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I. Mathematical Preliminaries 2> ¢ Y. Te
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A. Index Notation and Summation Convention P<§ * 3
\\’% ..V \ [ (ol

L3N {2 > -
Matrix theory is concerned with operations with sets of wa*’,$,.-'
numbers, i.e., arrays. Famlliar examples of arrays are the

column array and the square matrix:

Ay,

. . i / . \ i s Vi

/ #1\ - A1 Bo A3y fow caur
2= 2 > A =.§ Aar  Bap Bp3

a

\ag/ o\ fa2 A3

These arrays are denoted in index notation as 83 A1J
(1,3 = 1,2,3). 1In matrix theory a linear set of equations

is usually written
Aa=b (1A-1)

vihere b is another column array. Tals notaticn is called

direct ard leaves the multiplication A a implicit. In Index

noraticn we make the multiplication explicit:

3 . .
I Ay ey =y (1 =1,2,3) (1A=2)

vj :

The abeve sumnation on the Index j cenforms with the standard

rules of matrix rmultliplicetion. 1o general, summation on tha

closest indices in any matrix product is the conventinn. In
e TS e -

-equation (l1-2) the reseated index J is called a dummy index,

beczuse any cther index letter woulid suffice:

il e ROV ]

3 TR
J-'-] AiJ a{i ] rw: Ai'ﬂl 'a'm (\DeCe\ASC *e\} V\Q-SU"(( CQ(\\ ~

1 ; .
. P LNTSEY 'J‘*)'S. \Q [} \



b: = Peg. = b= A, a + Pa, + A,,o‘z,

v LU 7 ‘
L= $ree bl - Hl‘q' * /}hql v 3330(3
(7 - ‘}II‘MV“*'/ é} - H}l a , + f)}: 201 . + 33Q3

d= Ak cicpg gy 0,8 (cey

Ll B X1
b/ .
CLK C‘l‘l - An B;L + A"Lgll + A} 931 (k t‘{)
C)J = Hu B;} LS AIL 823 + A’} "833 {%"“’E’

o
f{
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The index i1 above is free, i.e., eqn. (1A-2) actually repre-
'7ﬂj sents 3 egns. corresponding to the three possible values of

the free index. To simplify the notation we adopt summation

convention: the summation sign is omitted and repeated in-

dices are summed through their range of values 1,2,3. Then

(1A-2) becomes

C Ay 2 - bi\:]_v | (1A-3)

-
AY"J&’ clvmamy

The following additional rules apply to summation convention:
(1) An index (a letter name) must not eprear more than

twice in a product of matrices and/or vectors.

Valid: A,, B,, b, Invalid: A,, b
iJ 73k "k JJ 3
(11) The number and letter names of free indices in an
'> _ ean. rust be.the same on each side of the eqn.
h a 2 : = . T el -4 : 3 - o .
Valid Aij Bjk Cik Invalid Aij bj Pg |
(1343 Any pair of repeated indices can be exchanged for

Arother letter name.

valid: Aij bj = Aik bk Invalid: Aij 3 = Aik bj

(iv) A free inéex in an egqn. may be exchanged for another -

b

letter nume provided it is chanced on bnath sides o1

“he eonn.
Valid: Chance Aij bj = ai te Akj' 3 = ax

T ; vra A = + . =
‘nvalid: Change 213 bj a, to AkJ b, a,

u -
raductrs of the form Aij a,, n2ed a special definition in
dircet notation, but cause no confusion in index notation

and simply represent a higher ordered array, i.e.,

, L. ¢
\7_) . Bijk = Ai,j ak | Aa cb ,,,,, \c; cc‘Pv WL

‘ o here ST ST .

Cmy\g ‘s'u) Su.gmﬁid']!&twl LL( r ) B A G b’“}" f\f;j :’75: fih & i%i

é&fﬁﬂﬂdtlég

Conveuntion
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Thus, B 1s 2 3rd order array"having 33 = 27 components.

fﬂ) Clearly, index notation allows a simp’e representation of
- [#8) L)L_,C-/LU\/\N’»\ S P (/‘]T>f = ' C‘
general products of arrays. - *afw\ S e ViaSa )

In direct notation the transpose of a matrix A is
denoted by gT and is obtained by 1nterchanging the rows and

columns of'é.- In index notation we have
"“Hj wewd € Ire DS Pe S

Avp Biy = (A >,,, m;f &= )
Atp BL‘P - A(\‘> %‘;S » AB

Some examples of the conﬁersion between direct and index

CRIEE N

notation are the following: \

ﬁjﬁlsef{au¢> malei Civo av@nL:f j

AB = Lo ™
< ¢ Aim Bmy X CiJ»/ -~ ”&u"wk—;\
AT B = ¢ oop (AT),  (B) . =.C).. or 5. B, o
-~ ~ ~ r ~ im ~ mJ ~ iJ '-l. IInJ \\\ iJ
. /\”\ s e it
( T - i
) 25 =D or Ay By = Dy
BBC=E orhyy By Cpy = By
Chbservs that in direct notation the convention for matrix ' ////// Anb-S
M= J¢
rreduvetcs is that closest indices are summed. C SﬂﬂL \
For 3n arbitrary matrix A the symmetiic and skew-
y ’ @Th)‘( A A _*,/C}

) A Lo Y L \;\‘\( 1\
ic - ' A a 4 ;
symmetric parts of A are defined as ,/j e 'ng */}‘L

Petasm| |#eta-a by

. . ' AL L (ArAT)

S Mmcbwv ow-’t' o‘S /’) Vltl nm't‘rw Paw‘t' 0'9' H f\A .L A ‘/"”) ‘
it is c'e;* that an arblftrary natﬂﬁx can b uniguely de- Q

composed into the sum of its symmetric and skew-symmesric

(f\gja-ﬁ 3

:l (A(x‘ ;‘._1{\4';‘)

(14-5)




Sy [ LY U-bl‘l‘b m:«’bf‘l:\’

(S ke"’) A '{""‘57"1'-10 Fare

tl\en (%a‘) = ﬁs = 0



1-4

We define the index notation equivalénts of és, QA as
/f) A(iJ)’ A[ij]’ respectively:
‘A(ia> = 3 (A *‘;;;;] Apsy T 3 Ay - Aaij_j
S yrm etoc | Aty S/mwo“{“n‘t, (1A-6) .

Then. (1A-5) can be written as

(w;;; = A1g) +.A[133] (18-7)

Note that (1A-6) implies

(defn.)_1
1 (defn-) )
= 3 By v ALY = Ay
‘)  (defn.) 1
Argry = 7 (Byg - Ayp)
1 (defn.)
= m 3 Ay - Ry) = - Ay
Equivaléntly, since (QT)T = A (1A-4) implies
AHT =3 T+ 8 = 3 (4 +aT) =
R R N T L L




)
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The trace of e 1s defined as

(ﬁ) tr é = A.

22 * A33 = Ay | (14-8)

11 ¥ A
Note that
tr A = tr AT Yecause A=A (18-9)
— \ / _
Yol ave &\\ww& (Ve 1Y)
Now 1f _
¢TER or Oy = Aun B
then
o 9 = tr é § Alr Bmi

Now interchange A and B:

h > tr § é = Bim Ami = Aim Bmi

berice,

tr A B =tr B é‘ (14-10)
Tpurtant

Thie 7 7
;

\\\\

[

|

\

\

T

T b
,¢) liote Atj Bij c4an also be wvitten tr A B” = tr 5? B

T

IP Ail' Bnd B&"LC\YL ‘k‘e\k twe Wil NI
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AProof:

S

Indices 1,J are dummy on the right. Change 1 to j and J to 1:
g Pag = Ay By o \

which therefore must vanish. Q.E.D.

The Xronecker delté'd1j and the alternator e1Jk are de-~

fined as l-’af' FerM“i';'f"pn ))/mbp'
‘ : /1 ¢ o
1 i=j _ -
krm\(wkcr Ve”@v 513 = . ? = 0 1 0 v (14-11)
0 , 1i#]
0 0 1
- Note the r.h.s. is just the identity matrix I.
() -
A}krwihw 1 if 1jk are an even permutation of 1,2,3

gﬁﬁ‘eijk = - 1 if 1jk arz an odd permutation of 1,2,3
0 if 2 indices are equal

A-12)
Count the wuwber o% | lwversions v Che en'hre sel. (1‘ ,1 ).
gven v\uml)cp P even V>em~1’h’h'v~ ei‘e

il.e.
‘ ®123 T €310 T €333 = * 1
taveesio s o © 1 3 ( i4-1 3 )
' €122 T ©p33 T €327 5 - 1
UAveysigng P 1 1

ct
®
o3
1
'
it
1@
|
5
.
3
[o])
o]
=

X notation

(\) T\‘IC’ kwﬂhfcf(@@' We[’éa 34 5;:&9»1»:”',1(0‘:‘(:, i'9 vj OAVIJ LQ







613 aJ i1 al + 612 a2 + 613 a3
A) a; i=1
= a, , 1i=2 :
a3 s 1=3
i.e. Gij aJ = ay | (14-14)

Similarly, I A = A becomes 64jk s antygmaelere o

cnd
J Jd K

S4m Amd = Ai'j'

l: b’(h\) Um
Setting é = I above implies

8

Sim Smy = 813

From the defns. (1l4-12), (1A-13), we see tha:

1 Bl even 'D(?vrm« z¢r[~e‘p.qs_’
(14 .15

ep-‘-]—\l Pé'v“vwmyl‘éz*l‘:‘zms

Notz these relaticns are valid for any vzlues of 1,j,k. It

can bte shown that (by direct expansion)

—Eml\a . \\'e\.r‘.c AV TN
1A-1C)

I"irwrfom t! (




)

SN
A—



(1A-17)

(14-18)







B. Determinants

The determinant of A,, is defined as

iJ
Ri1 Bip Aq3
det A = | Ay Ay Ayg
R31 A3 Ag3
AyjAgohgg + Aph5aR5) + Ajahs A4,

| (1B-1)
= (Apyhoghsp + Applaghay + Ryghyihss)
.21 23 2z 3

Noting the signs and the orderihgvof indices arnd recalling the

definition of the alternato: (1A-12), (1B-1l) can bc expressed as

det A = eijk Ali A2J A3k (1B-2)

Jnterchanging the ordsr of the products in (lBul), e have the
ziternate form

det 5 = eijk Ail Aj2 Ak3 \

More general expressions corresponding to (1B--2), (i3-2) are

Determivant o 'Y‘ A“a"

(1B-4)

E;WQ?\

These =z1¢ verified by direct substitution: let-m=2, n=1,

p=3 in (1B-t+)l



A

1

A

4

's ;ymn«‘efr»}, P and J' because



1-10 NSTES Ay = (AT

213 98t B = eyq Ay Ay Agy

)
| -det A= gy Ayg Ay Ag
= = Cqax Ay Aoy Agy

Changing dummy names on the right,

det é = eiJk Ali AZJ A3k

which 1is identical with (1B-2). Now let m=l=n, p=2 in (;B~M)

0
7 i R .
i{iévdet 2= ey Aug Ay Ao ()

Now e, ., 1s skew-symmetric in indices 13i for ezch k by (1A4-15)

i

and Ali AlJ is symmetric in i;, i.e., if

() Big = My Ay

and (*) reduces to an ldentity.”’

qris. (1B-4) can be solved fovr det A upon nultiplying by

det A = 6 det A = A

enmp emnp emnp eijk Ami AnJ pk

L1 =y
) Hence, det A = ¥ ®anp €43k A AnJ Apk (1B-5)
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Eqn. (1B~-ll)2 yields the same result but with mnp exchanged
(”j with 1ijk.
It follows by inspection from (1B-1) that

(1B-6)

(18-7)

C;: = A B

Then (1B--2) implies

det (4 B) = det C = o4y Cpy Cpy Cyy
() .
= ik PamPma) (ApBry) (A3BL,0)
=(eijkBm1BnJBpk) Alm A2n A313
(lB"“)l
= emnp det § Alm A2n A3p
(1B-2) -
= det A det B Q.E.D.
it folliows “hat
det (5 A) r det B det A = det (A B)
(13-8)

det (é § g) = det A det § det g

-~

If det é is expanded by the lst row,

BN, L e
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_ Byp Agg Ayy Ayj Ay Bpo
det A = A 3 | - a + A
a A NV VR VO 12 0 a0 A 1304, a
o) 32 33 | A31 Ag3 31 A3z
= Ajp ogy t Ay ogn + Ayg g =AY ST (1B-9) -
- (Q-%ada‘(‘ C’)é A'i
é!I‘hegarray | or] S ed minsY
<;9£ﬂ°fbrs

(1B-10)

Similariy, expanding by columns glves

det A = Ajy 0y = A4 @35 = Ajgoayq
Frem (13-23
- (13-9)
det A = Ay (egqy Apy Agp) = Ayy oqy
which implies [&11 = e54x Ay Ay (13-13)
Similarly (1B~2) and (1B-11) implie§ .
e Qe PN Flo—""
% . :
%1 7 15k A35 Ak
o (1B-14)

O35 = iy B1y Pox

Eqn. (1P-13) can be written as

a







"1-13

= L
ay3 = 5 (egqp Aoy Agy * eqpy Aoy Agy)

, 1A-15
) ( - g)

5 (egx Bog A3k ~ C1gk ok A3y)

€15k (Boy A3y

- A, A3J)'

e A

1jk elnp AnJ pk

Similarly, (18-14) implies

o

noje-

21 = 2 %i3x ®onp Anj. ok ¢ %31 €13 ®3np Anj Apk

Combining these three equations into a single expression, we

have

Pt
4 N
N’

(1B-16)

Bramer’s Theere
A tli ;xi‘ » f’n"i )
(1B-17)

| ‘ b
LT cew be ehiee e Q’% 'j

DIV ot h FO
'L) oL»‘:a, is the coﬁ»cf‘w 0'51 /453‘ (l?*l@)

Ly



i
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where @y 5 = cofactor (Aij)
Proof: Multiply (13-15) by Amq:
o v A =1 e e vA ; A
mi “mq 2 "1jk "mnp "mq “nj “pk.
=2 (e A _ALA.)e,.
2 mp "mga nJ Tpk’ "ijk
(lB-U)2
= 1
T2 (eqjk det 4) e ik
(1A-17) .
= 1
Oy Amg = F (Z6q4) det A (1B-18)
Hence,
o -
mi -
(det é) Amq - 6q1
Comparison with B ) implies

Pyof.

\“J\ \Ln s
"T\ Q\\' \.\ /\\;Q‘&\‘F YA C() LA

im mq iq

B = /\-l = .—ﬁ]}i—_
“im “im det A

1D-27), it can ve shown that the other half of (1B-36)

ma = 613’ is satisfieqd.

(1B-193)

Do net Peuidha

Use (1B-9): - | OWwA' - Cknxxmwu
, ¢ M% wa (1 f;w) ‘f“n& Inve
9 — (det &) = 2— (A, a,) - -
3hyy . ~ 8Ayy 11 %11
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= 5hT (A1709y * Ajpag, + Ajga3)
- IJ :
!, w
ey o 91 1
= \/alz R J=2 = alJ
(“13 » 373
From (1B-11)
gA (det A) =;a23> ) ’
23 ~
2 (det A) =
Bhy. oo 20 T Y3y
dd
- Combining the 3 results:
S (det A) = ¢ Q.T.D.
oAiJ. ~ 1j

10 e
/

-At‘j.u}- - b(: Wy st/ § T&ﬁ(ﬂ“ - . ujx M.C bl‘

TR ' Cict A J
, () Sl
yrrye e = <
(’ v\"‘ ‘NS L‘bm“, }'L') ‘ 14 WJ}“! h@ ®

(1B-18) ,
C = Oy m Aij uJ = Smj det é u‘j = det é u

.whaxech is satisfied for {;'m 7 0 if and only if det .5 = 0. Q.E.D.

o T Bk - aainie a3



e
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C. Base Vectors, Orthogonal Transformations and
Cartesian Tensors

T

(h) Let x4 (1=1,2,3) be a right-handed rectangular cartesian
coordinate system. We define a set 'of unit vectors ey along

the coordlnate axes x,. {

Of"ﬂlonorw@, S)""IR‘BM
(G&sﬂ)

The e, are commonly cailed base vectors. Egns. (1C-1) can be

concisely written as

C/ﬂm}/}act— vac« i\c'ow - (1c-2)

Since e, forms a right-handed system, we have
( ) ., =0
. e, X = e, = ~ X e e, x e, =
€1 X €2 T &3 T2 %% » 517 %
X = = - b3 X =
€2 ¥ €37 %4 €3 X & » & € =0
c, X e, =e, = - e, Xeg e, xe, =0
3 7 %1 T 22 =1~ 3 > =3 7 E3

Using the alternator eijk’ these equations can b2 wriltten as

COmymd’ Npi&h’;w (1C-2)

Teking the dot product of (1C-3) with e, and using (1C-2),

€1 ¥ %3 " Sk T ®1ym Sm " Sk

(1c-2)
= €1gm Sme = C1jk (1c-4)

This equatlion expresses the fact that e; are a right-handed

triad.

e



1t



Lf%e;¢ ichP?wJenf" Sy}fbwv
'S:'vr i

[

‘Using the defined set e, , take the dot product of ey with the

eqn. oy ei = 0:

Note that the components asfare obtained by dctting the above

) e

(1c-2)

¢ o oe, = . =35,, a, =
& 81 1 7 15 81 T 2y

4
[

b we have the

10 %1

uiven vectors a, b, ¢ with components ays

Pollowsiig products:

Qb = a;b Dot Product
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) a xb=(a; ;) x (byey) =a; bye, xe,

)
= a, bJ eijk gk | }((/fcffﬁr)

which implies the components of a X b are ay bJ e 1% since

2 xDb) ey =a; by ey Sy =8y by eygy Syp

='_ai bJ eijm . CLDMVDD”‘?‘;"ZL>

1
X
o
-
o)
|

(ai ?1) x (b.i e

2
s
LE LY

= b . Y
ai bJ Ck g e.“ e,

(1C-4)

.3 We now consider a linear transformation of e, into e,:

?a_i = Qij gj L;"e“"‘ Tf‘aw;‘slgrm‘t\,t,_' (1Cc~6)

08’ CDO"\):‘%«,‘*& S'/’ﬁ'/"t '9"&»\4 é:‘ t-ﬂ eJ"

where @ 1s an orthogonal matrix, i.e.

-1

m
L

¥ =9

Then from (1B-16)

(1c-7)

or Um UYm = U1 Uy = Siy
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Since Q is orthogonal, the new tasls Ei is also orthonormal:

—

- —
‘-j | _ €y * &5 ° (Qim ?m) - (R )

jn gn

.

(1c~2 - (1C--7)

Wow solve (1C=6) for Q, i.e., dot with e.:
= - @ ‘. = g c. 8
e &3 % Wy m) * €3 7 Qum my Q4 (1c &)

Divection Cop/§3C+9)
metvdr

Note that from (1Cc~8)

b E.J e, = Q

-~ ~ ~

using (1¢-7), we can solve (1C-6) for €s i.e.. multiply

(1c--7)
Q -

QUp s = Vn Uy €5 " %y %5 % Sm

4
do

wnich implies

(1c-10)

(1Cc~11)
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Since § are orthonormal, we can assbciate a rectangular

carteslan coofdinate system'ii with e, . @The

-~

ymﬁ Consider the position vector r of a point in

space (see Fig. I-1). Then

= ¥ e = ' )‘? -12
r Xy €y X, €, (1c-12)

X \

(1Cc-11)

X, Q4 €3

that is

which implies

' (15-13)
Fie., T-

~since §i are linearly independent. Eqn. (1C-12) can be in-

verted to yleld

7 Consider r = x; e,. Then

el =r  r= (% &) - (%, &)
AR AT A

(1c-13)
="(Qy,, x,)(a,, %)

/—) | .
S : - o= = =
Qim Qin xm xn 6mn xm xn xm xm




Ratatc‘p A

Re$l eetitpn :

det @

A

v)et‘g

—
-

-
—

+ 1

~

1.

C"dﬁ“’ Qe\‘kctfm Camél;tf J/
W'ﬁtl’ to h IL;‘Rf)‘)

.



l=21

Hence,

From (1C-7)

det (Qyp Q) = det (9 §7) = (det Q)(dot

2 g

(det Q) = get &,, =1

Hence,

”//‘ '\‘
\u)
o
[
o

then_frbm (1C-6)

e. = e, e, = . €, =@
€1 7% S T €3 : €3¢

Note that the basis &, is right handed. (See Fig. I-2).

v LT

oordinates:

1,‘_\’»-‘54'4'\‘-‘»’-'.‘,}.Mﬂﬂ&ix&fvﬁ.ﬂi‘g

For example, the
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<3, &,

/ "%
> s
YRS ¥
Vi
Flg. I-2
)
/
— P
=z, & -~ -
3/ 3 f:’ '/
7
I./
/:’/ £, ¢
/ 2
S
./',
Fig. I-3

C




)



/41 0 0\
= | |
o o 1/ .

‘implies from (1C-6)

€25 % > 22 =€ s &3 7% &3

This is a reflection about the e, = 53 plane, giving a left-~
handed basis e,. (See Fig. I-3).

~

Consider the triple product

(1C=6)
Sm X n ° ?p = (Qmi Si) X (an gj) ) (ka gk)

= U Yy i S1 * 85 7 Sk

= Qs Q3 Y%k 1k

(1B-4)

= emnp det 9

(+ e, when Q proper implies e, right-
p - = handed

when Q improper implies 1 left-

-
L Vhanded

emnp

S

' since for example

€) X €y €3 = J+ ejyg

[- e123 = -~ 1 when Q improper

+ 1 when 9 proper

otations )y

F0

Srms e e v



A

/



1-24
As we know, a vector is a quantity whose components
(”) depend on the basis used and change in a particﬁlar way when
the basis is transformed. For examgle, the'components of r,
the position vector of a point in space, chanre according to
the rule (1C-13). Note'that the vector itself does not change:

roughly speaking it is invarlant. These ideas lead to the

~- A set of numbers ui are components of a vector

(or 1st order tensor) u if under rotations

it e o
F——

of x; Ii, uy Ei such that
ug = Qij uy (1C-15)

Given ény vector v, 1ts components must satisfy (1C-15) since

) | (1C-10) Y
=T = = = = e$: tions oF Vector
VEVL 8 TV 8 TV Qe —AL S e
i.e. (vm - vy Qmi) €n = 0

which implies

Vo = Qmi'vi

For an inverted form equivalent to (1¢-15), multiply by Qi

QU ﬁi = Qn QiJ uy = SmJ uy =y

~ A number a 1s a scalar if it is invariant

under rotations

\/’ ‘\)
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‘Note that a set of 3 scalars (a,.Y) are not components of a R o
. \." ngv A .,:(
(ﬂ) veetor since (&,8.7) = (a, B,y) for all rotations. Cf l!é”;qﬁw N -
\kaow\ ~
Q<‘W

fﬁ—- A set of nine numbers A;y are components of -a

2nd order tensor A if under rotations of x; - xi,

A,. + A,, such that .
1J 1] o
>
— _ \{vp‘K‘
AiJ - Qim er mn % W ' (1C-16)
— f'.-\\/ w
\
The i.verted form is g¥’ - ' A gt
- - A = Qc,?@yy Qo P

= ' + v;) qou ™
Amn = Y an Aij
The geheral transformation rule of an Ith order tensor is

N products

(7> ij... : = (Qp an ) By, ..
S e e S ——
il 1ndices N indices

Since we are considering rotations of RCCS, these tensors are

called cartesian. Pr‘vfer Traus Forma Hows &7»/7 / (Rotations )

iinte:. From the above definitions, it fellows that:







1-26

X Bij = Qim QJn Amn * Qim an an

oy = Qun Oy, (Ap, + B

which 1mplies

A + B 2nd order tensor

(c)

”') Now properties-(a), (b) imply (c). The quantities Byy - Bij
3 i

are components of a tensor by (b) and vanish in Xy system by

TN

(¥). Then (a) implies Aij - }3_,'_'1 must vanish in any admissible
.. l.e., Eij = E&j’ Hence, like vector equations, tensor
equations are independent of the particular RCCS used.

The following theorems illustrate how one determines

tensor character of given arrays.

Proof: Since u, v are vectors

Ei = Qim Un > VJ = QJn Yn

( ) under rotations of X; *+
N




)

»



ohen ?todmj' U'L V

-2 A oo et BV
= = - RWESUENS
Uy Vy = Qg up) Qg ) Cross P

- Qim an “m Y ¢

-

which implies u; v, is a 2nd order tensor by (1C-16). iote

ee (IA-16
that coantracting (%) yields ( )
Yy V3 T Qim Qin Ym VYn T Gmn U Yn
S Un Vg T WYy

Hence, the inner product u-v ‘transforms as a scalar.

Theorem 7 -~ If u, v are vectors and <§? 5“7-
~ v . oF - l_, o .
——— SRS S
uy = Ags vy N oo W (12-17)
-4

et T B R

Proof: Since u, Y are vectors, then under rotations Xy > x5 -
Ei,= U U s 35 = an v,
fiznce,
(1¢c-17)

U = Q1m Un © Qixn Amn Vn ‘ (1C-18)

3ut vy = an v implies v, = QJn v'j and (1C-18) becomes

U Ay QJn Vﬁ (1c-19)

Now (1C-17) 1s valid in the barred system:

(1c 19)

Up = Apg vy = Qe QA Y

J
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Then for non-vanishing V&, we must have

_Aij = Qn an A 0 B h )

Hence, A are components of a 2nd order tensor by (1¢C-16).

ij
By contracting ()

r'\‘i'fl = Qim Qin Amn = Amm = Aii

) : . G ~ vy
. . Ay e . Crnh .
i.e., A;, = tr A transforms as a scalar. \¢\%5x NP
il ~ — SNIPTINTCIS 5

“Yote that thz operation of contracting a tensor of order
i > 2 always results in a tensor of order N - 2. For a 3rd

order tensor B1Jk there are 3 ways of contracting: Biik“
o

IYTR Bijj with eggh a vector, i.e., since . ggﬁ
: X

w
\

&
_ ‘ ,JL L
i3 = %m 9n %p Bmp "
N
“len @jf"x@f(
R Qi,.(-/

o

td
|

iik (Qim n) Qkp anp = Qkp<Bmmn

which implies Biik satisfies the vector transformation law

(1Cc-15).




) A tensor {51 ass.‘an’ a tentor ‘F(i, ) to every palp (Aﬁ )

)
where The M&@L X

Varies over « Far'b«‘c.ulqv‘

V‘ea !\90\ ‘p{' }()ag_ce ) O(HJ t Va"l'c’S

&'g -(-:I‘Me.

over a Pcu'"h‘cu lan n'wiem/a/

) A tensor Feell S Sacd to be _c,ont‘fn«w»t} (on J.‘-ffeaewi“;-'atb/e)

;'g’ tl\e (,aw;’Dﬂv\tw'bs a‘c T(’th
0‘9 X a.hJ 't—

) Xp 60#1{""-“40“; 'S'chi?‘can;
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functions of x; in some region R of space and A satlsfles the

transformation law at each point in R, then‘é(xi) is called a

tensor fileld. If the components ef A are differentiable, then
oA ' -

gi— is a caftesian tensor of order N+1l. We prove this for a
i

scalar field:

{Theo
FEOTMPONENTES
Proof: Under rotations of x - X

Xy = Qmj fﬁ_ _ ' (1D-1)

which implieeig = 5(%)-and A(x) becomes a new function of g:
A(z) = AMx(x))=-X(X). But at each point in space with

coordinates x; or X;, A is.a scalar which implies

X(X) = A(x) | o | (1D-2)
Since x = x(x),

aX_ _ 3\ _ 3A J
axi Bx1 E)x.j Bxi

(#)

But (1D-1) implies

9x 9 o
4 . X 3 T
= — (QlJ x, + QBJ X, + Q3J x3)

i axi | . i?

\"/Ly iw-‘(ztw tl?' [1: S(ZY\‘PM "

A QZJ 3 1=2 J‘ = Qij
'LQBJ » 473

-

;






{

\

)
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‘Hence (¥*) implies

i1 .

which is the transformation law for vectors. Q.E.D. The

- extension of this theorem to higher ordered tensors 1is proved

in the same way. We note the specilal cases

E ov, _
vy (vector) implies §§£' (2nd order tensor)
J _
‘ féAiJ ,
AiJ (2nd order tensor) implies T (3rd order

ko tensor)

Since %%— are components of a vector, we define the
i - :

gradient or del operator

grad( ).= Y( ) = e _a_._ ‘ . ’ . (1D_3)

Then grad A is a vector having the representation

oA
e A at—
~1 axi

grad A =

Notation: Usually when working with a single RCCS Xy, partial

derivatives are written as

Jvff&tfa

- Using the Y operator, we define divergence and curl of

a vector v as

N 0‘{3 w’(,"r‘m “

divy=9V v , curlv=9xy (1p-4)



Ff"v'n S&”I&.um\s

. z Vl?,(,
ox;
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" For a component form of div v, express vV in component form

/A) and use (1D-3)

S

= 0 -
div v = (gi 3;;) (vJ gj)
v, '
=8y gj §§l (sinqe ey constanﬁ)

ivergeace (10-5)

Q
[
o]
(o]
lg
il
<
X
i<
H
Cae
]
)
A
b4
~~
<

3¢y
® Ceerl . (1D-6)
Hence, the components of curl v are ‘
ei;k'vj,i = Ckij V3,1
Lxpanding, these become
8v3_u 3v, vy ) 3v3 v, ) vy
Rt e ommm , amm = et S
sz ax3 3x3 ox Xy §x2

1l

Suppose we want a compohent form of div (grad \A). Using

(1D-3), (1D-4),
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F div (grad 1) = v (YA)
/ = ___.a : 2 V Vl'\'ewe \)DP; TL?(’ o Come
) (ey 3%y * (g5 2,9 - J
i : tn
=835 A51 % Maa
Tt S 1o SO b
5 7t 2
N Bxl 8x2 x3
But by definition
52 32 32 _ 2
st =5t —5=7()
Bxl sz 3x3

is the Laplaclan operator. Hence, -

r__.._..:'~~'~‘ o o R ‘
% div (grad A) = V<A

( > Divergence Theorem ~~ Let u be a continuously differentiable

vector field defined throughout a region V with piece-

wise smooth bounding surféce'S and n be the unit outer

normal to S. Then

Y

LdS
div u qv ij/n * n ds (1D-7)

\ - s~ -
S
In component form
u av ={ u, n, aS : (1D-8)
}; i,1 Jg 171
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This theorem can be extended to the general form

/

Il
I VRN

where ( ) denotes any continuously differentiable tensor

field. For example,

Scalar Field

/. : r

/v A g av =Js A ng ds | (1D-9)

2nd Order Tensor

,(; Amn,i av i}g Amn ny as (1D-10)

For a proof of (lDw7) see 0. D. Kellogg, "Foundations of

Potential Theory", Dover, 1929, page 84.







Proof: We must first show 613 and e g 2re tensors. Consider

the array e, ey
(1c-6)
€t " & 7 Qi &p) ~ n e
~ = Q; Q. e - e
- im n -m ~N
() J
- T =
o1 13 T %m Yn Smn

which implies the array e, -° gj

Now using the orthogonality proverties of Q:

= 613 is a 2nd order tensor.

s § =@ §

15 7 %um Yn Sma = um Yp = Oy
N
Hence, 513 is an isotropic 2nd order tensor. Now consider
Sm X Sn " & = (Y &g) x (Q &5) ¢ (e &)
T Qng Qg Qi &g X eyt ey
or by (1C--4)
1¢) emnp Qmi QnJ ka eijk







//
)

)
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which implies eijk i1s a 3rd order tenscr. Now

(1B-4), | | ;
_emnp = det Q ®mnp = ®mnp - uvkaivu Owbg Pra\fc)/u'(mm_rvﬁvww- R

Hence, eijk'is an isotropic 3rd order tensor.

