


# US Army Corps of Engineers Hydrologic Engineering Center



# HEC-FFA Flood Frequency Analysis

**User's Manual** 

May 1992

| F                                                                                                                                                                            | REPORT DOC                                                                                                                                                    | CUMENTATIC                                                                                                                                                           | ON PAGE                                                                                                                                                        |                                                             |                                                                                                                              | Form Approved OMB No. 0704-0188                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| existing data sources, ga<br>burden estimate or any o                                                                                                                        | athering and maintaining<br>other aspect of this colle<br>ations Directorate (070<br>r failing to comply with                                                 | g the data needed, and<br>ection of information, ind<br>4-0188). Respondents<br>a collection of information                                                          | completing and review<br>cluding suggestions fo<br>should be aware that<br>on if it does not display                                                           | wing<br>or rec<br>notw                                      | the collection of<br>ducing this burde<br>vithstanding any                                                                   | ing the time for reviewing instructions, searching<br>information. Send comments regarding this<br>en, to the Department of Defense, Executive<br>other provision of law, no person shall be<br>MB control number.                                                                                                                                                     |
| 1. REPORT DATE (DD-)<br>May 1992                                                                                                                                             | MM-YYYY)                                                                                                                                                      | 2. REPORT TYPE<br>Computer Program                                                                                                                                   | m Documentation                                                                                                                                                | n                                                           | 3. DATES CC                                                                                                                  | OVERED (From - To)                                                                                                                                                                                                                                                                                                                                                     |
| 4. TITLE AND SUBTITI<br>HEC-FFA                                                                                                                                              | E                                                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                | 5a.                                                         | CONTRACT N                                                                                                                   | UMBER                                                                                                                                                                                                                                                                                                                                                                  |
| Flood Frequency A                                                                                                                                                            | nalysis                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                | 5b.                                                         | GRANT NUMB                                                                                                                   | ER                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                              |                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                | 5c.                                                         | PROGRAM EL                                                                                                                   | EMENT NUMBER                                                                                                                                                                                                                                                                                                                                                           |
| 6. AUTHOR(S)<br>CEIWR-HEC                                                                                                                                                    |                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                | 5d.                                                         | PROJECT NUM                                                                                                                  | MBER                                                                                                                                                                                                                                                                                                                                                                   |
| CEIWR-HEC                                                                                                                                                                    |                                                                                                                                                               |                                                                                                                                                                      | -                                                                                                                                                              | 5e.                                                         | TASK NUMBEI                                                                                                                  | R                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                              |                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                | 5F.                                                         | WORK UNIT N                                                                                                                  | UMBER                                                                                                                                                                                                                                                                                                                                                                  |
| 7. PERFORMING ORG<br>US Army Corps of<br>Institute for Water<br>Hydrologic Engine<br>609 Second Street<br>Davis, CA 95616-                                                   | Engineers<br>Resources<br>ering Center (HE                                                                                                                    |                                                                                                                                                                      | I                                                                                                                                                              |                                                             | 8. PERFORM<br>CPD-13                                                                                                         | IING ORGANIZATION REPORT NUMBER                                                                                                                                                                                                                                                                                                                                        |
| 9. SPONSORING/MON                                                                                                                                                            |                                                                                                                                                               | ME(S) AND ADDRES                                                                                                                                                     | S(ES)                                                                                                                                                          |                                                             | 10. SPONSO                                                                                                                   | R/MONITOR'S ACRONYM(S)                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                              |                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                             | 11. SPONSO                                                                                                                   | R/MONITOR'S REPORT NUMBER(S)                                                                                                                                                                                                                                                                                                                                           |
| 12. DISTRIBUTION / A<br>Approved for publ                                                                                                                                    |                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                             | I                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
| 13. SUPPLEMENTARY                                                                                                                                                            | NOTES                                                                                                                                                         |                                                                                                                                                                      |                                                                                                                                                                |                                                             |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                        |
| Determining Flood<br>was formally called<br>keeping with other<br>program follows th<br>program style. HE<br>David Ford (Cente<br>original program (I<br>version of the Guid | Flow Frequencie<br>1 HEC-WRC. The<br>HEC computer pre-<br>e same procedure<br>C-WRC was origin<br>for Research in V<br>FREQFLO) and de<br>lelines (Bulletin 1 | s", Bulletin 17B o<br>e name was chang<br>rogram names, and<br>as HEC-WRC, bu<br>inally a modificati<br>Water Resources, '<br>ocumentation may<br>7B) does not conta | f the U.S. Water<br>ed to HEC-FFA,<br>d to go back to so<br>it many of the rou<br>on of the comput<br>The University of<br>be found in App<br>ain computer pro | Res<br>or a<br>ome<br>utin<br>ter p<br>f Te<br>penc<br>gran | sources Cour<br>simply FFA<br>thing closer<br>les were re-w<br>program FRE<br>exas at Austi-<br>lix 13, of Bu<br>m documenta | cordance with "Guidelines for<br>ncil (WRC), March 1982. HEC-FFA<br>with this release to be more in<br>to its original name. The new<br>vritten in a top-down, structured-<br>EQFLO written by Leo R. Beard and<br>n) under contact to the WRC. The<br>lletin 17, March 1976. The latest<br>ation. The input and output formats<br>added, and a few computation errors |
| 15. SUBJECT TERMS                                                                                                                                                            | ntistics Dullating                                                                                                                                            | 17B flow store                                                                                                                                                       | computor process                                                                                                                                               | mī                                                          | EIE A                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                        |
| flood frequency, st                                                                                                                                                          | ausucs, Bulleting                                                                                                                                             | 1/B, 110W, stage,                                                                                                                                                    | computer program                                                                                                                                               | 111, <b>I</b>                                               | ггА                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                        |
| 16. SECURITY CLASS                                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                      | 17. LIMITATION<br>OF                                                                                                                                           |                                                             | 18. NUMBER<br>OF                                                                                                             | 19a. NAME OF RESPONSIBLE PERSON                                                                                                                                                                                                                                                                                                                                        |
| a. REPORT<br>U                                                                                                                                                               | b. ABSTRACT<br>U                                                                                                                                              | c. THIS PAGE<br>U                                                                                                                                                    | ABSTRACT<br>UU                                                                                                                                                 |                                                             | PAGES<br>88                                                                                                                  | 19b. TELEPHONE NUMBER                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                              | <u> </u>                                                                                                                                                      | 1                                                                                                                                                                    |                                                                                                                                                                |                                                             |                                                                                                                              | Standard Form 298 (Rev. 8/98)                                                                                                                                                                                                                                                                                                                                          |

