeed,
suppose the ordinary differential equation

dy
Y — 2y (135)

has a solution defined implicitly by

vix,y) = Cy. (136)
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-

Then each curve in this one-parameter family has slope defined by

d ,
v, + v,a%=0 or d—‘—v—= i (137)

dx v,

Consequcntfy., Q’ﬁcn (135}s solved in form (136), function v(x, y) satisfies the PDE

vx
= = 4{x ) (138)
V’
The curves defined implicitly by (136) are called characteristic curves for the hyperbolic
PDE; they are determined by the coefficients a, b, and c in the equation.
Similarly, the ODE
d

y —_— e
dx - lz(x,J’) (139)

defines a one-parameter family of curves
n(x,y) = Ca, (140)

also called characteristic curves, and n(x, y) is a solution of n, = A,(x, Vny-

Each of the families v(x, y) = C, and n(x, y) = C,forms a covering of the domain
of the xy-plane in which the PDE is hyperbolic (Figure 1.36). Furthermore, at no point
can the particular curves from each family share a common tangent (else A, = A atthat
point).

nex. 3 = G

vix,y) = C,

Under the transformation v = v(x, ), 1 = n(x, y), regarded as a mapping {rom the
xy-plane to the vy-plane, curves along which v and n are constant in the xy-plane
become coordinate lines in the vi-plane. Since these are precisely the characteristic
curves, we conclude that when a hyperbolic PDE is in canonical form, coordinate
lines are characteristic curves for the PDE. 1n other words, characteristic curves of a
hyperbolic PDE are those curves to which the PDE must be referred as coordinate

curves in order that it take on canonical form.
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Show that the one-dimensional wave equation

Ay 1 a2y
—‘_——"—'— yt 1 Jxr
5 ax? F(x Y Ve Yo

is hyperbolic, and find an equivalent equation in canonical form.

Sincv:;r2 4ac = 4t/p > O, the Ple is hyp?thc Characteristic curves can be found
by solving the ODE

dx
'a"t— = ).(x, t),

where A(x, t) satisfies A2 — t/p = 0. From the equations

dx T dx T
I——-Al:—\/l:; and —E-——lz J;,

we obtain the characteristic curves

x=-—-\/£t+Cl, x=\/£t+C2.
) p

1t follows, then, that the transformation

f f
v=Xx+ |- n=x— [—t
P P

will reduce the wave equation to canonical form in w(v, n):

6

Notice that when F =0 in this example, the canonical form for the one-
dimensional wave equation y,, — (t/p)y., = 0 is
w

This is precisely equation (116) of Section 1.7, but now we see the origin of the
transformation v = x + ctand g = x — ct.

If Y(v) and ¢(n) are any two (twice continuously differentiable) functions of the
canonical variables v and g, then

!l'x = ll’,(v)vx = )“l(xi Y)Vy‘l’l(") = }'l(x, y)‘//ya
¢x = 4"('1)’1: = ZZ(XV ,V)'ly¢’('l) = A’Z(xa ,V)d’,
Thus, ¢ [v(x, y)] and ¢ [#(x, y)] also satisfy (133), and it follows that any transformation

_ of the form

=yl ¢ =¢l(xyl] (141)

also reduces the PDE to canonical form (in ¢ and ¢).
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Finally, notice that if weset r =v + 1,5 =V — n, and f(r,s) = wlv(r, s)n(r, s)l,
then

w,=fire+ fiso =L+ s
Wiy = ol + SosSq + SuTu JisSq
=fo— St SomSs=Tu— S
Consequently, the PDE in f(r,5) corresponding to (129a) is
for = fio = FOVr, ) 08 £, S+ S Jo = Sk (142)

this is sometimes used as a canonical form for hyperbolic equations.

and

Parabolic Equations

Parabolic equations can be transformed into canonical form (129b) by (124)if functions
v(x, y) and n(x, y) can be found to satisfy

0 =ﬂ = 2avx',x + b(vx”y + vy"x) + 2CVy'Iy, (1433)
0=y =an? + bnn, + cn;. (143b)
The second equation can be written in the form

2 n
0= a(—") + b(—"—) +c (144)
r'y ny

0=ai* + bl +c (145)

so that n,/n, must satisfy

Since b2 — 4ac = 0, there is exactly one solution 4 = A(x,y) of this quadratic, and
n(x, y) must therefore satisfy the first-order PDE

e = X, Yy (146)
When n(x, y) is so defined, y = 0 and, from (128),
av,n) \*
0=(b2—4ac( : = B* — 4ay = B
oty B y=8
Thus, § must also vanish, and PDE (127a) in the parabolic case reduces to

aw,, = Fv,now,w,,wp). (147)

Since x # 0 (why?), we may divide to obtain the canonical form (129b) for a parabolic
PDE.

We may obtain 5(x,y) by writing the solutions of the ODE

dy = =Xy (148)
dx

in the form

nix,y) = C. (149)
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The curves in this one-parameter family are called characteristic curves for the
parabolic PDE. Parabolic PDEs therefore have only one family of characteristic
curves. Notice that no mention of v has been made throughout the discussion. It
follows that the canonical form for parabolic PDEs is obtained for arbitrary v(x, y),
except that v(x, y) must be chosep to yield a nonvanishing Jacobian (125).

- T .

Is the one-dimensional heat conduction eqa'tion
v R (x.1)
w:a kI
parabolic?

The equation is already in canonical form for a parabolic PDE. "

Show that the PDE
' X2y, — 2xyu,, + yiu,, = x* +u,
is parabolic, and find an equivalent PDE in canonical form.

Because b2 — dac = (—2xy)* — 4(x*)(y?) = 0, the PDE is everywhere parabolic.
Characteristic curves can be found by solving

where A(x, y) satisfies
0= x2i2 = 2xyAd 4+ y* = (xA — y)%
Consequently, we solve

dy_ Y

dx x’
the solution of which can be written in the form xy = C. We choose therefore
n(x,y) = xy, and v(x,y) is arbitrary except that the Jacobian d(v,n)/d(x,y) # 0. If
we choose v(x, y) = y, then

ovim) _
o(x, y)
Instead of using (127) to write the PDE in w(v, n) equivalent to the original equation in

u(x, y), let us perform the transformation. To do this, we require the following partial
derivatives:

01
y X

‘ =~y #0 (except along the x-axis).

U, = WV + Wl = YWy, Uy = WV, + Wil = Wy xw,,
- . _ .2

U = J(Woy Ve + Woalle) = Y W,

Uep == Wy o P(Wo by + Wotly) = Wy + Jw,, + Xywo,,

— . = . 2
Uy = WV, + Wl + X(Wo v, + Weail,) = Wi, + 2xw, + Xw.
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Substitution of these into the PDE for u(x, y) along with x = n/v and y = v gives

2

2
Ui LN n . n n
F\-IW“ — 2;V(W,' + w,, + ;VW,,,,) -+ V2<wvv + 2;qu + FW,,,,)

w

2
n
=T VZ

SAw, +

< |3

M

-
Thus, the PDE equivalent to the given equation is
| v
w,, = F[nz + viw, + pv(l + 2v)w,],

valid in any domain not containing points on the x-axis (for which v = 0). "

Elliptic Equations

Transformation (124) reduces an elliptic PDE to canonical form (129¢) if functions
v(x, y).and n(x, y) can be found to satisfy

0 = 2av.n, + b(v.n, + v,n,) + 2cvyn,, (150a)

0 =a(v — n2) + b(vev, — nen,) + (v — ) (150b)
For hyperbolic PDEs, v(x, y) and n(x, y) satisfied first-order PDEs that were separated
one from the other. Similarly, n(x,y) in the parabolic case satisfied a first-order
equation that was independent of v(x, y). Unfortunately, equations (150) for v(x, y) and
n(x, y) are mixed; both unknowns appear in both equations. In an attempt to sepa-
rate them, we multiply the first by the complex number i and add to the second to give

a(ve + i) + b(ve + in (v, + in) + (v, + in,)* =0.

This equation can be solved for two possible values of the ratio

v +in,  —bxb*—dac —btiJdac—b*
a h 2a

= 151
v, + in, 2 (151
(since b2 — 4ac is known to be negative). Real and imaginary parts of equation (151)
give
.- —bv, — (+)n,+/4ac — b? h. = —bn, + v,\/4ac — b? (152)
T 2a ! T 2a

or 2av, + bv, = — (), 4ac — b, +v,\/4ac — b? = 2an, + bn,. (153)

These are linear equations in v, and v, that have the following solutions in terms of the
partial derivatives 1, and #,:

, 2cn, + ba, .= 2an, + by,
* +J4ac — b’ Yy Jdac — b2

These equations (called the Beltrami equations) are equivalent to (150), but they stilt
form a mixed set of equations in the sense that v and n appear in both. A second-order

(154)
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PDE for n(x, y) is evidently

8 (Zanx + bn,,) ] ( 2cn, + bn,) (185) -
ax Jdac — b? oy\  Jdac—b2/
If this equation is solved for n(x ) and then used to determine v(x, ), the original PDE

.

in uris transformed to the form~ ° —
aw,, + aw,, = F(v,1,w,w,, w,). (156)

Since 0 < (b2 — dac)[d(v,n)/d(x,y)]* = B2 — 4oy = —4a?, it follows that « # O, and
the elliptic PDE can be obtained in canonical form (129c).