BiJk = b ®y jx (1E-1)
Cigkn T % 8y Siep F B Sy Syp ¥ 8y Sy fhw scalans

i HaalE e [

zd, o, /
Proof: 2lhvelen wnly 4

(a) Suppose u # 0 is an 1sotropic vector. Then

~

(1E-2)

must'hold for arbitrary proper orthogonal Q. But (1E-2)

implies

But u is non-vanishing which implies QiJ = Gij' But this is
a contradiction since g is arbitrary.

(b) If A is an isotropic 2nd order tensor it must satisfy
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for arbitrary proper orthogonal 9. Hence, (1E-3) must hold if

~

/~) we choose Q as

/
;= ]
\

\o o -1/

This Q is certainly admissible and represents a 180° rotation

~

about the xlmaxis. Now let i=1, j=2z in (1£-3):

A12 = levQZn Amn
= Q) %2 App T = Ay
idence, A12 must vanish. Similarly letting 1,J have the
values (2,1), (1,3) and (3,1) in turn implies A,y =0 = A13 =
( > Az . Now choose
/ -1 0 0\
= { o0 0
Vo o0 -1 J
From (1E-3) letting i=3, j=2:
A30 = Qqp Uy Ay = Q33 Q) Agp =~ Ag,
Hence, A32 = 0 and letting 1=2, j=3 implies A23 = 0. Thus,

the two above choices for Q imply all off-diagonal components

of A must vanish. Finally, choose

!

o 1 o
L) | Qy = 0 0 .1
0







)
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Letting i=j=1 in (1E--3):

- = ~n = [ I R vf
817 %im O Amn = Q2 Yo Ay T Ay Badl frewf
N N o

Similarly, i1=j=2 and 1i=j=3 imply A = A,, and A = A ..

22 33 33 11

Hence, letting A A22 =»A3.J = a, then we have shown (1lE-3)
o

11 °
implies Aij = a 513’ where a 1is a scalar. Clearly, this form

is isotropic, i.e.

Aij

=a8,,=aé,=A

iJ iJ i3
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Cﬁnsidef“én/arbitrary real 3 x 3 array A{J. The -

characteristic determinant of A is defined as det (AiJ - adij).

The characteristic equation of é is

det (A__,LJ - asij) =0 ' (1F-1)

- Expansion of (15-1) gives a cubic equation in the parameter a

and can be written in the form

ad eI 2% +II, a- III, = 0 (1F-2)

A A

where IA, IIA, IIIA are the principal invariants of é defined as

I, =A; =tra
t = L -
) Iy =5 (B Ajy - Agy Ayy)
(1F-3)
= 3 [(tr )7 - tr(2)?]
III, = det A

A

The solutlons aa (a.= 1,2,3) to the characteristic equatioﬁ

are called the principal values or eigenvalues of A. Since

(1F-2) is a cubic there exists at least one reél elgenvalue

of ahy real 3 x 3 array. Assoqiated with each aa is a

principal direction or eigenvector g(a) determined by the

linear homogeneous .equations

o (o) _
(A1J a, Gij) nJ = 0

» (o =1,2,3) (1F-4)
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Since the n{%) gefine directions, it is sufficient to normaligze
the solutions of (1F~-4), i.e., without losing generality, we
take the n® vectorstc have unit length:

n{® a{® 2y | (a=1,2,3 | (1F-5)

Then (1F-4), (1F-5) determine a set of three unit vectors

associated with the three principal values. e
. ’ | _ S
Given an arbitrary matrix A, and given a non-singular ggﬂéfy/
_ : 3 y

matrix B, the matrix C = B A B

-~

is called similar to g for

the following reason: Q and C have the same principal values. .’

Consigder
1 - _'-l ae - _...ll
C-ALl=BAB" -~ A #=BAB ™ ~2BIB
-1
() =B (A-2D)B
Then
det (C - AI) = det B det (A - AI) det B™% (%)
But B B™% = I implies
ot L o 1 -
det B 3ot B (1F-6)

Hence, (*) becomes

{

det (g - AI) = det (A ~ AI)
o

*
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This implies C, A have the same characteristic equations and
(A) hence the same principal values. As a cpecial case, we can

take 2 as any orthogonal matrix Q (certainly non-singular); then

A and Q A QT are similar matrices. IM%

Proof.

(2a) Suppose a + ib is a root of (1F--2) and n (pessibly a
( ) vector with complex componants) is the corresnonding direction.

Then (1F-4) implies
An=(a+1ib)n
Take the ddt product with n:
B A4n=(a+id)n-n (*)

Since n may be complex, then in components the left hand

side is
; =n - é n = Aj_'j ni nJ

where (~) denotes complex conjugate of any quantity. Since

A is symmetric

"







o~
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AiJ ﬁi ny = AJi,ﬁi ny = AJi n, n
A

15 %1 7y

That is, A = X. Therefore A and the left hand side of (%)

are real numbers. Now on the right hand side of (%)

n:<ne=n n; = |§|2, which is real. Hence,

which implies b=0. Q.E.D.
(b) Let ay and a, be distinct roots of (1F-2). Then (1F-4)

implies

(1) (1) (2) _ (2)
A 3 i Aij n 3= a2 n i

Multiply the 1st equation by n(i), the 2nd by n(i) and
subtract:

(1) (2)  (2) (1), _ (1) (2)

Aij(n j i -nyi'n 3 ) = (a1 - a2) n'y’ n'y

Now the left hand side vanishes by Theorem 1 since é is
(1) (2) (1) _(2) _

symmetric: J [J i] . Hence, n j'ny’ = 0, 1.e.,
(1) and n 2) are orthogonal. - Q.E.D.
v
(c) Defiane
(1) (2) (3) .
/'n 1 n'y ntyt o\
= (1) (2) (3)
%y = n's noa n's
(1) (2) (3)
"3 n3 n3
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(Note that Q is orthogonal. since the g(“) are orthonormal.)

; (1) (2) (3)
Then the columns'of A Q are A1J n 3 Aij n P A1J n i

»

But by (1F-4), %.e., Aij n(g) = a, ?(g), the columns of A Q
a). '
must equal a, ny’:
[ al“n(i) a2.n(§) aq n(%)
i
= (1) (2) . (3)
AQ : ! a; n'5 a, n', asg n'j
i_‘
(D) (2) (3)/
\\a,ln3 ay n'3 as n'y
/ a, 0 0 \
= g 0 a, 0 )
\‘O 0 a3 /
=QD
) '
hence,
¢'59=0p

is 2 diagonal matrix with a, as the diagonal entries. Q.E.D.
We note the following: (1) If the a, are not distinct,

say a; = a, # a3, then'g(3) is determined by (1F-4), (1F-5)

1
(except for sign), while the same equations cah be‘satisfied
(1) (2)

by éhoosing n 'and n to be any orthonormal vectors 1lying
in the plane brthogonal to 2(3). -If all the principal values
a, are equal, then any orthonormal triad E(a) can be chosen

such that (1F-4), (1F-5) are satisfied. (il) The signs of .

the g(a) vectors are usually chosen to make the triad a.

&V)
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right-handed system, i.e., n, xn, g3 = 1. Then Q defined

(“) above will be proper orthogonal and hence represents a rotation.

The vectors n{®) are then called the principal axes of A.

(111) The procedure of determining D = gT A Q 1s called

diagonalizing the matrix A, since in principal axes 5 becomes

diagonal.

Proof: Suppose we seek the extremal values (1.e., maxima,
minima, mihimax) of the quadratic form (A is real and sym-

metric)

A= AiJ ny ng o (1F-7)

. -
N

subject to the condition that n 1s a unit vector

n, ng =1 (1F-8)

Since X is a function of n, then the extremal values of A
(if any exist) will occur for certain directions. We employ

the method of Lagrange Multipliers (Reference: R. Courant,

‘Differential and Integral Calculus, Interscience), i.e.,
necessary conditlons that A take on extremal values subject

ton - n=1 are that

Q

P )
— = () (1F-9)
ani .







N
N
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where F 1s defined as

F(n) = A - a(n - n - 1)

= A1J ni‘nj ~ a(n1 ni‘- 1) (1F-10)

and a is an unknown Lagrange Multiplier. From (10)

(<%

oF
3ni

= Aij‘ﬁj ~an = (AiJ -~ adij) nJ

Hence, (9) implies
(AiJ - adij) nJ =0 (1F -11)

are necessary conditions for extremal values of A. But the .
solution to (11) and (8) yielad the principal values and

directions of A. Hence, A assumes extremal values in the

direction of the;principal axes. It remains to show that the

extremal values of A are the principal values of é. Consider

(1)

a,, n wnlch satisfy
(1) _ (1)
AiJ ny a; ny

Then M\ becomes

) (1) (1) . (1) (1) _
A n(l) Aij ng nj a1 ni ny | al
Similarly, for a,, Q(Z)'and a3, 2‘3). | Q.E.D.
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A. Deformation Tensors

Let a continuous body B0 at time t=0 have volume V0 with

- boundary So.' If forces act on By, it will be deformed into a

new configuration B(t) with volume V(t) and boundary S(t). We
call BO a reference ‘configuration and assume that the position
of every material point in B0 is known. We define two fixed

RCCS XK, X with right~hénded orthonormal bases EK’ Ek’

 respectively. Capital'indices will denote components with

respect to EK and lower éase indices with respect to g . Then

a typical point in the_bodynhaé position vectors (see Fig. II-1).
B %I s oTEx Y ) | (2A-1)

The XK are material coordinates of P and x, the spatial

k
coordinates. The deformation of B0 into B(t) is described by

the mapping

Xy = Xy (Xg,t) ' (2A-2)

We assume that this mapping'and.its inverse
Xy = Xplxy,t) . : (2A-3)

are one-to-one (implying one point in Bo i1s mapped into one

point in B(t) and visa-versa) and continuously>differeﬁtiable

in their arguments. The inverse (2A-3) will exist throughout

B(t) provided the Jacobian of the mapping (24-2) is non-

vanishing at every point of BO:

w\:' A’ @ e . }\g(/kﬁ °

\

J



.
! ™
\"w/



¢o-




-

)



. - ‘\‘
N’

2~3
axi

oXy

J(X,t) = det (x5=) # O

Since Bo = B(0), then

where g is the constant positionAvector of the x

(24-14)

system with

s

respect to X., system. Using (2A-1) and (2A-2)

Xg Ig = 2+ %, (X,0) 1,

with both sides:

Now dot IM

X.

K I,«I,=b°>1I,+X

Ix “LIy=Db > Ip+x X0 1 Iy

or

X, =b

K = Px Tgm

+ xk(géo) %k

We define thefd B¢l

Then (2A-5) implies

X

0T Pyt % (X,0

%M

(2A-5)

(2A--6)

pt‘ rection Costne Natriw
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Now differentiate with respect to XP
40
thafﬂ kk '

I Jx’ 'V . \ 5
a;.P /x kM Constant {w,,+m vecter,
i.e
o .y el
= k ¥ v\ (S J D’L'h(’“‘e ..
Sip T Ky (5500 oy | e
Multiply by ;. and use (2A-7),:
Bx
%up %1: T 5T, Xp (y 0) et 1y
Sk
i.e
ax
i
N (‘30) = Qa
BAP ~ ip
Taking the determinant:
~axi ' ¢
J(X,0) = det 57— (X,0) = det (aip) =1 : 219‘. 74)
-~ P -~
since o is proper orthogonal. Recall that EK’ }k are right

handed. Now J(g,t) is a continuous function of t which never

vanishes and equals 1. at t=0. Hence, .

J(X,t) >0 for all X,t (2A-8)

Consider aﬁ 1nfinitésima1 line element dg at any point

in BO which is mapped into dr in 3(t). (See Fig. II-2),.



U
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Fig. II-2






2=6
- - In general dR is stretched and rotated by the deformation.
8 From (2A-1)

P = ~r T .
dk = A Iy , dr = ax i, N (24-9)

(7(,’ gorn;xt?'wn G‘(ra.vll\ew -

= _l. = ¥ -
axy, = Z, dx 4 kK,i dx 4 (2A-11)
() o’ &y
tha i Wow the arrays Xy 1 XK q are inverses to one
i i s

another, i.e.

(2A-12)'l

Similarly,

. v | : C«(.A“\_@\’S ! Qﬂ‘(%-—m
p . Applies T d (24-12),

inc - Ack avh $nas Solukie——m

Hence, recalling (1B-17) and considering Xy g as glven \&"'Eﬁﬁ‘g
’ .

quantities, then XK 1 is determined by

]

. i} cofactor xi,K ~ cofactor Xy

K
’b) AK,i det x

A(2A~13)

1,K J
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Let the lengths of dR, dr be denoted by dS, ds:

as = |dar| , ds = |ar|
Now dS in BO is determined by

dR + dR = (ng Ix) = (axy I

~

as

Sxu g dXy

Similarly for dr in B(t):

Jow (2A-10), (2A-11) give relationships between dxi, dX

(2A-10) in (2A-14):

2 _
as® = 8, (xy ¢ AXy) (xy X))
= X3,k *p,u g ARy

(2A-14)

(24-15)

K Use

(2A4-16)

‘fiedi¥ e also note
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-y that (24-17) is a quadratic form in d¥ and that as® > 0 implies
| CKM is a positive definite array. This means, among other

things, that the three eigenvalueS‘of CY“ are always positive.

Now Cy., transforms as a 2nd order tensor under rotations of

the material coordinates XK. Consider a proper orthogonal Q

such that

)
|

k = 9p ¥p Or Xp = Qpp X (%)

axi 9X. BXP(J) 3x

Q B!
KP BXP

which implies Xy x transforms as a vector for each i1 = 1,2,3
A
under rotations of X - X. Similarly, we can show Xy » trans-
P ~ 5e
forms as a vector for each K = 1,2,3 under rotations of x - X.

How ccmpute the components of C in the XK systemi

. =-axi Sxi ) (axi BXP)(axi.BXN)
3%, 3%, 9%, oX, aX, 0%,
(%) dx 9xy
= (&p 7%y 37
i
Hence, by (2A-16) .
\\\
Can = %p Y Cen ) (24-18)

which is the transformation law for 2nd order tensors. Now

Kv) use (2A-11) in (2A--1l4)
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57 = Gyy(Xy g xy) Xy 4 dxy)

= XK,i XK,j'dxi dxJ .

Meinow

S¥Deformatic

(2A-19)

Note that 4 is nonlinear in the inverée deformation gradients

X,

4y

i Then\.

j . | | :' (2A-20)

Since d32 > 0, ¢ is also positive definite with 3 positive

eigenvalues. Eqn. (2A-20) implies given dr in 3(t), then

/,) . as = |dR| can be determined, i.e., Cyy is a measure of the

deformation of line elements at any point of the body. We can

show that cij transforms as a 2nd order tensor under rotations

of x + X.

-~

Note tnat C, ¢ are symmetric tensors:

defn. , : _ defn.
Cug = *1,m *1,x = X1,x *1,u 7 Cku

c,ji =

k.0 *x,1 7 Xx1 X,y T Cay

AlSo, in the special case that

Cyw = Sgm > gy = Sy K':ﬁ:é Boly Motion  (24-21)

at_every point of the body, then dS = ds, i.e.

—————

»
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| (28-17) (24-14),
/ = 3 = =
[“) Chy = 8, implies ds 8y AX, dXp. = aS
| (28-20) . (28-15),
i3 = éij ;éplies as” = Gij dx dxJ = ds

Then the mapping of BO into B(t) 1s called a rigid body motion.

ote that dR can suffer rotation and translation but no change
in length. If (2A-21) holds only at a single material point,

then the motion is locally rigid. )




),
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B. Strain at a Point (Wonlinear Theory)

By "strain' we mean changes in length and relative orienta-

tion of line elements under the deformation. A measure of

iength change 1is d52 - dS2:
(2A-14)
2 2 :
ds”™ - d3" = (Cp, = 6...) a&X. dX,
(2A-17)1“4 KM I M
(2B-1)
W
(2B-2)

Jote that E is a symmetric 2nd order tensor in X,. coordinates

o)

¥

since g, § are. Another expression for d52 - d82 is
(2A-15)
2 2
ds™ ~-dS"™ = (8,, - c,.) dx, dx
(2a-20) 7137 L T
(2B--3)
(2B-~4)

Again note tnat e i1s a (symmetric) 2nd ofder tensor under

rotations of the X coordinates. Consider (2B-3):
2 > (24--10)
-— = = ~r
ds das 2eij QXi de 2e1'j xi,K xj,M dAK dXM

(2B-1) o
= 2By dXp dX,
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-
- 2(E

-

KM T €13 Xy g Xy,m) g dXy =0
which implies for arbitrary dXK # 0

(2B-5)

Similarly, using (2A-11) in (2B~1) and comparing with (2B-3) .

(2B-6)

This can be established directly from (2B-5) using (24-12),°

i.e., multiply (23~5) by X X

K.m Xu,n
Fggn X, B T C13%g g X on) (X m Xy )
: TSN S et e
N . 5y, 8y, by (24-12)
=e | Q.E.D.

Hote that under a rigid body motion,

Cx = rm éiﬁligs Egw = 0 GE%L} Gedy Mot
: : Em’l H Luaém nyes Stearn Tcn; oo
(28-4) _

cij = Gij implies e1J = 0 &V T Eulery Stmain Tensor

To interpret the dlagonal.components of CKM’ EKM’ we

define a unilt vector N along dR:

ax,  dx,
"k ¥ TaR] © & (2B-7)






re
/
\

TN
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Oi[\ %Fs

ld I ’ . St\l‘etZk
- . ds ; (2B-8)
(i0) aR] = a3
o) o
£on: K-
- = - _ ds - ds - dS '
M= Eqy =hgy - 1= -1° T35 (23-9)
— E:\/—berft}»l'@m
Divide (24-17) by ds°.
(2B-7)
2 ax, dx.,
ds _ = (.. X = C o W, N
2 % ds  as kKM Yk it
as
i.e., using (23-8)
2 = { PR -
[&(N) = QKM NK NM (2B -10)

which implies CKM is a measure of the stretch of d@ with

direction N {3_80. Since JY # 0 and C positive defihitej then

A%N) is certainly positive. Note (23-10) is a sum, in general

involving all tne Cqm components.
Consider an element orizinally «long the X1 or {1 direction.
Then NK = (1,0,0) rand (23-1C), (2B-9) imply

(v " e By Thay -1t -t (284D

How (2B-2) implies C QEKM + GKM and hence

ki~ ©

C11 = 2E1l + 1






N
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-

Thus, in terms of Byq

1/2 . o (on 1/2
A( + l) ) 3 E(l) = (2—011 + l) -1

1) = (2E4
| (2B-12)

Egns. (2B-11), (2B-12) imply cll’ Ell‘are measures of the stretch
and extension of an element originally along the Zl direction.
By taking elements aldng ;2, 53 the other diagonal components
of C, E have similar interpretations.
For the off-diagonal components of g,‘g, consider two

(1) 45(2)

line elements dR at a point in B, which are deformed

0
into dg(l), d§(2). By (2A--10) the components of the elements

are related by

(1) _ (1) (2) _ +(2) &
dx =7 = X5 4 dXy , dxy°7 = X3 ¥ ax, (%)
We choose dg(l), d§(2) along the Il’ 12 directions:

(1 (2
ax{?) = (as;,0.0) ax{?) = (0,as,,0)

Then (*) becomes

ax(1) = as. . dxiz) ds

= xi,?

ilow the angle between dg(l), dg(Z) in B(t) is found from the
inner product dr(l) . dr(z);

ar®) . gp (@

cosb = =
12 | |d§(l)|ld£(2)|




)



From (2B-13)

Hence,

1) (1) 1y gy
: 1) | 1) _ 1 1) _
dr dr - dxi dxi. = (xi,l dSl)‘(xi,1 dsl)
(2A-16) (2B-11)
- 2,2 2
= Cyp 957 = A(qy a5
(1) , (2) _ . _ a
dg dg = xi,l xi’2 dsl d82 = 012 dol d82
(2) (2) _ 2 _ 2 _ 2
C., dS. as. C 25
_ 12 1 Y92 12 _ 12
005912 = Iy

2-15

(1) M2y 95y 95, Aiqy Bepy  Aqy Bg

(2B-14)

We define the shear F12 as the change in angle between the

two elenents:

which impl

Tip =58

12 12

ies sinl,, = cos6,, , and (2B-14) becomes

» c
sinl .. = 12

2By 5

12

Foy My My Mo

2

(2B-15)

i.e., 012, E12 are measures of the shear between 2 elements

originally along I

stretches.

T
12 <2°
Using (2B-12)

Note that T

1

> depends on the
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2E

‘ 12 . . - . :
. sinl. . = . (2B -16)
/ =12 - 172 . 1/2
ﬂ (2&11 + 1) (2:..22 + 1) o

Similar expressions can be derived in terms of the other off~

diagonal components of C, E.
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C. Principal Strains at a Point

)

We have shown that the defofmation tensors Cr“, ciJ and

the strain tensors EKM’ eiJ are real and symretric. Hence,

by Theorem 11 these tensors have three real principal values
and a corresponding triad of principal axes. .Jote that these
principal values and axes_vafy from point to point in BO’ or
B(t) since in general the above ténsors are functions of the
points in the body.

Suppose we focus attention on the material strain tensor E.

The principal strains‘Em and corresponding directions g(“)

are determined by (see Section F of Chapter I):

- (a) _
(Eyy = Eq Sqm) Ny * = 0

y ) _ (2c-1)
S Néa)-N§ =1

B3 -1 B2 + I E - III; = 0 (2¢-2) -

where the principal invariants or E are

Ip = Egg

Iy = 3 (Egg By - Exy Ey) (2¢-3)

111, = det E

(2c-4)







TS 5 SQUARE
TS 5 SQUARE
TS 5 SQUARE

g@/ gp m««(l\-‘pu. JC@ S C ©Ce.

kh LJ

S fra " Tensor E;M 6‘7

Eeoa/ af.,C) .5)/-1Math'c.

' 0
<E<"7 ) E"‘ 5“‘?) N" = © Eu E(/) s Ey By e
TL!(‘ f)’*:"-1¢y'/,)gu/,51;va/'~1$‘

(B, - B4 )N+ (€, - s )M +(E, - EX)M =
(EL; - E"‘Sz') !V'& + (Ez:z,m. Eb(‘Su) N; + {Ez} - Eﬁ‘éﬁ?}J)N)& = O
(Es, - E"§IM"+ (6, - LN v (B - EN N -0

Nocral st 0o the dinection N is:
Cv = ’Ekn i\[kNﬁ
= B NN e Eo MV E NN,y M,
FELMN, v B NN, +€, MM
. CHEMM FE,MN,

N l‘“} COMFDWM'L’» v, IV,,J v, , or er

l
| ~
.I - —1 ~ -1
X . .i N, &-,ang qu 'uu‘cc CF@J/F-\« ic R bes <E“ e, , C,} or €f
" TS
/;\\m ;/// ()('/X"“IX}IQ" )(L>
t{/l'l}($ I’y .."v\él%r‘o.l h&'ta '6"‘791 'NK Nl"\ M @ otns A/k M1 é\f( P é\n
iy A~
L}er\ge 0»1[7 t&e '(?crmg wLerc l‘\z,,-,\ aAre vow -~ Lere Lo S’

E;V = E,, NN+ E MV, ¥ E;; N, M
bt it o wssaned thet NN =2 (ze-1) oo

sz En rELLf'E

33

ThereSore, in the primeipal axes, the shearing steacns. (E &y, cte)
2 f r ) 9 12 5

\/O\ﬂv\ih . ‘ .
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then by Theorem 12, the extremal values of EN~are the prin-
(A> cipal strains Ew and occur in the direction of the principal
axes defined by g(a). Recall cthat E 1s a 2nd tensor under

into’ﬁk,'i.e.

rotations of the material axes Xy

Exm = Qp Quy Epy

Note this equation has the equivalent direct notation form

=QE Q.

~ o o~

)

Hence, if Q"is chosen to be the proper orthogonal

5(3), then Q rotates' the

~

array whose columns are y(l), y(z),
XK axes into the principal axes at each point. But by Theorem 11

is dlagonal with E  as the diagonal entries. [H

=
o

30

- The principal- d .

by equations similar to (2C-1), (2C-2) with corresponding in-

2 _
G = Cxm N Ny

and Theorem 12, then the extremal values of the stretch squared

variants as in (2C-3). Recalling (2B~10): A

are the princigpal valués C‘:y and occur along the principal

axes of C. €A

In view of (2B-2): C=2E + 8, then if E is

diagonalized, C must also be diagonal. fHi
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(2c-6)
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D. Deformation of a Volume Element
Conzider three line elements dg(“) in BO which are de-

(a)

formed into dr in B(t). By {2A-10) the components of these

elements are related by
ta)
dxi_

= X

i, dxi({a) (o = 1,2,3) (*)

From calculus the volume of the parallelepiped (6-sided prism
with parallelogram faces) whose edges are dg(“) is given by
the magnitudevof the scalar tripie product dﬁ(l)v* dR(Z) X dR(3).

Computing the volume in B(t)-

{ 4
M&’QWV(,‘L""”‘I) (I:I:) (l) (2) (3)
) ) ° I, s g T Cagie, KRy, P Ky Ty
'\r:: (;xk L o : ) .
. T _ EE ' (1) ,-(2) 4, (3)
R= X L = ey det(xg 1) axg ey axg

(ap-4) eg".Pe‘}etQ : Cig A /‘)in At,;

_(2)

-~

) ( .

Taking magnitudes and recalling that J is posltive, we find

(?v =7 evbl | | . (2D-1)

ifote that dV0 is independent of time, but 4V and J depend on

£,t. For an alternate form of (2D-1) we use (24-16):

[N v

Ckm = X3 ¥ *1,u

w ) 22 g2
v det (Cyyy) det(xi,K Xy 1) =(det xi,K) =J
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©~ Also, by deflinition
IIIC f det(CKM)

Hence,

3¢ = 111, ; J = /IIT. (2D--2)

(w2 can show IIIC > 0) and (2D-1) becomes

c 4Vn (2D-3)
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Top

. o sobutiniy , htiiconais | -
\/ﬂ) Choose the Xy 5 X., coordinate systems coincident with .
° Cermment ey v

‘ common orlgin. Then a static homogeneous deformation is 20
given by ' gdx& =§’2:C\2Ec\)(k o= D L

» L anst Dl

X3 = Dyyp X (2E-1)

where DiY is a constant, non-singular matrix. dote that
Xi K= DiK are independeﬁt of the material point, as are
,\
= 3 ’ v, tn )y 13
CKM DiK DiM aud EKM' It can be shown t@at (2E2-1; implies that
(finite) lines deforn into lines, planes deform into planes,

ellipses deform into ellipses. We now consider some special

cases.

atiorf

DﬁK = X&iK » A = const.

X~ = AX . x3 = AX3

Thls mapping deforms a sphere cf radius R in BO into a sphere

of radius AR in B:

x =X12+X2+x2=R2

KK 1 2 3
2 . 2
X X X
1 2 .3 . p2
(r) + (';"") + k:;\-—) = R

which implies

s 12 32
&v) XyXy = A® R







Under this deformation a bar wita axis in Xl direction is

stretciied or compressed with no deformations in transverse

p-anes. (See Fig. II-3). ilote
¥ 0 o
Cgm = Pyg Paw = ( © 10
0 0 1

.= 4 )
S 7 7 Gy~ Spd)
-1 0 o0
= 4 0 30

~
)
o
o

Note these arrays imply the XK axes are princinal axes at

all points of BO’

into the plane xl = AL.

1

-

We observe that the plane X, = L is deformed






R i

M n |(¢t )(l‘(}- l Strc( (‘01 .

o)

Siwgle Shen

J - Fig. 1I-4







Dyg = 0 XA 0
0 0 KA
Xy =A%y, %y T KM, xg = KAX,

This case is simllar to the previous case but with transverse
planers of the bar suffering deformations. Again the X, axes

are principal axes.

A2 0
N R 2.2
Cxm = Dy Dyy = 0 KA 0
g 0 K222
() 5
-, A%-1 0 0
1 . 2.2 .
By = 3 0 K22%-1 o
0 0 k2221
1 8 0|
Dyy = o 1 0
50 1
/
Xy = X1 + SX2 s X5 % X2 B x3 = X3
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Consider this deformation applied to a rectangular block.
~

‘A) (See Fig. Ii-d). Hote that

shear 18 ‘an isochorifiide formation
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¥, OStrain--Displacement Equations
\“) We introduce a displacsment vector u to define the motion

of a material point. From Fig. II-5%
R+u=bt+r o - (2F-1)

Jow the deformation tensors CKN’ Cij and the strain tensors
EKM’ ey can be expressed in terms of u by (2F-1). Since b

is & constant vector,

(R+u) . =(b +1r) . =r (2F-2)
AR 200 ST ST S

» K

Now u can be expressed in components with respect to either

~

I
~m’ <

uo=ou, ?k = Ux Ik ~ - (2F-3)

. /"/ . D i
B R TR UKV=(§j: Ix

<
~
A
=
-
[

and we take

[
1

p = h 0t L Uy = U(X,E) (2F-4)

F4N
Then in component form (2F-2) becoines

(e i) g = T+ Up) Tpl

Xe ok Tk = Ap,x * Up x) Ip = GSpx + Up ) Ip

Dot this equation with 1

(2A~6) |
( = . = F> ?
- CFmx T Voek t Up x) dp c Ip = Gpg * Up ) a7 ocup

(2F-5)
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("é < ﬂéf}P'aCﬁ«w'ew’f \/eotor 0’? Ptﬁwf

Pig.

)
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which implies

8py DY (2A-7)
A
Ckit = *m,x *m,m = °mpSpx * Up k) % (Sum + Uy,w
= g + Uy,x) CGyu + Uy )
i.e
ki T %kt Ykt Ur,x * Ua,x Un,m (2F-6
and
Epor = = (Cpg = 8 )
k= 7 (Ckg - Sgy
= 1 1 '
5 Weom* U,k * 7 Yk YnLm

For the spatial form, take

, €+4++. This leads
1]

Bxi
to

)

n(cfewm’ %“‘4 (2F-T7)

(L ’Zaf\dwglﬂ")

of (2F-~1)

with u =

Yy

§4)aﬁﬁf l ?‘yv

%k and

(2F--8

reod s rR—\— \, 12 1:)
o(pjm. IH =

Ci = (Xt - oot Udeyt WM =X pHUR, S ) = en

= Xt)C;YKJr Uk, Cke Loy
XM, (= XM - o hou U by

C Gy - B - ViU U Uk

L [ad s e- Uk, u&,j}

U(()J)"

5\3’

Uﬁ@lbmyl

E;UP

e

Sk

)

" (Eddenindy

C
~

ok |

o —

(M- o (M EMUP)_( "/—krf\u
4 g XM Wk, Uy

.o('-
%M
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&. JImall peformations:

In crder to specify the conditions under which a deforna-

tion 1is infinitesimal, we define the norm of an array A as

2

(1ALl = [tr(4 a™)31/2 (26-1)

~

befining X to be the 2nd order tensor with components U

» I
i,

we have

2

[Hall = fuy 5 v 3%/ (26-2)

Define ||H|| = & and let F(H) be any 2nc order tensor function
of H whose norm is Less than C €' {where ¢ is 3 positive

constant ).
T < oo g (2G6-3)

Then P is saild to be of order el and is denoted by

-~

D(E) = o(eM) | (2G-4)

Jdote (23-3) and (2G-U4) are equivalent, i.e., one implies the

other. Also, L = 0(e) since

]
m

A
(@}
(3]

|TH ]

, C»>1 . (+)

vefinition - If ||H|| = ¢ << 1, the deformation is said to

be small cr infinitesimal. iote that each element of the .