# HEC-FFA Flood Frequency Analysis

**User's Manual** 

May 1992

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil

CPD-13

# Conditions of Use

The following conditions regulate the use of computer programs developed by the Hydrologic Engineering Center (HEC), Corps of Engineers, Department of the Army.

1. The computer programs are furnished by the Government and are accepted and used by the recipient individual or group entity with the express understanding that the United States Government makes no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the information or data contained in the programs, or furnished in connection therewith, and that the United States Government shall be under no liability whatsoever to any individual or group entity by reason of any use made thereof.

2. The programs belong to the United States Government. Therefore, the recipient agrees neither to assert any proprietary rights thereto nor to represent the programs to anyone as other than Government programs.

3. The recipient may impose fees on clients only for ordinary charges for applying and modifying these programs.

4. Should the recipient make any modifications to the program(s), the HEC must be informed as to the nature and extent of those modifications. Recipients who modify HEC computer programs assume all responsibility for problems arising from, or related to, those modifications. User support from the HEC to third part recipients will only be provided after the second party demonstrates that program difficulties were not caused by their modifications.

5. This "Conditions of Use" statement shall be furnished to all third parties that receive copies of HEC programs from the recipient. Third party recipients must be notified that they will not receive routine program updates, correction notices, and other program services from the HEC unless they obtain the program(s) directly from the HEC.

6. All documents and reports conveying information obtained as a result of the use of the program(s) by the recipient, or others, will acknowledge the Hydrologic Engineering Center, Corps of Engineers, Department of the Army, as the origin of the program(s).