The only difficulty with this procedure is that in general, PDE (155) for n(x, y) may
not be significantly easier to solve than the original PDE in u(x, y). Instead, notice that
the form of equation (1 51)suggests that we define a complex function ¢(x, y) of two real
variables x and y,

¢(X, )’) = V(X., y) + i"(xa y)v (157)

in which case v(x, y) and #n(x, y) can be retrieved as the real and imaginary parts of
@(x, ). It is clear that ¢(x, y) must satisfy one of the equations
' 6, —b+iJdac— b2 '
—_—= . (158)
®, 2a
To solve either one of these complex PDEs for ¢(x, y), we employ the same technique
used for hyperbolic and parabolic equations: we consider the ordinary differential

equation
dy b+ iVdac ~ b?
dx 2a
{ordy/dx = (b — i\/4ac — b?)/(2a)] for y as a function of x. Because the right side is

complex, we must (temporarily) regard x and y as complex variables. If we obtain a
solution in the form

(159)

o(x,y) =C, (160)
then

dy ¢, b +iJdac —b?
&8 _Driviac— o (161)
dx ¢, 2a

clearly indicating that ¢(x, y) is the required function. Real and imaginary parts of ¢
(once again regarding x and y as real) give v(x, y) and n(x, y).

Because xand y in (159) are considered complex, elliptic PDEs do not have real
characteristic curves.

Find regions in which
%
Uge + XU = YU,

is elliptic, and find an equivalent PDE in canonical form.
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Since b* — dac = —4x>. the PDE is elliptic in any region that does not contain points
on the y-axis. To find a transformation that will reduce the PDE to canonical form, we
set

. d
e D e, Z{- = —;'(x‘ }'),
where A(x, y) is one of the complex solutions of ;2 4+ x? = 0. If we choose A = —ix,
then
4y _ ix
dx

and y = ix?/2 + C. The transformation functions v and # are the real and imaginary
parts of y — ix?/2,
2

—x
vy =y ey =—
With this transformation,
Uy = WV + Wyl = — XWqs Uy = WV, + Wlly = W,
Upx = — Wy — (W ¥ + Wplle) = — Wy + xzw,m,

Uy = WiVy + Wiglly = Weve

Substitution of these into the original PDE gives
Wep + Wop = 2—n(w,, + vw,).

Had we chosen to set dy/dx = —ix, the transformation would have been v(x,y) = W,
n(x,y) = x2/2, and the equivalent PDE would have been

1
Wy, + Wy = I_ZH(W" + vw,). .

To summarize our results, all second-order PDEs in two independent variables
that are linear in their second derivatives can be classified as hyperbolic, parabolic, or
elliptic. The one-dimensional wave equation is hyperbolic, the one-dimensional heat
equation is parabolic. and the two-dimensional Poisson's equation is elliptic. We can
therefore discover properties of all second-order PDEs in two independent variables
that are linear in second derivatives by analyzing vibrating strings, heat conduction
in rods, and two-dimensional electrostatic problems. Each type of equation has prop-
erties distinct from the others; properties of hyperbolic equations differ from those
of parabolic equations. and these in turn differ from those of elliptic equations. For
instance, in Section 1.7 we saw that a disturbance (more generally, information) is
transmitted by the wave equation (a hyperbolic equation) at finite speed. Information
(in the form of heat) is transmitted infinitely fast by the heat equation (see Section 5.6).
Elliptic equations represent static or steady-state situations. Other properties of
hvperbolic, parabolic, and elliptic equations are discussed throughout the book,
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particularly in Sections 5.6-5.8. Problems associated with these equations are even
characterized differently; all three are accompanied by boundary conditions, but the
wave equation has two initial conditions, the heat equation has one, and Poisson’s
equation has none.

Second-order PDEs in more than two independent variables can also be classified
into-types, including parabolfc; eitiptic, and hyperbolic. However, it is not usually
possible to reduce such equations to simple canonical forms. One instance in which a
canonical form is possible is for PDEs with constant coefficients. We shall not discuss
the classification and canonical forms here, but we should point out that in this
classification, the three-dimensional Laplace equation is elliptic, the multidimensional
wave equation is hyperbolic, and the multidimensional heat equation is parabolic.

Exercises 1.8

In Exercises 1-4, classify the PDE as hyperbolic, parabolic, or elliptic and find an equivalent PDE
in canonical form.

1. U, + 2u,, +u,, =u, — xu, 2. Uy, + 2u,, + Suy, = 3u, — yu
3. 3u,, + 10u,, + 3u, =0 4. u,, + 6u,, + uy, = 4uu,

In Exercises 5—11, determine where the PDE is hyperbolic, parabolic, and elliptic. Hllustrate each
region graphically in the xy-plane.

S. g + 2y, + Su,, = 15x + 2y 6. xlu,, + 4y, =u
7. x2yup, + xyu,, — ytu, =0 8. XyUy, — XUy, + Uy, = i + 3
9. (sinx)u,, + (2cos x)u,, + (sin x)u,, =0 10. (xlny)u,, + 4u,, = u, — Ixyu

11, u,, + xt,, + yu,, =0

12. Find a PDE in canonical form equivalent to the PDE in Example 8 that is valid in regions not
containing points on the y-axis.

13. (a) Show that the Tricomi PDE
Vg, +u, =0

is hyperbolic when y < 0, parabolic when y = 0, and elliptic when y > 0.
(b) Find an equivalent PDE in canonical form when y <0.
{¢) Find an equivalent PDE in canonical form when y > 0.
(d) Find an equivalent PDE in canonical form when y = 0.
14. Find regions in which

X ge + 4y, =u

is hyperbolic, parabolic, and elliptic. In each such region, find an equivalent PDE in canonical
form.

15. Show that
Y2y, — 2xyu,, + xu,, =0

is everywhere parabolic. Find an equivalent PDE in canonical form valid in regions not
containing points on the x-axis.
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16. Show that
2
x |
U, + qux), - ('—2— + Z)u” =0

- is hyperbolig-ip_the entire xy-plane. Find its characteristic curves and illustrate them
geometrically. e
17. Show that the PDE
XUy, + Yy, =0
- is hyperbolic when x # 0. Find an equivalent PDE in canonical form.

18. (a) A second-order PDE in two independent variables x and y is said to be linear if it is of the
form

au,, + bu,, + cu,, + du, + eu, + fu = g(x, »h

where a, b, ¢, d, e, and [ are functions of x and y only. Show that when these coefficients are
constants, the canonical forms for hyperbolic, parabolic, and elliptic equations remain linear
with constant coefficients:

Wen + pw, + qw, +trw=g¢g (hyperbolic),
W, +pw, + qw, trw =g (parabolic),
w,, + Win + pw, + qw, +rw=g (clliptic).

Prove that in the case of a hyperbolic equation, the first-derivative terms w, and w, can be
eliminated by a change of dependent variable

v(v,n) = e P"w(v, 1)

b

~—

for appropriate constants € and p.
() Verify that the transformation in (b) can be used to eliminate first derivatives for elliptic
equations also.
Show that the transformation in (b) will eliminate w, and w for a parabolic equation when
q # 0 and will eliminate w, and w, when ¢ = 0.

«d

~

In Exercises 19-21, use the results of Exercise 18 to find simplified canonical representations for
the PDE.

19. u,, + 211”, + 514).,. = 3u, 20, u, + 6“xy + u,, = 4u,

21, g, + 2 U= U, — U
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Fourier Series

2.1 Fourier Series

Power series play an integral part in real (and complex) analysis. Given a function f(x)
and a point x = g, it is investigated to what extent f(x) can be expressed in the form

1) = 3, ac—ar

Perhaps one of the most important uses of such series (and one that we require in
Chapter 8) is the solution of linear ODEs with variable coefficients. In this chapter we
introduce a new type of series called a Fourier series; such series are indispensable to the
study of PDEs. Fourier series are used in a theoretical way to determine properties of
solutions of PDEs and in a practical way to find explicit representations of solutions.
Some of the terminology associated with Fourier series is borrowed from ordinary
vectors; in addition, many of the ideas in Fourier series have their origin in vector
analysis. A quick review of pertinent ideas from vector analysis will therefore facilitate
later comparisons and help to solidify underlying concepts in the new theory.