-array H or UF i 15 small when ¢ << 1. 'We now define a tensor L

| | |
S A or Egg =g (U ¥ Uy ) Uik i) (26-5)

i
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It follows that for small deformations
[EIT = |8

Now use (2G-5) in (2P-7):

T - = 1

kit T Fgpn t 5 Uy g U

N,M

tl ey
"
by
+
|-
un
o
(e}
H
t

Using (), we can write this as

0(e?)

3

n
2R

+

Then neglecting terms of order 62 dompared to those of order ¢,

we nave
SWm “ 9& ’S:Dr/wii’('cm

K Theony (26-6)

or EKM = E

g
n
[ &

‘Based on (2G-6) EKM is called the linearized material stra‘in

tensor. -
Recall the expressions for the stretches, extensions ang

shears. From (2B-12) for small deformations

/72 2 (14 25,)Y/2 (%)

-~

Since Ell << 1, then expanding (¥#) in a binomial series

= 1 (oF 1 1.1 2
My B @R 4ar - 5 (5-DEEDT L
= 1+ Ep, (26-7)



)



2=31a

s

~
=

By =My 1% By . (26-8)

-~ -~

Hence, for small deformations Ell’ E92’ E33 are approximately
equal to the extensions of elements originally having directions
I
along }l’ gz, Ij. )
We now consider the shears for small deformations. Fron

(25--16)
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_ -1/2 . \-1/2
sinI‘12 = 2E12(1 + 2Ell) (1 + 2&22)
2 2B, (1 -2 20 4 ..0(1-%. 28 4
12~ 2 11 e 2 22 e

This implies sin r12 is small and can be approximated by le-

hence

T £ 28 ‘ ' (2G-9)
Thusl for small deformations E12’ E)3s 23 approximately equal
half the shears, 1.e., half the change in angle between pairs
of elements originally glong the (21,52), (;1,53)= (22,23)
directions. _
Consider the .-deformation of dVO into dV. From (2C-6)
and (2D-3)

av_ T o 1/2
v /IIIC = (1 + 21, + uIIE + BIIIE)

e

(1 + 21;)1/2 214 % = 2Ip 1 + If (2G-10)
u i

Recall that IIZ = 0(e2) and 1117 0(e3). How

T E

av - avy, 4y (26-10) -
avy, = avg - 1 = IE Exx (2G-11)

Hence, Iglequals the approximate change in volume per unilt
undeformed volume. Recalling (2D-2): J = /IIIC, then (2G-10)
implies

JE 1+ Ié (2G-12)
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To determine how the material and spatial strain tensors

ére_related for small deformations, we begin by dotting (2F-3)

-

with EM:
. (2A-6) oY
Ug Ix = In = e 3 0 Iy = opy uy o klj
N ,l-(\/ (i
l.e N
: = s =G
Upg(X58) = oy up (%,8) I x RN AN
W+
9 ‘>tﬂﬁ%/”‘ Ve 37575
Taking g—g \gi EARSIEN Y
W Bl
= = >0 -\N
a0 = % YoM = % Yx,1 ¥ix ™o
1y |
(2F-3) S Y
= M ~ ot 0
Ours %3p Yy,1(Opg + Up ) 3| ¥ -
= %M %1p Opk Yk,1 T %km %ix Yk,1

Since o 1s orthogonal, inversion gives

u U (%)

k,1 - %k %K M, K

Because U ls of order e, each term on the right hand side

M, K

is of order e. Hence,
U,q = OCe)

Then from (2F-8): 3 the 2nd term
3 .

- 1
13 * Y4, T 2 Yn,1 Un
is 9(52) and S
; S § Ma l l 98 §-0VW‘a.'l'.‘0‘vn
13- ’ _rhﬂoﬂy

where eij is the linearized spatial strain tensor. Taking the

-~

gy =fﬁ(1,j§ (2G-13)

symmetric part of (%)
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Bk,1)

which implies

Y(k,1)

m

(VTR VTSR ST

e

or by (2G~5) and (2

-~

®ki

Since we can always choose a

*(kit *1)K

(o o

kM 71K

(o @ig

U,

(Uy g + U

2-34

wr

M,K
* %m. %%k Un,
U,k * %1k %m Uk, u)

kM) O %4

%em %1x Um,x)

G-13)

= opm %y By

axes coincident, then

-~

"e

[
(1]

~

11

~

ki

[[H]

s

(=5 I

11

kM %ik

S B

¢ MK

-~

> €12

il

Hencé, for small deformations

the material and spatial strain tensors; their physical

(26-15):

R

%M %k

.~
-—
-

E..

interpretations being the same when:akM = Gka Upon contracting

Eux

?

KK -

kI

=8 .E. -

(2G--14)

= GkM by taking the coordinate

(2G-15)

b 2

12 5 etec.

there 1s no distinction between

MK TMK

————

Srall PeSormution
Theony
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which implies

)

I~ = Ié

1

so that (2G-11), (2G-12) become

av - dv
av

0

e
H
M2

0

[ ]
i

1 + Ié

TN

(2G-16)
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A. Baslic Concepts: Dual Descriptions, Material
Derivatives, etc. ,

Consider any tensor field F associated with the deforma-
tion of Bb‘into B(t). Since the deformation can be specified
by either X = g(g,t) or X = X(x,t), F can be expressed in

the material description

F=F(X,6) _ ) (34-1)

or the spatial description

-F = F(x,t) (3A-2)

It 1s understood that the functional forms of F in (3A-1), o
(3A-2) are in general different. If we choose Xy = const.,
then (34-1) glves the value of F at time t at the particle P

in B(t) having initial coordinates XK in B This means we

0 ,
are following a given particle P with g changing as P moves LQQMVj;aﬂ

through space. Choosing Xy = const., then (3A-2) gives the
value of g at the particle in R{t) having spatial position Xy

at time t. 1In this case we are viewing a fixed spatial point

with F changing asdifferent particles move past the point as
t changes. '

The time rate of change of F along a given particle P:

Xy = const. is the material derivative of P and is denoted
DF — . ,
by 5z £ F. From (3Afl)

D 9

.

ctjig
et

(X,t) 2 (38-3)
X :

~



’ ot =
x
\/s/\/ W\/

Laea.[ rate Con veu‘h‘vc

ot "l"“"‘(’j ¢ rate of olvma ¢
D Ve .
o7 Lzt ) = Q—Xg v v 2%

d % 4 &x.a'
A‘ e e’ em{’.‘ gy Lv co.l VE ) ® u‘f}r 6 fmJJ\w?t‘b

A’ 'vb&[ C(‘o:i:‘?n



3-2

By choosing F = x(X,t), we obtain the definition of velocity

of the particle X:

particle movipg past the point X.
. S F o

V8(0 1,17'7)/

}_ R Dx. . ax
- (3A-4)

vy (X5,8) = g = 5" (X, t)|
DF.
bt

F = F(x (X t), t). Then

To compute from the spatial description (3A 2) write

Q-
s

DF  3F , 9xy
bt~ AEl, T A s-—lx
DF (3\ H) Bg ag
Dt at|, * Viaxg (3A-5)
: oF | ‘
I this esquation g% is the 1oqa; rate of change of E at,&

oF . .
and v, 53 18 the convected rate of change of F due to th,
4 . ~

. For the speciaj case that
£= 500, 55 = 0 and the field F is called steady.

Applying'%g to (BA-N), we obtain the material form of

ihe acceleration:

I:}

<

@

<
(Y

(34-6)

|
fe
[

w/
ct
Q)]
ct

13

But by the inverse mapping X = X(x,%), v, can nhe expressed in

spatial description,vi(g,t). Then v, follows from (34-5):

Q

Dv, v
vy(x,8) = 5g£ (x,t) = 5~3} * vy §~l (3A-7)
- J P Lg
- 4 QC’ V‘O»f} :9 ™
oV . o ’ .
where g—i = vy j are veloclty gradients.
>

*3



.
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Now'gon31der the timg rate of change of an element dr in

B(t) as it dexonms - ﬂ[_: Jf ¢ o Jp = th
(dx ) Dt (xi I\ dkvr) - ]')-E i {-) d-A,,- ( )
since dX, 1s independent of t. Now i
B (xy g = %—-<§§i> T (i;l )
B - TRy YAy X

by expressing Vy in spatial form. Then (%) implies

D - .
ot (4X3) = v, Gy x 9

Consider the -time rate of change of aAdeforming volume

element

D ‘ _‘ .D Ay — -
Bt (av). = OF (J QVO) =.J dVO
But since ¥ = det(x K), then
3
;o ad e 3y

9% x LK = TTE 1,3 %3,k ()

J

From Theorem § {Eun. {1B-19;]:

where A, 1s the cofactor of Xy g+ By (1B-16) and (1B-17)
4 9 LY

(3A-8)

VTl‘nt Reite of C(«a.n71 o€
Elemeh-9) 1

(3A-10)






0d

) ’ 5%, ¢ 3.k T Max Xy T 7 Sy
Then (#) implies o
&f‘= I Vy,5 843 =3 vy 3 =Jdlvy (3A-11)
and A-10 bécomés
(3 ) Tl"té Ku‘l“e a'y' Ckﬂn&e D'P
(2D l) lyg +9r""" V'["Wt’ ‘Clew\gav-t‘
Dt (aV) = J div v dVO = div v av - ' (34 -12)

We note that for an isochoric deformation J = 1, J = 0 and

(3A- 11) implles L 5“~F(6 sheanr
| 3 9)6' QX\, “‘i\:’
/h> Iranspory Theorem.. Let F(x,t) be a tensor field, contlnuously
N ~ o~ _ \

Cifferentiapble in x;t and V(t) be a deforming material volume.

Consider the material derivative of~/ﬂ F dv. Using (2D--1)
| o v(t) ~

we can map the integration back to the reference configura~

tion Beﬁ

Then

~/~» (FJ+FJ) av,
g &

- . ‘ 0

= (F + F div v) J gV
_ VO ~ ~

0



C
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ggpjn T 4v =‘jr (P + F div v) dv (3A-14)
PPAveey T Jvey L v N |

"This result is.Reynolds"Transport Theorem. Some component

forms are
o [ L
=E p(x,t) 4V =j (p + ¢ v, ) av
Dt Uygy 7 Vit 1.1

D / :
B f.(x,t) Qv =f (f, + £. v ) av
DL-V(t) it Vi) i i 3.3

Now expand F in (34-14) using (3a-5)

o or
U Jyy TV T ey GEF Ly vyt Ry v
[T ~
" Jyy BT E V) gl

7 3F f
= — qVv + Fv, n, dA {(34-15)

by the divergence theorem. This result is an alternate form

of Reynolds®’ Theorerm.
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B. Stretching and Spin Tensors

We define the stretehing tensor dij and the spin tensor

Wij as ;

S5 T Y, 0 Wiy T VL) (38-1)

Then the velocity gradienis can be written as

Vig T Y15 * vay (3B-2)
and (3A~9) becoues

2—- ‘:E—-..—= A .

BE (dxi) dx1 (dij + Wys) de (38-3)

To interpret tihe elementz of dij’ consider an element dr at

some point in B(t) and take the material derivative of 632

recalling d52 s df ¢ dr = dxi dxig

(dxl dxj)

U‘U

‘idsa§=g/&‘?fdx
| p dxy

ds ds = (Qij + w, J) ax, dxj = dij dxy dxj
since Wij dx1 dxj vanishes by Theorem 1. Now divide by ds2:
E'— d d.{f'_ fi.xj { )
ds 1j ds  ds

If we definé

-

Ny =& @2 Yy <
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then ny is a unit vector along dr and d(n) is ¢alled the

stretching of dr. Then (#) becomes

For an element dr along zl at time t, n, = (1,0,0) and (3B-Y)

gives

i.e., dll gives the rate of change of length per unit length

.

of an element instantaneously along il. Similar interpretations

—

apply‘to d22, d33. For an internretation of the off-diagonal
eiements of dij we compute the angle between elements dxél),

dxgg) in B(t) from their dot product:

A1) g (2)
dxi dxi = dsl ds2 cos 912

Taking the material derivative of this ekpression, using

(3B-3), (3B-4), we can shew that

(1) (2) _ -
2 dij hy né (d(nl) + d(nz)) co§ 612

. (3B-5)

- 612 sin 912

Now we choose the elements dr(l), dr(z) instantaneously along

iy, is, respectivély. Then

= n/2'

ﬂi

n{t = @,0,00 , al® =« 01,00 , %12






and (3B-5) implies

M

/

For 612 > 0 then the angle betwesn the elements is instan -

taneously decreasing. Thus d12 is half the rate of decrease

of the angle between elements instantaneously algggmila }2,
Similar interpretations apply to d23, d13. ‘

Since dij is real and symmetric, then by Theorem 11 we

can determine a principal axes system Ei'in which di is

R
WJ
diagonalized. Hence, in this system elements along ii

only stretchings with no rates of change of the angles between

suffer

“tlism.

For a detailed iaterpretation of the spin tensor wij See *\V
/‘> Sringen, pw. 79--61. Roughly speaking Wij is a measure of §ﬁ5175uo¢

the rate of rotation of elements in the neighborhood of each

point. A special case arises when diJ = 0 at some point P.
Then (33--4) implies d(n) = %§ = 0ords =0, 1.e., the motion
is locally rigid. Thus ail elements at P are instantaneously

being rigidly rotated. Then (3B--3) dmplies

——————

dx, , ds = 0

i.e., Yy 4 gives the rate of rotation of dr for a locally

riglid motion.

Since Wij = — wJJL has 3 independent components, we can

define a vector w

-

1 such that



»



W, = e W
i mnm nm ?

Z
"

Wy 2 wjé > Wy = 2 w13 . w3 = 2w
: 2%

(3B--6)

Then W is called the vorticity vector. From (3B-—1)2

.
o

~ \\
Y

Wy F eimn V[n?m] = €4mn

Vv
n,m

Vw-t‘m“é)/ Ve d‘,‘g ~

(33-7)

Wlien W, = 0= Wy throughout the body, the motion is called

irrptational.

<
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A. Conservation of Mass

(X 0s B(t).

Each volume element dVO 1s mapped into dV under the cdeformation.

Let 045(X) and-p(x,t) be the mass densities of B

dVvV are

Hénge, the elements of mass assoclated with dv,,

al = p(X) dv. am = p(x,t) dv
O ~' 0 . . -

Consider the-total mass of an arbitrary material subvoiume

of the body'Vb at 1=0 deformed into V(t) at t > 0O:

M-’-:f_ (X) av, , m=f p(x,t) av . (*)
7. Por2 0 T(e)

0

‘Postulate T -- Conservation gg;massj~~ The total mass of any

deforming subvolume of the body 1s constant:

M=m

o e ave | pg(X) av (4A-1)

S T¢I I Ty 0

8y (2D-1): 4V = J'dVO, we can change variables using the

mapping X = §(§,t) and integrate the left hand side over VO
’

jv p(X,t) I, ) av, =/’\7‘ po(X) av,
Y0 | | 0



»



=
i
N

f_ [p(X,t) J(X,t) - 6o(X)] avy = 0
v, ~ ~ > :

If the integrand is a continuous function of X, then because

VO is an arbitrary subvolume, the integrand must vanish:

This is the material form of the conservation of mass.

[ =3

Consider (4A-1) and take the material derivative, noting

" that the right band side is independent of t:

S

[_ p(x,t) av =0
V(%) ¥

Applying cthe transport theorem (3A-14), we obtain

d[v“) (p + p vy 4) AV = 0 (+)
Assuming continuity of the integrand, then for arbitrary V(t),
this implies. Canhﬂn.'i? E%m'h’m_

j‘.‘;'>+pvi2i=0'or }'a+Pg-y¥o (4a-3)

Ncte that all variables are expressed in the spatial descrip-

‘tion, since the integration in (t) is over a spatial sub--

volume V(t). Hence, (4A-2) is called the spatial form of

the conservation of mass or the continuity equation. Ex-

panding the p term, we have the alternate forms:



»



(;3 gt Vg P gt Vi =0
| : Pll't‘em'l‘e S"W‘-H 0'? cpq—h‘-;“ft‘ »
[a o | Lo

For steady Gensity: op = p(x), %% = 0 and (4A-4) implies

®v) =V (py)=div (pv) = 0 (4Aa-5)

If » = constant everywﬁere? then the deformation is calliﬁb
{/C

Wd%w& dwyze.
(4A-6)

c//i/lf= 2
incompressipnle and (4A-4) implies ;%k

[}
<

v =V +«ve=div v .
i - i »~ ~ ~ I't wnf;resﬂﬂ(_ g

By wvirtue of the conservation of mass (4A-3), we can obtailn

an alternate form of the material derivative of a volume

SN
N

integral over a deforming volume. Hence, replace F by o E

in Transport Theorem (3A-1l4):

%E¥/ﬁ( pF av = jﬁ [(p F+oF dalv v] av
v(t) ~ ( - N N

V(t)
/ : O by (4.3) .
= | [(p +/ c¢ivv) F+ p F] av
Jygey B0 VB asv w0 B
i.e. | ‘ Alt. Soen Sve wantecial “@n’ug},‘ve m 9{4"“ ev.
| ' / Imi‘e%m( ven o tefopm, |
D P Qv = F av (4A-T)
thV(t) ~ \)V(t) pr _ | Vﬂ[«me.
T
| ﬂ)(’% proo/ @ f JOFO’V __ngJO{Vo ZS/JO,:T—JOAVO
Viv) V)

o

O

- A TIEA | gy

%)‘-A’f Vo + [ SEAY - Sffdv'
1

= Vet eD,

\
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B.'.Linear Momentum Balance and the Stress_Tensor
Consideyr an arbitraryAsubvolpme'V(t) with surface § of

B(t). (See Fig. IV-1l.) We assume" that a distribution of

stress vectors E(n) acts on S such that the force on dsS is

ﬁ(n) dS. Also, let there act g body force density f at each

point of V such that the force on 4V is p £ AV. The linear
momentum of dm is p v dV. Summing forces and applying

Newtori's 2nd Law: IF = my, we have

‘Postuiate IT -~ Linear Momentum Balance

Applying (4A-7) on the left hand side, we have

/;_pl}dv=j;,_pfdv+j;_§(n) as (4B-2)

We now apply (4B-2) to g small tetrahedron at any point Xyq
of V. (See Fig. 1vV-2.)
Applying the mean value theorem for integrals to (4B-2)

and assuming continuity of all functions, we have

3

where f(n), E("l), etc., are mean values. Now take the limit

as h + 0, noting that T®) . t(n), (-1 t(‘l), etec.

£ 4 4 (-0 Ay =0

~






) 74*3
ye)
A ¢
f.(-').) . / ~
i
| ~
/__\.\\4 ’J/';/Q’ AN Al
AL ~ <~
l; = x‘z_
A3
)"z((-J)
Fig. IV-2






T
But from solid geometry it can be shown that Ag = A nj’ hence

.E(n) = - E("‘J) nj . (I_‘B_3)

If we let n be replaced by -n in (MB¥3), then

(4B-3) :
e(m) o (=0 L () S (4B--1t)

-~ ~ J -~
This is an expression of Newton's 3rd Law: at any point the
Stress vectors acting on opposite sides of a surface element
are equal in magnitude and opposite in direction. Applying

(uBMu) to E(“'l)’ ‘E(—2)3 E(-3)9 we have

=) L)

~ ~ .

f‘> Then (4B-3) becomes

i E(n) 512(3) nj (4B-5)

This result is Cauchy's Fundamental Theorem: All sctress.

vectors t(n):

——— ~

acting on 3 mutually orthogonal planes at thé’point.

at a point are determined from the stress vectors.

We now define compcnents of the stress vectors g(J)
as follows -

t =P(qj) o 1 "E(J)

~Jk ~k = tjk zk

Hence, th 1s the Kth component of the stress vector which

acts on coordinate plane x, = constant. Then (HB—S) becomes

J

z\v)
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\t(n)

= i Y i ¢ .

— x tjk nj i Dotting with i glives Cauqhy s Formula
C) -

(n) _ ' .

8ince E(n) and n are vectors, then (4B-6) implies tij is a

2nd order tensor called the stress tensor. This follows from

Theorem 7 of Chapter I.

Sign Conwvention: If n for the plane xi = constant is in

i

————

positive (negatlve) coordinate direction, then a positivg_

8trecss component acts in the positive (negative) coordinate

direction. (See Fig. IV-3.)

Using Cauchy's Formula (48-6) in the linear momentum

balance (43--2), we have

fﬁ.(tjiqj tpf; ~0p :’i) av = 0

which implies the Local Form of linear momentum balance:

biiy Yo f e vy (4B-7)
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C. Moment of Momentum Balance

The elemental moments acting on 4V, dS are r x (p f av)

and r x (t<n) dAi), respectively. The angular momentum of dm

1s r x (p v dV). Hence, we have

-Postulate III -- Moment of Momentum Balance

P ~

;’%— j_-r X pvdv = JL‘PIX:D f av + { r X t(n) dA  (4c-~1)
V- - v - ~ 8 -

2

Applying (4A-1) on the left hand side,

° " * ] ) . ) - f .
2— i (r xpw) av = jr p(r x v) dV =1 pr x v gV
Jt "v;-' :-f' ~ v ~ ~ J v‘ ~ ~

Use this result and (UB-6) in (4C-1) in component form

. / "
~f\_f,o eijkxjvk av = JV’D eijkxjfk av +_j§-eijkxjtpknp as

R + .t
- [p X5y (xJ pk),p

] ¥

or

eijk_(vr[“ (t_,. I Iy P vy) + tjk] av 0 (%)

But the term in ( ) vanishes by the linear momentum balance

(43-7). Hence (*) yields

J{V eijk tjk av = ¢






Since ti
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By the usual argument this implies

®ik Ty T .
or

Rk Stress Teasor <5 §/ mmelre (he-2)

Hence, provided the linear momentum balance is satisfied,

Postulate III implies the stress tensor must be symmetric..

So

is real and symmetric, then by Theorem 11 of

Chapter I, T has three real principal values (the principal

stresses) and a corresponding set of principal axes deter-

mined fTronm

(4c-33

det (tiJ - t Gij) =0
and
y (o) _
(tij - T, 6ij) nj 0
' (4c-1)
() (&) _
ﬁi ni 1



Fwya\ Sc[/\«um\s (6.19)} tl\e Fw‘m‘ew' va 970 CvuJuo'h‘?w 7;\/}'_&

C, = —*/& T,,: ér- C; = ""j ;;}I' 4@ 2 theoma | coudus tiv,
X

In ebvt (Ltp__}) C; < %[ / a’ﬁﬁ 2> Pew Ut mass pe un/‘f“b‘we

Y0

)



Hem'[' Euewd/

ﬁ‘j pr dV —'f g: 0 45

S
‘_I} = r‘()’éJ‘t>7 F-r‘ow 'Gﬂb(m‘er\} L(ov/ c‘é: = k -Z:z '—k_%:
l’\ﬁnce, . -
?5“; J5 = K Il o n I, v T ]IS
- _ dx, da, Y,
S s
where T= T(x,t)

IS B is q Sunctin of the location of 45 a;ov S thea
= a(x%,t) = n; g 7

s n =
Aad s :
Thues

Lngzkil

€-A—l‘em‘q‘7 7 (L/g'})

5

h‘ = h, (3?,-[) é: + V)'L (&f}-t) é: T w_? {)—6’;”{) é\s

) ATt o N le,t) 2Tlet) +»m@y)avwﬂ] ds
Ix Qxc,

&F

AR L

7
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D. Energy Balance (lst Law of Thermodynamics)
We define the total kinetie and internal energles of any

subvolume V(t) as

'Kn%-J:_pvi vy av. E=/_pedV (4D~1)
[ V V

where e is. the internal energy density per unit mass, which
accounts for ther5energy of deformation® or energy stored in
the material. The rate at which work is done on V by the

external forces is

Worfc

PE=/:p £, vy dV+[t§n) v, ds (4D-2)
B Jg PV g Ui » |

We have assumed here that there are no distributed couples

=

dcting in V' or on &. Por theories which include magnetic
effects, for example,. these couples would have to be included.
For @ theory which includes thermsl effects the rate at which

heat energy is entering V is defined as

Heofé Eniﬁ"r‘n 7 ‘
} (4D-3)

B, = f!_p r dV/:EII g, n, ds
iy g i

where r is the heat source density function in ¥ ana q, 1is

_the heat flux vector acting across S such that Q4 ny 1s the

rate at which heat energy / unit area is leaving V.

‘Postulate IV -~ Energy 3alance

(4D-4)

D _ ,
T (K + E) v*PE + PH



9,
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From (4D-1) - (¥D-3) we can express (4D-4) as

[ r
D 1 ="
ﬁf.jv ple + 5 vivi) av jV p(f}vi + r) av
' (4D--5)
)
+ j%_(ti vy qini) das
If (La-7Y 1s applied on the left hand side and Cauchy's
Formula (4B-6) is employed on the right, we find
/

z; : = < i
-]7 p(e + Vivi) av -]V p(fivi + r) 4v

L2

!
+_J§ (tjivi = qj) n, ds

Applying the divergence theorem and collecting terms under

one integral, there results

./; [p e+ Vi(p ;i ~-p f - Fjiad)

bty Vg gty -e r} av = 0

Buﬁ if linear momentum balance is satisfied, then the ( )

vanishes by (4B-7) and by the usual argument, we obtain the

local balance of energy:

p e = tji Vi,J - qi,i +pr (4D~6)
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3ince the stress tensor is symmetric, Theorem 1 gives

{3B-1)

b3v,5 7 Ya5V, gy T bagdyy =0 (4D-7)

b31ve,y =

where ¢ 1s the stress power. Hence (4D-6) becomes
p e = tiJ dij - qi,i + pr _ (4D--8)

If the heat flux vector and source term vanish everywhere

(qj = 0 = r), then we have the adlabatlc case and (4D-8).

reduces t©o

a Aéﬁbé«ifo Cast

pe-= tij' 13 (4D-9)

Law tuer alauc
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V. Constitutive Equations

f \) To complete the governing equations of a continuum, we
must develop equations which describe the response of materials
to deformation, i.e., constitutive equations. These equations

relate the stress tensor to deformation measures, e.g., strains,
Strain rates, etc. We consider here only classical theories

@
of elastic solids and Stokesian fluids

A. Elasticity (Iséthermal)

For an elastic solid it is assumed that for the adiabatic
case (qi = 0 = r) temperature is éonstant (isothermal) and
that the stress tensor is a function of the strain tensor.

There are two approaches, i.e., the methqu of Green and

~Cauchy:

3 nergyniunctdonswWg
Ul,rer 4 la 5{76"’—7)
Lajrzﬂae} SiVm4

(5A~-1)

TEVISHV‘

Note that in general W can be a nonlinear‘function of its

arguments; the functional form will debend on the particular

material. When W depends explicitly on g, the material is

called inhomogeneous; otherwise homogeneous. Now the energy

balance (U4D-9) and (5A-1) imply a relationship between t

13
and W. Computing e, we have
‘ © 1 1 W '
e== W== = E (5A-2)
Po o aEKM KM. _
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Now
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(2B"‘2): 2EKM = CKM - 6KM .i‘mplies C‘( = (7"'6693 > Oﬁ’ 'FOr-wxa, va"t z-c.‘;a,\

- D From (2#-16) G ™ % X,
2Epy = CIM = ot (X1,x X4, “M
X1,k 10t X1 x XM
(34-8)
= +
Vi,d *3.k *am Y *ix Vi,5 %5,
= +
(Vi,5 % V3,10 *1,x Xgm
E a.

T %11 *1x *3,m

Then (5A-2) beccmes

IE

1
%5

Q

Now

o EKN ij =] 2K J M

substitute this into {4D-9):

Po 3 Zym i K j M 1j i; iJ
1.e.
- -9- a—W l =0
(15 = b, By *1.x X510 91y
For energy balance this must hold for arbitrary deformations,
i.e., for arbitrary dij‘ Hence, we obtain
) = P oW , Streés ch\jg,p A-
’Vanlnear tiJ 0y gy X4 K xJ,M (5A-3)
QV) These nonlinear constitutive equations are attributed to

Boussinesqg.




W,
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In order to reduce (SAv3) for a small deformation theory,

we assume a series expanslon for W in the arguments EKM:

-
.

= 1 o ,
We=W, + A E,\KM)+ 5 ByuLn ..EKM Erg'* --- (5A-4)

where we assumec the homogeneous case, l.e., the above co-

efficients are constants. Since E is symmetric, we can take

fgm = Awx > Prwrw = Bugrw T Bxwwr = Bryxy  (5A-5)
Then
| QE = A + B E... + (5A-6)
8By, xd * Bxmrn Ery t -

Por Sm: E._ & [ Y-
bgm small deformations Epy & Epy, IUK’MI << 1 and (IA 2)

alorg with (2G-12) implies

1

R T S TE L N -

o, " 3 (1 + Iz 1-I3%1-~1; (54-7)
and (2F-~5) implies

*1,k = Sip (Spg + Up ¢) . (54-8)

provided the XK, xi COordinate Systems are taken coincident.

Now we substitute (5A-6) - (5A~8).1n (5A-3):

-~

tij = (lfIﬁ)[AKM + B E

kmNELy ¥ e 8pg

+ UP’KJ[GQM + UQ’M] 61P6JQ '






54

Retaining only lst order terms in E and UK p» we find
. ~ 3

! b1y 7 LU-IE) Apg * AggUp x + ApyUg

" ApqunFrnd $1pdyq E (54-9)

0

]
(1]

At initial tlme t=~0, U EKM which implies

K

t = A

15],.0 - *pq %1p ¢

iP “jaQ
Hence, AKM in (54-=14) representsvan initial state of stress.
We assume AKM = 0 implying Bo is a stress-fres natural state;

then (54-9) gives

-~

tij = BPQLN Ern Sip sJQ (54~10)
Fina}ly, recall that (2G-14) implies for @ = GkMi
ELN = emn 6mL GnN

®13 = Ppour S1p %30 Smp San) mm
or |
ti,j = bijmn Smn ‘/a[fj g‘or (/'(V\)'.ibtﬂ?{@[‘a (5A:—ll)
Na‘l‘er,‘«b,
where

8 § | (%

Sip 940 Smr S

~

Py 3mn = Bpquy

Since £, § are 2nd order tensors, we can show that b 1s a
Uth order tensor under rotations of Xy * ii. By (5A-5) and

(%) E satisfies i

S~






a

5.5

I bmnij (5A-12)

tim © Y3imn b 5am =

These conditionc imply that chere are 21 independent compo-

nents of b for the general linear theory of elasticity.

R

<\-

= t, . (e, .) %'“e‘;f ¥ 2 Finction of "va-a.‘w 00"7
ij 1371

Then for a linear theory about a stress free state:

Gevze/‘w[heé Hw’ka\s (9
tij = Cijmn émn \Y"‘(‘-J’ $or Am‘&a‘brprc‘u] {(5A-13)

V\ayﬁd‘fa 's

where ¢ is a 4th order tensor under rotations of xi - Ei.

Since t, e are symmetric, c must satisfy

~

®1jun T %jimn T Cijnm (5A-18)

These conditions imply there are 36 independent components

Qifﬁk. Tne forms (5A-11) or (5A-13) are valid for anisotropic

waverlais, J.e., materials whose elastic prooerties (expressed
by b, g) depend on direction. For isotropic materials the

properties are independent of direction. This condition is

expressed by requiring (54-11) or (54-13) to have the same

form under arbitrary rotations of Xy > %4, l.e., from (5A-13)

%45 = ®13mn ®mn

cijmn ©mn

which implies

cijmn = cijmn
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Hence . ¢ must be an isotropic Uth order tensor. Then by

-
- \) Theorem 10, Chapter I, ¢ must have the fornm (nnka lE‘1>
(F43-35) _k
== S - S L o &
1 jan % Gij i T ¥ %1 6Jn RELF “im

But the symmetric conditions (5A-14) imply that y=u. Hence,

substituting (5A 13)

H.Ppkc\) Low (5A.-15) Lf»’\e,m/“

igantssn Ye can show (5A-11)

yields exactly the same form (5A-15) for the igotropie case.