# **Table of Contents**

|         |         | P                                                                              | age          |
|---------|---------|--------------------------------------------------------------------------------|--------------|
|         | For     | reword                                                                         | . <b> iv</b> |
| Section | ו       |                                                                                |              |
| 1       | Introdu | uction                                                                         | 1            |
|         | 1.1     | Purpose                                                                        | 1            |
|         | 1.2     | Computational Methods                                                          | 1            |
|         | 1.3     | General Input and Output Information                                           | 2            |
|         | 1.4     | Proposed Future Development                                                    | 4            |
|         | 1.5     | Acknowledgments                                                                | 4            |
| 2       | Examp   | ple Problems                                                                   | 6            |
|         | 2.1     | Test #1: Fitting the Log-Pearson Type III Distribution                         | 7            |
|         | 2.2     | Test #2: Adjusting for High Outliers                                           | 14           |
|         | 2.3     | Test #3: Testing and Adjusting for a Low Outlier                               | 22           |
|         | 2.4     | Test #4: Zero Flood Years                                                      | 28           |
|         | 2.5     | Test #5: Output Suppression, Confidence Limits, and<br>Low Threshold Discharge | 38           |
| -       | 2.6     | Flow Data Format, and Historic Data                                            | 47           |
| Арр     | pendic  | ces                                                                            |              |
|         | Α       | Using FFA                                                                      | 53           |
|         | В       | Input Description                                                              | 55           |
|         | С       | Usage with HEC Data Storage System and DSPLAY                                  | 73           |
|         | D       | FFA Usage with HYDRODATA and CD ROM                                            | 75           |
|         |         |                                                                                |              |

# Foreword

HEC-FFA was formerly called HECWRC. The name was changed to HEC-FFA, or simply FFA, with this release to be more in keeping with other HEC computer program names, and to go back to something closer to its original name. The new program follows the same procedures as HECWRC, but many of the routines were rewritten in a top-down, structured-program style. This was done to ease further improvements and maintenance. Some new capabilities were also added to the program as noted below.

HECWRC was originally a modification of the computer program FREQFLO written by Leo R. Beard and David Ford (Center for Research in Water Resources, the University of Texas at Austin) under contract to the Water Resources Council (WRC). The original program (FREQFLO) and documentation may be found in Appendix 13, Guidelines for Determining Flood Flow Frequencies, WRC, Bulletin 17, March 1976. The latest version of the Guidelines (Bulletin 17B) does not contain computer program documentation. The input and output formats of the original program were restructured, a number of improvements and options were added, and a few computational errors were corrected.

# **Differences Between HECWRC and HEC-FFA**

<u>Change in High-Outlier Specification</u>. Bulletin 17B provides for a historic weighting adjustment for all peaks above a threshold value. HECWRC determined the threshold value as the minimum of the specified high outliers or the historic peak flows. If the minimum specified historic flow determines the threshold, then all systematic flows greater than the threshold, even those that are not designated as outliers, will be adjusted for the historic weighing. FFA differs from HECWRC in that all peaks above a specified threshold (HITHRS) will be adjusted via historic weighing. If a historic peak is less than the specified threshold, then that peak will not be used to estimate the frequency curve except for determining the historic period. If the threshold is not specified, then FFA chooses the threshold as the minimum historic peak as in HECWRC.

<u>Changes in Low-Outlier Specification</u>. The low-outlier test value will be calculated according to Bulletin 17B procedures and will automatically eliminate all peaks below this value, unless otherwise specified. In addition, a low threshold (LOTHRS) base can be specified by the user, and this value will override the base determined by 17B procedures. This differs from HECWRC in that, a lower threshold could be specified, but could not lower the base below the Bulletin 17B low-outlier base. This prevents including a Bulletin 17B computed low outlier in the analysis.

<u>Plotting Positions</u>. In HECWRC, historic records were added to the bottom of the list of systematic records regardless of their chronological order. FFA compares the first historic peak with the first systematic peak, if the historic peak has an earlier date, all the historic peaks are placed before the systematic records in the plotting positions table, otherwise all historic peaks are put at end of the systematic record. This affects only output display; it does <u>not</u> affect the computed frequency curve or the plotting positions.

<u>Conditional Probability Adjustment</u>. In the event of zero-flow years, the preliminary frequency curve now is calculated using preliminary statistics and is printed. The conditional probability adjustment is then made on that curve, then printed out. Thus, the frequency curve always corresponds to the statistics below it. (See test no. 5.) The conditionally adjusted curve is readily apparent because "-1"'s fill the expected probability and confidence limit columns.

<u>Input of Frequency Curve Statistics</u>. FFA now allows the user to read in statistics, either with or without flow data, and compute the frequency curve ordinates.