The Cartesian components of a vector v in space are three scalars v,, v,, and v,
such that v = vi + v,.i + v, k. Formulas for these components are

-~
~
<

v, =V, vy =¥, v, =v-k (1

69
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These cxpressions are very simple, and the reason for this is that the basis vectors i, j,
and k are orthonormal: that is, they are mutually orlhogondl (or perpendlcular) and
have length 1. Given different basis vectors, say e, =i +je,=i—j and e; = 3k,
which remain orthogonal, it is still possible to express v.in terms of the e;,

-

TT T

—_ v=ur.e, + v,e; + vye;. (2)

However, because the e; do not have length |, component formulas (1) must be re-
placed by somewhat more complicated expressions. Scalar products of (2) withe,, e;,
and e, give

v-e, vee, » vee,
vy = 3=
|e,|2' lez|2‘ |e3|2

3)

Were the e; not orthogonal, expressions for components would be even more
complicated, but we have no need for such generality here.

Thus, when an orthogonal basis is used for vectors, equations (3) yield components,
and when the basis is orthonormal, the simpler expressions (1) prevail.

We.now generalize these ideas to functions. When two functions f(x) and g(x) are
defined on the interval a < x < b, their scalar product with respect to a weight function
w(x) is defined as

b
J. w(x) f(x)g(x)dx. (4)

This definition is much like the definition of the scalar product of ordinary vectors,
u-v=uu, +upv, +uc., provided we think of a function as having an infinite
number of components, its values at the points in the interval a £ x < b. Correspond-
ing components of f(x) and g(x) are then multiplied together and added in (4). The
weight function in scalar products (1) and (3) is unity; definition (4) is more general;
it permits a variable weight function w(x). Corresponding to the test for orthogonality
of nonzero vectors u and v, namely u - v = 0, we make the following definition for
orthogonality of functions.

Two nonzero functions f(x) and g(x) are said to be orthogonal on the interval a < x < b with
respect to the weight function w(x) if their scalar product vanishes:

b
j w(x) f(x)g(x)dx = 0. (5)

A sequence of functions | f,(x}} = fi(x). f3(x).... s said to be orthogonalona < x < b
with respect to wi(x) if every pair of functions is orthogonal:

- .
‘ w(X) [0 fa(x1dy =0, whenn #m. (6)

o
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For example. since

2x 2n 1
J. sin nx sinmx dx = J‘ 3(cos(u — m)x — cos(n + mjx)dx
0 0 =

i {sin(n —m)x _sin(n + m)x}"

=0,

- =20 n—m- n+m o

the sequence of functions {sin nx} is orthogonal on the interval 0 < x < 2n with respect
to the weight function w(x) = L. The sequence is also orthogonal with the same weight
function on the interval 0 < x < m.

By analogy with geometric vectors, where [v|2 = v - v, we regard the scalar product
of a function f(x) with itself as the square of its length; that is, we define the length
[0l of a function on the interval a < x < b with respect to the weight function

w(x) as
b
HfGoll = \/T w()[S(x)]* dx. : (7

A sequence of functions { f,(x)} is said to be orthonormalona < x s_lb with respect to
the weight function w(x) if '

n=m

n#gm (8)

y
j () ) o) dx = {(')
Condition (8) therefore requires the functions f,(x) to be mutually orthogonal and of
unit length.

Any orthogonal sequence can be made orthonormal simply by dividing each
function by its length; that is, when { f.(x)} is orthogonal, {f,(x)/ll Sx)\I} is ortho-
normal. For example, since

* T
y (sinnx)?dx = =,
0 2
the sequence {/2/n sin nx} is orthonormal with respect to the weight function w(x) = 1
ond<x<m
With these preliminaries out of the way, we are now ready to consider Fourier
series. In the theory of Fourier series, it is investigated to what extent a function f(x)
can be represented in an infinite series of the form

a z, . nm
—29 + "Z“ (a"cos'-'%{ + b, sm%>. 9
where a, and b, are constants. The 2 in the first term of this series is included simply as a
matter of convenience. (The formula for a,, n > 0, will then include ag as well)
Because cos(nnx/L) and sin(nnx/L) have period 2L/n, it follows that any function
f(x) expressible in form (9) must necessarily be of period 2L (or of a period that evenly

* The notation (F(x)}} o represent F(b) — Flat is useful in ev aluating definite integrals.
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divides 2L). That many 2L-periodic functions can be expressed in this form is to a
large extent attributable to the fact that the sine and cosine functions satisfy the fol-
lowing theorem.

.
- "

-

The set of functions ?l‘:cos(nnx/L). sin(nnx/L)} is orthogonal over the interval 0 < x < 2L
with respect to the weight function w(x) = 1. Furthermore,

2L 2L 2 2L 2
12dx = 2L; cosnﬁ dx = sinﬂ dx = L. (10)
o ° L o \ L

(See Exercise 15 for a proof of this result.)
It follows that the functions {l/\/i, (l/\/Z)cos(nnx/L), (l/\/-lj) sin(nnx/L)} are
orthonormal with respect to the weight function w(x) = 1 on the interval 0 < x < 2L.
Suppose we neglect for the moment questions of convergence and formally set

nm nnx
fx)= —+ Z(a cos —— +b n——L—) (11)

Just as Dy, Dy, and v. are the components of v with respect to the basis vectors i, j, and k
inv=opi+ v,j + v, k, we regard the coefficients ay/2, a,, and b, as components of f(x)
with respect to the basis functions 1, cos(nnx/L), and sin(nnx/L). If we integrate both
sides of (11) from x = 0 to x = 2L, and formally interchange the order of integration
and summation on the right, we obtain

2L ' a
f f(x)dx = =2(2L).
0 2

1 2L
Thus, QG =1 J S(x)dx; (12a)
0

that is, if (11) is to hold, the constant term a,/2 must be the average value of f(x) over
the interval 0 < x < 2L. When we multiply both sides of equation (11) by cos(knx/L),
integrate from x = 0 to x = 2L, and once again interchange the order of integration
and summation,

2L k
J f(x)cosﬁdx—J. smdv
0 L
¥ 2L k 2L k
Z ( . a cos%cos%dx + L b sxn%cos%dx)
=a,(L) (by the orthogonality of Theorem ).
1 [t
Thus, a, = Tl f(v)cos—dv n>0. (12b)
Similarl b= m[( ysin X g (120)
\2 = — x)sin—dx. c
y "= 1o X L dx
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We have found, therefore, that if f(x) can be represented in form (11), and if the
series is suitably convergent, coefficients a, and b, must be calculated according to (12).
What we must answer is the converse question: If a, and b, are calculated according
to (12), does series (11) converge to f(x)? Does it converge pointwise, uniformly, or
in any other sense? When ao4d,,3nd b, are calculated according to (12), the right side
of (1) is called the Fourier series of f(x). Numbers dy, a,, and b, are called the Fourier
coefficients of f(x); they are, as we have already suggested, components of f(x) with
respect to the basis functions 1, cos(nnx/L), and sin(nnx/L).

Theorem 2, which follows shortly, guarantees that series (11) essentially converges
to f(x) when f(x) is piecewise continuous and has a piecewise continuous first deriv-
ative. A function f(x) is piecewise continuous on an interval a < x < b if the interval
can be divided into a finite number of subintervals inside each of which f(x) is
continuous and has finite limits as x approaches either end point of the subinterval

“from the interior. A 2L-periodic function is said to be piecewise continuous if it is

piecewise continuous on the interval 0 < x < 2L. Figure 2.1(a)illustrates a 2L-periodic
function that is piecewise continuous; its discontinuities at x = ¢ and x = d are finite.
Because the discontinuity at x = ¢ in Figure 2.1(b) is not finite, this function is not
piecewise continuous.

v

L x

[y

F TN B T
¢+ 2L

(a)

7

(b)

A function f(x) is said to be piecewise smooth on an interval a < x < b if f(x)and
J'(x) are both piecewise continuous therein. A 2L-periodic function is piecewise
smooth if it is piecewise smooth on 0 < x < 2L. The periodic functions in Figure 2.2
are both continuous: that in Figure 2.2(a) is piecewise smooth: that in Figure 2.2(b) is
not. The 2L-periodic function in Figure 2.3 is piecewise smooth.

The Fourier series of a periodic, piecewise continuous (unction J(x) converges to
[f(x+) + f(x—)]/2 at any point at which f(x) has both a left and right derivative,
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Figure 2.2

Figure 2.3
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!
- -.
- - — :)l'
(a)
v
o> al <
(b)
v
[ L il ‘

By f(x+) we mean the right-hand limit of f(x) at x, lim,.o+ f(x + €). Similarly,
f(x—) = lim,_q. f(x — ). The proof of this theorem is very lengthy; it requires veri-
fication of a number of preliminary results that, although interesting in their own
right, detract from the flow of our discussion. We have therefore included the proof as

Appendix A following Chapter 12.