To complete the governing equations.for the linear theory,

N
N

we zssume that uy and its derivatives are small in

absolute value of order £, i.e., of the same order as the

dilsplacement gradients u; 4+ Then from (2F-1) v = r = u and
. 1 u. du.
v, = s 0 .i : 3 - dUl
1T M T T Vs R, TR
' J
La)
, 22u . du 3°u
— o d i = i : o
Vi % vy sx7 (58) 2 )
ot J ot

Recalling (5A-7) and assuming the body force vector £ 1s orf
order €, then p f & o f and the linear momentum balance (4B-7)

becomes using also (%)

[
N
<t
=
[
“
St
+
ko)
(o)
e}
Y
]
©
(o]

5 | (5A~16)



o
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Feuations {(5A~15), (5A-16) together with the strain disglaée—

ment equations (2G.-13
137 N1,9) - (5A-17)

are the complece set of governing equations for small deforma-
tions (isothermal) of a homogeneous, lsotropic elastic solid.
Note that there are 15 equations and 15 unknowns: tij’ Uy, éij‘
Also, p is not considered an unknown since it is given by
(5A-T7) after uy 1s determined.

Combining equations (5A-15) - (5A-17), we obtain avier's

displacement equations of motion::

o

: a u
5 i .
j cy (At , - = p (5A.-
M uiij : (A U) ujaji Do fi ) DO 3‘t2 J 18)
or in direct notation

2 _ : 17325 .
Tp VT u ot (M) 7 (Veu) 4 Po f= Po ——E,ﬁ
R - 3t

‘

These squations must be solved subject to initial conditions
Ju

on, u., 5?2 and given boundary conditions on the surface S

which are of three types:

{a) Displacement: u; = ﬁi on S
tb, Stress: tij nJ = ti ocn S






4

)

() ixed:

where in (c¢)

S, +8_ =8 and u,, t

w €

[y

jond

el
u

5~8

u; = u, on Su
tiJ n'j = cl on St

and S, are disjoint subsets of S such that

1 q are prescribed functions.
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3. Stokesian Fluids

Classical fluid theories ar= based on the assumptions
of Stokes: v

( o ‘; Thn

o]
2]

tress tensor £t is a continuous Tunction of

the stretching tensor a.

-~

(b) Vhen ¢ vanishes, the stress must reduce to a hydro-
static pressufe: E = ~p I.
(c) material isotropy.

The generai form satisfying (a) and (b) is
tij = -D dij + Tij(g) s Tij(o) =0 «5B~-1)

The function T above can of course pe nonlinear in 4. When

T s a linear function of d, the fluld is called Newtonian and

ty, = - ﬁ §

iy + b a - (5B-2)

ij ijmn mn

Since t and d are symmetric tensors, then b must be symmetric

-

ir the ist pair of indices and by Theorem 1 c¢f Chapter I
bij[mn] dmn always vanishes. Hence, we take
P1jmn T Pyimn = Pigmn . o (5B-3)

Assumptionl(c) impliies that (5B-2) must have the same form
for arbitrary rotations of Xy * Xy, i.e., bijmn = bijmn 80
that ? must be an 1sotropic 4th order tensor. By Theorem 10
of Chapter I and (5B-3), then -






)
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where the parameters A,u for Newtonian fluids are called

viscosity coelfficients and are determined by exveriment.

Subkstitution of (5B-4) into (5B-2) yields the constitutive

equations far Jewtonian fluids:

Sy

Voo T : .
| tyy R - Pt I4) 61J + 2y diJ - (5B-5)

\
v

e

In general the viscosity éoefficienté A,H are temperature
dependent. V

From thermodynamical considerations wé can show that
P, p and the absolute temperature 6 are relatecd by an equation

of state
f(p,p,0) = 0 (55-6)

anG the internal energy function depends on 8, p via a

caloric equation of state:

e = e{0,p; ' \5B~7)

The particular form for (5B-6) and (5B-7) depends on the

raterial and must be determined experimentalliy. Ar example

of (5B-€) is the perfect gas law: p = p R 0 where R is the

gas constant. One more constitutive equation is needed for

heat conducting fluids, i.e., an equation relating heat flux
to temperature and the deformation measures. The simplést

form of this relationship is Fourier's Law of Heat Conduction:

= - - (ER._8)
a = -k 0, . (5B-8)
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wiiore the ccnsvant ¥ 1s the thermal conductivity. The

governing equations lor heat conducting, compressible .,

Newtoniar fluids are now complete and consist cf the con-
tinulty—equation (44-3), iinear momentum balance {4R.-7),

energy balance (4D-8), the definition of diJ (38-1):

[ o + o vig = 0 Gobady - (55-9)
< tiJ’j e fi Q'p ;i “*'{Nuu~a VRN ST (58 -10)
“ dij = V(1,9) — SRR {5B~11)
E P e = tij diJ -9y 4 + pr »«ckuo3¥9v~—. (58-12)

and the constitutive equations (5R-5), (5B-6) and (5B-8).
Wie find Shere are 22 equations ror the unknowns p, tii’ Vys

. Q4. 8, Gi.. D

socvhermal Flows

The non-heat conducting case 1s specified by

qi =0=1r , € = const.

Then A,p are constants in (5B-5), eqn. (5BE-3) is satisfied

lcent

P

cally and the energy balance along wilih the caloric
equation of state determine e by integraticn provided

f. &, d are determined first. The governing equation: tien

~

reduce to (5B-6), which becomes a pressure-density relation

since temperature is constant, i.e.

o) (58-13)
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/~) the continuity equation (5B-9) and equations (5B-5), (5B-10)
¥ ,

and (5B-11) which when combined yield the Navier-Stokes
Fauations:
pas it | -2 av

-» , - = 0 (ot -
(5;\7.5:,.\“‘“ \ B Vi + (A+U) ,ngji p 1 + p fi 0 (at + vi,J VJ) Qk—/g\)

| E—— T . S (5B-114) »

Note that nonlinearities occur in (5B-9), (5B-i3) and the
inertia terms of (5B-14). The appropriate boundary conditions
are that fluid particles must adhere to solid boundaries S

past which a fluid flow occurs, l.e.

v, = 0 on S | (5B-15)

TN

) if & is fixed ang -
v, =V, ‘onS (53-16)

if S moves with velocity V. We now consider soms special

lzcthermral flow eguatione.

For many flow problems, e.g., liquids at sufficiently

low f]oﬁaVelocities, 2 good approximation 1s incompressibility:

p=p,"= constant} Then the continuity equation (5B-92)

reduces_to

= . . owm )
a® V1,1 =0 (8B-17)
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ond v, = 0 so that (5B-14) becomes
i,ij .

: 2 AL '
9

i >1 o 1 o ‘ot

In addition, since p is a constant, (5B-13) no longer applies,
but p is still an unknown which is determined by applying
the boundary conditions to the solution of (5B-18). Jote alsc

that (5B-17) implies (5B-~5) reduces to

¢ e s v_ﬁh___...m_‘..._._——-\ ‘ \
| tiJ = - p "’ij + 2 u dij : ‘(@f.‘,,gé_ €an (5B-l9)

§ e e et o oo o

Foir these flows only one viscosity coefficient uy appears in

the governing equatlions.

Id=2al Incompressible Flows

Tn some problems viscosity effects are dominant only in

the nelghborhood of a solid boundary, called the boundsry laver.

The [{low outside this region can be considered non-viscous,
i.e2., 4 =~ 0. Then the governing equations reduce to {frem
WB5E~17) and {5B-183)

ov

tpg £y =0 (et vy 4 ovy)  (5B-20)

o 1

2

while from (5B-19) the stress field recuces to a hydrostatic

pressure:

t = - p S, . (5B'“21)
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I boundary layer effects are neglected as a further approxj.-

mation, then the boundary condition on v is that the component

‘of velocity normal to a solid boundary S must vanish:

v. = v en=20 , | (5R~22)

where n is the unit normal vector to S.
Now we can show that the acceleration vector can be

expressed as

Dv 3V 1 P

— R 7 . = I~ a) -

Dt st TWXxviyiy (5 -23)
where v = v © v and w 1is the vortidity vector: (recall (3B-7))

w=curl v =V X vy (5B-24)
Then (5R3-20) become
i R 1 o, .
v v=0 , ~-=Vop+4+flf="+wxv+z=Vyvy {5B~25)
~ ~ Py ~ ° ~ ot ~ ~ 2 ~

We consider now the special case of steady, irrotational

flow of an ideal incompressible fluid. PFor this case P, V

are functions of x, alone, i.e., EF = 0, anad the vorticity

vanishes:
Vxvs=0 . (5B--26)

This condltlon is necessary and sufficient for the existence

of a velocity potential function m(xi) such that

v="Vye {5B-27)
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The veloclity field, however, must still satisfy_ccntinuity
(SB~25)1; hence
Y:‘\r:VoYQ=V q;::OA . (SB\28)

Therefore, ¢ must satisfy Laplace's equation (5B-28). The

boundary condition (5B~22) now becomes -
ven=Vg-n=22=0 - (5B-29)

Thus, the velocity field is completely determined by (58-27)
after solving (53-28) and (5B-29). The linear momentum
balance (5E-—v"5)2 is then the governing eguation for the

pressure. For steady, lrrotational flow this becomes

ol
S} o
n

-y P+ f-29v =0 (5B-30)

v}

©

or cases in which the body force either vanishes or is cor.-

servative, (5B-30) can be integrated explicitly. Let

f=-VF : _ {5B-31)
vliere F = F(x) is &a body force potential rfunction. Then

{(5B~-30) becomes

+ F)

o=
<
]
o

- v (B4
-~ pO
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Integraeting,
B4+ L1424 F=const. . | (5B-32)
Py 2

This result 1s Bernoulli's Equation for the steady, irrotational

flow of an ideal, incompressibles fluid and‘determines\p(g)
after v is known. The constant in (5B-32) is evaluated at

any point in the flow for which p and v are known.
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fﬁ) VI. Thermodynamics of Continuous Media
In Chapter V we treated constitutive equations only to
an extent sufficient to fermulate the classical constitutive
equations for lirear, isothermal elastlcity and for Newtonlan
fluids. In this chapter and the succeeding one we present
a more gensral framework which allows us to formulzte consisten*
nonlinear constitutive equations for fluids and solids under-

going non-isothermal deformations.

A. Homogzneous Processes

References: "The Elements of Continuum Mechanies",
C. Truesdell, Springer-Verlag, 1966 and “"Rational Thermo-
dynamics i, C. Truesdell, McGraw-~Hill, 1969.
 A> ' In order to motivate the ideas of continuum thermo-
| dynamics, we begin with the special case of homogeneous
processes, in which bodies suffer no local deformation or
variation in temperature. Thus, all quantities introduced
will depend on time alone and not on location within the
body. The resulting theory 15 closely related to “classical*‘
thermodynamics.

We begin by assuming that a temperature 0(t) > 0 can be

associated with every body undergoing a homogeneous process.
Such a temperature function is called absolute, since its
greatest lower bound 1is zero.

In rigid body mechanilecs t;;%;oncept of the configuration
of a rigid body, i.e., poslition of mass center and ahgular

Q\) . orientation specified, is fundamental. In thermodynamics a

body is described by n real parameters va(t)g a=1,2,...,n,



()
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These parameters are selected on the basis‘of the physical
problem one wighes to treat. For example, we could speclfy

one paramster v = 1/p, the specific volume of the body, for a

theory of dilute gases. For fhe purpose of developing the
theory, no specific interpretatlon is necessary.

The tnermodynamic state of the body at a given time is

specified by the set of n+l parameters 6 >0, Va' For now,

a process can be thought of as a sejuence of changes in state,
specified by continuously differentiable functions 8(t) > 0,
va(t). Ve assume the body 1s unconstrained in the sense that
these functions are arbitrary.

We now postulate the first of two basic principles
governing the thermodynamics of homogeneous processes. Let K
be the total kihetic energy of the body, E tﬁe total internai
energy, P ﬁhe total rate at which work is done by external
forces and Q the total rate at which work is done due to

thermal effects. We will refer to P simply as the power

and Q as the heating. Then we have the Balance of Energy

(1st Law of Thermodynamics)
B+ K =7+ Q . (6A-1)

Hote that in Section UD we defined X, E, P, Q as integrals

in terms of certain densities, 1.e., internal energy density e,
body force density, etc. For homogeneous processes it

suffices to deal with K, E, P and Q directly. Noting that

P, K are due to mechanical effects alone, we define

o
bl
[}
g
=

(6A-2)
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as the net working, 1l.e., the power not used up in producing
motion. Then (LA-1) glves

D= W+ Q (6A-~3)
so that the change in internal energy 1s the sum of the net
working and the heating.

The balance of energy is a statement of the eculvalence
of heat and work. Bﬁt experiehce suggests that while energy
and work may always be converted into heat, there is a limit
to the amount of heat which may be converted into mechanical
work. TFor example, consider the work done in compressing a
spring made of viscoelastic material. Ve know that a portion
of the work done goes into increasing the straln energy of
the spring with the remainder going into heatine the spring.
according to the balance of energy (64A-3). But some of the

heating is dissipated and cannot be reconverted into mechanical

~work. This irreversibility inherent in processes involving

real materials leads to the postulate that there exists an
upper bound B for the heating 9 according to the 2nd Law of

Thermodynamics.:

Q <B (6A-4)
In terms of the bound B, it 1s converient to infroduce a

quantity H, called the entropy in classical terms, such that

Dat . ei=n (6A 5)

Pl

s
i
o, T
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Jote that the units of H are energy per unit time per unit
absolute tempesature. Then the 2nd law (6A~4) can be expressed

as

ol > Q (6A-6)

which is also callad the entropy productlion inegquality.

Equivalently, by (6A-3)
£ - W < 6H - - (6A-T)

We now define a thermodynamical process explicitly as a set

£ functions 6(t), va(t), w(t), E(t). Q(t), E(t) whlch satisfy
the two laws of thermodynamics (6A--3) and (6A-6) (or its
alternate form 6A4A-7). A thermodynamical process, which we

will refer to simply as a process, 18 reversible if equality

holds in (6A--6) or (6A-7); otherwise it 1s called irreversible.

We also introduce the following terminology for processes:

isothermal: 6 =0
adisbatic : Q=0
isentropic: ﬁ = 0

These definitions along with the two laws imply the follcowing

results:

(a) If Q 0, then (0A-6), (64-3) Zmply
. Eo= W ' (GA-8)

Hence, in en =2cdiabatic prozecs ~ha work dcne equalis the

9]

change in internal energy. For 2 veversible adiaghatic process,

the en“ropy is conatant, ctherwise. it increasecl.
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(b) If H = 0, then (6A~6) and (6A-3) imply
1<0 , E<W “ O (68-9)

This implies that a reversible isentfopic process 1is adlabatilc.
In an irreversible isentrcpic process the internal energy

change is less than the work done and some heat is lost.

(¢) Integrating (6A-6) by parts, we find

e i /.t .
) Q dt < eni oH dt
0 0 Jo

t
H(t) - H(0) > %—f Q dt (6A-10)
0

Hence, in a reversible isothermal process, the increase in
entropy is greater than the heat gained per unit absolute
temperature. In an irreversible isothermal process the
increase in entropy is greater than a reversible prodess at
the same temperature and same heat 1s galned.

A 1little reflection indicates that in'any change in state
(e,vu) the nature of the material of the body will determine
the change in internal enewrgy E, the puvcy not used up in
producing motion W, the heating Q, the heating bound B (and
nhence the change in entrcpy). This implias a functional
relationship between F, W, 2 and 11 and {h2 state functions

6. Voo expressec mathezmatlieally of



),
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(6A-21)

8]

Q(e,va,e,vu,...) . H H(e,va,e,va,...)

These are constitutive equations: the particular form being

dependent on the material. We now define an admissible thermo-

dynamic process as process for which the constitutive equatlions
(6A-11) are satisfied.

Implicit in the previous statement of the 2nd Law is
that it holds for all processes which the material can undergo,
consistent with its constitution. We now make this explicit:

the reduced dissipation inequality (6A-7) or (6A-13) must hold

for all admissible processes. In particular, thils means that

at an arbitrary value of time, the state functions 6 . Va and

their rates of change 0. v, may take on any real values whatever,

so long as © > O,

Noting that in the form (6A-7) Q has been eliminated,
we can omit the constitutive equation for Q in (6A-11), and
regard the heating as determined by the energy balance (6A-3) .
Q = é - Y. BAn admissible process is then a process ih'which
constitutive equations of the form (6A-11) for E, W and H are
satisfied.

For later convenience, we introduce a combined measure

of internal energy and entropy, namelv the [ree energy:

y =% . 8H (6A-12)
which we can regard as replacing E in (€A-11). From (6£-12)

¢ = 5 - 6H . o
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Then by {(6A-T)
W4 63 - W <O '~ (6A-13)

e

This inequaiity, as well as (6A-T), 1s somevimes called the

reduced diszipation inequality, since the heating Q has been

eliminated via the energy balance.
We consider the following example, which 1s related to
the ‘equations of state” in classical thermodynamics. Iet

the constitutive equations for ¥, H and W have the special form

|
a

y(o,v.) , H=H(8,v )
o @ (6A--14)

n .
W= - El ma(e,\) B)\)a
Note that the ﬁét working W is a homogeneous linear function

of the rates V! in classical terms, the coefficlents w, are

called thermodynamic pressures. XNow the constitutive ecuations

(6A-14) must satisfy the reduced dissipation inequality 6A-13)
for all admissible processes. Substituting (6A--14) into
(6A-13), we find |

Ay n Q¥

_— e ; - Fp..
(H+ 5200 + I (o, + 5 v, <0 | (FA-15)
a=1 o .

The coefficients of 0, va above are functicns of 6, “a alone,

Now (6A-15) must hoid for all admlssible processes implying

that 6, v 6, vV, Y Fe given arbitrary values at any given

¢’

time. For this to be true, each coefficlent of 6, vy, muss

vanizh:
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7 = o —— = e - En.186
! 5 ° “q IV (64-165)

These conditions are necessary for (6A-15) to hold for all
admissible processes. It 1s easy to see that conditions

(6A-16) are also sufficient. Note that equality must hold

in (6A-15). This means that materials described by the
constitutive equations (6A-14), subject to (6A-16) . can under-

go only reversible processes. We view conditions (6A-16) as

thermodynamic restrictions on the form of the assumed consti

tutive equations (6A-14). Note that for the material being

considered the entropy H and working W are determined entirely
from the free energy ?(e,va) as a potential function.
We now congidcr some additional terminology. Let the

internal dissipation be defined as the excess of the heating

bound over ﬁhe heating:

A=B - Q (6A-17)
By (6A-5) in terms of the entropy we have

A= BE - Q (6A-18)

Since H is the rate of change of entropy, we call the ratilo %

the net entropy production T:

11

@ >

Cp: (64--19)

ol

Here, is reparded &3 on influx cof entropy du: to heating.

Hence, I' is the rete of change of H less the influx of
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ent ropy %. Note that by the 2nd law in the form (6A-U):

Q < B and (6A-19), we have
A>0 , T>0 (64-20)

Recall that for reversible processes, equallty holds in the
ond law and hence in (6A-20): A = 0 =T, That is, in
reversible processes the internal dissipation and net entropy

production vanish. From (6A~3) we eliminate Q from (6A-18):

. . (6A-20)
A=6H ~-E+W>0 (6A-21)

Note this is equivalent to (6A-7), which was called the
reduced dissipation inequality. Alternatively, in terms of

the free energy functilon (6A-12), (6A-21) becomes
A=W - (¥+ 6H) >0 (6A-22)

which is seen to be equivalent to (6A--13).
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(43 B. Non-Homogeneous Processes

Reference: B. D. Coleman and V. J. Mizel, ‘Existence of
Caloric Equations of State 1n Thermodynamics®, Journal of
Chemical Physics, Vol. 40, 1116-1125, 1964,

If a process 1s non-homogeneous, then we deal with fleld
variables wnich vary from point to point in the continuum.
_In addition to the variables such as stress, strain, internal
encrgy, ete., introduced previously, we define an absolute
temperature field e(g,t) > 0 and a speéific entropy field
n(X,t) such that the total entropy of the body 1s

-~

q = ‘ on av ' (6B-1)
vy

=TT
N

In terms of the field variables the postulates of mass balance,
linear momentum balance, angular momentum balance and energy

balance are expressed in thelr local or pointwise forms, which

we summarize here:
p + pvi’i =0 , pJ=op . (6B-~2)
tij,j + pfy =PV, tij = tji | (6B -3)

+ pr (6B-4)

We now make explicit the motion of a thermodynamical

process for the non-homogeneous case.
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(ﬁ) Definition'-* A thermodynamlical process is a set of functions

of X,t: Xy 0, E,ig, n, e, f, r which satisfy
the balance equations (6B-3) and (6B-4).

We will again call a thermodynamical process simply a process.
Note that a process 1s given when e, E, g, n and e alone
are speclfied since g, r can then be determined by the linear
momentum and energy bélances, respectively. 1In addition, we
nave considered p to be known from the conservatlion of mass:
pd = P, when xi(g,t) is given.

Recalling Chapter 5, constitutive equations are required
for t, q and e. We add the entropy n to the list, based on
the discussion in the previous section. These variables depend

f\> functionally on the thermodynamic state of the material, i.e.,
the fields e(g,t), xi(g,t) and possibly their space and time

derivatives. Hence, we postulate that

o
]

e(S) , n =n(s)

(6B-5)

t

E(S) > q q(s)

where S represents a set of kinematlc and thermodynamic
variables. We will be concerned with two sbecific examples,
namely, heat conducting elastic solids with argument set Sl

and heat conducting Stokesian flulds with set S2 where

6, 6 .}

1 = ixg xo K

(6B-6)

1
2 = 5 v,y 00 00

7
—
w1
1

For inhomogeneous materials X is included in the argument sets.
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Definition -- A process 1s admlssible provided the constlitutive

equations (6B-5) are satisfied.

e state some properties of admissible processes., First,
for every choice of deformation function xi(g,t) and tempera-
ture e(g,t) there exists a unique admissible process. This
follows since with Xy 6 given, then e, n, E, q are determinedv
from (6B-5) and f, r from (6B—-3)l and (6B-4). Second, at any
point P € B(t): X = X, there exlsts at least one admissible
process such that 6, e,i’ xi,K have arbltrary values o(t),

ai(t), AiK(t). Consider

Xg + Agg(t) (g - Xy

xi(g,t) 8

1K
(6B -7)

These functions along with the constitutive equations (6B--5)

and balance laws (6B-3), (6B-4) certainly generate an admissible

process for arbitrary a(t), ai(t), AiK(t). From (6B-T7)

Xy K = AiK(t) , for all X

8(X,t) = al(t) : | (6B--8)
Using (6B~-7)l in (6B—7)2, we find 6 in spatial form:

0(x,t) = alt) + a, (£)(xy ~ 8 X (6B-9)

iK K)
which implies

6’i = ai(t) for all X
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Hence, 0, e,i, Xy K nave arbiltrary values a(t), ai(t), AiK(t)

at X = X. Further, at any given time t = T, the values

?

a(E), a(¥), ... (up to a finitc number of derivatives) are
arbitrary and hence independent. To see this, suppose we seek

a function a(t) with
of) = cg » al®) =op , o) =cp (#)

where ¢y, C;5 Cp are arbitrary numbers. Then (¥) is satisfled

by the function

a(t) = co * cl(t-F) + % cz(t—f)2

By the same argument ay ay - ai, ... and AiK’ AiK’ AiK’ e e

can be arbitrarily assigned at a given time. Note that

&

>

1
b4

Xg g = Mg o+ 9= 5 84

Hence, 6, e,i, xi,K’ e, eyi, xi,K’ ... are arbitrary quantities
at any given time at a point ? with (6B-7) still defining a

unique admissible process.

Entropy Production Inequality

Recall that the heating of the body has the form (from
Section 4D with Py replaced by Q):

N

pr 4V - ‘/ q-n ds (6B-10)
g

&
[}
<4
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The heating arises from distfibuted sources r within V and
the heat flux vector qy across the boundary S. Hence, at any
point P ¢ V(t) the heating is pr dV, and in analogy with the

interpretation of

[<>1 VD]

in (6A-19), we take %—I-' dV as the influx
of entropy at P due to heat sources (radiation). Then the
total influx of entropy in V(t) is [ 8—11 dv. Similarly, the

total influx of entropy due to heat flux through the boundary
a-n

S is - [ 1§1 dS. We define the net entropy production of the
body as T:
_d pr a-n
I‘-a—E-_pndV-u[-e——dV+[——6—dS (6B-11)
v v S

In analogy withA(GA—EO)z, we postulate the

Global Entropy Production Inequality

The net entropy production must be non-negative for

every subvolume V of the body and for all admlissible processes:

r>o (6B-12)

This inequality 1is also known as the Clausius-Duhem inequality
or the 2nd law of thermodynamics (for non-homogeneous processes).
If equality holds in (6B--12), we call the process

reversible, otherwise irreversible. Using the transport

theorem (UA-T7) and the divergence theorem (1D-8) in (6B-11),
we obtaln the local entropy production inequallity from (6B-12).

by the usual argument:

. q
pn - pr (—i >0 _ (6B-13)
9
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pr . 1 1
pn - § + -G_-qi,i - g.é-qi e,i > 0 (6B-14)

Corresponding to I', we introduce the specific net entropy

production y such that

r~

T = j oy av ' (6B-15)
v

Then we find from (6B-~11)

= opr 1 1_ -
pY = pn - g— + 59 4 - -2 ay 0’12_0 (6B~16)

Recalling (6A-19): A = 6T, we define the local internal

dissipation 6 as

§ = pOy (6B-17)
Since 8 > 0, we can multiply (6B-16) by 6 with the result

§ = pbn -~ pr + qi,i - % qi,e)i >0 . (6B-18)

ilote that the internal dissipation is non-negative. From the

1ocal balance of energy (6B-4), dy 4 - pr = tij Vig o pe.

Hence, an alternate form of (6B~14) is, after multiplying
by 6 and using (6B-18):

e 0O 1 _
6§ = pbn + tij Vyg T pe - F Q4 B’i >0 (6B~19)
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This is a reduced dissipation inequality similar to (6A-21)

in the sense that the stress power tiJ vy 3 and the internal
: s

energy rate e explicltly enter the inequality.

We define the free energy functlon ¢ as
Y = e ~ On | - (6B-20)
Then since & = e - 6n - 6n, the energy balance (6B-4) becomes

py + pén + pno = tiJ I qi:i +'pr (6B-21)

In addition, the reduced form (6B-19) becomes

= " | 1
§ = - pnd + tiJ Vyg T oY - F 9y 6’1 >0 (6B-22)

Finally, we adopt the following terminology for non-
homogeneous processes. Recall that equality i1n (6B~12) implied
a reversible process, and hence equality in any of the alter~
nate forms (6B-13,14,16,18,19,22) also implies a reversible
process. Also, based on the definitions made for homogeneous

processes, we have

isothermal: ©6

for all X e B, all ¢t

adiabatic: a4y

0
0=ror for all X € B, all ¢ (6B-23)
isentropic: n 0

for all X € B, all ¢

14
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C. Thermodynamical Restrictions on Constitutive Equétions

1. Hgat Conducting Elastic Solilds

In Chapter V we generated constitutive equations for
isothermal elasticity by assuming E.was a function of the
nonlinear strain tensor § and proceeded using either Green's
and Cauchy's method. A more ggneral initial assumption for
nonlinear, isothermal elasticity is to assume E is a function
of the displacement gradients xi,K' For the heat conducting
case constitutive equations are also needed for q. n and €
or ¢, which must depend in some way on the temperature field.

Hence, we assume constitutive equations in the form

v =9(S) , n =n(s)
. (6C-1)
t=t(s) , gq-= q(8)
where
S = {xi,K’ 9, G,K} (6Cc~2)

It turns out that © K must be inecluded in S to account for
H

heat conduction. From (6C-1) and (6C-2), we find

L = 2V W o N g
Ve 1kt 56 © Y36 Yk
5 5t

.

Recalling the identity (34-8): X, . =

1,K vi,J XJ,K’ we have

Y 3 4 L W 4
se— %5,k V1,3 Y36 0 Yoy Ok
1,K ,K

V-

Substituting this result into the entropy production inequality

(6B~22) (reduced form) and collecting terms, we find
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B)

) - (6C-3)
]
" Py e,x - T U 9,1 20

Now this inequality must hold for all X e B, all t and all
admissible processes. Based on the discussion of admissible

processes in Section 6B, we write (6C-3) in the form

oY :
- p[n(xi’K, 0, B,K) + =5 (xi,K’ 9, e,K)]e

(#)

+ f(xi,K’ IRE 0, e,K, 9,1) >0

Consider an admissible process in which 6, Xy g2 V1 3 =

3 2
xi,K XK@j’ e,i and G,K = e’i Xi)K are fixed numbers, but 6
is arbitrary at arbitrary X, £. That such an admissible
process exists, follows from Section 6B; in particular, in
terms of (6B-7), we have assigned fixed numbers to a(t),
Ay (2D, AiK(t) AKJ(t) ay (F) and a,(€) A (B) + 2, (8) Ayg(E)
while a(t) is an arbitrary number. Now we write (¥*) in the
form

a + b >0 | (t)

where a,b are fixed numbers, representing the coefficient
of 6 and the function f in (#). The inequality (+) must hold
for all é, positive or negative. C(Clearly, the inequality

will be violated for some 6, unless a = 0. This implies

oy -
- 2% (6C-1)

=3
L}
)
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This a necessary condition for (6C-3) to hold. Note that

(6C-4) holds for all X € B and all t, since g, T were arbitrary.
Now use (6C-4) in (6C-3):

oY oY A

X v -p 8
bxy g 4.1 50 ¢ oK

6=(tij—p K

(6¢-5)

Now write this in the form

9

Lo "
L (xg > 85 8 )0 g

(#3%)

+ g(xi,M’ L 0, e’i) >0

We consider an admissible process in which 6, X4 g, V4 4

6 y are fixed numbers, but 6 K is a triplet of arbltrary
> - 9!

numbers. Then from (%%) we have
Cy 0 g +d20 (1)

where CK and 4 are fixed numbers. Let © 1 be arbitrary and

non-zero, while 6 5 = 0=26 3° Then (+t+) implies ¢, = 0.
> L]

Similarly, cy, = 03 = 0. Hence, necessary conditions for
(+1) are

55— =0 (6C-6)

for all X € B and all t. These conditions imply from (6Cc-1)
and (6C-~4) that



0



;
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Vv = ¢(So) , n = ﬁ(SO) ‘ o (6C~T)

where

S, = {xi,K’ 8} . (6C--8)

Hence, the free energy and entropy cannot depend on the
temperature gradient 6 K Equation (60—7)1 is called the
3

caloric equation of state.