<u>Printer Output Format</u>. An extended character set is now used to build the output tables. If a printer is used without this capability, set the IEXT variable to "1" (see J2 record).

<u>Output to HEC-DSS</u>. Computed frequency curves, confidence limits, and plotting positions can be output to the HEC Data Storage System (HEC-DSS). DSPLAY and other DSS programs may then be used to manipulate and plot the data.

<u>Output to HP Laser Jet</u>. FFA can write the Hewlet Packard printer codes to a file. This file can be printed on a HP Laser Jet Series II (or HP compatible) printer to produce a report quality frequency curve.

<u>FFA Menu Operation</u>. A Menu program was written for FFA similar to ones provided in other HEC software packages. The FFA Menu program carries out the DOS commands to identify files, call the COED editor, execute the programs FFA, DSPLAY, etc., and display the output results using the FGRAPH utility.

<u>FGRAPH Utility</u>. The FFA package includes a utility program that plots the final frequency curve of an analysis to the screen. The FGRAPH utility is limited to screen output only and can be called directly from the FFA Menu.

<u>Use of CD ROM Data</u>. FFA can read a peak flow file generated by the Earth Info HYDRODATA CD ROM package. To use this capability, refer to CD record description in Appendix B and the example in Appendix D.

# **SECTION 1**

# INTRODUCTION

# 1.1 Purpose

This user's manual describes capabilities of, input to, and output from the Flood Frequency Analysis (FFA) program. The manual includes changes that have been made to the program to reflect techniques described in the revised, "Guidelines for Determining Flood Flow Frequency," Bulletin 17B, Water Resource Council, September 1981, hereafter referred to as the Guidelines.

## **1.2 Computation Methods**

The computation methods are basically as described in "Section V, Determination of Frequency Curve," in the Guidelines. A very brief description of how the computer program treats specific conditions follows, along with references to appropriate page or appendix numbers in the Guidelines:

| • | Graphical Analysis - | The data are arrayed and the plotting positions may be computed by the Weibull, median or Hazen formulae (p. 26).                                                                    |
|---|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | The Distribution -   | The log-Pearson Type III distribution is used in the computation of frequency curve (pp. 9, 10).                                                                                     |
| • | Skew Coefficient -   | The computed skew coefficient is weighted with the input generalized skew coefficient (pp. 10-15).                                                                                   |
| ٠ | Broken Record -      | A broken record is automatically analyzed as a continuous record (p. 15).                                                                                                            |
| • | Incomplete Record -  | Missing data at the low end is indicated by a negative number (-1) and<br>the conditional probability adjustment is used to determine the<br>frequency curve (p. 15 and Appendix 5). |
| ٠ | Zero Flood Years -   | Any flood events of zero are automatically deleted and the conditional probability adjustment is used to determine the frequency curve (p. 15 and Appendix 5).                       |

| • Outliers -          | Initially the program calculates the station skew coefficient for the systematic record which is presented under preliminary results in the output. The program then tests for high or low outliers in an order depending on the value of the station skew as discussed on pages 17-19 and shown on the flow chart on page 12-3 of the Guidelines. Basically if the skew is greater than 0.4, tests and adjustments for high outliers and historic peaks are made before testing for low outliers. If the station skew is less than -0.4, tests and adjustments are made for low outliers first. If the skew is between 0.4 and -0.4, tests for both high and low outliers are made based on systematic record statistics before any adjustments are made. (See Figure 1 of this user's manual.) |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Historic Events -     | Weighted plotting positions and statistics are computed incorporating any input historic events (p. 19 and Appendix 6).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Confidence Limits -   | The .05 and .95 confidence limit curves are computed unless other limits are specified (p. 23 and Appendix 9).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Expected Probability- | The frequency curve ordinates are computed with and without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# expected probability adjustment (pp. 24, 25 and Appendix 11).

# 1.3 General Input and Output Information

The input is designed to be flexible, and default values are provided for all decision variables. Any option or nonstandard item activated by the J1 or J2 record will remain in effect for all succeeding station data or until modified by another J1 or J2 record. The only records actually required for a flood frequency analysis at a station are three or more annual flood peaks (QR records) and the end-of-data (ED) record. Input data preparation is described in detail in Appendix B.