Since functions that are piecewise smooth must have right and left derivatives at all
points, we may state the following corollary to Theorem 2. ’

When f(x) is a periodic, piecewise smooth function, its Fourier series converges to

[flx+)+ f(x=))/2

For such functions, we therefore write

XY+ flx— z ; . nm
Heh e 10m)_to (g cos™ 4 b, sin ). s
where
i 2L - A 1 2L R
a=7 L (x)cosﬁ%:dx. h, = I L f(x) sin"—?‘dx. (13b)

There is nothing sacrosanct about the limits v = Oand x

= 2L onthe integralsin (13b);

~all that is required is integration over one full period of length 2L. In other words,
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expressions (13b) could be replaced by

1 c+ 2L | c+ 2L .
a, = i J; f(x) cosﬁlx—dx, =T J; f(x)sin ?dx, (13¢)
where c is any number whatsaevet.

If we make the agreement that at any pomt of discontinuity, f(x) shall be defined
(or redefined if necessary) as the average of its right- and left-hand limits, (13a) may be
replaced by

J(x) =5 0 4 Z (a cos— agrt b,s f—;;) (14)
For example, the Fourier series of the function f(x) in Figure 2.1(a) converges to the
function in Figure 2.4; f(x) must be defined as the average of its right- and left-hand
limits at x = d + 2nL and redefined as the average of its right- and left-hand limits at

x=¢+ 2nL.

l l x

d +
ZL

Find the Fourier series of the function f(x) that is equal to x for 0 < x < 2L and is
2L-periodic.

According to (13b), the Fourier coefficients are

r2L 2)2L
ao—%do xdx:{-{x?}o =2L;
13 X
a,,=zdO xcosde
1 (Lx . nmx L? nmx ) 2~
=Z{FESI“T+E—ZCOST}O =0, n>0;
r
b..=zll—douxsinﬂ—dx
=-l—{-LY ﬂ+—LZ——sin"—"—"E}u‘=—~2£ n>0
L L n’n? L, '

We "|ay lllC[ClO(e write
an 2 l nnx
f('\) § [ - L<1 z Si“ )1

provided we define f(x) as L at its points of discontinuity x = 2nL (Figure 2.5).
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Figure 2.5 6L -
Example 2: Find the Fourier series of the function f(x) thatisequaltox?for —L < x < Landisof
period 2L.
Solution: In this example, it is more convenient to integrate over the interval —L<x<L.In
other words, we use (13c) withc = —L to calculate the Fourier coefficients:

1 [ 1 (x)* 202
“°=zj L-‘“‘“z{ﬁ'} S

=Ll WL PR L T L
4LY(—1)"
n(znz ) . n >0
1 L
b, = T J._Lxlsmmdx
1 f-Lx? cos™ 4 2L%x Gin"X 2L3 cos ™ L
T L) nm L nn? L n’n® L
=0, n>0.
Because f(x) is continuous for all x (Figure 2.6), we may write
L} = 4L%—1)" anx _L? 4Lz k] l " nx
S =7+ P il T L3 s T

This Fourier series can be used to find the sum of the series DI 1/n*. When we se:
x = L, and note that f(L) = L?

L L AL m (=0
L= -'—-‘T —1[_‘,‘—"21( 2) cosnm
LY 4L &= |
:-——-{-————’ J—
3 ot oLS=TnT
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L+
/|\ /1\ 1 /J\
Figure 2.6 =+ L e S
Example 3: Find the Fourier series for the 2n-periodic function f(x) in Figure 2.7.
y
/\ 1 sin x /\ /\
X
Figure 2.7 - T
Solution: With L = = in (13b),
a L f(x)dx 'sinxdx——l-{—cosx}‘—-z'
°Tx o o x ° T
1 (2 : L=
a, = — S(x)cosnxdx =— | sinxcosnxdx
T Jo T Jo
i
l {5 sin x} n=1
nt | fcos(n — 1)x cos(n + 1)x]~*
{2m—u 2n + 1) } n>1
— = lc
- [1 +(=1"] ’
1) n>1
1 ("
b, =— f(x)smnxdx——I sin x sin nx dx
T Jo T Jo

x sm2x w1
3 =

sin(n — l)x __sin(n + l)x}"

-1  2m+10) n>1

o
|

n=1

?—1{'—‘
O N ee———

n>1

Because f(x) is continuous for all x, we may write

2 [1+(=D"] [
,.Z‘z gy cosmx + 3sinx

Terms in the series vanish when n is odd. To display only the even terms, we replace n
by 2a:

=l|-

Sx) =

2 & cos2nx

T 1
Slx) == +gsinx —— )

L 4nt -1 "

- [ — !
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When we write (14), we mean that the sequence of partial sums {S,(x)} of the
series on the right converges to f(x) for all x; that is, were we to plot the functions
in the sequence

a
- Solx) = 7° -

a nx . 7mX
Si(x) = 7" + (a1 cos—~ + b, sm—L—-),

a nx . mx
Sy(x) = 33 + (alcos—E + blsm-f)

2nx . 2nx
+ azcos—L-+bzsmT R

and so forth, their, graphs should resemble more and more closely that of f(x).
Figure 2.8 illustrates this fact with the partial sums Sy(x), Sy(x), S5(x), S3(x), S¢(x), and

' S,0(x) for the function f(x) in Example 2. Graphs are plotted only for —L < x < 3L;

they are extended periodically outside this interval.

Figure 2.9 illustrates the same partial sums for the function f(x) in Example 1, but
convergence in this case is much slower. This is easily explained by the fact that the
Fourier coefficients in Example 2 have a factor n? in the denominator, whereas in
Example 1 the factor is only n. Figure 2.9 also indicates a property of all Fourier series
at points of discontinuity of the function f(x). On either side of the discontinuity, the
partial sums eventually overshoot f(x), and this overshoot does not diminish in size as
more and more terms of the Fourier series are included. This is known as the Gibbs
phenomenon,; it states that for large n, 5,(x) overshoots the curve ata discontinuity by
about 9% of the size of the jump in the function. '

Entire books have been written on Fourier series and their properties; some of
these properties are developed in Section 2.3. For most of our discussions on partial
differential equations, we require the basic ideas of pointwise convergence (contained
in Theorem 2) and the ability to differentiate Fourier series. The following theorem
indicates conditions that permit Fourier series to be differentiated term by term.

If f(x) is a continuous function of period 2L with piéccwise continuous derivatives f(x) and
J(x), the Fourier series of f(x),

ay z nmx . nnx
X)=—+ a,cos— + b,sin— |,
=5 s 3 (oo bsn'7)
can be differentiated term by term to yield
Sty + fx=)
3 =

f(x) = i n<—a,, sinn—;—t‘f + b"cosﬂ). (15)
a=1 ’

L

o~ =
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Figure 2.9
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Proof: Because f'(x) is piecewise smooth, its Fourier series converges to [ f(x +)+ f(x —)}/2 for each x,
fe+)+ fx=) 4, & nmx _ nax
3 _—2—+"§=:l A,cos T + B,sin )
1 2L 1 2L 2L .
where A" =7 jo f’(x)cosﬁ-z-‘{dx = E{f(x)coslgi}o + 2—1; fo f(x)smf-n[:—{dx
= ﬁgb,}, n>0;
2L 2L 2L
B,= [1‘_ J, f’(x)sin%dx = Ji{f(x)sin%}o - ;}:— L f(x)cos%dx
_-n .
- L ny
o= [ reoax = Lisenge =0
°“L ], U Wie =5
Consequently, . S
fx+)+ f(x=) = & . Amx . nnx .
5 _L..Z::n a,sin— + b, cos ) .
Example 4: The function in Figure 2.10(a) is the derivative of the function in Figure 2.7 (for

Example 3). Find its Fourier series.

\ ‘y\ AW
\ \ “\

(a)

N
EAUEAGR

Figure 2.10 (b)
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Solution:

Chapter 2- Fourier Series

The function f(x) in Figure 2.7 is continuous and has Fourier series

2 = cos2nx

1
f(x) —+55"1X——u;,4nT_—i‘.
Since f"(x)'and f* (x) are piecewise continuous, we may differentiate this series term by
term and write

, I 2 & —2nsin2nx
S0 =5008% =2 ¥ et 1

=%cosx+4 Y

2nx,
Yoo lsmnx

provided we understand that f'(x) is the function in Figure 2.10(b), that is, provided we
define f'(nn) = (—1)"/2. "

Integration formulas (13b) for Fourier coefficients almost invariably involve
integration by parts. These integrations can be combined by using what is called
the complex form for a Fourier series. With the expressions cos 8 = (e® + ¢™*)/2 and
sin 8 = (e — ¢7%)/(2i), we may express the Fourier séries of a function f(x) in the
form

a & nnx . hnx
flx) = —3 + Z (a,,cos—— + b,,sm—)
L L
nxxl/L + e-mtxllL ennxi/L___e—mlxilL
(a" >

b
 On %

a, + lb,.) —amxi/L i <a" — ib">eﬂﬂﬂll‘
("- 'bn> —nrxifl o f (a—-———_" ib “") - nnxi/L

or f(x) = i c e "L, (16a)

A=E-m

+

nMs

NIC?

nMs

+

+

N]o"

uMs

N

where ¢y = a4/2, ¢, = (a, + ib,)/2 when n > O and ¢, = (a_, — ib_,)/2 when n < 0. It
is straightforward to verify using formulas (13b) that for all n,

1 2L L
- nnxif b
=57 L f(x)e dx. (16b)

This is called the complex form of Fourier series (13). Its compactness is evident, and
only one integration is required to determine the complex Fourier coefficients ¢,. In
addition, Fourier cocfficients a, and b, are casily extracted as real and imaginary parts
of ¢, (see Exercises 22-26).
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Exercises 2.1

In Exercises 1-14, find the Fourier series for the function f(x). Draw graphs of f(x) and the
JSunction to which the series converges in Exercises 1-8, 13, and 14.