Now using (6C-6) in (6C-5), we find

§ = (t L - TR % q 8420  (6c-9)

ij 3X1,K >1
We write this inequality in the form
[t,, (x B, 8 ) - p ¥ (x 0)x, 1v
i3 7k,M> 72 TLK axi X k,M? JL,K-"1.3
_ - (%)
+ h(xi,K’ 6. 6,1) >0

Consider an admissible process in which 6, Xy », 6 4 are
3 >

fixed numbers, while vy 3 1s a 3x3 array of arbitrary numbers.
2

Then (%) has the form
+C>0 (=)

where BiJ and C are fixed. It follows from (+) that
B

13 0. Hence

= o OV (60—
tij p axi,K Xy ¢ | (6C~10)

for all X € B and all t. Note from (6C-7) that

tct
]

E(So) (6C-11)
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i.e., the stress tensor cannot depend on température gradient

0 In addition, ¢ is a potential function for stress.

LK*
similar to the result that the strain energy function is a
potential for stress in the isothermal case (see (5A-3)).
Recall that E must be symmetric as required by angular moment um
balance. Hence, y must satisfy the restriction

oY . '
—— X = 0 (60"‘12)
0%y g J1.K

Now using (6C-10) in (6C-9), we find

>0 | (6C~13)

Since q4 depén@; on e’K = e’i X K and hence on 9,1’ (60713)
does not imply qy = 0. On the other hand, 1if e,K had not been
included in the argument set S: (6C-2), then heat conduction
would not be possible. This would define a different class

of materials. Note that (6C-13) implies that the class of
materials considered in general undergo irreversible processes.
However, the dissipation vanishes, implying a reversibie
process, if either q = 0 or 6, = 0;

i
-4 .
For easy reference, we summarize the results:

v=w(sy) , no= - 3%=n(s)

oY

tiJ = p 5%, x Xy k= tij(so) (6C-14)
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These conditions were shown to be necessary for (6C-3) to hold
for all admissible processes. Substitution back into (6c-3),

clearly implies they are also sufficient. Hence, we have

obtained the thermodynamical restrictions on the assumptions

(6C-1) and (6C-~2).

A further important result can be obtained from (6C-13).

| y ( 1’")“ an} e en ,K 9’1 xi’K, we ave
q b4 (3] x ;] “ #*
j( J,I{, ’ e’I{) l(’i ’I{ < ( )

Consider x; y and 6 fixed. Then (%) must hold for arbitrary
b
6 K> and therefore certainly holds for © K replaced by o © K>
3 b 2

where o is arbitrary. Define the function

f(a) = o qi(xj,K’ 6, o e,K)XK,i B’K

By (%) the maximum value of f(a) is zero. Assuming q4 con-
tinuously differentiable in 6 ,, then ay is a continuous
3
function: of 0 , and £(0) = 0. Hence, f(a) achleves 1ts
-]

maximum value for a = 0, and £!(0) must vanish. Compute

£'(a):

f'(a) = qi(xJ,K’ 8, o e,K)XK,i e,K

aq1
togg, 0P Xg.1 9k

where Bp = @ e p* Then
3

(1)
o

£1(0) = qi(xi,K’ 0, O)XK,i e’K =






-
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which must hold for arbitrary 6 K Since XK 1 is fixed, then
5 b4

it is necessary that
Qs (x4 x> & 0) =0 | (6C-15)

i.e., the heat flux must vanish with temperature gradient.
Jote that this result, as with (6C-14), is valid only for the
class of materials considered.

Recalling the energy equation (6B-21), the results
(ECulu) imply

pon = - qy 4 + pr (6C-16)

This reduced fofm of the energy equation is called the heat

conduction equation and 1s the governing equation for the

temperature fleld when particular forms of the constitutive
equations for ¢, a4 are given.
Wle consider a special case of the above rasults in which

the material is incompressible. An example of this type of

material is rubber. The incompressibility condition 1s

p =p J = det(xi’K) =1 | (6C-17)

fo) b

This implies the deformation gradients xi,K are not independent
quantities. Hence, in computing t from ¢ via (6C~1H)3, we

must ensure that the constraint J = 1 is satisfied. This is
most easily accomplished by the method of Lagrange multipliers,
i.e., replace ¥ in (60-14)3 by

b= v - R (7-0) (%)
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(«) where p is an unknown multiplier, independent of Xy g but
L]

generally depending on the material point and time. From (%)

oY - 9 _p_ 35
9%y g 9% g Po 9%y x
LD _
Recalling the identity axi " j K= 613, and that J = 1,
= o OV = - o -
t.j p 5———- J X p 613 + o 3% % xJ:K (6Cc-18)
2

Hence, (6C--18) replaces (6C--1ll)3 for an incompressible, heat
conducting elastic material. The unknown p(X,t) is called

mechanical pressure, and is determined, along with the other

unknowns, from solving the complete set of field equations.

‘/”) Consider the special case when the material 1is restricted

to isothermal and adiabatic processes, i.e., 6 = 8, = const.
and r = 0 = q,: Then the constitutive equation (60-~»11!)2 for n
no longer is valid, while the energy balance (6¢--16) implies

n = coenst. Also, (60—1”)1 implies ¢ = w(xi,K3 eo), and
(6C---14)3 implies E.depends only on Xy g This gives rise

to a purely mechanlcal theory for whieh we can define a strain

energy function W such that
W= Wy ) = ey WXy g, 85)

Then (60—14)3 is replaced by

W X, (6c-19)

t =
- o %3 g d:F

1]

‘OI‘O

{»)

(Compara this form with (54-3)).
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2. Heat Conducting Stokesian Fluids

In Section 5B a class of Stokesian fluids were treated
by assuming E was a function of the stretching tensor 9 such
that when g vanished, E reduced to a pressure. Here, we
adopt a more general starting point with t assumed to be
a function of the specific volume %, the velocity gradients
vi,j’ and e,.e,i to account for heat'conduction. In addition,
the entropy, free energy and heat flux vector are assumed to
be functions of the same set of arguments. That is, we

postulate constitutive equations:

p = ¥(s) , n=n(S)
t =t(s) , gq=4a(s) (6c-20)
S= (o7, vy 4, 0,04}

To obtain the thermodynamic restrictions on (6C--20) , we employ
the entropy production inequality (6B-22). From (6C-20)

-3y IR T | P L B
Y = (- =5) + 55—V + 8 + CR
301 o2 ov; 5 1,3 7 36 56 4 1
; : L= . = -6 ;
By the continulty equation 5 Vi,i 613 Vi,j' Hence,
.=_3_1L_5 v + iw__._'—._.p a_‘P_e.i. .?_‘D___.e
Py ro-L 13 "1, P avy Vi,g Y P 36 S LIPR!
Using this result in (6B-22) and collecting terms, we find
- 3y, ¢ 3y
8 = - p(n + 590 + (byy = 835 TV
(6c-21)

3y 3P S |
- P 9,1 TPy i,y T8N ® 12
b
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We note that by (6C-20) the coefficlents of‘e, ) 1"vi.j above
1] 2

are dependent on p'l, Vg4 8, 8 4. Hence, by an argument

similar to that used for heat conducting elastic solids, 1t

is necesséry that

W - g = Y = oY
e ———— = s n-———
8631 avi’J 96
so that
b=w(8) . n=-gE=n0s)
) (6C--22)
= ~1
So-{p 46}
Then (6C-21) reduces to
o oY 1 :
8 = (Egy ~ & g%TT)Vi,J ~5a 8420 (6¢-23)

The coefficients of vy j and © q are dependent on these
s 2

quantities so that (6C-23) cannot be reduced further. Since

the term 6iJ EE:T represents a hydrostatic state of stress,
ap

we define the thermodynamlc pressure
T = ~ ?..L = ﬂ(p-lg e) . (60—2”)

In addition, the 1lst term in (6C-23) represents mechanical

dissipation, and hence it is naturel to define the coefficient

of vy 3 as the dissipative stress:

t =t

iy + ﬂGiJ (6C--25)

13
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/Aj _ _ _
\ where (6C-24) was used. Now (6C-23) has the form

> 0 (6C-26)

It is clear that in heat condu%ting Stokesian fluids disslipa-
tion arises from both mechanical and thermal effects, namely
the dissipative part of the stress tensor and heat conduction.

Note that there is no mechanical dissipation in heat conducting

elastic solids. However, it would be reasonable to expect
meehonical dissipation in viscoelastic materials. Note that

if either t or g is non-vanishing, (6C-26) implies irreversible

~

processes. For reversible processes exclusively, then

pt = 0 = q and (6C-25) implies

-~

_1)

( . | .
) tyg = - (0, pTT)8yy (6C-27)

This special class of materials is called ideal compressible

fluids.

Summarizing the results, we have

v=(s) . on=-3L=nis)
- = oY _
tij = - 'ﬂ'sij + Dtij » T = - -a-;:-i"" TT(SO)
(6Cc--28%)
-1
S, = (o7, 6}
§ = & -1 > 0
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These conditions were shown to be necessary for the entropy
production inequality to hold for-every admissible process.

Inspection shows that they are also sufficient conditions.

Comparing the above results with those for thermoelastic
solids, we note that ¢ is a potential function for n and m,
but not for E. Also, ¥ and hence n,m cannot depend on
velocity gradients or temperature gradilent. Equations
(6C~28)1,u are equations of state, comparable to (5B-6),
(5B-T7) introduced without thermodynamic justification. Note
that generally stress depends on temperature gradient, a
basic difference between these flulds and thermoelastic
solids. .

Further information can be extracted from (6C-28)¢,

which we wrlte as
t oY v 8,8, v
D71J > 'm,n’> " ",k i, ()

1 -1
-5 a7, vy s 8 8 1) 8420

consider p and & fixed. Then (%) must hold for arbltrary

} nd
Vi,j and e’i, in particular for vi,J replaced by avi’J a

ge 19 where o,8 are arblitrary. Define the function
2

= -1
f(a,B) = “Dtij(p s OV no 9, Be’k) Vi,
()
-8 a7t av 6, 80 ,) 6 , > O
g Q'P o OVp s U PY S V4 Z
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By (%) the minimum value of f(a,B) is zero. With sufficient
continuity properties of the functions .t and g, then

£(0,0) = 0. Hence, f achlieves its minimum value at
of of _

o= 0= 8, This implies e and 58 must vanish at a = 0 = 8.
Then from () we have

of - -1 -

5 (0,0) = D#ij(p- , 0, 68, 0) Vig T 0

of 1 ~1 '

58 (0,0) = - 5 qi(p , 0, 8, 0) 9,1 = 0

These conditions must hold for arblitrary vi j and 6 g1° Hence,
) 3 3

for (%) to hold it is necessary that the functions DE and q
satisfy
t(p"L, 0, 8, 0) = O
D~ 3 2 b
(6C-29)
ate™t, 0, 8, 0) = 0

~

i.e., the dissipative stress and heat flux vector must vanish
with velocity gradients and temperature gradient. The state

defined by vy 4 = 0 = q is called the thermal and mechanical
3

equilibrium state.

We now return to the energy equation (63-21). From (6C~28)
pY = ~ HGiJ vi,j - pnd

Hence, from (6B-21)

pon (tiJ + nﬁij) Vi3~ Ay 4 + PT

or

PON = ptyy Vy 4 - Qg 4 tOT (6C~30)
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This is the heat conduction equation for heat conducting

Stokesian fluids and 1s the governing equation for tempera-
ture 6 when particular forms of the constitutive equations

for ¢, E and q are specified.

For the case of an incompressible material, p = Py =
constant, 5 = 0. Then ¥ _ does not appear in (6C-21) and
3~
(6C-24) no longer holds. The constraint p = p is satisfled

by the method of Lagrange multipliers, 1l.e., replace Y by

~

1_1
p =¥ - pl5 - 5=
P Py

where p is the unknown multiplier, independent of p, but
generally a function of x,t. Then, we can compute ™ using

; and (6C-24):

B oew eeleewse R es

Hence, m 1s replaced by p, the mechanical pressure, which has

no constitutive equation. Then from (6C-28) t has the form

+

byy = = P8y * pbyy

(6C-31)
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VII. Theory of Constitutive Equations

A. General Principles

In Chapter VI we considered thermomechanical materials
for which ¢. n, E_ g are functions of Xy © and their gradients.
These constitutive equations depend only on the arpunent sets
at the present time, and are said to define materials without
memory. For materials with memory the constitutive equations
also depend on past vaiues of the argument set. We will not
consider memory effects in this chapter.

We have seen tihat the éntropy production inequality
rlaczes restrictions on the assumed form of the constitutive
equations. Other restrictions arise from additional prin-

ciples motivated largelv on physical grounds.

1. Equipresence All constitutive equations should

have the same argument set, unless a fundamental poétulate of

continuum mechanics is violated.

Thils principle is intended to serve as.a starting voint for

the development of constitutive equations, so that fundamental'
‘cause-~effect relationships are not inadve;tently omitted.

For example, if the deformation rradients xi,K had been omitted
in the argument set for heat flux qy thermomechanical couplings
effects would not be present in the heat conduction equation
for thermoelastic materials. Hote that equipresence was
satisfied by (6C-1) and (6C 20). It was then shown that for

thermoelastic materials ¥ could not depend on e_i, otherwise

7

‘the entropy production inequality would be violated.
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2. Material Symmet ry

Consider linear transformations of the material coordinate

system of the form

X = Hyy X (72-1)
where H is orthogonal:
HHE =R H=1 (7A-2)

Recall that (7A 1) represents of rotation if det g = +]1 and
a rotation possibly combined with a reflection if det g = -1,
By (74 1) Bo’ the Initial configuration of the body. is re-
ferred to a new coordinate system ﬁk. Inverting (7A-1) . we

4

fing

K (74--3)

Then the deformation function becomes an implicit function of
X xi(g(g),t). Consider now a homogeneous, hyperelastic
material with strain energy function W = '-.'J(xi T<). Under

(770 1), we have .

i = y '_J‘- —-_-i = _‘,_j‘_ - § N
ST, XP 39X, 5%, - Uex T3 (7A-1)
- K - A J’.P
axi
and in general W becomes a different function of —_
e
a“P
X 9x
0= Wk, ) = W(Hp, —=) = F(—21) (#)
. i',-l\ P‘{ ,)—x~ a.—
[4 P P



O
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If the functional form of W does not change under the trans-

formation (7A-1) for some H, 1.e.,

9x 9X
(= = u=h
BXP BXP

then W is called form invariant with respect to H. Then (%)

becomes

—.—i—) =
3Lp 2%

(

!
=
~

or from (7A-4)

axi
W( HKP gx-}:) - ( 7A‘ 5 )

‘w(g-;-i-)

K

The symmetry group {H} of the material is defined as the group
> (7A-5)

satisfied. If {H} equals all orthogonal H such that det H= +1,

of all orthogonal H for which W is form invariant, i.e.

then {il} 1s called the full orthogonal group, and the material

1s callead isotropic. Otherwise_ the material is called

anisotropic. Ve now state the

Material Symmetry Postulate -~ The constitutive equations

¥(8), n(S), t(S) and q(3) must be form invariant under the

symmetry group of the material i.e.,

¥(8) = y(5) n(s) = n(8)
| (70 6)
t(8) = t(8) , q(s) = q(8)
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where S is determined by subjecting the argument set S to the
transformation (7A-1) for all He {§}.

This postulate imbodies the fact that the functional
forms of the constitutive equations, and hence, the material
response, are generally dependent upon the orientation of the
reference configuration Bo relative to the XK axes, but are
restricted in form by the orientations determined by the

symmetry group. Note that the symmetry group must be deter-

mined experimentally.

3. Material Frame Indifference (Objectivity)

e define a change in frame by

% (66" = Quy(6) xg(X,6) + by (8)

. (78-7)
t =t - a
where a, b(t), Q(t) are respectively an arbitrary number,
vector and orthogonal tensor:
T _ AT _ o
Q(t) QT(t) = 27 (L) a(t) = I (7A-8)

A change in frame does not represent a deformation of the

body B(t), but rather defines an arbitrary time dependent
change in the spatial reference frame (see Fig. V;I»l). An
observer fixed in the starred frame sees the actual deformation
xi(gjt) as xf(gltﬁ) due to the motion‘of his frame of reference.

Tensor quantities ¢, Uy, ViJ ars called frame indifferent

(or objective) if under the change ir. frame (72-7). they

transform according to
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. PT e Luy= a0

. (74-9)
Vig = Q) Q(8) v

This implies that frame indifferent tensor quantities satisfy

the appropriate tensor transformation law under the change in

(spatial) frame. Some of the kinematical quantities introduced
previously are frame-indifferent, while others are not. From

(7A-7) we have
Xy = éij x'j + Qij vJ + 61 (TA-10)

Hence, the velocity v is not frame-indifferent because of the
presence of the first and last terms in (7A-10). Inverting
/") (7A-7),, we have

x, = an(xi - b)) (7A-11)

M

Using this in (7A-10)., we obtain yw as a function of 5" t:
vy Qij QnJ( = by) * Qg vylx(xT,8),8) + by (7A-12)

From (7A-8)

9Qf + gt =0 (¥)

=009 , 2y =0, UYm (7A-13}
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The tensor @ determines the angular velocity of the starred

frame. To see this, under (TA-7) we have
1 = q () 1 1 = 1F
In ® m m 2 Im T Qp ~p

where 1n, 1; are the orthonormal bases associated with the
& %
Xy, Xy coordinate systems. Note that in is time dependent,

while in 1s fixed. Now we have

d & 2 _ = #
at In = Yp iy = U me %p
= 0 g i
%p Ep (%)

Wle introduce a vector quantity Qi such that

9) = =
b“np -,enpm Qm 3 252m enpm an
Then we have from (%)
a_ L o 4 )
at in ®npm “m %p : (r)

But since i; is orthonormal, recalling (1C-3) we have

% &

enpm }p = emnp %p = }m'x %n

Hence, () becomes
d 4% cp 1F wi1¥ g x4 (7A-14)
dt =n “m <m ~n o ~n

From the theory of rotating coordinates, then Qi is the
angular velocity of the starred frame. Now using (T7A-13)

in (7A-12), we find
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P

v

-~

Note that in (74-15) Q v are thelcomponents of v in the *#

* « . $ . P . -
4(x ,t) = QiJ vj(§(§ ,E),t) + Qij(xJ - bJ) + b,

(74--15)

frame, g(§“ -~ 9) represent the effect of the rotation of the

¥ frame, and b represents the effect of the translation of

the # frame. Now consider the velocity gradients relative to

the & frame:

avi N Qim avT . Qid
?
xJ axj
From (7A-11)
9
—X-J,=Qj
' n
axn
and
va } va ax13 - q avm
Bxg CEW 8x5 Jn 9x,
lence, (¥) becomes
?1?:_.—..(@ Q Ev_m-;.g
- ax; im “jn an i

(%)

(TA-16)

(74-17)

This implies that while the velocity gradients vy j are the
2

components of a 2nd order tensor in the spatial system, v

i.J

is not frame-indifferent. By definition of the stretching

tensor dij and spin tensor Wy, We can show from (T7A-17)

13 T %Um Yn 9

i3 = YUm Yn Ymn * %y

(7A-18)



),
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whicn imply that d1J is frame~indifferent, while wiJ is not.
Based on (7A 7). we can also show
ax?

i axl Fi 3

Hence, Xy s C.riq and E.., are frame indifferent.
Jow consider the temperature field 6. From the material
description 6(X . t) . the value of 6 in the % frame follows

from (74 .7)-
8(X.t) = 6(X t'+a) = 6 (X,t ) (74 20)
Hence . the material gradient of € is

8 . (X,t) = e*v(x,tﬁ) (78 21)

34y~ N A

These results imply that © and @ X transform as scalars under
the change in frame, and hence are frame indifferent. Con

sider 6 in the spatial description. From (7A-7)

3

0(x.8) = [Q"(x" b) t7+al = 0" (x" &) (78-22)

Taking the spatial gradient, we fing

8 g ::-
a6 _ a0’ %y _ 30 .
ox,  ax’ 9%y | Wi T )
i J J

by (7A 7). Upon inverting (%) we have

aXi 13 XJ



),
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Hence, (7A-22) implies 6 transforms as a scalar field, while
(74-23) implies © 1 transforms as a vector under the change in
frame, 1.e., 8 @ j are frame indifferent.

3

We now state the postulate of

Material Frame Indifference --- The constitutive equations

v(8). n(8), t(8). q(S) must be frame indifferent, form-invariant
functions of the argument set S8 for every change in frame of

the form (7A.7), i.e.

4

¥ =T =) L ot = asH) = n(s)
(78-24)
& # m ® . »
e =t® 97 L g = g(sT) = g als)
i_)l where S is obtained by subjecting S to the change in frame

(TA-T).

Thils postulate is an expression of the idea that the
valuss of y, n, E and Q existing in a body undergoing a given
process must not be affected by the observer'’s frame of
reference. In the next two sections we consider the ramifi
cations of the postulates of this section on thé constitutive
equétions for thermoelastic solids and heat conducting

Stokesian fluids.



U
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B. Thermoelastic Solids

Recalling that the principle of equipresence was satis-
fied by the initial constitutive aésumption for thermoelastic
solids (6C-1), we now turn to the restrictions imposed on
(6C 14) by the principles of material frame-indifference (MFI)
and material symmetry»(ﬂs).

From (6C 14), (7A-24) and (7A-19),, (7A-20). (74-21),
ilFT requires that

7= 0] = ) L ¥ = nsh) = nes))

tij = ty,(5)) = Uy (S, (7B-1)
s, = {xi,x>9*} = {Qy, x; .0}
S, = {xi’ﬁ,e}

and

125 x5 k9,08 ¢}

for every change in frame (7A-7), i.e., for all orthoronal @(t).
We first show that if (7B-l)1 is satisfied, then (75-1)2 3
2
are automatically satisfied. By the constitutive equation

for n (60~1u)2q we have

nn - é—‘k:.:'.
a6
That 1is,
#
[} ' \
?](S*) = - BW(SO) = . i,}_(_s.o_/.= n{(s )
o A 06 ~o’

90
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Hence. (7B 1), is satisfied 1f,j7B~1)1 is. Now from (60-1&)3

an

o SN 2y F 5
1y = ®13(8) = e ax® LK (%)
- 1,K
From (7B 1)

v

. #
KL aw'(so) - a‘p(so) 1 axn,

. W w ox
%y x ¥y x o ¥y n,P ax; 4

But inverting (7A~l9)l, we have

_ B o
and

Ynp . My
J— T - Q'! ™ — - Q 6 ) 6 ”
9% n g, Jn “1j £

1,k 1 X

- _ Q. 2Y__
ax, , R 9x, ¢

i.i

Sw“ i _ o
—r— X L, o= Q. Q - % .
axi ] J,K in ®jm §knjx m,X

by (7A~19)1. Hence {%) becomes

oY
axn,K

t__(S)

= 0. 0
*m K ‘in *jm “mn‘ o

tij(So) = QU Qjm P

which implies (7B—1)3 1s satisfied provided (7B~1)l is.

dlow write the requirement on Y in expanded form-

Gl

w(Q1j Xy x> 6) = w(xJ’K, 8) (73 L)






)
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We seek the solution to this equation, i.e., what form must Ui

have in order to satisfy (7B-4) for all orthogonal N? This

problem is one in the theory of algebraic invariants. Some

rertinent results are given in Appendix A. By definition

(73-4) means that ¥ must be an isotropic scalar function of

the three vectors x

1,1 X120 ¥1,3°

By Theorem 1 of Appendix A

Y must be erypressible as a function of the inner products

X3 g Xy T Crp+ Hence, the solution to (73-4) ig

We note that this form certainly satisfies (7B-1) with
S, = {Cyp, .81, 12, w(s;) = ¥(S,). since by (72-19),
Coo.® C,, Tow from (6C-14)
Hex! 2
n= -~ 2% = n(c,..,0) (7B -6)
' 29 Ki4?

To determine the new form of the constitutive egquation for %

under (72-5), we have

aC,
W - o M1
ot % =
9%y x 90wy %4 x

We can show that

oC

M
% g Sz X4 4 % 8
so that
B . (v, v
9%y g olgy 0y
- 30
=23 Xy
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provided ¥ is defined such that .

oY . v ()
e Cip oC,
KN NK

Then using (¥) in (EC—IM)3, we find

= CAY
tij = 2p 3-6;{;,; xi.,K Xj ,M (7B"7)

We can show that angular momentum balance and hence (6C--12)
‘are ensured automatically when ¢ is defined such that (i) is
satisfied. Hence, the constitutive equations (7B-5,6,7) are
Neka gt hecessary and sufficient to satisfy the MFI requirements
(78 1). |

Alternate forms of (7B—5,6,7) result if SO is replaced

by EKV,G By (T7A- 10)3 K = EKM which implies MPI can be

satlsfied with a different function of EKMQG:
= $(Eg.,.0) (73-8)
Then (73-6) 1is replaced by
n= 8= 0,0 | (7B-0)

and since agw = Y (7B-7) is replaced by

KM 9Cky’
- a"!} ) R G
b1y TP aE *ik Xy (75-10)

Kl



),



TN

. note thails is quite similar to (54-3) for isothermal ela

L
S04 UB

W(E,...) is replaced by pow(EKM’

e
)

e nos

’

catisfy thils definse

ot

e)."
incompressible case (7B3-~7) and (7B-10)

7-15

are replacecd by

Y
Cxn

- S .
POy * %P5 30 *1,x X5,m

X'_.T

-y

consider the restrictions or q,: (75-2;. In

14
e

funetions 7,(S) such
F Y

i ALJ a,(s) 3ut from 17
LX(%*)
%5 (s
7= 11;
1y ¥y oo RlY)
becomes
RUTEE 2..(3)

L —
N
&)
1]
o~
o2
g
LJ
Hj
(@]

™
[ ¥

£
<Ci

Based on (6C-18) for the

opra:

~~
S

()

[Yid

cic

and in fact implies that {ovr the heat conductiny case

r

~



O



o~

N

)

7 16

fegarding these ecuations o2& linea> howomeneousn, then oiace

| o)

J
solution tuv () is the trivial solution:

‘ol (¢ - = o}V = «f I 1.1
““L(“iJ "';K) det detlxy ) =+ J # 0, the culy

(s

QVJ ( ‘.3 ) = ".!r
- RN

{
Yritten ‘out in terms of S, we have

- a o . . v oy
Uy Fy ke 80 O k) = (X g 8,06 ) (73322
it is easy to show that satisfaction of (73--12) imnlies (75 2.

1s zatisfied. Jdow (7B-12) must bz satisfied for all orilcrasu’
gy l.e. . .#ach Sg Must be an lsotropic scalar function of tie
three vectors x, ., Xy 00 X4 2- 3% Theorem 1 of Appendix a

- 5. )

each N.. must b

I3

.

expressible as 2 function of thz inner products

or these vectors. l.e., x. .. X, g = Cyrqye Hence
e = 2 ACorss
U = U\ Cpys 056 y)

Using this ‘in (7B 11), we find

4 = %y g %Gy 05 ) EECEIR
Recalling Qhe restricticn (6C--15) imposad on Gy b7 The entropy
product -inequality, we find thsat QK must satisfy

QK(CMN’ 9. 0) = ¢ (7TB--34)
Also., ig terms.of U (60—14)“ vecomes

a4 9;1 SR p Qg 0y %G 8 <0 (73-15)




9,



/\) Worntinflen,

’ o [ R LI 4 - [N - - 2 g im
cquations are (LS (TL-B), (72-7) an’ (7H-13
razhriccion (72-14). Alternatelv  we hava (75~

3

(78 10

o
v

a, = ¥, ,. o (E.. )
i | 1.8 "NVTMA ©. 6113)
. '
-t )
vhere 9, {I .. . o= QL (2E.., + & . )
here Dyl ... €. 8 ) = Qul2hyy + by 6.9 )
are vaiid Jor omcgineous, anisceoropie mateorisi

Ve gondider o

tive equ o reterial symmetlv., We snppos

s;oremetiry arouy 37 the material L non-empty. T
. - - . " i ot A e " - N\
/ ) srensformation. of material cocordinaces (TA-1) .
\.
- Chvm ciigm Gpe. & o, = 0L & .
Kil e s PJ * il * WL
cr
- N uE -
R S O 5 Lo Em G
ghere & = -1 Then woplvdng -5) L (7L
CTA T L fhang
- -J - PP, \
U NS B TR ol
T
7 RS : - . .
A0 ¢ Gt 2 = w(C 9y
S GRS {7 .8)
must be savaisfier for =21 H e {H:.

ow thne restricnions imposaed on

The constitutive
Y wich the
g), (73 9

(73.-16)

These forms

[
~

the z2castava

&

".—»-Qb

€ twat the

ecalling che

N

hove

J

o

-
..
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Since W is a potential function for n,t via (7B-8) ang (7B..7:
it can be snow.. that satisfaciior of the firs:t of (7"R- MR
impiies natisfeetion of the remei ng twe conditiorns., Ve
trest only the spescicl case cf an isotropic material. Taen
{lI} must be the full orthogonal group. 1. e., 21l orthoponzl i.
Condition (7% 18) then implies that ¥ nust be an isotropic
sezlar funetion of the symmetric 2nd order tensor C and the
scalar €. By “neorem 2 of Appendix A, ¥ must he erpressible

&5 ¢ f'unction of 6 and the principal invariants of ¢

b= Pla T, IX.. IlIn) {78-19)
o ~ 19
Iz on and ¢ nmust olso reduce to functions of the same ccrgu-
ments ron (7200
o . - .- . -
n Slr (e, L. ¥I., LTI) (7B-19a)
ar S C e

It cean be shcun that (72-18) zng )3~ 7) imily

NS n H

:; R ﬁ,p cri;) xi 7 Xj I

s e fomations o7 €. T 1T

i, and are given in forms of ¥ v certain differenti-l

Yle note in pasr:ing thot w ocan alson e eEXprassed &3 a

funccion nf the i ~ont - J:variarcs.

i
=1
e '|
fl
ct
2]
2
W
~
-3
s
!
n
()
S
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/’) w..ich are related to the principal invariants by
\

r = =T = v € = nT

e = I ~tg = sg = g

oo - 3% II, + 3III

(78-22)
c ~c T ¢

The 1zt twe 1cdentities follow by definition, while the 3rd

car be shown using the Caylev-Eamilton Theorem:

Any matrix
A satisfics 1ts owr characteristic equation, i.=.

Finally, w2 consider the constitutive eocuation for heat
riux for 2n isotronic materiel

“e have from (73-14) that

':-.' fL o
Q-g ('k) = "'—_"' Q’gr(s)
'.}",K
= Mg 2y 2305

Xy -5 8,(8) = x. 2., €
K1 ™2 i (8) *31x 3 {8)
[eh
¥ [, AS) -~ 02..(8)1 =¢
Y bl 9t 2 (8)
Since dct Xy oo F J # 0, then
el - 3T N q
0 (S) = gy (S
Recall that S = {Cyw, 6, o T{} and use (73-.17)-
AP ,’.
, T . .
A(H CHY, e, HG)=HQC, 5, @)

~ N
)
t
i
N
s



®
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which must hold for all orthogonal H for an isotropic materizi.
This Implies Q must be an isotropic vector-~-valued function ol

a s etric 2nd order tensor £, a vector G and a scalar 8.
ymm P

By Theorem 4 cof Appendixr A, Q must be expressible in the form

18D
i

(g I+ 6y C+ 6, C) G

U = (09 S + ¢y Cxn * 45 Cgp Cppy) Oy (78-25)

e ¢03 ¢l, ¢2 are (nonlinear) functions of € and the in-

variants

I., ITI., III.