The example problems in the next section illustrate input preparation and output. The program output has been arranged to enable the tables to be copied for report purposes. When special conditions are encountered in the analysis, such as historic data, high or low outliers, etc., the <u>preliminary</u> results (based on the systematic data only) are output before the final results.

Output options allow for printing summary tables for multistation applications (Figure 2a and 2b) or to suppress unwanted printout. There is also an option to output statistical summary records for each station analyzed.

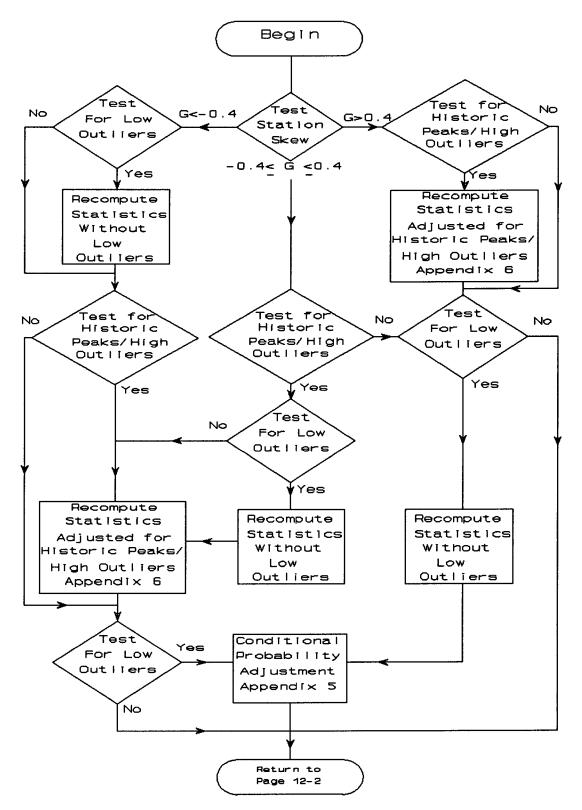



Figure 1. Flow Diagram for Historic and Outlier Adjustment Note. References to appendix are for appendix in Bulletin 17B

#### **1.4 Proposed Future Development**

Planned future capabilities include the ability to (1) treat other durations of flow, such as 1day, 3-day, etc.; and (2) adjust the statistics of short-record stations with those of long-record stations.

It is requested that any user of this program who finds a deficiency or would recommend desired additional capability notify the Hydrologic Engineering Center.

#### **1.5 Acknowledgments**

This, 1991, version of FFA represents the combined efforts of Mark R. Jensen and Harold E. Kubik. This manual was updated by Mark R. Jensen with help from David M. Goldman. The development of FFA was managed by Arlen D. Feldman, Chief of the HEC Research Division. Darryl W. Davis was the Director of the HEC during this time.

The HP Laser Jet plot function added to FFA, was adapted from the subroutine "PLATE", contributed by Mark M. Ziemer, St. Paul District, U.S. Army Corps of Engineers.

This program and manual are dedicated to the memory of Harold E. Kubik for his uncompromising high technical standards, for his in depth understanding of and feeling for statistics, and for his many years of service in the U.S. Army Corps of Engineers at HEC.

|      |         | AME AND LOCAT | ION                   |       | AREA       |    |     |       |      |     | .SKEW |     |   |   |   | - |
|------|---------|---------------|-----------------------|-------|------------|----|-----|-------|------|-----|-------|-----|---|---|---|---|
|      |         |               |                       |       | Ja Pil NCU |    |     |       |      |     |       |     |   |   |   |   |
| 3735 | 01-3735 | FISHKILL ORE  | ek at beacon, New Yo  | RK DA | 24         | 24 | 0   | 3.368 | .246 | .70 | .730  | .60 | 0 | 0 | 0 | 0 |
|      |         |               | AT JAMES, IOHA        |       | 39         | 39 | 82  | 3.537 | .438 | .10 | .165  | 30  | 0 | 1 | 0 | 0 |
|      |         |               | JONES SPRINGS, WEST   |       | 38         | 38 | 0   | 3.741 | .231 | .60 | .624  | .50 | 0 | 0 | 1 | 0 |
|      |         |               | EEK NEAR NELMAN, CA   |       | 42         | 42 | 0   | 2.966 | .668 | 50  | 568   | 30  | 0 | 0 | 1 | 6 |
| 5925 | 05-5925 | KASKASKIA RI  | IVER AT VANDALIA, ILL | DA    | 60         | 60 | 0   | 4.116 | .274 | .20 | .399  | 40  | 0 | 0 | 2 | 0 |
| 4765 | 01-4765 | RIDLEY CREEK  | AT MOYLAN, PA         | D     | 24         | 24 | 132 | 3,120 | .284 | .90 | 1.078 | .40 | 1 | 0 | 0 | 0 |

TABLE 1. SUMMARY OF STATISTICS -- FINAL RESULTS

Figure 2a. Example output of station statistics.