L f(x)=3x+2 0<x<4, flx+4)=[f(x)
2 f()=2xP—1, 0<x<2L, [Ox+23L)= /00
L fx)y=2xr=1, —-L<x<L, f(x+2L)=f(x)
4. f(x)=3x, 0<x<2L, f(x+2L)= f(x)
5. f(x})=3x, —L<x<L, fix+2L)=f(x)

S(x +2L) = f(x)

AL-x) O0<x<L
6'ﬂ”={ -L L<x<2L'

2 0{x <1
7. f)={1 l<x<2  f(x+3)=f(x)

0 2<x<3

x 0<x<2
8. f(x)={2 2<x<4,  [f(x+6)=f(x)

6—x 4<x<6
9. f(x)=1+sinx —cos2x 10. f(x)=2cosx—35in10x+4c€>s2x
11, f(x) = cos?2x 12. f(x) = 3cos 2xsin 5x
13. f(x)=¢", O0<x<4, f(x+4)=f(x)

sin x 0<x<gn

14. f(x)={—25inx n<x <2 S+ 2m) = f(x)

15. Verify that the functions in Theorem 1 are indeed orthogonal.

16. A student was once heard to say that the Fourier series of a periodic function is not unique. For
example, in Example 1 the Fourier series of the function in Figure 2.5 was found. The student
stated that this function also has period 4L and therefore has a Fourier series of the form

%, ¥ nnx in X
f(x) = 5 +n;(a,,cos T3 + b, sin ZL)'

Is this series indeed different from that found in Example 1?

In Exercises 17-21, find the complex Fourier series for the given function.

17. The function in Example 2. 18. The function in Exercise 13.
19. The function in Exercise 7.
| 0<x<L
20. = 3 .
fx) {_1 Lexeay JEFALI=100)
x O<x<L
21. = . A 2L) = f(5
f(x) {M_x Lo vao JEFU=S)

In Exercises 22-26, find the trigonometric Fourier series for the given function by ‘calculating
camplex Fourier coefficients c, and then taking real and imaginary parts.

22. The function in Example 2. 23. The function in Exercise 8. N
24. The function in Exercise 7. 25. The function in Exercise 2.
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26.
27.

28.

2.2

Chapter 2 Fourier Series

The function in Exercise 6.
{s

f(x)= i d"emui/L

. ; eat .
where - d, = 3L J'o f(x)e "t dx

an alternative to equation (16} for the complex form of the Fourier series of a function f(x)? How
is d, related to a, and b, in this case?

A function f(x) is said to be odd-harmonic if f(x + L) = — f(x).

(a) Prove that such a function is 2L-periodic.

(b) Illustrate an odd-harmonic function graphically.

(c) Show that the Fourier series for an odd-harmonic function takes the form

z - . (2n—1
flx)= z [azn—xCOSM + ban-1 Sm(—!’—‘—)g‘],
"= L L
: 2 (L @2n — t)nx
where Qo-1 =1 J; f(x)cos‘———L-—- dx
2 [k . (2n — 1)nx
and by—y = T J‘O f(x) sm———L——dx.

Fourier Sine and Cosine Series

When f(x) is a 2L-periodic, piecewise smooth function, it has a Fourier series
representation as in (13a) with coefficients defined by (13b). If, in addition, f(x) is an
even function, it is a simple exercise to show that its Fourier coefficients satisfy

2 (t nnx
=— —_— = ) 17b
4 =7 L J(x)cos I dx, b,=0 (17b)

(see, for instance, Example 2). Thus, the Fourier series of an even function has only
cosine terms,

=213 a,c0s", (17a)
2 .4 3

and is called a Fourier cosine series.
When f(x) is an odd function, its Fourier coefficients are

L
a, =0, b, = —j f(x)sin%{dx, ) (18b)

0
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and therefore the Fourier series of an odd function has only sine terms,

S(x) = i b,,sinn-Z—x, (18a)
. n=1

T
- —

and is called a Fourier sine series.

Example 5: Find the Fourier series for the function J(x) in Figure 2.11.
y
1
3 Figure 2.11 \/-ll’
x Solution: Because f(x) is an odd function of period 2, its Fourier series must be a sine series

f(x) = nil b,sinnnx

e e

with coefficients

/2 1

2xsinnnx dx + 2‘[ — 2(x ~ 1)sin nx dx

1/2

2 ! .
b, =_f S(x)sinnnxdx = ZJ
| S PR o
—_ 1 1/2
= 4{—-cos nnx + ——sin mrx}
nw nn o
—(x—1 1 !
— 4{(;——)005 nnx + ——sin mtx}
nn n°n 1/2

8 i nn
= ——§in—.
nin? 2

Because f(x) is continuous for all x, the Fourier series of f(x) converges to f(x)for alil x;

that is,
® 8 | an . 8 &2 (=1t |
Jf(x) = "; pEpT SN sinanx = — ..; msm&n — Dnx. .
£ Example 6: Find the Fourier series for the function f(x) in Figure 2.12.

Figure 2.12
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Solution:
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Because f(x) is an even function of period 4, its Fourier series must be a cosine series

fl) =2 +Zacos—;—x

31y2
e = dax XU 16,
J.(4 x*)dx {4x 3}0 3

== — xY)cos X
a,—2f0(4 x*)cos 3 dx

2 (4 — x¥)s . nnx 8x s, 16 16 sin T 2
T 2 nln? 2 a3 2 4,

with coeﬁ’icncms

‘6( )u+l

nn

Because f(x) is continuous for all x, we may write

8 &2 16(—1)"*' nnx
SO =3+ X —ma s
8 16 & (=)' nnx
=3t L g 2

Alternatively, we could have noted that this function is 4 minus the function in
Example 2 when L is set equal to 2. Hence,

- (2’ o ol )

3 nz a=1 n" 2

)u+l nnx

L
Z : .
= 2

Because we have treated Fourier sine and cosine series as special cases of the full
Fourier series in Section 2.1, they have been approached from the following point of
view: Can an even (or odd) 2L-periodic function f(x) be expressed in a Fourier series of
form (17a) [or (18a)]?

When sine and cosine series are used to solve (initial) boundary value problems,
they arise in a different way. Sine series arise from a need to answer the following
question: Suppose a function f(x) is defined for 0 < x < L and is piecewise smooth for
0 < x < L. Is it possible to represent f(x) in a series of the form

fi) =3 b,sin % (19)
n=1

talid forO0 <x < L?

Notice that f(x) is not odd and it is not periodic; it is defined only between x = 0
and x = L. But by appropriately extending f(x) outside the interval 0 < x < L, we
shall indeed be able to write it in form (19). First. we recognize that (19) resembles (18a),
the Fourier sine series of an odd function. We therefore extend the domain of definition
of f(x) to include — L < x <0 by demanding that the extension be odd; that is, we




Figure 2.13

Figure 2.14
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define f(x) = —f(—x) for —L< x <0. For example, if f(x) is as shown in Fig-
ure 2.13(a), it is extended as shown in Figure 2.13(b). Next, we know that series
(18a) represents a 2L-periodic function. We therefore extend the domain of definition
of f(x) beyond — L < x < L by making it 2L-periodic [Figure 2.13(c}].

¥ --. - . y
V-\; x | )/\; x
L ~L L
/{
a
@) (b)
y
P ™
’4' . d/
£ 1 1 1 x
-2 ~L ‘{ L 2L
) » Ip
‘ R\.-J"" \.//
]

We have now extended f(x), which was originally defined only for0 < x < L,toan
odd, 2L-periodic function. Because f(x) was piecewise smooth on 0 < x < L, the
extended function is piecewise smooth for all x. As a result, the extended function can be
represented in a Fourier sine series (18a), with coefficients defined by (18b), and this
series converges to the average value of right- and left-hand limits at every point. Since
the extension of f(x) to an odd, periodic function does not affect its original values on
0 < x < L, it follows that the Fourier sine series of this extension must represent f(x)
on 0 < x < L. Thus, we should calculate the coefficients in (19) according to (18b).
Finally, we should note that the series will converge to O at x =0 and x = L.

In summary, when we are required to express a function f(x), defined for 0 <
x < L, in form (19), we use the Fourier sine series of the odd, 2L-periodic extension
of f(x).