C‘ C" [
(73-26)
Cxie @k ° 11> Ckp Cpit O x O m

Note thet as 2 result of the assumption of material isctropy.
QK automatically vanishes with e:K, provided OG> Oy, 05 @re
boundad funetions of € ... Alsc, using (7B-25) in (73-1%) we

PR

find

, , ' TR.LD™Y
(¢ Sypq * &3 Cypy + 6 Cyp Cpr) € x 8 1y <0 (7227

> >

which is a restriction imposed by the entropy producticn in-.-
eguality on the func-iorfal form of 0gs, ¢15 ¢5. Finally, we

record the form of Qy resulting from (TB—QS)f

a3 = %y 58 Sy + &y Cpyy * ¢p Cyp Cpy) O (7B-20



)

)
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We mention that in view of the identities (2C~6) relatingz

~the principal inveriants of C and E, the constitutilve equszstions

(74-8), (73 9), (7B-10), expresséd in terms of £, can easily
pe veduced to forms valid for isotropic materlials. The in-

comyressible case (7B-1lla) is treated similarly.
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C. Heat Condueting Stokesian Flulds
For these materials the constitutlve equations were

-

(6C-28). Applying the princirle of MFI (TA-2l) we have

v(S,) = w(s)) , n(S)) =n(s)) , m(s)) ==(S

O)
(7C¢-1)

¥* _ 1 _ 1

Sy = {5*, e} —,{5, 8} = 5,

o a¥y o .
Dtij Dtij(S ‘ QU an D“mn(S)
a3 = ay(87) = 9y q (8) ©(7C~2)
S-:(- = ,Sié V-:& e-:: 1= {}- 8. Q A v
‘“o2 V1,3 17 p? 7?2 ®*im “jn ‘m.n

+ Q5. Qg 8 L)

PR

vhere (7A~17, 23) have been used in S . Since S, = Sé; then

any function ¥ = ¢(SO) satisfies the MFI requirement w” = 4,
Recalling that ¢ is a potential funetion for n and w, then
it follows that‘nu =M, n° = m. Consider now the raquirement

on the dissipative stress ~f and heat flux gq. Conditions

~

7C-2) must hold for all orthogonal Q. In particular, they

must holcd for the particular checice

(]
<t

*ij 13 2 QiJ = - Wy at t







D
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N
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Hence, Dt and q can deprend on vi»J only through the stretchirg

~ ~

{s ., a 6 .}.

tensor djy» t.e., we must replace S by Sy = 15, ij° 7,1
. 2

Then by (7A~l8)l, we have

s’ ={s_.a., 6.} = {s

1 o° Tij’ ,1 }

]

02 Q4p QJn 9n Qij sJ

and conditions (7C-2) are replaced by, using direct notation

4+ °'1 T — -1 L)
nb(p 3 93 9 El (3- g _E:;) - 9 DE( ) e’ g: g) Q

. ~ (7C-3)
0lo™, 8,005,688 = Qal™}, 6, a, 1)

n
D

fdzre, we have 1ot g = grad 6

for (72-3) follow by letting

1D
"
!

1

‘E(p“lz 9 gn "g) = t(p—- E) e: g-‘y g)

N

-]
!
~—

N

21 2 .
_q_(p -L.-a ?: 99 "g) - O(O .L; e: a, }.Z')

Tre [irst of these equations implies dissipasive stress muat
be en even function of spatial temperature gradient. The
second implies heat flux must be an cdd function of spatial

temperature gradient. In particular, when q = 0

a(>™t, 6, a, 0) = 0 | (7¢-5)

i.e., regardless of the motion of the fluid, there is no hes=art

flux when € , vanishes. Hete that (7C-5) is a stronger re-

3~

-~

quirement on q than (60*29)2, cderived earlier from the entropy
production inequality. Also, there is no result on DE similar

to (7C--5). The above necessary conditions on pt, g must be
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satisfied by any general solution of (7C-3). Equation (7C-3;

1
implies that _t is a srmmebric 2nd order isotroric tensor
function of a vector g and a symmetric order tensor d.
Similarly, (70-3), implies g must be an isotropic vector
function of the same arguments. The solutions follow from
Theorems 4 and 5 of Aprendix A-:

= (k& ' (7C-F
Ay (kg 615 + Ky dij Ky 4y dmj) e ; {7C-F)
p°4j T Bo S15 * By dyy * By Ay Ay + B30 4 6
+ 3u(09_ djm ) . dim G,m e,d) (7¢-7)
* PS(G,i dgm Y e,n * i Y ® n e,j)

wiore the k's and £'s are (nonlinear) functions of o'l. 8 and

the invariants

(70-8)

d 6 6

mj .1 7,

wote that (7C-6) satisfies (7C-5). The requirement (6C--29)

on implies the coeffﬁcient'ﬁo must satisfy

{7
tci

= 0 (7C--27

In a24dition, the functiens (7C. 6

N

and (7C-7) must satisfy
the dissipative inequality (6C-~23), which we repeat here for

refersnce

O
I
n
o
!
o+
0
<D
v
o
P
~J
(@]
!
B
o

T D13 Pij

}-t
.
|
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This places restrictions on the form of the coefficient
functiors ¥ and B in (7¢-6) angd (7C-7).

The total stress tiJ follows by adding the term - 7 o,

to (7C-7). For an incompressible fluid p =p Id =0 and 7

o’
1s undefined. Then - 7 + BO 1s also undefined and is replaced
by the mechanical pressure p. In addition, Id drops out of
the set of invariants (7C-8).

Conzider now thé material symmetry requirements. Under

a transformation of material coordinates of the form (7A-1),

we have

e
"
v
tay
"
0

i.e., all the arguments of So> Sl transform as scalars.

flence, the requirements (74-6) are satisfied for all ortho..

gonal H. This implies heat conducting Stokesian fluids, as

defined by the given constitutive equations, are isotronic

macterials.

Since the nonlinear constitutive equations (7C-6,7) are

[&))

iI7ficult to work with in anplications, various special cases

are of interest. We discuss twc of these.

(a) t is independent of 8 , and q is independent of d

P

Then from (7¢-6,7,8), we have

K_ = Ko(p-l, 6, 6 6 )

1% %1 4 K 1 8.1 (7¢-11)

+ o, d

2 "im dmj
(7C-12)

-1 _
o = ax(p™7, 8, I, II4, IIT) , K =0,1,2
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with (7C~9) replaced by

o (p™", 8, 0, 0, 0) =90 (7G6~-13)

pt1y 933 20 , a4 84 <0 (7C-14)

since 0’1 and dﬂj are arhitrary at a given place and time.

(7Cw14)2 pleces a restriction on the coefficient function L

.'l ~ [y
kK (p77, 0, 8, eji) <0 (70-15)

9=

From (7C-12) w2 see that when 4 is diagonalized, then

t=~7n1H+ pt 1s also diagonalized. Hence, for this class

~ ~

of meterials_ the principz2l axes of stress and stretching

colncile. Now‘using (7C¢-12) 1in (7C-14),, we find

- 2 3
Dtij dij =0y trd+ oy tr (@7) + o, tr (47) >0
{(7¢-15)

Again, this 1s viewed as a restriction on the form of the
coefficient functions ap. Using (7C-18,19), we record the

heat conduection eguation from (6C-30):

. el 3
pen = oy tr d + @, tr (a™) f oy (d-)

(75-27)
- (KO o ) 1 + por

= 3

(b) Case (a) with t linear in 4 and q linear in e_i

From (7C-11), (7C-12), for linear constitutive squations

o= <x(eT,0) L ag = A6 e) I, , o = 2u(e7le) (70-16)
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with all other coefficients vanishing. Then

Na]
"

}Le

- k(p71,0) @ g (7¢-39
2

pbij Ap™™,8) T (7¢C-29)

- ( )

where x is the thermal conductivity and A and py are viscosity

coefficients. From (7C-15) k must satisfy
k{p —,8) >0 (7Cc-21)

Using (7C-17} in (7C-16), we find

~

A Idf + 2u tr (gg) >0 (7C-22)

b )

By trensformirg this result intc the principal axes of d an3a
/ﬂ) using some elenentary properties of quadratic forms, we can

show that (7C-~22) is satisfied, if and only if

3v+24 >0 , uw>0 (7¢c~-23)

“irally, the heat conducticn equation (7C-17) reduces o

. f') . ) .
pon = A I, + 2u tr (d2) + (ko ,) + pr (7C-2%)
a ¢/ 1001

1

where n = - %% = n(p ~,08). Note that this eguation is non-

linear. An alternate form of (7C-24) is

L] . 2 .L 2
P c, g = - Cy Id + A Id + 2u tr (g )

(70-25)

+ (3 + pr

1)1
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/«w where
_ an _ -1
CV = @ 5-6— n = cv(p ,..,6)
P
8g = 0 L. = g.(0,070)
ap 6

are the specific heat at constant (specific) volume and the

compressibility at constant temperature, respectively.

)
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pprendix 4 -- Some Results on Isowrcple Functions

Pefinition ~- Scalar, vector and 2nd order tensor valued

)
functions ¢, £, F of n vectors u‘a) and m 2nd order tensors

P
ﬁ\a) which satisfy, respectively

m[g g(a>y 8 g(a) QT] - ¢[E(a)s g(a)]

-~

n

fEQ H(QJD ) A(a) Q*]

~ o~ ~

9 ftg(a)ﬁ A(G)j (£1)

(N \ .
F:’_r: U.\r!)_, C,’ A(a) QT] = Q F[u(a) A(O‘I’: 'Q

fer all orthcgonal Q, are called isotropic functions.

>

Theorem X -~ (Ref: A. L. Cauchy, Mém. Acad. Sei. Paris
Vol. 22, p. 615-654, 185¢C.)
/

A scalar valued function ¢ of three vectors u‘Q’J

o= 1,2,3 1s isotropic if and only i7 4%t is expressirle as

- —————y et

{a} (5 . A 4
a function of the six inner predvucs % o7 a0 = 1,23

(b - ¢(E-(a)

Theorem 2 -- (Ref C. Truesdell =snd V. ioll, Handbuch der
Physik. Vol. III/3, p. 28, 1965.)

A scalar valued furction ¢ of a symmetric 2nd order
tenscr A 1s isotropic if and only if i% 1s expressibie as =

function of the theee principal invariants of A:

vo= w(I,, I7,, III,) (A3)
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Theorem 3 ~- (Preceeding reference, p. 32.)
A symmetric 2nd order tensor funetion f of a single
symmetric 2nd order tensor A 1s isctropic if and only if it

is expressible as
ag I+ o] A+ a, A° (Ak)

where On: @y, 05 are functions of the principal invariants

of A, e.g.

ag = a (I, II,, III,) (A5)

Thecrem 4 -- (Preceeding reference, p. 35.)

—

A vector-vzlued function g of a symmetric 2nd order

TN

tensor 5 and a vector u is isotropic if and only if it is

expressible as

2 -
2= (85 I+ 4 A+ ¢, A) u (48)

I

1%, » I=1II, |, I,=1III,

Iu=

1§
<
-

u Ig=u - Au (A7)

T =u - A u

-Theorem 5 -- (Ref: R. S. Rivlin and J. L. Ericksen, J. Raticnal

Mech. & Anal., Vol. 4, p. 323-425, 1355.)

{
\v) & symmetric 2nd order tensor valmned function g of a

and only if it is expressible as
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(“) VIII. Some Ezact Solutions for Fluids
A. Newtonian Flulds (IsothermalvFlows, Incompressible HMaterials)

Ve summarize the governing equations for incompressible

Jewtonlan fluids.

Vi 4 =0 © (8A-1)
byg,5 * Pl = p\'riv (8a-2)
tig = = Plyy + 2u 4y, (82-3)
po=pulty >0 (8A-4)
p e i) 0 = 2:(8) tr(d®) + pr (8a-5)
c, = cV(Q)

»

The constitutive equations (8A-3) follow from (6C-31),(7C-20) and
(8A-4) frem (7¢-23). We have assumed no heat conduction and
incompressibility in cbtaining (8A-5) from (7¢-25). If

(82-3) iz substituted intc (8A-2), we obtain the Navier-

Stokes equations (Navier 1827, Stokes 1845):

v
WYy gy - p)i + pfy = p(gfl + viwj‘vj) (8a-6)

Note that temperature changes are stiil possible even though
heat conduction is non-existent. There is coupling between
equations (8A-5) and (8A-6) through the temperature dependence
of u in (8Aa-6) and the term 21 tr(gz) in (8A-5). 1If the

\ ) . heat source term r vanishes, then for incompressible materials
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we can assume changes in 6 are small such that u is
approximately constant. Then equations (8A-6) are independent
of 6 and suffice to determine thé velocity field, subject to
appropriate boundary conditions, without using (BA-5). Hence,
the governing equations for (8A-1) and (8a-6).

The boundary conditions for Newtonian fluids are

tij nJ = ti on St

vy = vy on SV =5 -~ St

~ -~

where ti, vy are prescribed functions. In particular, if Sv

is a fixed, solid surface, we have the no-slip condition
v, =0 on S (8A-7)

We record the component forms of the basic equations

in rectangular cartesian and ecylindrical coordinates.

Rectangular Cartesian Coordinates (x,y,z)

Let v = (u,v,w)

-~

Continuity Equation

. 9

=

+

o
b

(84-8)

2
3
o



o
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/AW Havier-Stokes Equations
2 2 2
3 u 9 u o u op ou Ju ou Ju
u( + + ) ~ gzt ef =o(sE+uss + Vet W o)
ax2 ayz az2 90X X ot 9X oy z
NN G TR | P SVTI SN NS LN R T
8x 3y 3z y y X y z
2 2 2
9w oW 0w ap W oW oW oW
u( + + ) ~ =+ pf_ = pl(g-+ U == + v 2% 4+ yw &=
Bx2 ay2 az2 9z z at 90X oy oz
Constitutive Equations
= Ju = v
txx-'p+2u§§’tyy__p+2uay
= ow _ au 3V
tZZ = - D + 2]1 -a—z- Py txy = u(-é—y— + -a—x-) (8A"10)
= ,,(SW ., oW = v , ow
tyz = “(az + §§) » tyz - u(az + 3y
() :
- Linear Momentum
ot ot Jt
234 Xy Xz = 52U u du u
ox v eyt ez T efy s ey tugpt v tw o)
ot ot ot "
o, Yy yz = o(3¥ v av v i
AT -l pfy p(at tuss v 5y + w az) (8a-11)
ot ot ot
Xz . ¥z zZZ = p (W aw 3V L W
5x oyt oz tefytelsptusxtvgytegg

Cylindrical Coordinates (r,6,z)

Let v = (u,v,w). The following equations are given in

terms of the physical components of the tensor quantities.

Continuity Equation

Ju 0

= + .‘:1.+l
or r r

|2
+
wig
n
o

N

(84-12)

Lo >
D






/ﬁ) Navier-Stokes fquations
L L3 (puy] e+ Lo 20w _ 22y, 8w,
ar ‘r or ;? 582 ;? 28 -
ap T TR TR 2 DR du,
“ 37 tein o T T Rl T
QoL (rmy+ L 2y, 2 du, oty
Uisy Ly 37 2 .2 29 2
20 r 0z
1 op - v oV . V 3V _ uv v
~Fag t Pl egptugptagpt etV g
2 2
1l 29 oW 1l o°w 3w ap
s oz (rg3) + + —] - 5
r or or 2 ae2 az2 Y4
R 1 U 2 I '
tef, =plgptusptrgptvgy)
Constitutive Equations
( - du 1 3v
O brp = P F 2 g Pee = - P * 2z 5
= .y s W = 2 _ (¥ 1
tpp =~ P4 2H o7 tre ulr or (r) +
oY, 1w du , 9w
toz = ¥igz * T35 - by = Mgzt P
Linear Momentum
at ot t
rr 1 r T 1
st T 556t 5z T (tpp - tee) tof
2
du du ., v o vo o, .. 2u
plsgtugrtrgs - T V3
®re , 1 %es , ez 2. o, =
or r of 9z r ‘ré ¢
oV 3V v oV uv oV
Pgtusrrragt e Yoo

(8A-13)

(84-.15)



U,



co
1
N

e et ot ot
! r7 1 02 z2 1 _
) 57 T F 38 T 3z Y % tpy + P, =

ot 3r T 96 3z

Stretching Tensor

_2u _lov,u _ 2w
dop = 37 > dgg F3stE d2z = 3z
e lipd (¥4 12u,
9rpg T 3 [r or (r) tF ae] = dgn
(84--16)
_ 1l ,9u oW, _
dpy = 5 (52 + 55) = dyn
_ 1 oV 1 dw, _
doz = 3 (57 + & 350) = %

1. Couette Fiow in a Channel

We congider the steady flow of an incompressiblec Newtonlan

KV> fluic in a chaﬁnel between two infinite, paraliel piates, cne
fixed and the other moving at velocity U. (See Fig. VIII-1).

We assume zero body forces and a2 velocity field of the forr
v (u(yy, 9. 0) (8u~17)

Tnen the continuity equation (84--8) is satisfied, and the

Navier~Stokes equationzs (84-9) aive

2. .

u d 12J _ 7’(—)_:[: = 0 (2."—\-18)
dy -

L . 5 - 2D

Ty v ¢

Hence, p = p(x) and (8£-18) implies

.

[*))

pu't(y) = E% = constant , ( )i

.Q-IQ
]
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Integrating, we find

(o}

dp 2 " #
Y *Cy+¢C, (#)

o} -

p uly) =

The boundary condltions zare
u(0) =0 , u) =1U (84-19)

Applying these conditions to (%), we find

Hanee, (#) becomes
=0, _h apy y o
) =gy -yan - (84-20)

There are two specizl cases,

(2) Upper plate fixed, U = 0.
Then thz general solution reduces to

Z . : ..
uyy = - Era-9H (84-21)

and the flow is induced by the pressure gradient, regardec

as giVen. The velocity profile {8A-21) is parabolic. (See
Fig. VIII.2). This simple solution sﬁggests that u could be
determined experimentally by measuring velocity under a known

pressure gradient.



O
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{b) Simmle Couette Flow
Let the pressure gracdient vanish. Then the flow is
induced by the motion of the uppér plate. From (8A-20) we

have the linear veloclty profile

=T

u(y) = &y - (84a..22)

The gquantity % 1s called the shear rate. Note that u is

‘ndependent of u, so that this solution exists for all in~
compressible Newtonian fluids. If the stresses are calculated

using (84-10) we find

x tyy = tzz = - p = const, .
‘ U (88-23)
Cgp = 0 = tyz s txy Ly

fo that a measﬁre of viscosity here is the in-plane force
applied to fhe upprer vlane, which in fact produces the plate
velocity U. The components o the stress vector acting cn
the {luid av thé surface y = h egre glven by ti = tij nj
where n = (¢,1,0). Hence,

t.=t_ . = u&,t, =t == ,u, =t =0 (3h-24)

Thc pressure p corresponds to 2 normal force applied to the
upper plate. If this force vanishes, then p = 0, and ths

normal stresses txx’ tyyy tzz all vanish throughout the flow.
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/«) For the general case of {(8A~20), we define a dimension-

less rressure gradient

p=1_f_(..913.)
2ul dx

Then (8A-20) becomes

u(y) = gy +PU % (1 - %—) (81-25)
When 2 > 0, i.e., 92

3 < 0 implying pressure decrcasing in the

+x direction, then u is positive over the entire width of the

channel. For P < -1, i.e., %% > 0, pressure increasing with

+x, then u is negative near the lower fixed plate. This

‘back-flow  1s caused by the -adverse pressure gradient wihilch

//\
N’

overcomes the dragging effect of the upner plate. These
resu-.ts are shown in the figure from “Boundary Laver Thecry

. Sechlichiting. lcoraw-Hill, 1960, pz. 68,

&£

2., Poiseullle Flow in o Fipe

Yle conslder the steedy flow ¢f an incompressible flvid

1}

(&

in & pipe uvnder zero vedy forces. L=t 7 be defined along
the axis of the pipe with (r,€) a=Iined in a plane crcss
section. Then we assume an axisymmetric velcocity field of

the form






)

0)

68

V. Exact solutions of the Navier-Stokes equations

amic theory of lubrication. The flow in the

has some importance in the hydrodyn
and large, identical with Couctic

narrow clearance between journaland bearing is, by
flow with a pressurc gradient (cf. Sec. Vie).

U .
fz/4ZZ/// 70'//////_/////// — ’7///////»(//////////////////L
|2 | s J
‘ h

back-Flow

= |

‘777/7/7////7(‘7////,;’/////,;(////////////(/////(///‘//){//////,z4/////
-04 <02 0 02 04 06 08 10 12 14

M
v

Fig. 5.2. Couctte flow between two paratlel flar walls
P > 0, pressure decrease in direction of wall motion; P < 0, pressure fncrease; P = 0, gero pressure gradient

2. The Ilagen-Poiscuille theory of flow through a pipe. The flow through a
straight tube of circular cross-section is the case with rotational symmetry which
corresponds to- the preeeding casc of two-dimensional flow through a channel. Let
the z-axis be sclected along the axis of the pipe, Fig. 1.2, and let y denote the radial
co-ordinate measured from the axis outwards. The velocity components in the
tangential and radial directions are zero; the velocity component parallel to the
axis, denoted by %, depends on y alone, and the pressure is constant in every cro-s-
soction. Of the three Navier-Stokes equations in cylindrical co-ordinates, eqns.
(3.33), only the one for the axial direction remains, and it simplifies to

d%u 1 du) _ dp .

Wi =2 G
the boundary condition being u = 0 for y = R. The solution of eqn. (5.6) gives the
velocity distribution

u(y) = — g 3 (B=1). (5.7

where —dp/dz = (p,—p,)[l = const is the pressure gradient, to be regarded 8%
given. Solution (5.7), which was obtained here as an exact solution of the Navier-

l\.tlll"l‘\ (-.’i:;
elanentr

]n.l!.l!.«;f',i:!

The mean s

and the vo!

The laniin.:
thir l:r.\'r.a,',
the sarga i
constitute .

dpdr, R, o

approximit
bulent. We
The o
normalle e
od vl W
BB ALV LU B
to the dyvr.
eguationt

l::“"u{!u(-i:l’_f

thot i

with

“"h' R e
\":u(‘it.',‘ “f
* This aquaedr
for lanan g
2 eunstant
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/«) Then the continulty equation (8A-12) is satisfied identically,
wialle the Navier-Stokes equations (8A-13) yileld

Q

p=0=ale)

- o e

r 9

Q

which implies p = p(r) and

. 1 dp d .
(3R ] = T = 2 = - S LX
p(wit + 2wt az = comstant , ()' = & (%)
To inta2grate (#), write
1 i 1 dr
. ,r 7Y = o X=.
r (rwt) U dz
Then we have
o e ldp 12
< ) ruw' . i dz (2 r + Cl)
A = ].L .C.'.D_ (l. r + Sl.)
" ndz ‘2 r
o, = 1dp 1 2 3
w(r) = T aE (3 r~+ ¢ Inr+ 02) (##)

The boundary conditions arc
w(a) = 0 , w(0) bounéed

where a 1s the radius of the pipe, These conditions imiy

_ I
C1=0 5 Cp=-3p3ze
Hence . (#%) becomes
/ - 1 _dp 2 2 -
) w(r) = - 3= P (2% - r¥) (88-26)






)
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lote that the flow ic induced by the pressure gradient &2,

The velocity distribution is 2 paraboloid of revolution, withn

maximum velocity at r = 0:

1 dp 2
<7 B —— Sram——
Ymax Ty dz a

The solution (8A-26) again suggests a simple experiment for
the determination of the viscosity u. It turns out that this
can be done fcr small pipe diameters and small velocities.
For large diameters the velocity profile is observed to be
nearly uniform. 1In addition, the flow must remain laminar,
i.e. withcut fluctuations of the flow field. It is found

that the flow is laminar as long as the Reynold's number R

is less then a criticel value:
E= =< RC = 2300

.
wiere w = % W is the mean velocity, & is the pipe dia-

meter and v = % is the kinematir viscosnity.

2. Couette Flow Retween Potstins Cylinders

W2 conslder the steady flow «F an incompressible fivid
bevween two concentric cylinders rotating 2t different.
constant angular velocities. Chéasing cylindrical coordinates
r,0,7z as shown in Pz, ¥IIT-3, we assume an axlsymmetric

solution such that

v=(0, v(r}, 0) , p = p(r)
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Then the centinulty equation (8A-12) is satisfied identically,

while the Navier-3tokes equaticns (84-13) give

2 .
y§ = Y_. ( ' = E_ - o
p P 5 () T (84-27)
V1 1l _. v
vt 4+ = Vi o o = o (8.’\"‘28)
r 2
r
Integratinz (84~28), we findg
C
w(~) = 1 _2 £
.(. J 5 Cl r + T ( )
The boundary con”iticns zare
via) =aw, , v(b)=©1H W (84-29)
From (¥), we find
> e )
1 b6, - a R a"b2(w2 w, ) '
= C = L - 5 C T - - 3 = (8!\.-—30)
PR D 2 2
8] - 5 o - a
and v(r) becomes
.2 2 L )
b'w9 - 2. aeb‘(w9_~ w- ) 1
. 2 1 < . L (PA_ N
V(l") = n 2 r - e > ) - o= \ 8“";)1r
b . oa pe o aF

Note that as in plene
the viscosity p. Th»

and (8A~31):

Touette flow v(r) is indspendent of

o]
D

resaure ls deiermined from (§4-27)






TN

c, 2
1 2
p' =& (53 Cyr+ =
2
( 1 22, PCy ,
p(r) = § PCy"r" + pCiCy 1n r - —;‘g + C3 (82-32)
'r

where C., C, are given by (8A-30). The stresses follow from

(8A-14):

[2>]
]
Q

The stress vectors acting on

by ti = tij nj. At r = ?, n
implying
tr(b).r trr(b> = .
b = = .
to(b) = £, (b)

|
o
»
ot
]
ct
fl
o
—~~
o
k-3
i
w
w
~

0z rz

the fluld at r = a,b are given
t

= (1,0,0) and t, =

21.1C2

The distribution of stress vezstors is shown in Pig. L,

Now consider the torque acting on the fluiéd by the outer

cylinder. The moment of the
a3 1s the element of lateral
r = b, Hence, the tcraue is

2

= ) ) \
M2 te(b) b/2rb)In

where h is the length of the

(8A-35) we find

force t, ¢3 is tpb dS, where

surfoce area c¢a the cvlindzr

cuter crriinder., Hence, from
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) 2uCy 2 2% (u, - wy) :
: Mz = - ——— (2Tl'b )h = LlTT}Jh 5 ] (8A-3’J)
b“ b® - a”
Similarly, at r = a, n = (~1,0,0) ang
tr(a) = - trr(a) = p(a) . t, = 0

(8A-37)

2uC,

te(a) = - tre(a) = —;?—

a2b2(w2 - w,)
M, = - Lmuh > —— = - I, (8A-38)
- b — a

Note for Wy > Wy, M1 is negative and M2 positive. Since M
is toerque ererted on the fluid by the inner cylinder, an
/“) egual and oppcsite torque must be applied to the imner
cylinder in order to maintain its constant angular velocity
g and to resist the dragging effect of the fluid. A measure
of viscosity 4 in this solution is the torque which must be

applied to the cylinders. We consider two special casec.

(a) 1Inner cylinder &t rest

Tnen wq = 0 and

A A
dguo ab’ Y -
W(r) = ——= 1 -~ —5—5- 3
p€-a” b -a“ A
(3A-23)
2.2
My = Lnuh 532—§-w2
b -2

IT in addition a » 0, than v(r) = ru,, M, = 0, i.e., the

Qv) fluld rotates with the outer cylindsr es a rigld hody.
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(b) Rotating Cylinder in an Infinite Fluid
First, consider the case when the outer cylinder is at

rest. Then w, = 0 and (8A-30) implies

2 2,2 2

1 a wl ab wl a wl (%)
C = - C = = =
2 V1 b?_aﬁ ’ 2 b2-a2 L 23
- b2

The solution for v(r), p(r), tre(r) and M, follows from
(8A-31,32,34,38). Now letting b + » in (%), we have

_ _ .2

and
a“w
- 1
v(ir) = =
L
p(r) = -~ + C
] 2r2 3 -
(8A 40)
2ua2wl
treg = - —z
. = 2
L‘Il Y u h a wl

This case corresponds to the velocity distribution produced

by a line vortex in a non-viscous fluid.

L, Suddenly Accelerated Plane Wall

We consider an incompressible fluld in a non-steady flow
generated by an infinite flat plate which is suddenly accelerated
at t=0. (See Fig. VIII-5). We assume zero body forces and a
velocity field of the form

Y = (u(Y:t)o 0, 0)
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Then the continuity equation (8A-8) 1is identically satisfied,
and the Navier-Stokes equations (84-9) yield

w8 _de . 2 (8A~41)

dp
dx

flow 1s induced solely by the plate motion. Then (8A-21)

We assume that the pressure gradient vanishes, so that the

yields

2

9 u Ju
V —= = (84-.42)
ay2 ot

where v = % is the kinematic viscosity. The bounda}y and

initial conditions are

u(y,0)

]
o
©
<
v
o

u(0,t) =

i
(e
v
d
v
o

(84 .43)
u(y,t) bounded for y =+« , t > 0

Equation (8A~42) is identical to the classical one-dimensional
heat conduction equation, and conditions (8A-43) correspond
to suddenly heated wall at y=0. We solve this problem by

a simllarity transformation:

u=a(n) s n=_L.
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Then
(ﬂ) | %E-= - %X-(vt)-y2 u' o, Si;
and (8A-42) becomes
u'' + 2n u' =0

with boundary conditions
uw(0) = U , u(e) =0

We non-dimensionalize by defining

fol]
—~

v(in) = n)

U
Then from (8A-44 U45)
/ .
\\‘> V?l+2n v! = 0

v(0) =1 , wv(®) =0

e

LI |

vt

(8a-Lu4)

(8A--U45)

(8A-46)

(8A-4T)

The solution to this boundary value problem is the complimentary

error functior erfc, which 1s a tabulated function.

u(y,t) = U erfc n = U erfec

2/t
where by definition
n
~ r -
erfcn=1~erfn=1 ~ 2 J e 2
/r 0

and

, erfec O
) |

"
-

, erf¢c o = 0

2

ag

Hence .

(8A--48)
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Note that the initial condition (8A-’43)1 is satisfied since
fory >0, t + 0 implies n + », The velocity distribution
given by (8A-48) is shown in Fig? VIII-6. Note that the
velocity profiles at different times are “similar , i.e.,
reducible to the same curve by changing the n scale. Con-

sider a fixed time t. At ¥ = 2t then

and the curve at time t applies to time 2t if n is replaced
by v2 n on the graph.

We note that u approaches zero rapidly as n increases.
This implies the viscosity of the fluild is predominart ‘'near”
the weil., Since erfc 2.0 & .01, then u & ,01U, and if for
n = 2.0 the value of y is &, then 8§/2/At = 2.0 or 6 = ULAT.

The quantity & defines the boundary layer thickness and is

of order VVEt.