TABLE 2. SUMMARY OF FREQUENCY CURVE ORDINATES -- FINAL RESULTS

| STATION | STATION N | AME AND LO | CATION         |              |    | AREA  | 1    | EARS |      |       | PERCE | IT CHANC | EEXCEED | WCE   |       |
|---------|-----------|------------|----------------|--------------|----|-------|------|------|------|-------|-------|----------|---------|-------|-------|
| NUMBER  | •••••     |            | •••••          |              |    | sq mi | reod | SYST | HIST | 10.   | 5.    | 2.       | 1.      | .5    | .2    |
| 3735    | 01-3735   | FISHKILL   | CREEK AT BEACC | N, NEW YORK  | DA |       | 24   | 24   | 0    | 4962  | 6531  | 9108     | 11530   | 14451 | 19247 |
| 6005    | 06-6005   | FLOYD RIV  | er at james, i | CHA .        | DA |       | 39   | 39   | 82   | 12670 | 18601 | 28812    | 38695   | 50799 | 70851 |
| 016140  | 01-6140   | BACK OR N  | EAR JONES SPRI | NGS, WEST VA |    |       | 38   | 38   | 0    | 11188 | 14362 | 19382    | 23934   | 29264 | 37724 |
|         |           |            | OREEK NEAR NE  |              | DA |       | 42   | 42   | 0    | 6003  | 9163  | 14233    | 18704   | 23689 | 31002 |
|         |           |            | A RIVER AT VAN |              | DA |       | 60   | 60   | 0    | 29690 | 38175 | 51008    | 62134   | 74645 | 93577 |
|         |           |            | EK AT MOYLAN,  |              | D  |       | 24   | 24   | 132  | 3162  | 4440  | 6743     | 9103    | 12165 | 17635 |

Figure 2b. Example output of summary of exceedance discharges.

# **SECTION 2**

# **EXAMPLE PROBLEMS**

### Flood Frequency Analysis

The input and output for six test examples are provided to illustrate the use of selected options and to assist in verifying the correct execution of the program. A brief description of each test example is provided. In all cases a generalized skew value was assumed.

FFA has the capability to make printer plots, this capability is demonstrated in tests 1,4 and 5. FFA also has the capability to write frequency curves to the HEC Data Storage System, HEC-DSS, (see ZW record, Appendix B). The DSPLAY program is used to produce report quality plots; example plots follow the output for the first five tests. See Appendix C for instructions for use of DSS and DSPLAY with FFA. The HP records are used in the last test (#6) to produce a Hewlet Packard laser jet printer plot. See HP record in Appendix B.

The example problems shown in this section are entitled:

- #1 Fitting the Log-Pearson Type III Distribution.
- #2 Adjusting for High Outliers.
- #3 Testing and Adjusting for a Low Outlier.
- #4 Zero Flood Years.
- #5 Output Suppression, Confidence Limits and Low Threshold Discharge.
- #6 Use of Median Plotting Positions, Alternative Flow Data Format, and Historic Data.

#### 2.1 Test No. 1 - Fitting the Log-Pearson Type III Distribution

The input data for Test 1 are the same as that for Example 1 in Appendix 12, Guidelines for Determining Flood Flow Frequency, Water Resources Council Bulletin 17B, September 1981. Test 1 illustrates the routine computation of a frequency curve.