In a similar way, if we are required to express a function f(x), piecewise smooth on
0 < x < L, in the form

a e nnx
fx) ==+ Y a,cos——, O0<x<L, (20)
2 2= L
we use the Fourier cosine series of the even, 2L-periodic extension of f(x). For the

function f(x)in Figure 2.13(a), this extension is as shown in Figure 2.14. The series will
converge to lim,_q- f(x) and lim,_, - f(x) at x = 0 and x = L, respectively.
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Example 7:

Solution:

Figure 2.15

Example 8:

Solution:

Chapter 2 Fourier Series

Find coefficients b, so that

nrx

L+ 2x = }:bsmT

for all x in thc interval 0 < x < 3.

Constants b .must beThe coefficients in the Fourier sine series of the extension of
1 + 2x to an odd function of period 6 (Figure 2.15). According to (18b),

2 nmx nn
= — in —— = — M d
b, 3 J.o f(x)sin 3 dx 3 L(l + 2x)sm——3 x

2(-3 nnx 18 nnx)d 2
=3V — 4+ 55 sin—p =-—— H—-1)"*1].
3{m[(l+2x)cos 3 +n2nzsm 3 }0 nn[l+ (-]
Consequently,
0 7 ntl
l+2x— Zl—_'_—i—)——-sinn—-g, 0<x<3.

At x = 0 and x = 3, the series does not converge to | + 2x; it converges to zero, the
average value of right- and left-hand limits of the odd, periodic extension of 1 + 2x.

I A
oo

Find coefficients a, so that
nmx

a X
1 =2 -
+2x = Z nCOS—

for all x in the interval 0 < x < 3.

The constants a, must be the coefficients in the Fourier cosine series of the extension of
1 + 2x to an even function f(x) of period 6 (Figure 2.16). According to (17v),

3
j. f(t)d‘c——j‘ (1 +2Y)dt—‘§{t+’< } =8;
o
3 5 (3
j f(x)cos~?’-dx =3 J.O(l + 2x)cos—3—dx

3 . onmx 18 nnx)? 12 n
{—(1 + 2x)sin— +n2—n2-COS—§—}0 :n—zn—z[(—l) - 11
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Consequently,
o (=1 -1
1 +2x = ——E Z ) os%.
Terms in the series vanish when'n is even. To display only the odd terms, we replace n by

2n — 1 and sum fromn = [ to infinity:

24 = 1 Cos(2n — )nx
at s (2n— 1) 3 i
Atx = Oand x = 3, the series converges to 1 and 7, respectively (these being the average

of right- and left-hand limits of the even, periodic extension), so that the series-actually
represents { + 2xfor0 < x < 3. -

14+2x=4-— O0<x <3

renit

i
N L i

i

Figure 2.16
Exercises 2.2 _
. In Exercises 1-5, find the Fourier series for the function f(x). Draw graplu' of f(x) and the
3 ﬁmctwn to which the series converges in Exercises 2-5.
i 1. f(x) = 2sin4x — 3sinx
2. f()=|xt, —m<x<mn, f(x+2n)=f(x)
gl x -4<x<4
3. f(x)—{s_x d<x<ty’ JEH16)=/x)
4. f)=2x2~1, —-L<x<L, f(x+2L)=f(x)
7 cos X —-n/2 < x<nf2 _
O Jx) = { /2 <x <3n/2’ i+ 2m) = f(x)
In Exercises 6-10, expand f(x) in terms of the functions {sin(nnx/L)}.
1 O<x<L/3
6. f(x)=—x, 0<x<L 7. f(x)=1{0 L/3<x<2L/3
-1 2L/3<x < L
; L/4 0<x<L/4
k Li2 —x L/d<x<L/2 .
At 8. = . = R R
f(x) x— L2 L2 < x < 3L/4 9. f(x) = sin(nx/L)cos(nx/L)

5 L/4 JL/A<x<L
g 10. f(x)=Lx—x% 0<x<L

In Exercises 11-15, expand f(x) in terms of the functions {1, cos(nnx|L)}.
1L f(x)=—x, 0<x<L 12. f(x) = sin(nx/L)cos(nx/L), 0 < x < L

[
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13.

15.

16.

17.

18.

19.

20.

21.

Chapter 2 Fourier Series

fixh=Lx —-x% O0<x<lL 14. fix)=1, 0<x<lL

l O<x<Ls2
f(")_{o Li2<x<lL
Find the Fourier series for the function f(x) = |sin x| by using the fact that the function has
period = What series is obtained if a period of 2n is used?
Under what additional condition is it possible to express a function- f(x) that is piecewise smooth
on 0 < x < L in the form

fx) =Y a,,cosy—g?
a=1 L

Hlustrate with graphs that when a function f(x) defined on the interval 0 < x < L is continuous

(from the right) at x =0,

(a) the Fourier cosine series of the even, 2L-periodic extension of f(x) always converges to f(0;
at x = 0;

(b) the Fourier sine series of the odd, 2L-periodic extension of f(x)converges to f(0) at x = 0if
and only if f(0) =0.

Are similar statements correct at x = L?

Suppose that f(x)is continuous on the interval 0 < x < L with piecewise continuous derivatives

S(x)and f"(x).

(a) Show that the Fourier sine series of the odd, 2L-periodic extension fy(x) of f(x) can be
differentiated term by term to give a cosine series that converges to [ fo(x+) + fo(x—)1/2if
J(0) = f(L) = 0. Does the differentiated series converge to f'(0+) at x =0 and f(L—) at
x = L when f(0) = f(L) = 0?

(b) Show that the Fourier cosine series of the even, 2L-periodic extension f,(x) of f(x)can always
be differentiated term by term to give a sine series that converges to [ f.(x+) + f.(x—)1/2.
Does the differentiated series converge to f(0+) at x =0 and f(L~)at x = L?

(a) Find the Fourier series for the function

x O<x<L

f(x)={2L-—x L<x<a JEHUI=S

Use this result to find Fourier series for the following functions:
b) filxy=L—|x], —L<x<L, f(x+2L)=f(x)
(© fi(x) =2L-2L-x|, 0 <x<4L, f(x+4L)= f(x)
) filx}=x, —L<x<UL, f(L+x)=f(L—x), f(x+4L)= f(x)
(@) A function f(x) is said to be odd and odd-harmonic il it satisfies the conditions

f(=x) = —f(x), S(L+ x)= f(L— x).
Show that such a function is 4L-periodic.
(b) Tllustrate an odd, odd-harmonic function graphically. Is it symmetric about the line x = L?
(c) Show that the Fourier series of an odd, odd-harmonic {unction takes the form

X (2n — l)nx

fx)= 3 b,sin ST

n=1

2 [* (2n — )nx
h b,=~— x}sin ————dx.
where T L f(\)sm‘ 5L dx
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22. (a) Afunction f{x)is said to be even and odd-harmonic if it satisfies the conditions

J(=x)=f(x), fL+x)=—f(L~x)
Show that such a function is 4 L-periodic.

(b) lilustrate an even, odd-hagntonic function graphically. Is it antisymmetric about the line
~x=L2 T =

(c) Show that the Fourier series of an even, odd-harmonic function takes the form

0 2n —
. J(x) = «;1 a,cos (_"_2%)_795
H ' 2 [t 2n — nx
h = Ak
L where a, I J; f(x)cos 37 dx
: 2.3 Further Properties of Fourier Series
5 In Sections 2.1 and 2.2 we dealt with point-by-point convergence of Fourier series. In

this section, and again in Chapter 5, uniform convergence of Fourier series is of

considerable importance. It is appropriate, therefore, to give a brief review of uniform - °

convergence, but we do so in a general setting rather than in the restrictive environment
of Fourier series.

2 A series of functions ) 7_, u,(x) converges to (or has sum) S(x) if its sequence of
partial sums {S,(x)} converges to S(x). This is true if, given any ¢ > Q, there exists an
integer N such that |S,(x) — S(x)| < ¢ whenever n > N. Usually N is a function of ¢
and x; in particular, the choice of N may vary from x to x. What this means is that
convergence of {S,(x)} to S(x) may be faster for some x's than for others. If it is pos-
sible to find an N, independent of x, such that |5,(x) — S(x)| < & for all n > N and all x
¥ in some interval I, then Yo, u(x) is said to converge uniforml y to §(x) in I. The word
“uniform” is perhaps a misnomer. When N is independent of x, convergence is not
necessarily uniformly fast for all x's; the rate of convergence may still vary from x to x.
- What we can say is that convergence does not become indefinitely slow for some x’sin I.
In practice, what often happens is that there is an x, in I at which convergence is
slowest; for all other x's, convergence is more rapid than at this x,. In this case,
convergence is uniform. The most widely used test for uniform convergence of a series is
the Weierstrass M-test.