5. Flow Jdear an Oscillating Flat Plate
Let the plate located at y=0 in the previous case undergc
the harmonic motion U cos wt. Assuming a solution of the

same form:
v = (u(y,t), 0, 0)
we obtain (82-42) with the boundary conditions

u(0,t) = U cos wt , u(y.,t) bounded for y+= (BA-U49)
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A initial condition is not imposed, since we seek a steady-
ctate solution. The solution of the boundarv value problem
(8a 42) and (8A-L49) is known from the theory of heat con-

duction and is

u(y,t) = U e kY cos(wt - ky) (*)
Substitution of this form into (8A-42), we find
I = ﬁzg
\eVv

Jdoting that k has dimensions of inverse length, we let
&

ky = J5% Yy = n and obtain from (%#)

uln.t) = U e " cos(wt - n) (84-50)

For each fixasd value of t this velocity profile has the form
of a damped hafmonic oscillation in the variable n. The

amplitude of the oscilllation is U exp(- vy Jﬁg}. The fluid
W

laver at a distance y from the wall has a phase lagn = v 153
v

relative to the wall. Two fluld layers a distance

o
27 jii apart oscillate in phase. Thus X can be

W

A= 21/k

regarded as a2 wave length, called the denth of penetration
g gea, cr

of the wave, and 1s of orcer J%w A non-dimensicnal plot of
veloclty proflles for various values of timé are cshown in
figure frem Boundary Layer Theory ., H. Schlichting,

MeGraw-Hill, 1960, pg. 76.
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76 V. Exact solutions of the Navicr-Stokes equations

The solution which satisfics the previous boundary conditions as well as tho present initial con.
ditions is known from the study of heat conduction [22). Assuming that at y = Ou= Uyeinnt
80 that at ¢ = 0 wo have u = 0 at y = 0 wc obtain

% (y, 0) = Uge™ "sin (nl—n) — 2 ’”U" [ = +"', 2 o~ ¥t toos tydE  (6.20V)

where ¢ is the variable of integration. The solution is scen to consist of & steady-state term,
similar to eqn. (5.26s), and a transient which dics out as ¢ — oo,
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10 of an oscillating wall

A solution can also bo given for the case of & plate oscillating paraliel to another plate
at a distance A from it. Supposing that the plate at y = 0 is at rest and that at y = A per-
forms a harmonic motion given by U, sin nf we obtain _

0

. . E(—Ntnht .k - '
T; =AunGi+d —2ny Z-l = k(. n‘)_n, 57 sin e »EaM (5.26c)
with , .
4w |oosh2 (n/2 v)‘l' y — cos 2 (n/2 v)l"y ] s (5.269)
cosh 2 (n/2+)"* h — cos 2 (n/2) /*h
and .
sinh (n/2 v)' Y1 +1)
= . 5.26e)
¢ =47 [ sinh (n/2 v) %) —i) (6.28¢ ‘

"l';ho solution consists again of a steady.state term and & transient which dies out with increasing
me.
Bodics of various shapes, performing torsional oscillations under the influence of an elastic
restoring couple exerted by & suspension wire, have been often used to measure the wiscosity
of fluids, The viscosity of the fluid is deduced from the period, T' = 2 n/n, and from the loga:
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3. Stokesian Fluids (Isothermal Flows, Incompressible Materials)
(”) We consider Stokesian or non~-iewtonian fluids, i.e.,

materials having stress constitutive equations which are

nonlinear in the stretching tensor d. For incompressible,

non-heet conducting materials we have from (60-31) and (72-12)

yj = = PSyy tptyy = - plyq + @ydsy + 0pdypd, (8B-1)

where a,,0, are functions of IIdﬁ I1I

d:

oy = 0y (I;,I,) , K =1,2

(8B-2)
I, =TIy , I,=III,
and subject to the inequality (7C~14)1:
- t.. diy = o, tr(d%) + o, tr(ad) > 0 (2B-3)
() prig 1y T % VTS 2 TS 2

dcte that 04,0, are assumed independent of 9. as in Secticn A.
ihe governing equations are the continulty equation (BA-1) .
the linear momentum equations (8A-2) and the constitutive
equations {83 1), We reconsider some of the flows of
Section A with the aim of assessing the effect of the non-
linear constitutive equations. Some references for the
developments of this ssztion are
J. Serrin, "Mathematical Principles of Classical Fluid
liechanies , Handbuch der Physik, Vol. 8/1, 1959,
p. 241-243,
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C. Truesdell, The MechanicalAFoundations of Elastlcity
(“) | and Fluid Dynamics ', J. Rational Mech. Anal.,
Vol. 1, 1952, p. 123-130.
A. C. Eringen, “Nonlinear Theory of Continuous Media -,

ileGraw-Eill, 1962, p. 224-232.

1. Plane Couette Flow
Consider a Stokesian fluid between two paraill=2l plates
&n In Fig., VIII-1. We seek the conditions under which the

gimzle Couette flow solution for Wewtonian fluids (8a-22):
ve=(ky, 0, 0) , k=~ | (8B4

is also a solution for Stokesian fluids. We assume vanishing

pody forces and that p = constant, so that the flow is in-

/~> duced solely by the plate motion. Recall that the continuity
\\
i equation (6A-1) is satisfied by (ER2-4)., Now from (8B-l),
we hzove
1
0 5 k 0 ‘
= = i ]_:. ;—c\
dij Vi1,5) | 2 k 0 0 \ (8B-5)
L0 0 0
which implies
I.=0 IT, = - 2% = 1 ITI. = 0 = I, (5B-5)
ac~ it B R R 3 T

Note that these invarisnts are constant so that the functions

9,,%5 are constants in this flow. Also, from (8B-5)






s 0 0"
) Um I é o ¥ 0)) = (83-7)
\ 0 0 0
ancé hance
tr(d®) = i (85-8)
tr(a’) = 13 - 31, 11, % 3111, = 0

d

Then (0B-3) reduces to

5 o4 k2 >0 or a; > 0
+.€., ay muzt be a non-negative function of I2 = - % i and
IQ = 0
o (- £ k2, 0) > 0 (88-9)
e 171 -
)

Since IIZd.= C. no rcstriction is Placed on the form of the
coeflicient dz in this flow by the entropy production in-
eruality. Also, (83-9) is a necessary condition for (8r-2)

Since 1t fcllows from a particular flow. Using (84-5,7) ir

(83-1), the strecses are given by
K & J

;0 1 0y /i1 0 0 X
’5=~p§+%alk'100‘= +Eo2*72I01 02(83,1(
Kc) 0 0 \ o 0 ¢
g /
where
0 'n-.
oy = o (- 25, 00, 4y = ay(- 1 K2, 0) (83-13)
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Note that the stress components are constants. This along
with the fact that & = 0 = f implies that the linear momentum
equations (8A-2) or (8a-11) are identically satisfied. Hence,
it remains to consider the boundary conditions. The stress

vector acting on the fluld at the upper plate has components

]
y=h |, tx = txy = 5oy k ,
(8B-12)
t. =t = - p + 1 o k2 t, =20
y vy o =2 R/

Now the particular functional form of 09,05 depends on the
fluid. But in any case, to produce simple Couette flow in a
Stokesian fluid, the stress vector components which must be
applied to the upper plate are an in-plane component whose
magnitude generally depends non-linearly on the shear rate
and in additlon a normal component which exceeds the pressure

by amount

2 2

1 1

This extra stress is tensile wherever 0y is a positive
function, and it 1is Inferred for thls case that in the
absence of the extra stress the plates would tend to move

together. Thils is called the Poynting effect and is a

consequence of the nonlinearity of the Stokeslan constitutive
equations. (Recall (8A-29) for Newtonian fluids.) 1In the
simplest case when a0, are constants independent of k,

then tx is linear in shear rate, while the extra normal

stress is quadratic. Since Stokesian flulds involve two
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‘viscosity~ functions, 0q and Oy, rather than two constants
(A) as for Newtonlan fluids, a single experiment does not suffice
to determine thése parameters. instead, each simple solution
obtained, with corresponding experiment, will determine

information on 0y and Oy for that particular flow.

2. Poiseullle Flow in a Pipe
We consider an incompressible Stokesian fluid in steady
flow through a circular pipe. Body forces are assumed to

vanish, and the axisymmetric velocity distribution

v= (0, 0, wir)) (8B-~13)

~

is again assumed. Then recall that the continuity equation

(8A-12) is satisfied. From (8A-16) the stretching tensor

‘J/ f'\\
N

i1s given by
1.
dyy = | o 0 o0 | (8B~14)
\ % wt 0 0 )
and hence
= = 2 = = = -
Ig=0 ,II3= - gw =1, , III4 = 0 = I, (8B-15)
Also, from (8B-14)
1,2 .
’ 0
u— N 0 \\\
dypdy= L0 0 0 | =g (88-16)
\ ~
\ o o Lw?

c
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which implies

tr(d2) = %—w'z
(8B--17)
tr(ad) = I3 - 31,77, + 3711, = o
~ d “d—"d -TTa
Hence, from (83-3) we have
% oy w12 >0 or al(- % W‘2, 0) >0 (8R-18)

As in Couette flow, no restriection is placed on the function

a5 in this flow. Using (8B-14,16) in (8B-1), the stresses are

;0 0 1, 1 0 0,
\ { i

o 2 i ‘ Y
$ = -pl+ 5 alw' g 0 0 0 + o oow! \ 0 C 0 (¢B .19)

\

\ 1 0 0 J !O 0 1

\
whe re
1 2 1 2

HJote that the stress components are not constants. Using
(8B-19) and the fact that v = 0 = ', the linear momentum

equations (8£-15) yieild o . 0 which implies p = p(r,z) and

8
3 1 2 2
37 (-p + T %5 wi®) + % (% oy w'®) =0
(88-21)
) 1 an 1,1 _
a7 Zuv) -tz (Gaw)=0

We rewrite these equations in the form
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s B

- -3-;% + (%_ r o, wi2) = 0 | (8B-22)
) 1,1 N : '
- 5% + 2 (§ r oo, wi) =0 : (8B--23)

We assume the flow to be driven by constant axial pressure

gradient %g. Then (83-23) implies

sp _ 1 ,1 v - o
- (7 r o, w') = C, = constant ()

where Cl < 0 for p decreasing with increasing z. Now (%)

glves
pi(r,z) = C, z + f(r) (8B-24)
and
2-C2
a; W' = Gy v+ — (83--25)

where f(r) is an arbitrary function. Since w(r) and w'(r)
are requirec to be bounded functions throughout the flow,
C, must vanish., Equation (8B-25) is a nonlinear ordinary

differential equation for w(r)

2

a1(~ % w't, Owi = Cyr (8B-26)
subject to the bouidary condition

w(a) = 0 (8n-27)
Note that w(r) is independent of the function a2(~ % w‘2« 0).

Now the function f(r) is determined by (8B -22): hence,
substitute (8B-24) in (8B..22):






)
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2

1,1 L
—f'+i_-;(u—ra2w')—0

cr
2)

R R N R

c,r
But (8B-26) implies w'e = (—l—) . Hence,

R ER.

Integrating, we find

Q
N

f(r) = % o ~> r dr + C3
1

S .
e

Hence, from (8B~24) we have

' o
c.? ( 2 poar + c, (83-28)

1 2
J o

= 0 1 2 1
p(r,z) = C,z + n-mzw‘ + ¢

Note that the pressure is not constent over a cross szction,
in contrast with the classical sclution, due to the presence

of the non -linear viscosity funetion o Substitution of

5
(8B~-28) in (83-19) gives the normal stresses

R R
bpp = by = - G2 - 7 O J 2 dr - C,
J %
(8B--29) .
i} 12 1.2 (%
tee-_clz-q-qz,«! —n-Cl g;—grdl‘-—CB
J 71
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Recall that in the classical solution the normal stresses
are all equal to -p. Here, the gxtra terms involving o give
rise to excess normal stresses which are pressures when Qs is
a positive function. This nonlinear effect is called the

Poynting effect for Poiseuille flow. We consider two

special cases.

(a) Constant Constitutive Functions 505
Assume that the functions a; and a, in the general

theory reduce to constants, i.e., let
ay = 2u ) 0, = B

where p 1s assumed positive to satisfy (8B-18). Then the
boundary value problem (8B-26), (8B-27) is linear and yields

. C
wir) = - E% (a2—r2) | (8B-30)

which is the classical solution (Newtonian fluids). PFron

(8B-28,29,30) we find that

( ) 38012r2
p{r,z) = C,2 + ———— + C.,

s 1 32u2 3

BC12r2 ) 8
top = 8y, = - Cq2 = —=— - Cq (8B--31)
32y
3RC 2r2
tee--clz-—-—-}-é———cj
32y
2

Hence, the normal stresses vary as r over the cross.

section.
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() TIinear Constitutive Functicn A
Suppose that the function a1 in the general theory i:

linear in II 11T

ar d

0y(I14,IT14) = DyIT, + D IIT, + Dy

For this fiow III; = 0, II; = - & w2, and we write (%) as
a-(II., 0) = 2(y w'? 4 Ys)
2 g 1 2

where Y;.Y, are assumed to be positive constants to satisfy

A

(8B-18). Then the differential equation (B8B-26) becomes

3
Y W

which can be regarded as a cubic equation in wi(r) with »real
coefrlficients. 1Since this cubic equation has =ither one or
three real sclutiens for w'(r), tren for a given pressure
gradient Cly there will gern=rally exist cne or three veloceity
profiles.

e consider casz (1) further. Juppose 2t some time

t = t the fluld exits the pire ot z=) into atmosphare

o

 force cxerten on the fluild by Pg

. . 2 . .
at the exit cross section is - w2 DO. Since *he flow is

pressure Do - Then th
steady, this force is balanced vy f t”, i,
“lz=0

JA tZ, 4+ = j tﬁzi (27)dr = - na2p0 (1)

z=0




0



From (8B8--31) we have
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[f AL 2

|ty 2rrdr = - (- s—a + 7e C3)

I z=0 64y
Hence, (r) allows calculation of C3*

BClza2

Cqa = Dy = ————5— (83-32)

3 0 6Qu2
On the fluid surface r=a there acts a redial stress vector
compon=nt tr = trr(a,z). Hence, actineg on the pipe we have

a force of unit area P = - tr”(agz). Herce , by (82.31),

(83 -.32)
CCldaz
Pom-tpp(aiz) = 0z + =St ng
Sl
and . 5 5
rJ-’l a
r - = .z + oS
I - pg 1 .y

In particular, at the exit secticn z-0 zt the insternt the

fivid reaches this section, we an-e

» | -
S D =
Olp=n  324°
Recall that we havs ro restriction on the sirm of B. But
if 8 > 0, there is a positive radial prezavre difference at

the exit section. Tt is inferred from thils fact that as
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the fluicd exits into atmospheric pressure, it will tend to
swell, This swelling phencmencn was observed experimentally

oy A, C, HMerrington, Flow of Viéco~e1asti¢ listerials in

'CapillarieS“, Hature, 152, 663, 1943, Note that this effect

cannot be accounted for theoreticelly by Newtonian fluid

theory sinze B8=0.
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the fluid exits into atmospheric pressure. it will tend to

swell. Thls swelling phenomena was observed experimentally

by A. C. Merrington, Flow of Visco-elastic Materials in
Caplllaries . Jature, 152, 663, 1943. Jote that this
effect cannot be accounted for theoretically by Newtonian

fluld theory since B=0.

3. Couette Flow Between Rotating Cylinders
Consider an incompressible Stokesian fluid in steady

flow between concentric rotating cylinders. e assume the

body forces vanish and v = (0. v(r), 0) as before. Recall
that the continulty equation is then satisfied. From
(BA-16) we have
1 vyt
"/ O -2- I"(F) 0 B
;1 Vy ©
d= ! 5r(y 0 0 (88--33)
\\ 0 0 0]
We let
£(r) = KE) (8B 31)
Then
/ 1 1 2.2
[/ 0 srfi 0 \ gt 0 0
a= fLrer 0o o, &= 3 1r%r% 0 | (8B-35)
0 o o / 0 0 0
and
_1.2..2 - -
I,=0 . II = - 3rf , III =0
(8B-36)
tr(a®) = 3 rr? | «r@@d =0
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From (83--3)
3 roa (- 3 rPr?, 0)e? s o (88 37)
and hence, o, must be a non-negative function of IId, but
again no restriction on o5. From (8B-1) and (0B-35)
0 1 0\ 1 0 0
6= -pl+2 rapf {1 0 0 | +3rlar?f 0 1 0| (88-38)
.0 0 0, \,o 0 0,
where
. -
ay = oy (- 7 r2002, o) | 0y = ay(~ § r°£'2, 0) (8B-39)

Consider now the linear momentum equations (8A-15). Since

the body forces . vanish, we find %% = 0 implying p = p(r,0) and

(s3]

57 (- p + % r2a2f'2) =-~p %— = - prf

e ) B2 G o

Assuming p = p(r) as in the classical case, these equations

reduce to
- p' o+ (% rzaef’z)! = - prf.‘2 (8B-U41)
(3 ra.f') + a,f' = 0 (8B-142)
2 1 1

Noting that the latter equation can be writ<en in the form

[rz(% ralf‘)J: =0

eV L
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we have

PO -t
e
R

[

-]
fl

S L
]
[o]

[
~~

=
~
Hy
o

N’

A
= 2 (8B-43)
r2

where A is a constant. This equation is a nonlinear ordinary
(
differential equation for the function f(r) = X%El. The

boundary conditions are

v(a) af(a) = awy, v(b) = bf(b) = buw,
or

f(a)

wy 5 £(b) = w, (83-44)

Jote that as in Poiseuille pipe flow, the coefficient
function oy has no effect on the v2locity profile. By
considering polynomial approximations to the function oy
it can be shown that there are =an odd number of velocity
profiles possible for a given valus of A in (OR-43). Now

(83 41) determines the pressure:

2 -0

rfa,r7% + Jort? ar + B (8B 45)
-~

=

p(r) =

where 3 1s a constant. Using this result in (83 33), the

stresses becone

Yo = teg = - [ore? ar -3 (85-46)
~ :'12 2 '
t,, = % r‘azL -_J!prf dr - B (8B--47)
(€B--43)
= L o P a A B
tre = 5 r(.lf . (8B I"8)
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Comparing these values with the classical case (84--33),

(84 34), we find that t_, still varies as Ly, but that the
A r

normal stresses are no longer all equal to ~p. There is

an excess axlal normal stress t,,

%a,r:2 (83 49)

_ 1
ton = Fr

which depends on s (Poynting effect). The torque which

must be appllied to the outer cylinder follows as before

', = 21b%h t.o(b) = 27h A = const, (83 50)

Note that 12 depends on both q and the boundary conditions
(83-44) throuch the constant A.
Yle consider the special case when oq and o, are constant

functions 1.e.

0. = 2u , 0~ = B

L c:

where u > 0 to satisfy (8B-37). 7Then from (83-43) we find

the linear differential coquation

A
3 r(2u)r = A
r
wihich implies f' = ~§§ and
ur
f(r) = .. __ég - C = !%El (8B 51)
2ur

where upon applying the boundary conditions (8B-44), we find
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b

_ 1 |
= C , C=350C (8B--52)

where C,,C, are defined by‘(8A~3d) for the classical case.
Hence, (8B-51) and (8B-52) yield the same velocity profile
as the classical solution (8A-31). To ascertain the
qualitative effect of the excess normal axial stress, we
suppose that the cylinders are of finite length with axis
vertical. At the upper énd there is a free surface of
fluld exposed to atmospheric pressure po. We compute the
balance of forces at the free surface as if it were a
plane, and then infer from this balance the actual shape

of the surface. The balance of forces is

! tgz 21r dr = - poﬂ(bz—az) ' (8B-53)

This allows determination of the constant B in (8B-47).

We find
B=py - X (*)
where
1 (b Y S
K = “(szgzy ja [-E,,+ .]prf (r) dr] 27r dr (8B-54)

and where t,, is given by (8B-49). Now using (8B-54), (*)

z
and (83 -47), we have

- gl ,
top = Epp - ﬁ_f dr - p, - K (8B-55)



0
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We now define the function

N(r) = tzz + Py = féz - J/;rfz dr - K (8B-56)

l1.e., the amount by which the end boundary condition tzz = -Pg
is not satisfied. Note N(r) follows the same sign convention
as t,,, 1.e., N(r) < 0 implies a pressure acting on the end

plane. From the solution (8B~51), we have

2
- B A
tzz = - ;E (2—u->
and N(r) becomes
- B A .2 2
N(r) = - ~r (5‘-1-) ~ |prf® dr - K (8B-57)
r .
Then
N'(p) = 48 (A )2 ~ prfl | (8B-58)
o eH

We note that when B > 0, then féz <0, K> 0, N(r) < 0.
For the sake of argument let the inner cylinder be at rest,

wy = 0. For the classical case B=0 and

Ni(r) = -« prfé < 0 (8B-59)

This implies N(r) is a decreasing function over the interval

& < r<b. From (8A-30) c; > 0, C, < 0 and from (8B-52)

>

I >0, C > 0. Hence. the function

rf? = r(.- —A—Z + C)°
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and N'(r) are mihimum in absolute value at r=a and maximum
in absolute value at r=b. Hence, N(r) has the form‘shown

in Fig. VIII--7. Since N(r) is maximum at r=a and minimum

at r=b, it is inferred that the slope of the free surface

would be upwards from the inner to the outer cylinder. as

shown in Fig. VIII-7.

Continuing with w, = 0, we suppose that B is positive

1
and large enough such that N'(r) > 0. Then N(r) is increasing
in absolute value from r=a to r=b, and the slope of the free
surface reverses as shown in Fig. VIII-8. Hence, the fluid
tends to c¢limb the inner cylinder. This is called the

lWeissenberg effect and was experimentally observed in

certain oils, and solutions of rubber, starch, cellulose
acetate, etc. .See K. Weissenberg, ‘A Continuum Theory of

Rheological Behavior , Nature, 159, 1947, p. 310-311.
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c. Heat-Conducting Newtonian Fluids

We conslder incompressible fluids for which DE 1s linear
in d and q linear in eyi. Then equations (B8A-1)-(8a-4) apply,
but we modify (8A-5) to include heat conduction. Then from
(7¢--19), (7C-21)

qi = - K(e) 6 i > K(e) >0 (80—1)

and from (7C-25)

oc (88 = 2u(6) tr(d?) + (xe + or (8c--2)

1) 4

We consider the special case when H, K, and c, = ¢ are

constants, independent of the temperature. Then (8c-1) and

(8C-2) reduce to

qi = - K8 3 K > 0 (80*3)

pco 2u tr(gz) + KO 44 + opr (8c-4)

The governing equations are then the Navier-Stokes equations
(84-6), which serve to determine the velocity field, and
(8C- L) from which the temperature field can then be deter-

mined. 1In rectangular cartesian coordinates (8C-4) has the

form
96 a6 96 90
Dc(ﬁ—+u§§+vﬁ+wﬁ)
2 2 2
= K(a g,+ 3 g + 8 g) + pr
D¢ oy 92

) ) , (8¢c-5)
ralh + @D+ @

2
cv oV ow du ow
+ ul(q + ff) + (—E + —a-y) + (B_Z_ + '3"5{‘) ]
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In cylindrical coordinates (8C- 4) has the forn

96 26 v 98 00y _
pelgt *usr*rag v W *
2 2 2
9”6 l 96 1l 976 9”6
K(— + = 2= + = ~— + —-2) + pr
8r2 ror rg 9¢ °Zz
ou l3v_ ,u ow 2
+ 2“[(3},) + (F§$+ 5) + (57) ]
2 2
) v 1 3u au _ v
tullr sz @+ 555 Y G2t 5P
2
ov 1 9w
* Gt rag !}

We consider two exact solutions

1. Simple Couette Flow

(8C-5a)

The solution of the Javier-Stokes equations is (8A-22)

= = U
u(y) = ky , k=g

4

We rwust now solve (8C-5) for the temperature field.

assume no heat sources, and since the flow is steady. we

assume the same for the temperature field:
8 = 6(y)
From (8C 5) we have

2 ) uk2

Ke n = _ uu'

(8c 6)

(8c 7)
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Hence,

uk2 2

o(y) = - c— Y+t Cy +c, (8c 8)

We consider the two plates to be held at constant temperatures

0(0) = 90 , 68(h) =9 >

1 0 8

Applying these boundary conditions to (8C--8) we find

0,~6 2.
= - 170 uk™h
02 eo , Cl = 5 + T (8C-10)
and
2 6,-8 2
- uk 2 170 uk™h
O3) = - He ¥" (=4 5y ¢+ 6
wihich we put into the non-dimensional form
6--6 2
P ru Y y
= L 4 S J. (1 - &)
6,-6;, ~h éK(El-eET h h

For the special case when there is no flow, i.e., U=0., then

8(y) varies linearly:

)
6(y) =

-8
h

10

Also, 1f the upper and lower plates are held at the same
temperature, i.e., el = 8y, then 6(y) is parabolic:

2

5% ) + 6

o g8

0

with the maximum temperature generated by the flow at y = g.

8g (8C 9)

(8c 11)

(8C 12)

y + 8, (8Cc 13)

(8C -14)
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Returning to tae general solution and defining non-

dimensional Prandtl-Eckert number

2
PL = MU | (8C 15)
ETel—ea5

we have from (8C 12)

(6C--16)

;

|

"
o ]
+
|
&
St
~~
[

1
<
N’

A graph of this result is shown in Fig. VIII 9. We calculate

the heat flux vector q; = - k6 ; based on (8C-16):
2>
A = 0= q,
= f = '5_ .. '_<_. 5 ;.-.l
qQ, = - k8 ~ g (81-85) - £ PE(8; 84)(5 ~ {)

A non-dimensional plot of qy for various values of PE 1is
shown in Flg. VIII.10. Evaluating the heat flux q-n acting

across the fluld surface at y=h, we have n = (0,1,0) and

- _ K KPE
qn = qy(h) = . h—-(e1 eo) + §H"(91”eo)
= K ) ‘ '
= - §H-(e1 eo)(z-Pu) (8¢-17)

When U=0, then PE=0 and q-n < 0, implying cooling of the
upper plate, i.e., heat flows from the upper to the lower
plate. This remalns true for U # 0 as long as U is suffi

ciently small, i.e., for

PE < PE® = 2 (8C 18)
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Fig. 14.6. Temperaturo distribuvc: s,
Couotwo flow for various temciatares of
both walls with hoat genciated by e
tion (7, =+ temperaturo of tho lower wall,
T, = towperaturo of tho upper  wail

Fig. VIII-9

+ 4
=3 1 ? .
v /
—_—
/L P
— Py - L.
- Lo (Ll “j

FPig. VIII-10
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For PE = PL¥ there 1s no heat flux at the upper plate, while
for PE > PLE# heating of the upper plate occurs. For this
case the temperature within the flow exceeds that of the

upper plate due to the high shear rate k = so that heat

U
R
energy must be removed at the upper plate in order that it
be malntained at constant temperature.

Consider the case when no heat transfer is allowed at
the lower wall, i.e., q (0) = - k87(0) = 0. Then the boundary

conditions (8C-9) are replaced by

87(0) =0 , 6(h) = 6, (8C 19)
Then the general solution (8C-8) reduces to
2 2
. = BU_ A )
where the maximum temperature occurs at the lower wall:
UU2 8
Onax = €(0) = 8; + 5 (8c-21)

2. Plane Poiseuille Flow
The solution of the davier-Stokes equations is glven

by (8A-21)

2

uy) = - EfLa-D (8C--22)

Q.

v=0=w






)

N
N
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If we shift the origin of coordinates to the midpoint of the
channel, then (8C-22) becomes

N

2
= y = h
u(y) = um(l ~ %), uy a:m

o

(8c--23)

=)

Assuming no heat sources and a steady temperature field of

the form 6 = 6(y), then we find from (8C-5)
ke" =. . uu' = . ——.u— (80 2”)

which has the general solution

HU n

y© o+ Cyy + Cy (8c- 25)

=[S

o(y) =

a

W
lay

K

Assuming equal temperatures at the boundaries

o+ ) = 0, (8C 26)

then we find
oy () (8c-27)

C;, =0 , Cy=0,+ - }

1l 2 3£;ﬂ
and

uui y y
8(y) 90 = EBE-[l . (H7§) ] (8c--28)

It is clear that the temperature variation is generated

solely by the flow. The maximum temperature occurs where

u is maximum, 1.e., at y = %.
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2
Hu
6 = 0, + m
max 0 T8¢
The velocity profile and temperafure field are shown in

Flg. VIII-1l.

(8c-29)
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8 Thermal boundary layers in forced flow 311
7-:75 Fig. 14.6. Velocity and emy.cra-
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IX. Some Exact Solutions for Solids

Clasticlity Governing Zquations

We concider a homogeneous. isotropic elastic solid held

in equilibrium by surface tractions. We assume the body is

undeformed in the reference configuration and subjected to

isothermal, adiabatic deformations without body forces.

1. Linear Theory

Cguilibrium iquations:

t.s =

ij.Jd

J

Boundary Conditions:

where u, and ﬁi are prescribed functions of X.

1

n
ot

1 d
o

ct
i
ct

Constitutive Iguations

Substitution of (4) into (1) yields Javier's eguilibrium

equations.

t.. = A u §

1d

Yo

R v
k,k %13 T M N

+ (A+p) u

J:

J.o

on.

on

1

S

<
[

0

u

t

(9A

(9a

(34

1)

2)

-3)

b



)
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(ﬁ) winich must Le integrated for ui(x) sucject to displacement
boundary conditions (2) or traction conditions (from (3)

and (4))

A U ) Dy + 2u Uy gy By = ty on 3, (94 6)

2. Jdonlinear Theory

Lguations (1) (3) are unchanged, but we must add

Conservation of :lass:

':\J = OJ (9A 7)

Constitutive Equations (compressible materials):

3 : . A
B1j T Y 1 Py Yo 345 ¥ Yy oy (91 8)
- 4
\w> nersa
bij = X . xj‘d . Cij = XK;i Xi,j (94 9)

and the ratpouse coefficlents vy 1+ Yy Yp are functions of

the 1anvariants I,  II_. IIT,
D - D 3]

3 -~ 1 T T - - 1 " .D
Yo = Vo(fpoily, IIL)) . o 1,01 (JA 10)

For an undeformed refereace configuration b = ¢ = I and
t must vanisn. <Thea from (b) and (10) we rust require the
response coefficients to satisfy

(Yo Yy *Yq) = 0 (94 11)
1 0 1 b=T :
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Since J = det x; . and det XK i = %3 we have from (9)
T = — 2 _ .2
ITII, = det b = (get Xy K) =J
III = det ¢ = (det X. ,)° = 1_
~ a i J2
and hence
IIT, = 3. (94-12)
. 1 !
c
with tne result that (7) can bs expressed in the form
p VITI = Py (94 13)
For an incompressible material J = 1. IIIb = 1 and
(8). (10) are replaced vy
Byg = - 2 655 * Yy O35 + Y1 Cyj (9A- 14)
Yo = Yo (I II) e = -1.1 (94-15)

wnere p(x) is

- D

the pressure. In additiqn, (11) is replaced by

vy v yg) = 0 (94 16)

b=1I

The linear case (4) can be recovered from (8) by using

the approximate relationships.

2t Auy

N:

u(l + ui‘i)






N
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B. Simple Shear

We consider the deformation

= Xl + KX2 s X5 F X2 s X5 = X3 . K»x0 (9B 1}

which corresponds to the two-dimensional shearing of a

rectangular block (see Fig. IX-1).

1. Linear Theory

From (1) the displacements are

Uy = Xy - Xy = K&y = Xx, , u, = ug = 0 (9B.--2)

[0 X 0y ;0 K 0%
w .= o o o} u -1l x 0 o} (983
lij |_' . I, ? (i)vj) ?\

"o 0 0/ \o o0 o0

In terms of the norm (2G 2) we find ||u = K, which

1,901
implies that the linear theory is valid for ¥ << 1. We

note from (3) that

hence, (2G.16) ilmplies J £ 1, and the deformation in the
linear approximation is isochoric. How from (9A-4), (3)

and (4), we have

J 0 uyX O
tij = 2u u(i,j) = { X 0 0 ! (2B8-5)
0 oo/’
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IX-1

Fig.

IX-2

Fig.

w,
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Since the stress components are constant, the equilibrium
equations (3A 1) are identically satisfied. e now investi
gate the boundary conditions in corder to determine the
tractions which must be applied to the surfaces of the

hicck. The outer normals to the various planes ars

OA: ny, = 0 = n3 ;o Ny = - 1
ch: n, = 0 = n3 s n2 = 1
(93-6)
o)
A n, = cos o = (1+K2)'l/“ 5
. o
n, = -sina = - K(1+K2) 1/2 » Ny = 0
L2\ 1,2 - 2+-1/2
Oc: n, = - (1+4X%) 1/2 . N, = R(1+X%) 1/ , Ng = 0
Hence, by (94 3)
= = VN 1 (9B .

ti tij nj til ny o+t Ly, Ny ti? nig (9B -7)
and by (0) w2 have on
OF W ti = . t12 = - (u£.0.0)
ch: by = ‘ci2 = (uX,0,0)
Ab: n, =1 |, n, =0 since K << 1

ti = ril = (0,uk,0)
Oc: nq = -1 , n, =0 since X << 1

[
t, = = t,. = - (0,uX,0)



0
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On the faces X3 = x3

const., n; = (0,0,+1) and by (7)

ty =+ ty5=0

Hence, th2 btlock is held in equilibrium by the application
of shearing stresses alone. Note that theses tractions are

directly prcportional to X. (See Fig. IX-2.)