#### COMMAND LINE

FFA INPUT=TEST1.DAT OUTPUT=TEST1.OUT PLOT=YES DSSFILE=FFA

(Abbreviated: FFA I=TEST1.DAT O=TEST1.OUT P=Y D=FFA

#### INPUT

TT TEST NO. 1 FLOOD FLOW FREQUENCY ANALYSIS PROGRAM TT WRC APPENDIX 12, EXAMPLE 1 - FITTING THE LOG-PEARSON TYPE III DIST TT FISHKILL CREEK AT BEACON, NY ID 01-3735 FISHKILL CREEK AT BEACON, NEW YORK DA=190 SQ MI 1945-68 ZW /TEST NO. 1/FISHKILL CREEK/FREQ-FLOW//1945-68/USGS ANNUAL PEAKS/ GS 3735 .6 373503051945 2290 QR 373512271945 QR 1470 OR 373503151947 2220 QR 373503181948 2970 QR 373501011949 3020 373503091950 QR 1210 QR 373504011951 2490 373503121952 3170 **QR** QR 373501251953 3220 373509131954 QR 1760 373508201955 8800 QR 373510161955 8280 QR 373504101957 OR 1310 QR 373512211957 2500 373502111959 QR 1960 373504061960 QR 2140 QR 373502261961 4340 373503131962 3060 OR QR 373503281963 1780 373501261964 QR 1380 373502091965 980 QR QR 373502151966 1040 373503301967 QR 1580 QR 373503191968 3630 FD

**OUTPUT** 

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\* \* FFA \* FLOOD FREQUENCY ANALYSIS \* U.S. ARMY CORPS OF ENGINEERS \* \* \* PROGRAM DATE: FEB 1982 \* \* THE HYDROLOGIC ENGINEERING CENTER \* \* VERSION/DATE: 10 JAN 1992 \* \* \* 609 SECOND STREET RUN DATE AND TIME: 10 JAN 92 10:45:36 \* \* \* DAVIS, CALIFORNIA 95616 \* \* \* (916) 756-1104 \* \* \* \* \*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* INPUT FILE NAME: TEST1.DAT OUTPUT FILE NAME: TEST1.OUT DSS FILE NAME: FFA -----DSS---ZOPEN: New File Opened, File: FFA.DSS Unit: 71; DSS Version: 6-FN \*\*TITLE RECORD(S)\*\* TT TEST NO. 1 FLOOD FLOW FREQUENCY ANALYSIS PROGRAM TT WRC APPENDIX 12, EXAMPLE 1 - FITTING THE LOG-PEARSON TYPE III DIST FISHKILL CREEK AT BEACON, NY TT **\*\*STATION IDENTIFICATION\*\*** ID 01-3735 FISHKILL CREEK AT BEACON, NEW YORK DA=190 SQ MI 1945-68 \*\*DSS WRITE PATHNAME\*\* ZW /TEST NO. 1/FISHKILL CREEK/FREQ-FLOW//1945-68/USGS ANNUAL PEAKS/ \*\*GENERALIZED SKEW\*\* ISTN GGMSE SKEW GS 3735 .000 .60 **\*\*SYSTEMATIC EVENTS\*\*** 24 EVENTS TO BE ANALYZED \*\*END OF INPUT DATA\*\* \*\*\*\*