Theorem 4 (Weierstrass M-Test)

P If a convergent series of (positive) constants . M, can be found such that |5 (x)| < M, for
each nand all x in I, then Zf;, u (x) is uniformiy convergent in /. :

An excellent example to illustrate these ideas is the geometric series Yo ox™ It
is well known that this series converges to 1/(1 — x) on the interval —1 < x < 1. In
Figure 2.17 we show the five partial sums S =L8() =1+ x58(x)=1 + x + x?2,
Sa¥)=1+x+x*+x%andSs = | + x + x% + x> + x* aswell as S(x) = 1/(1 — x).
They indicate that convergence of the partial sums S,(x) to S(x) is rapid for values of

x close to zero, but as x approaches + 1, convergence becomes much slower. We can
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demounstrate this algebraically by noting that

| I —x" X
S()-‘)_S"(x)=l—x_ [—x 1-x

forth between numbers close to + 1/2.

N
o
=

i

This is the difference between the sum of the series and its nth partial sum. As x
approaches 1, the difféfence becomes very large; near x = — 1, it oscillates back and

Sax) =1 +x

(a) - (b)

e

X

K}
+ x
1

>=—/ ‘7/—/14(,\r)=l+x+x2
P 1 < I

-1 T -1 |

Sy =1 + x + e

' N { X
-1 H !

Figure 2.17 (e}

X
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When x is confined to the interval x| < a < 1, wecanstate that |x"| < a* and since

= _oa" converges, it follows that the geometric series ) 7, X" converges uniformly on

Ix] < a < 1. Convergence is slowest at x = a; at all other points in |x] < a, it converges

more rapidly than it does at x = a. The series does not, however, converge uniformly on
the interval |x| < 1; convergenge becomes indefinitely slow as x — £ 1.

-The Weierstrass M-test i easily generatized to series whose terms are functions of
more than one variable. For example, Y >, u (x, y) is uniformly convergent for points
(x,y) in a region R of the xy-plane if there exists a convergent series of constants
Yo s M, such that for each n and all (x, y) in R, [u(x, )| < M,.

Series of the following form arise in almost all phases of our work:

5. x%0

that is, series in which each term is a function X,(x) of x multiplied by a function Y,(y)
of y. We find Abel's test useful in establishing uniform convergence of such series.

Theorem 5 (Abel’s Test)

Figure

2.18

A series Z‘:: 1 Xa(X) Yoy} cohvergcs uniforinly in a region R of the xy-plane if: ‘

(1) the series Y =_, X,(x) converges uniformly with respect to x for all x such that (x, )
isin R;

(2) the functions Y,(y) are uniformly bounded" for all y such that (x, y) is in R;

(3) for each y such that (x, y) is in R, the sequence of constants {Y,(y)} is nonincreasing.

As further explanation of these conditions, suppose R is the “closed” region in
Figure 2.18 consisting of the area R inside the curve plus the bounding curve S(R).
Condition (1) requires Z‘::‘ X,(x) to be uniformly convergent for a < x < b. Condi-
tions (2) and (3) must be satisfied for ¢ < y < d. Of course, the roles of X, (x) and Y,(y)
could be reversed.

y

d -

B(R)

a b

It is a well-known fact that the sum of finitely many continuous functions is a
continuous function. On the other hand, the sum of infinitely many continuous

' A sequence of functions {Y,{y)} is said to be uniformly bounded on an interval { if there exists a constant
M such that | Y,(y)| < M for all xin I and all n.
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functions may not be a continuous function. Fourier series are prime examples; each
term in a Fourier series is continuous, but the sum of the terms may well be
discontinuous (sece Example 1). When coavergence is uniform, the following result
indicates that this cannot happen.

.
T e
* —

Theorem 7

A uniformly convergent series of continuous functions must converge to a continuous function.

This means that convergence of the Fourier series of a discontinuous function cannot
be uniform over any interval that contains a point of discontinuity.

In many applications of series, it is necessary to integrate a series term by term.
According to the following theorem, this is possible when the series converges
uniformly. ‘

Theorem 8

When a series Z:‘;x u,(x) of continuous functions converges uniformly to S{x) on an interval
asx<g b’

b - E b
j S(x)dx = Y, J u,(x)dx. (21)
a=1 Ja

More important to our discussions of Fourier series and partial differential
equations are sufficient conditions for term-by-term differentiability of a series. These
are given in the next theorem.

Suppose ) 7_, u (x) = S(x) for a < x < b. Then
S =Y up(x), a<x<b, (22)
n=1

provided each u,(x} is continuous for a < x < band theseries § ©_ 1 4a{x)is uniformiy convergent
onasgx<b

[n the remainder of this section we discuss properties of Fourier series, which,
although not directly related to partial differential equations, provide a better
understanding of the manner in which Fourier series represent functions. We begin
with the following result.

Theorem 9 (Bessel's Inequality)

If f(x)1s a piecewise continuous function on 0 < x < 2L, its Fourier coefficients must satisfy the
inequality
~s

a; Lo, N L=
-+ ag + by —
2 k;( Ry LJO

L
[f()]2 dx. 23)
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Proof: When

knx knx
S(r)——2-+ Z (a,‘cos T +b"snT)

is the nth partial sum of the F ouner‘senes of f(x), orthogonality of the sine and cosine functions
can Be used to evaluate -

krx

2L 2L
Jl [f(x)-S,.(x)]’dx=J. [f()]dx -2 j f(x)( + Z (auCOST

+ b, smk—z-)) dx + J‘ < Z [ (cos ——)
. knx\? . knx
+ b}(sln—i—> ]+ ag Z (a,‘cos .+ by sin T )

+2 ) abcos smﬂt—)5
iWj=1 L

L

inx _jux jrx
+2i>;=l<a.-a,cos7‘—c I + bbys sin— T sm—l:—)>dx

2L n
= J' (f(x))Pdx — 2(‘-122 (aol) + kZl {a(aL) + bk(bk")]>
. Z
2 )
+ %"m) + 3 [al(L) + b))
Consequently, for any n,
a(z) [ l 2L 2L
%y S eon=1([Tvere- [ ue-sers)
k=1 1] 1]

Since the second integral on the right is nonnegative, it follows that for any n whatsoever,

r2L
L1 faeonst| U .
By letting n become infinite, we can also state that
a% £ 5 s 1 2L )
S+ Y (@ +bh <~ [f(x]*dx (24)
2 = L},

In Theorem 11 itis shown that inequality (24) may be replaced by an equality, the result
being known as Parseval’s theorem. Our proof of Parseval’s theorem requires uniform
convergence of the Fourier series of a function. Conditions that guarantee this are
stated in the following theorem.

Theorem 10

If a 2L-periodic function f(x) is continuous and has a piecewise continuous first derivative, its
Fourier series converges uniformly and absolutely to f(x).
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The conditions on f(x)and f'(x) ensure pointwise convergence of the Fourier series
ap it nmx . hnx
x)=—+ a,cos—— + b,sin—
f =0+ § (ancos T+t =)

of f(x) (9[(_);) for each x. Since each term in this series may be expressed in the form

anx , . hmx . (nnx
a,cos— + b,,sm—L— =Jal + b? sm(—— + 4’..),

L L

it féllowsvlhat the series of absolute values
] a 0
+ Z ' °l Z Ja? + bl (25)

Uniform and absolute convergence of the Fourier series of f(x) will be established once the series
* \/a2 + bI is shown to be.convergent. If

a=1
Azo + Z (A cos—L—+ B, m—-z—x)

is the Fourier series for f'(x), its Fourier coefficients are related to those of f(x) by the equations

%
2

AX X
a,cos —— in—
" L " L

nm —nrn
=""p B =
All n? n L

aﬂ
{see the proof of Theorem 3). Thus,

m 2 2
Z\/a T b= :;t\/A,f+Bf=%ZVA + By 26)
1 =

To proceed further, we require a result called Schwarz's inequality. It states that for arbitrary
finite sequences {c,} and {d,},n = 1,....mof nonnegative numbers,

m m m 12
Y. Cad S( )3 05) ( 2, df) : @7
a=1 n=1 n=1

This result is verified in Exercise 1. When it is applied to the series .. | JA? + Bl/nontheright
side of equation (26), we obtain

m L m l 1/2 m 172
§ JaTv ol s—( $ —2) (z (42 + B:>) 4
n=1 T \a=1 1 n=1
Since Y., t/n* < ¥, 1/n* = n’/6 (sec Example 2). it follows that

m 1,2
Y, Jai +b2<—]“g<2(4 +Bl)> .
a=1 v

n=1

But Bessel's inequality (24)‘applied to the Fourier series for f(x) gives

r\)lo}"_.

2/1 +BY) < Z(A2+B) ‘LJ [f ()] dx -

n=1

Consequently,

_"Zl Jaz +bl < f (E J:L[f'(x)]zdx - f{;)l Z.
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Because this inequality is valid for any m whatsoever, it follows that the series ¥ ©_, \/af + b:
converges. [nequality (25) then indicates that the Fourier series of f(x) converges uniformly and
absolutely. L

Continuity of f(x) is mdlspensable to this theorem. A Fourier series cannot
canverge uniformly over an interval that contains a discontinuity because a uniformly
convergent series of continuous functions always converges to a continuous function
(Theorem 6). If f(x) is defined only on the interval 0 < x < 2L, continuity of its
periodic extension requires that f(2L) = f(0).