2. WNonlirear Theory (Ref.: A. C, Eringen, Nonlinsar
Theory of Continuous 'edia," MeGraw-Hil11, 1962,
pes. 177-179 and C. Truesdell, Elements of
Continuum ecnanics. Springer Verlag, 1965,
£as 110-115)
For *hls case we impose the same deformation (1) without
any magnitude vestriction on ¥ and then check to see if the
governing equations can bs satisfied for all elastic

materials by the applicaticn of suvisable applied tractions.

From (1)
/1 X o0\
X, oy = \010\‘ (93 3)
0o o0 1/

and J=1. Heneco, ths def

e

rmation is iscchoric, and (94 T7)

is satisfied by p = Po- Mow we dnvert (1)
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and implies

f1 K 0}
o \_
Y s i 0 1 0 |

Yo o0 1/

2y (9A-9) and (8), (9) we have

/1 £ 0 \ jioo oy
| \
iy T Fip Tpx 740 1 0 iK1 0=
] :| {
‘000 1/'0o o 1/
/1 0 0y /1 x 0}
. oL i
cyy T ¥, By = {1 0110 10
' .
Lo o 1/'0 o0 1
and
i, 7
{(145%)%45% (1453 R+K
RS = | (1+%2)K4K 14%°
& \
| 0 0
lience,
tr(p®) = (14x%)% + ¥% + 2 + ¥ =
and
o]
I =trb=3+K
II, = 7 [T, - tr(%0] = F [(3+X
2
= % (6 + 2K°) = 3 + K° = I,
ITI, = 1 + K- - %> =1

(9B-9)
7
l14%2 1 03
| |
{ K 1 0 | (98-10)
V9 0 1 }
f1 X 0 \
- ;‘ . vr2
= i_K 14} 0  (9B-11
[}
L0 o 1‘/
0
C
1
3+ 4x2 4 gt
) . 4
252 _3 - 4x? . x"]
(9B-12)



),



0

Jow from (9A--10)

v, = yd(3+K2,3+K2,1) ya(Kz . o= -1,0,1

Using (10), (11), (13) in (9A--8) we have

[14k° k 0 fr & o0
t=y (&1 K 1 0+ kT 4. ok 14x2 0
- -1 |‘ | YO < Yl = ke b
.0 0 1/ \ o 0 1
fo 1 o\
= (Y_3tvgty I + &y _y-v;) 1 0 0 ’
k 0 0 0/
/ \
i1 0 0 /0 0 0
vx2e o lo 0 o 4 x| 0 1 0
n Y-l “ n 'Yl )
.0 0 0 0 0 0/

Since the stress components are again constants, the
equilibrium equations (94 1) are satisfied. Also. in the
undeformed reference configuration o = ¢ = I, K = 0 and

-~

(94 11) along with (13) requires that

Y_1(9) + v,(0) + v,(0) = 0
waere

v, (0) = v,(3.3,1)

(9B 13)

(SB-14)

(93 15)






P
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From (14) we find

2] bl ‘
typ = T(KT) + Kay_l(Kz)

2 20 2
tys = T(X") + . Yl(K )
(9B-16)
= (w2
t33 = 7(X")
t., = Ku(£°) te, =0 =t
12 - ' 13 23
where we have defined
L2y 0 ” o
T(:7) = ‘._1+Y0+Yl
(92-17)
AR -1 1l

- ,
- 2y
The rasponse function u(X") is called the generaliced shear
mezvlus. We note tnat the normal stresses are non vanishing

J

even functions of .I. Al=o (1%) implies

-3
(]
S—””

on 7 K t:|'> (93

vialca o5 called a universal relation between stress compo
nents, since it‘holds independently of the material response
functions §a¥ i.e., (1¢) holds for g_?:_.nonlihearT compressible
Isotronic elastic materials in simnle shear. ile note in
addition taat tae only aon-vanishing shear stress component

t is an o0dd functlon of X  1leading to the expected result
- <

12

thav t12 acts 1In the same direction as the shearing.
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‘1€} e have on

4 ) We now consider the bocundary conditions.

OA or cb: tl = + ti2
R ~ _2 — ] 2A "2
By = FRU(ED) , £y = F [1(k) + Ky_ (&°)]
£y = 0
2

- — :r2 ‘1/2 - _~;2 "'1/2
Ab., 6y = til(1+A ) -t X(1+35)
6y = ) 2ro®) + k3 () - xPhixd))

ty = () Vo) -~ xex®) - 137, 6?))
£, =0
3.
O)
Oc: reverse the siwrns in (20).
ki

By (A7), vy = v_; - u and (20) bacomss

..2 - 2 i © w -
vy = (1+47) 1/ (t + LZY_I - $2U>
£y = () 2rceed)n xe -3y

ile now resolve tne applied tractions cn face Ab into

compenents 1. T along the normal and tang=ntial directions.

Then

3

From (€) ang

(93-19)

(93 20)
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q N
\ /

=t n=tn +tom,
(6)5 |
= ") ¢ xBy ) - 2% - k2P
+ %21 4 £My L]
-1
or
N o= (1+8%) "I (2+x®) 1 (83) - KO (2+K2)n(X2)
(9B-22)
+ K2(1+K2)Y_1(K2)]
Let e be a unlt vector along direction Ab.
e; = sina = -n, = 1((1+K2).l/2
(=) = - - v 2 ’1/2
€, = co5 & = n, = (1+X%)
o
b ‘Then
T =1 e
= (1+x%) Mkt + ®y_y - K+ K1)y
V7 'f’3A
- nT - Y‘]]
o
T o= (145°) Lrp (x°) (9B-23)

Hence, from (21) - (23) we see that the nonlinear theory
predicts that normal tractions must be apnlied to the faces.
in adéition to tihe sheering tractions. (See Fig. IX 3.)
Also, the magnituies of 1 and T are dependent upon the
material. On the faces X3 = x3 = const., we have

) n = (0,0,+1) and

-~



),
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)

0)

Fig. IX-3
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ti = i ti3 = (0,0;t°33)
or
16)
t. =+ T(%°) (98--24)

-~

so0 that a normal traction which 1s an even function of X nust
be applied to these faces. The presence of this traction is

called the Kelvin effect. It was inferred by Xelvin that in

the absence c¢f t3 the block will either expand or contract in

~
v’ c

th x3 direc%ion in an amount proportional to X°. JNote that

0]

in the lincar thecry approximation this effect is higher
orderr. 1Une anpearance of the normal tractions (19)2 and
(22) 1s called the Poynting effect. In a series of eyperi
ments during the period 1905 1613 Poynting demonstrated the
effect for tne case of torsion of a circular cylinder.
WUithout these normal tractions it is inferred that the

faces Oc, Ab and OA, cb would eitner draw together or spréad
aparv by an amount pronortional to 32.

"Reducing to the case X << 1. we have by (92A.18), (4). (13)

14

Y =, Yo < ~»3u , Yy =W , u= const.

Then (17) becone

>
>

HH
=

u=Y_1 'Yl






) and (22), (23) give

12

a4 E (x°) L0 2%%) 4 2%%) = ¢

-J
|14

2)<l

1Y

T & (14X he Tl

Hencs, in the limit as X + 0, J vanishes and T is linear

in XK. On face OA from (19)

o . - 2 L2\
tl = . Xuoo, t2 = .. 25"y = 0{K") £ 0
and from (24) on X3 = x3 = const.
t3 = 0

Thus, tne results of the linear theory are recovered.
/’) For incompressible materials from (9A-14.15), eqns.

(13) and (14) are replaced by

. , R .
ya(3+K23 34+52) = ya(Ka) o= -1,1
/0 1 0 \
vVO 0 3/’ . )
(953-25
?2"" \
+ 0 k%, O
0 0 0
where
%) = ¥ 65 - ¥ @) (53-26)

C






)
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Generally, tne arbltrary preésure p can vafy with x, but for

this nroblem t=2e eauilibriuvm equations (3A--1) require usine (25)
- i— =0 or P = p, = const. (9R-2

wnere p is arbitrzry. From (25) and (27) the stress

components are

— - 2.
t2£=—pr+y_.1+y,l_+hyl

(93--28)
b33 ~Pg Yt
to, = MU, t.,=t,, =0

‘. o4
(V3
X%}
L

Since 26 is arbitrary, the applied tractions necessary to
produce the deformation are not uniguely determined in
contrast to the results for compressitle ﬂaterials. In
particular, it is pcssible for any pair of parzllel faces

Tc be freze of ncormal tractions. For examsle. 1f we choose

Py =¥ 5+, (93-23)

1
then from (28)

¥ . W2 2 .
t = A 'Y__l\:.\ ) 3 t22 = .{ Yl(. ) 5 t33 = O (93"‘3\.)

’

i.e., the faces X3 = x3 = const. are traction free. Alsc,

we can saow from (30) that on






(%3

ct
)

S

14 2)-1/2,-

It

K(1+X2)F k3%
L )L 1{ Y“-.J

-
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C. Torsion of a Clircular Cylinder

An example 6f a non-inomogeneous larpge deformation is
tae uniform twist of a circular cylinder. If (R.6.2) and
(r. e.z) are the cvlindrical coordinztes of & materiel point
before and after deformation, then the uniform twist is

specified by the mapping
r=2X , 6=0+K , z=3 (9c-1)

where X is the twist. See Fig. IX-4. From (1) material

points originally in tne plane Z = const. remain in that plane
after deformation. Cross sections 7 = const. rotate relative

to one another in an amount proportional to their axial distance
from tne end plane z = 0. ilaterial points originally on
cylindrical surfaces R = const. remain on those surfaces after

deformation.

1. Linear Theory
For this case the deformatioa is assumed small such that

{2 < X% << 1 where & is the length of the cylinder, i.e.
K << % ' (9c-2)

Because of this assumption the linear theory can be treated

using rectangular cartesian coordinates XK and Xy Let
X, = r cosé X, = r §ine . x3 = 2
(9¢c 3)
Xl = R cosu X2 = K 3in® . X3 = Z
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Fig. IX-4
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Then from tae deformation functions (1),

Xy r cosb® = R cos(0+1Z)

Ke

1 c0s6G - Rio sinS

-

in

Similarly

[ H]

x2 X2 + KX1X3

Then (4) and (5) imply

Xl = xl + LX2X3 = Xl + aX2x3
L L (1) )
x2 = x2 - nX1A3 = x2 - .xlxj
and
(‘) X, 8% - xx3(xa - \klx3)
= Xl - ;ixexj
x, ® Xd + Kx3(71 + KKZXB)
= X2 + ﬁx1x3

Hence, the displacements for the linsar theory are

u, = - hx2x3 > U,y = lex3 ) u3 = 0

-

inen the displacement gradients and strain tensor are

; 0 »ﬁxs -Kx2\ . i 0
P ! s = =% |

3 ‘

v 0 J J ! -Xx
\ / \. 2

(3¢ )

(9C-5)

(9¢-6)
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Jote that tnils deformation 1s ncn-homoseneous. From (7)

I;=u 4 =0 (9c-8)

tlJ = 2u ejy = i 0 0 Kx, } (3¢ -9)
\ e ; /
—.KXE X 1 0 /

wnica are identically satisfied oy the stress field (9).
Consider th2 bouncary co.ditions. On the lateral surface

r=a, we nave (ses Pig. IX-5)

X
ny, = cos6 = == n, =sint = =, n, =0 (3¢ -10)

PRI PRI I TP (3¢ 11)

i.e._  the lateral surface is free from surface tractions.

Considzr tne end section X3 = £ where n, = (0,0,1). Then

1

= = -ri1l { ) an
t, ti3 Aux,, Suxy, ¢) (93¢ 12)
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n Z
¢
X2
Fig. IX-5
: :t;._;! ‘
_ !
KX,
ol N
[]
Xl

Fig. IX-6
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(See Pig. IX 6)
(”) whica implies a distribution of shearing tractions on x3 = 2.y
., ~ -

On 3, = 0, ny o= (0,0 -1) and the siens in (12) reverse. The

-

shearing tractions (12) are statically equivslent to a

torque T &atnut the x3 axis. To see this. we compute the
ol

resultant force F and moment !l due to (12). 3y definition

we have
F= |t gh M= {»xt dA
Then
‘. !"2'" /a
P, o= j‘-:l aA = j j (- £ur sind) rdrde
0 0
/Ea‘. 12':..
I B~ .
= Rur (cose). dr = 0 (a)
O

N
N
L8

(@

0
e 27
= J Kpr©(sing) dr = 0 (b)
0 0
¥, = .4 CA =
3 tj CA 0

dernice . the resultant force on X3 = 4 (and also X3 = 0)

vanlsires. Joa4 for the nmoment
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924

0

Y2
X 0
TS - ( t . f ) -’X
nz = X3 1 : k1u3 al
| /
(a)
= 0 =
j t, dA =0
T o= :-13 = )(xltz xztl) aA
= } (iuxq xpx2‘) da
27 a
= £y t }' r°  rdrde = ;lxpa“
Y0 0

Thus, the bendiing nioments Hl’“Z vanisin and a torque T
proportional to X must be applied at the ends of the eylinder
Ean. (13) is the basis for experimental determination of the
shear modulus p through measurcment cf the twist X and the

applied torque T. W'z note that the torsional rigidity of

the cylinder is defined as tha ratio

L}
n =
T
w
—~
D
(@}

(9C 13)

J=
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2. Jdonlinear Theory (Incompressible Materials)

We reconsider the deformation (1) when the twist X can
take on finite values. Then the-rectangular cartesian
coordinates are not suitable. and we use the two curvilinear

E i

coordinate systems X" = (R.0,Z) and x* = (r,86.2z). The metric

tensor components for these systems are (see Appendix 3):

‘1 0 oYy S10 01
G.o=|0o 2 of, M="109 182 ¢ (9C-15)
0 0 \\o 0
\ 1 1
and
1000 \ 1 0 o)
' 2 . 1 2
By = [0 ° 0 e =0 1% o (9C-16)
o 0 1 o o0 1

In curvilinear coordinates the constitutive equations (9A-14)

becone
tiJ = . p gij + Y_3 biJ + Yq cij (9c-17)

where b,c are given by

pld o KM J } = g x5 M (9C~18)

and

Yo = Ya(lb,IIb) > o= =1,1 (9C--19)






/A) | From the deformation (1)
1 O

o K 0 1

\o o0

U
¢

N

Ohn

we find
0.
- xK

J oo T
1)

1

]

0 04}

o 1/

0 1 -X }
0

(9c-20)

dote that J=1_ so that the deformation is isochoric, and the

conservation of mass (9A-7) is satisfied by p

and (29)

[¢)
i

ij —

Similarly, from

o

= Py Prom (15)

-4r® 3} (90-21)

o 0 ;1 0 0, 1 0 o0,
1 0300 7% 0'{o0 1 x|
A A |
X1 \o o 1/ \0 o 1/
U 0 . ' 0 0 {
i (l) i
e = o e
i
-KR® K%n%41 ) 0 -Kr° K2r2+l}
and (20)
0O 0' /1 O 0, 1 0 0
|; 2 }/ i
1 X II 0 1/R° 0 ,i 0 1 0
0 1/ ko 0 1/\ 0 X 1
0 0 1 0 0
(1) ) A \
Lex? 5\ 2] 0 Lax®
2 | 2
R | r
K 1 / .\ 0 K 1 }

(9c-22)
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It 1s interesting to note that b.,c depend on r while the

deformation gradients are constant.

mixed components of b are

From (16) and (22) the

/l 0 o 1 0 O\
i_ ik o 1,2 | 2 ‘
by = biig, 0 ;2+n £ilo r° o
\o x 1/ \o o 1
1 0 0}
; . \
=i 0 14+K°r° X (9C-23)
\ 2
\ 0 Kr 1
; N cZy 13
Jdow we compute tr(g ) = bJ bi' From (23)
;1 0 0 0 04
i x| 2 2 ' | 2 !
by by = | 0 1#x°r® ¥ ilo 4K°r° x
e [ -
0 Kr° 1/ \0  xrf 1
Pl 0 0
={ 0 (1+K°r°)%+k%r®  (14K%r2)K+K |
)
\\o Kr? (1+%%r°) 452t wPplyy  /
Hence,
tr(b2) = 1+(1+x8r2) 24252241 = 34472p2eytipt (5C-24)
and from (23)
_ _ i L2.2
I, =trb=n5l =34+
II, = 2 [12 - tr(02)] = & [(3+k%r2)2 - (3+ux2rlex’ry)
b - 3ty b 5
= 3 (6+28°r%) = 34x%r? = 1






0)

o
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We define
§U(K2r2) z ;a(3+K2r2, 3+K2r2) . oa = -1,1
‘We also need bij for (17):
1 0 0y ;1 0 0y
byy - gikb? ] ( z 2.2 )

o r 0 0 1+X°r X
} o xr? 1/

(9¢c-26)

Hence, by (16),(21),(25),(28) and (17), the stress components

become
F1 00 0y ;1 0 0
tig = - Pg 0 r° 0 ; + ;_1(K2r2); 0 r2(1+K2r2) Kr? |
‘\o o 1/ 0 Kr? 1
10 0 ‘
+ ;l(hzrz)i 0 r® ~ir? }
\ 0 -xr? K2p24y |

= (—p+Y_l+Y1)gij + (v _1-v7)

0 0 0
+] o v k%t g ;

\ 0 0 YlK r/

(9Cc--27)






N
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Note here that all terms above. except p, depend on r alone.

Now we have the stress components

radial: tll =T
. e a2 ~o2.
tangential. ty, = rT 4 Y_K°r
“ - (5¢-28)
axial: t = T + v K2r2 -
I 33 1
= 2 c 0 <
shear: t23 = uir ) t12 = Q0 = t13
where we nave defined tne functions
9 9 N2 2 N, 2.2 ~,,2.2
TE-pty vy, , p(Xrt) = Y_1(K°r€) - 14 () (9c-29)
L=t Trr’ Tre’ etc. be physical components of stress such that
T =t Too = 3, ¢ T =t
rr 11 6e r2 22 ¢ “z=z 33
(9c-30)
T o= Lt T =t T, = L
rd r 12 > rz 13 0z r °23
From (28) we nave
.-Llrr=T
Tee = 1T + y"lerg
N . (9c 31)
T =T 4+ v Kzrg
ZZ 1 .
Tez = pfr Tre = TrZ = 0

In terms of these components the equilibrium equations in
cylindrical coordinates are (these follow fiom (8£-15) with

top = T... etc.)






0

o)
{
+
i

rr rd rz 1, =
96 * 5z tF ( rr =~ ‘96) =0
oT oT aT
ro 1 06 0z 2 _
v " r 36 T 5z trTph =0 (9¢ 32)
iTrz + 1 aTez + izgg 1 T =0
or r 36 2z r “rz
t ap = = ép.
From (32)2;3 we find 35 = 0 N5 and hence
p = p(»r) (9C-33)
Then from (32)l
¢ l - 21n2 =
T + = (- Y---lK r°) 0
Integrating, we find
t(K2r2) = - p + Y ot Yy = K2 J(Y_l(K2r2)rdr + C (9C 34)

Jote that this equation determines P. but not uniquely. The

laterial surface can be rendered free of tractions by choosing

c=r? ;”I(Kzre)rdr (9C -35)
r=a
Then (34) implies
. a
2
1(%r®) = - 52 | Y.l(K“Ea)Edg (9C--36)
dy
and
T(x°a%) = [-p + y_,(x%a%) + v,(8%%)] =0 (9c.37)

r=a



)
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Tne traction boundary conditions in terms of tensor compo-

nents are
t, = t,, nJ (9c- 38)
i iJ _

On the laterial surface n = = (1,0,0) and

0Q
L}
m
A
=3

ti(a) til(a)

or from (2§)
t,(a) = t..(a) = T(Kzaz) t,(a) = 0 = t_(a)
1 11 - 2 2 3

But by (37) tl(a) = 0 and the laterial surface is traction

free by tne choice (35). On the end of the cylinder z = L.

we have n = g, = gz, nt = (C,0.1) and (38) implies

by () = £, . (r)
and from (28)

t, =0 , t, = t23(r) = u(K2r2)Kr

(9¢ 39)

t3(r) = t33(r) = t(<Zrd) + ;l(K2r2)K2r2

In addition to tne shear traction t23, an odd function of r,

a& normal traction t33(r2) must be applied to the ends of ths

cylinder in order to maintain the deformation (1). This is

‘the Poynting effect for uniform twist of a circular cylinder.

The tractions (39) are equivalent to a torque T about
the z axis and an axial force d. 8Since the physical compo--

nents corresponding to (39) are



)



\

m - - > 2.2
Tgg T WEr ;L =1 4 Y{Kr : (9C--40)
on z =L, T and J are
-a
T = 27K J u(Kzrz)r3dr (9C 41)
0

a ‘,.a
d= - 2ng? f [j v_ (K%E%)gae
r

0

+ ;1(K2r2)r2]rdr (9¢-42)
We can show that for X infinitesimal, T is approximately
proportional to X, while .J is broportional to K2. Hence N
is a 2nd order effect for K << 1. It is inferred from the
Presence of J for large twists that if ¥ 1s not applied on
z = 0,8, the eylinder will elongate or contract, denending
on the character of the response functions ;~lﬁ;l’

This problem is an example of a finite non-~homnogeneous
deformation which 1is an exact solution for all isotropic,
homogeneous, incompressible elastic materials by the applica-
tion of suitable surface tractions alone. Such solutions
are called universal or Eggtgé;;gglg: since they exist
independent of the parcticular response functions for the

material.
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At present ﬁhe following universal solutions are known:
(Reference: C. Truesdell, "The Elements of Continuum Mechanies’,
Springer-Verlag, 1966.)

Family 1 - Bending, stretching and shearing of a rectangular
block

————

r=v28K , €=BY . gz

3>,N
tw

-BCY , AB#O0

Family 2 - Stralghtening, stretching and shearing of a sector
of a circular-cylindrical tube

Q

- 2.2 _ 0
X AB°R® = 15 +

g , AB ¥ O

Ny
N
"

e

x>

FPamily 3 - Inflation or eversion, bending, torsion, extension
and shear of a sector of a circular.-cylindrical tube

r= (Ar%+3)Y2 g 2 oo 4 D2 z = E0 + FZ

3

~A(CF-DE) =1

Family 4 - Inflation or eversion of a sector of a spherical

sinell
r=(+ r3 4 A)1(3 . B=+0 , ¢=0
Family 5
r=AR , 6=3831logL+cCO0 gz = —§~ . A20 ¥ 0
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D. Thermoelasticity Governing Equations

We consicder noniogene ous isotropic, incompressible

tnermoelastic solids in mechanidal equilibrium and subjected

to steady state temperature fields. e assume that the body

force and heat source functions vanish., The governing

equations are.

1. Linear Taeory

squilibrium Zquations.

soundary Conditions:
tij nj = ti
wiere ti is specifi=g.

Constitutive Equations :

g1 0= - (PF3T6, . + 2u v, .
tlj (‘ .D.L)élJ ZUu U(iJ)
qi = .. KT,i
where
T =06 - SJ . B = (3x+2u)a

and o 1s the coefficient of thermal expansion,

Heat Conduction Iquation.

3oundary Condition:
U Ny = on
where n is specified.

(9D 1)

(9D-2)

(9D 3)

(9D -4)

(90-5)

(9D--6)
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2. Jdonlinear Theory

equations (1), (2), (5) and (6) are unchanged. In

addition we have

Constitutive Equations:

Byg = - Poyy + ;-lbij + ;lciJ (9D 7)

q; = (w_lbiJ byt I,ulcij)ejJ (9D -8)
waere

;G = ;a(e,ID,IIb) . o= .11 (9D 2)

v, = wa(Ib;IIb?Il,Izzls) . a=-1,0,1 (9D 10)

I, = e.ie:i LIy = t‘,ije:ie:j : Iy = cije’ie:J (9D-11)

dote that tihe heat flux vector is assumed independent of
temperature 6. Tais is a speclal case of the general form
of Q- e make this assumption because it can be siown that
if q3 depends exnlicitly on 6. then the only universal or
controllable solutions for the nonlinear theory are tiaose
for whica €6 = const. See iI. J. Petroski and T. E. Carlson

Archive Rational !lechanics and Analysis, Vol. 31. 1968.
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Ref:. . J,.
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1152-1154

o7
SV,

\

v

consicder tne deformatien

-
o

1 1
£, = — X_ s Y, = =X . Xo = X )
y.l. /E 4 4 < /C ‘\2 3 }'3 ’
m
“1
0 = AT UL 4 Uy o
o T f3 o 7T

a1¢ temperature flield

c > 1 (9=

nquations (1) represent a homogenecus deformation of a

Petroski and D, E. Carlson. J. Appl. Mech.,

O

- b

- 3 -2 P I ] P L ]
clroular eylinder of rasius /¢ 2 eag lengthn o into a circular

cyiindzsr of radius a and length &£. The

are maintained at constant terperatures T, and T

-0 ]

+T

’

bt

resgectivaly . while the lateral surface

Linecar Tscory

Prorn (1) we nave

up = xp-X. = (<L DX, = (1 - Ye)x
< - L/C—_ K -
= Ve
Uy = da~X. = (c-1)d, = (1 - l)x
3 3 : 3 c’™3
ience,
f2 -ve o o\
! \
o = -V ¢ Y=oy,
ulJJ 9] 1 1 ; u(l)J)
0 0 i-= /

is insulated (q,.I =

ends of thz cylinder

0).

=1
W

1)

2)
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We now state the conditions of th

luy

Then

and (

Letting 6

| << 1. Let

¢ =1lte ., 0 <g <<}

/e = (1+e)1/2 2
l~/c=—-2—a
L-cet=1 o (1)l

3) becomes

'_r" ~E 0 c:

u =1/ < 0
(1.3) ° 2 |

0 0 2z

configuration, tnen (2) impliies

Hence
L 1 1

s for a small teuperatvre ri

<< 1. Using (5),(8) in (gp

€ small deformation theory.:

5 be the constant temperature of the reference

(9= -4)
1
l ~-(1le€e)=c¢
y
|
j (92 5)
/
% 2T 06)
52 we must require that
-3). the stress components.
/—E O 0\
gt [ 0 - 0 (92 7)
\' 0 0 2¢
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Also, from (6) and (3D-U4) the heat flux vector is

a; = - «(0, 0, ;%) = const. (9E--8)

Since 94y is a const. vector, the heat conduction eqn. (9D-5)
is satisfied by the temperature field. From (7) and (9D-1)

the equilibrium equations yield

rm

e mem 1. N
{p + p(io + T x3 GO)J,i 0
which imply p 1=0=p 5 and
: >
T
plxg) = = BTy + 7= x5 - 83) + by (92 9)

tij = - poﬁij tp i 0 - 0 (9E-10)

‘-\o 0 2e/

We now consider the boundary conditions on the ends of the

cylinder Xy = 0,8. From (3D-2) and (9D 6) we have on Xy = 2:
= 4 I o= ..
ty 43 5 B = a3 | (9E -10a)
and by (8) and (10)
x3 = 4: ti = EO, OJ hd (po 2113)] (9.‘4 ll)
T,
h= -~k ;= (9E-12)
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flote that (12) implies a non vanishing heat flux across
x3 = & such that heat is entering the cylinder. This must
occur to maintain the constant témperature T

+T. on this

0 "1
surface., Since Py is an arbitrary constant, we can specify

the end surfaces to be free of tractions. This implies
Py = 2ue (9= 13)

Then (10) reduces to

’(' -£ 0 0
ty, = 3u 1 0 e 0 (9= 14)
bt ¥ l
\‘O 0 o0/
Xy X5
On the lateral surface of the cylinder n, = (5~J P 0) anad
X X.
= 1 2
B3 = t51 57 * by 5
X X
= ("' 3“8 al'_) = 3“5 é'g"s 0)

These tractions are eguivalent to a uniformly distributed

radial traction:

(1)

t, = t;n ~ 3ue = -~ 3ple-l) < O . (95-15)

0 i7i

|

which acts to compress %he cylinder uniformly alonpg its

lerigth. Also, from (3)

U]
[

which lmplies the lateral surfac 8 insuliated.
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2. donlinear Theory

From (1) we have

¥, = o 2 o). x .=t 0o vio | tmamn
. ] e 11 \
\ 1
0 0 c X 0 0 a

It follows that the deformation is isochoric. From (17)

1o 0\
' \s
= - - 1 1 \ (0= 18\
Pig "X xfs = " o ° | (92 18)
0 0 02/
¢c 0 O L
) _ o i o
( > clJ -'XK,i X, = ‘ 0O e¢ 0 ) (9& :19)
- \\o 0 12
Z /
Then we havs
Ib = % + 02 = %—(03+2)
(92 20)
11, = E(2¢3+1)
c
It follows fiem (2) trat
- o 4 5.
ei te (O, L') ‘Q, ) (’9_d 21)

W,
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Hence, from (9D 11) and (18),(19)

2
= = ._l
I; =6 40 3= (3
ch 2
= = ] = =\ C)
I2 bijegielJ 0330:3333 ( 7 (9E 22)
il
7, ?
I3 % ¢330 40 5 = 339 30 3= (45
Hence, by (5D §)
- T 1,3 1 ,..3
-— . - - . - €L
a YGE‘O 2 %32 ¢ (e”+2), 02(20 +1)]
= Ya(x3)' (93-23)

Using (18),(19)_and (23) in {(9D-7), we fingd

c 1 o S ‘ _
! 6 O \-) \\‘ ‘.- C O O ;‘
. - A i . l ~ ‘ \ oo l'
by j -.pﬁij Y., a 0 5 0 + vy E 0 ¢ 0 g (9z 21Lb)
\ 0 0 ¢ \o 0 1 }
q c I
Jow from (20) .(22) and (9D 13) we have
.2 z 2
o= o [k iy, Lediny, (Y (35i>2 1) 3 (9E 25)
:lu Yol Ll c2 £ J s 2 J 91 5 R'C o

which are constants for this probizm. Using (18).(19) and (21).

Tlc Ti
2] = 0 e = .
bygy = (0.0, F) o egyf 5= (0,0, %)
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(~3 so that by (9D -8)

2 ,
Q= 0=a; , a3= (v 0% +y,+ 3 v T  (9E 26)
-’ v c
Hence, q, 1s a constant vector end the heat cconduction eqn.
{(YD-5) is identically satisfied. =3ans. (23),(24) together

with the equilibrium equs. (9D-1) imply

X 3}:2
~ 2 1 N
(-p+y_je” + = vy) 2 =0
=1 c2 1/ 3
bence,
, ~ . 2 -! A - '
- pixL) + v o (xy)e® + = yo(x,) = p (9% 27)
3 173 2 173 0
. where P is an arvitrary constant. Then (24) reduces to the
< / following stress components
. = \ = 1 3.0 1 3 °
t11(x3) = tpp(%3) = by + 5 (X-eVhy 5 + Zp(e’-1)y,
¢ (9E-28)
B33 " Pg . typ = fp3 = tyg=0
Considering thc boundary conditions, we have on X3 = £ from
(10a). (26) and (20)
= Q
t, (0, 0, pa)
(92 29)
2 T
h = (w_lc + wo + iz ¢1; i

Hence, in contrast to the linear theory, the ends are freed

from tractions by chocsing

Py = 0 \
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