When f(x) satisfies the conditions of Theorem 10, inequality (24) may be replaced
by an equality. This result is contained in Theorem 11.

Theorem 11 (Parseval’'s Theorem)

Proof:

If f(x)is a 2L-periodic function that is continuous and has a piecewise continuous first derivative,
its Fourier coefficients satisfy

a% < (.2 2 I 2 ’
D+ Y@bh=1| [f0dx (28)
0

n=1

With the conditions cited on f(x), the Fourier series of f(x),

dq e nnx . hnx
Sx) = 3 Z (a,,cos T + b, sin T >,

is uniformly convergent (Theorem 10). It may therefore be multiplied by f(x) and integrated term
by term between 0 and 2L to yield

2L , aq bY AN
L A¢3) dx=7j.o S(x)dx

0 2L 2L
+ ¥ (a,,j- f(x)cosﬂ[—x-dx + b,,J‘ f(x)sinﬂdx)
n=1 4] L [} L

0

- —(aoL) + ¥ (ay(La,) + b,(Lb,)).

n=1

ag

Thus, ?

+

n

lagy

2L
(a2 + b2) == J [f(? dx. .
L Jo

This theorem can also be proved (albeit by different methods) when f(x) is only
piecewise smooth and 2L-periodic. '

When f(x) is continuous with a piecewise continuous first derivative, its Fourier
series converges uniformly. This guarantees that the series can be integrated term by
term between any two limits, and the resulting series of constants converges to the
definite integral of f(x) between the same two limits. The following theorem indicates
that term-by-term integration of Fourier series is possible even whea f(x) is not
continuous (and therefore the Fourier series is not uniformiy convergent).
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Theorem 12
e . . e e e e e
When a 2L-periodic function f(x) is piecewise continuous, its Fourier series may be integrated
term by term between any finite limits. and the resulting series converges to the definite integral of
£(x) between the same limits.
J(x) between e e — ~» 0 0 ——————— R
- - . D .
Proof: To prove the theorem, we must show that for any ¢ and d,

4 d © d d
j‘ f(x)dx=a—°—j. dx + Y, (a,,j. cosﬂt—xdx+b,,‘[ sinﬂt—x-dx)
< 2 < a=1 ¢ L < L

_do o [La, (. nnd . nnc\  Lb, nnd nc
= 2(d CH_,.Z;[M (sm - —sin L> | cos cos—

when ag, a,, and b, are the coefficients in the Fourier series of f(x)- ‘
Because j": f(x)dx can always be expressed as the difference ]‘:, f(x)dx — g fix}dx, it sul-

fices to show the resuit for integrals over the interval (0, x), that is, to show that

onar = BT M sin T - X _
L f(tyde = 5 +7r,.; n[a,,sm T b,,(cos T l)]

To show this, we consider the function

F(x) = jxf(l)dt - a—;—)—c—.
(1)

Since f(x} is piecewise continuous, F{x) is continuous and F'(x) is piecewise continuous.
Furthermore,

x+2L a
Flx +2L)= j f(tyde — 7°(x +2L)
0

x

x x+2L
= j fle)yde + j f(yde — 2= — oL
0 2

2L

= F(x) + }’ f(tydt —aol

(1)
= F(x),

since agl = Sé" f(o)de. Thus F(x) is 2L-periodic. It follows that the Fourier series of F(x)

converges to F(x) for all x: that is.
X

A X ! A
F(x) = —53 + Zl<A,,cos'—'7£—\ + B,,s:n%)

where. for n > 0.
2L

T nmx 1 nax )it 1 nmx
A — F{x)cos —dx = ¢— F(x n—- - — F'(x)sin—d:
"= L {x)cos L dx {”n F(x)sin T }0 el (x)sin T dx

-1 [ a, nmx
-1 o — %Y !
o L (j(\) 2>sm————L dx

—1 [ ‘ x L 0% —L
j (¥ Sm"TL—\d.\' + ~2‘i10— {-—— cos '_IE} — b,.
nn

|



¥

Example 9:
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Similarly, B, = La,/(nn). To obtain 4,, we evaluate the series for F(x) at x = 2L:

"2°+ }:A = FQL) = J

2L

f()dt — agl. = agL — agL = 0.

Thus,_ Agz=' =2 Y A, =

L &b, & (-Lb, nnx La, . nnx\
F(x)—;,gl.;z—+,;|< nn cos L P T)’
that is
xf(t)dt—a°x+[' i B X L Onfy ogmTX (29)
o ) T PR n L/}

This theorem also provides the additional result that the anudenvatnve of a

-Fourier series is itself a Fourier series only when ay = 0.

Ilustrate that term-by-term integration of the Fourier series of the function f(x) in
Example 1 over the interval 0 < x < L gives the correct value for the integral of f{x).

You will need the fact that Y 7_, 1/(2n — 1)? = n%/8.

The integral of f(x)forO0 < x <L is

L LZ
xdx = —.
Jo=o=5

On the other hand term- by -term integration of the Fourier series of f(x) (see Exam-
ple 1) gives

2 & 1 (L, nnx 2 —L  nmx)®
L<J; dx — ; ,,le ;;J; sm——L—dx) = L(L —;,.21 ;{—E[—COST}‘))
= L(L E ; 2[(—l)" 1])
2 = -2
( T ,.Zl 2n — l)z)
4 = 1
( FE ,.Z, Qn— 1)2>
4 _ L?
n_z )T *

Exercises 2.3

1.

In this exercise we verify Schwarz's inequality [(27)].

(a) Show that (27) becomes an equality when terms in the sequences {c,} and {d,} are
proportional, that is, when d, = 4c, for all n (2 > Q).
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(b) Now suppose that the sequences {c,} and {d,} are not proportional. Consider the finite series
L) m m m
Y (cax + ) =x> ) c2+2x Y cdo+ Y, di.
u=1 n=1 n=1 n=1

Establish that the quadratic expression on the right has no zeros, and use this to verify (27).

A -

. (a) Prove that if a 2L-pétiodic function is continuous with a piecewise continuous first

derivative, its Fourier coefficients satisfy

lim na, = 0 = lim nb,.
Lind ] a— a0

(Hint: See Theorem 10.)
(b) Does the result in (2) hold if the function is only piecewise continuous?

. Show that when f(x) is a piecewise continuous function on 0<sx<L,

L] 2 L
@ Y. b= -J [f(0)] dx
L Jo
when the b, are calculated according to (18b) and

ad & , 2(* s
{b) —2'+Z a =7 (f(x)]*dx

0

when the a, are calculated according to (17b).

. (a) Aflunction f(x)is continuouson theinterval0 < x < 2L and hasa piecewise continuous first

derivative. Does the Fourier series of the 2L-periodic extension of f(x) converge uniformly?

(b) A function f(x)is continuous on the interval 0 < x < L and has a piecewise continuous first
derivative. Does the Fourier sine series of the odd, 2L-periodic extension of f(x) converge
uniformly?

{¢) Is your conclusion in (b) the same for the Fourier cosine series of the even, 2L-periodic
extension of f(x)?

. A sequence of functions {S,(x)} is said to converge in the mean to a function f(x) on the interval

as<xsbif

lim jb [S.(x) — f(x)]2dx = 0.

n— o a

'

A series of functions ¥ 7. u,(x}is said to converge in the mean to a function f(x) on the interval
a < x < bif its sequence of partial sums converges in the mean to f(x).

Use Theorems 9 and 11 to show that the Fourier series of a piecewise continuous function of
period 2L converges in the mean to the function.

. A piecewise continuous, 2L-periodic function f(x) is to be approximated by a sum of the form

a k .k
S.(x) = “—;- + kzl (ak cos —z—x + B sin _7‘Lj>

One measure of the accuracy of this approximation is the quantity

2L
E, .= J [ f0x) — S,(x)])2dx,
0
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called the mean square error. Suppose you are required to choose coefficients 4, %, , and f; in such
a way that E, is as small as possible.

“(a) Use the technique in Theorem 9 to show that E, can be expressed in the form
: 2L a(l) n
E= [ pra e (24 5 0 o)

Qg =" - L k=1

: . aoa "
: - 2L<—05_—0 + kZl (oga, + ﬂkbk)>1

where a,, a,, and b, are Fourier coefficients of f(x).

(b) Regarding E, as-a function of 2n + | variables a4, o, and f;, set its derivatives with respect to
these variables equal to zero to find critical values of E,.Show that the solution setis oy = aq,
o, = a,, and B, = b,. In other words, the partial sums of the Fourier series of a function
approximate the function in the mean square sense better than any other trigonometric
function of the same form.

e

oy

.y

[R—

Fba