|        | EVE | NTS ANA | YZED  |      | ORDER | ED EVENTS | 1        |
|--------|-----|---------|-------|------|-------|-----------|----------|
|        |     |         | FLOW  |      | WATER | FLOW      | WEIBULL  |
| MON    | DAY | YEAR    | CFS   | RANK | YEAR  | CFS       | PLOT POS |
| 3      | 5   | 1945    | 2290. | 1    | 1955  | 8800.     | 4.00     |
| 12     | 27  | 1945    | 1470. | 2    | 1956  | 8280.     | 8.00     |
| 3      | 15  | 1947    | 2220. | 3    | 1961  | 4340.     | 12.00    |
| 3      | 18  | 1948    | 2970. | 4    | 1968  | 3630.     | 16.00    |
| 1      | 1   | 1949    | 3020. | 5    | 1953  | 3220.     | 20.00    |
| 3      | 9   | 1950    | 1210. | 6    | 1952  | 3170.     | 24.00    |
| - 4    | 1   | 1951    | 2490. | 7    | 1962  | 3060.     | 28.00    |
| 4<br>3 | 12  | 1952    | 3170. | 8    | 1949  | 3020.     | 32.00    |
| 1      | 25  | 1953    | 3220. | 9    | 1948  | 2970.     | 36.00    |
| 9      | 13  | 1954    | 1760. | 10   | 1958  | 2500.     | 40.00    |
| 8      | 20  | 1955    | 8800. | 11   | 1951  | 2490.     | 44.00    |
| 10     | 16  | 1955    | 8280. | 12   | 1945  | 2290.     | 48.00    |
| - 4    | 10  | 1957    | 1310. | 13   | 1947  | 2220.     | 52.00    |
| 12     | 21  | 1957    | 2500. | 14   | 1960  | 2140.     | 56.00    |
| 2      | 11  | 1959    | 1960. | 15   | 1959  | 1960.     | 60.00    |
| 4      | 6   | 1960    | 2140. | 16   | 1963  | 1780.     | 64.00    |
| 2      | 26  | 1961    | 4340. | 17   | 1954  | 1760.     | 68.00    |
| 3      | 13  | 1962    | 3060. | 18   | 1967  | 1580.     | 72.00    |
| - 3    | 28  | 1963    | 1780. | 19   | 1946  | 1470.     | 76.00    |
| 1      | 26  | 1964    | 1380. | 20   | 1964  | 1380.     | 80.00    |
| 2<br>2 | 9   | 1965    | 980.  | 21   | 1957  | 1310.     | 84.00    |
| 2      | 15  | 1966    | 1040. | 22   | 1950  | 1210.     | 88.00    |
| - 3    | 30  | 1967    | 1580. | 23   | 1966  | 1040.     | 92.00    |
| 3      | 19  | 1968    | 3630. | 24   | 1965  | 980.      | 96.00    |

#### -PLOTTING POSITIONS- 01-3735 FISHKILL CREEK AT BEACON, NEW YORK

#### -OUTLIER TESTS -

HIGH OUTLIER TEST

BASED ON 24 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.467 0 HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF 9425.

#### LOW OUTLIER TEST

BASED ON 24 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.467

0 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF 578.7

-SKEW WEIGHING -

| BASED ON 2 | 24 EVENTS, | MEAN-SQUARE  | ERROR OF  | STATION  | SKEW = | .277 |
|------------|------------|--------------|-----------|----------|--------|------|
| DEFAULT OR | INPUT MEA  | N-SQUARE ERI | OR OF GEN | ERALIZED | SKEW = | .302 |

| CURVE                                    | COMPUTED EXPECTED<br>CURVE PROBABILITY<br>FLOW IN CFS |                   | ICE<br>DANCE                                           | CONFIDENCE LIMITS<br>.05 .95<br>FLOW IN CFS |                          |  |  |  |
|------------------------------------------|-------------------------------------------------------|-------------------|--------------------------------------------------------|---------------------------------------------|--------------------------|--|--|--|
| 19200.<br>14500.<br>11500.               | 28300.<br>19000.<br>14100.                            |                   | 2<br>.5<br>.0                                          | 39100.<br>26900.<br>20100.                  | 12300.<br>9740.<br>8080. |  |  |  |
| 9110.<br>6530.<br>4960.                  | 7090.                                                 | 2.<br>5.<br>10.   | .0                                                     | 14800.<br>9680.<br>6850.                    | 6640.<br>5010.<br>3950.  |  |  |  |
| 3650.<br>2190.<br>1440.                  | 1420.                                                 | 20.<br>50.<br>80. | .0<br>.0                                               | 4710.<br>2650.<br>1760.                     | 2990.<br>1790.<br>1110.  |  |  |  |
| 1200.<br>1040.<br>841.                   |                                                       | 90.<br>95.<br>99. | .0                                                     | 1490.<br>1320.<br>1100.                     | 884.<br>746.<br>568.     |  |  |  |
|                                          | SYS                                                   | STEMATIC          | STATIS                                                 | STICS                                       |                          |  |  |  |
| LOG TRANSF                               | ORM: FLOW, CF                                         | 6                 |                                                        | NUMBER OF EVE                               | NTS                      |  |  |  |
| MEAN<br>STANDARD<br>COMPUTED<br>REGIONAL | 3.3684<br>.2456<br>.7300<br>.6000                     | HIGH<br>LOW       | TORIC EVENTS<br>1 OUTLIERS<br>OUTLIERS<br>D OR MISSING | 0<br>0<br>0<br>0                            |                          |  |  |  |
| ADOPTED S                                | ADOPTED SKEW                                          |                   | SYST                                                   | EMATIC EVENTS                               | 24                       |  |  |  |

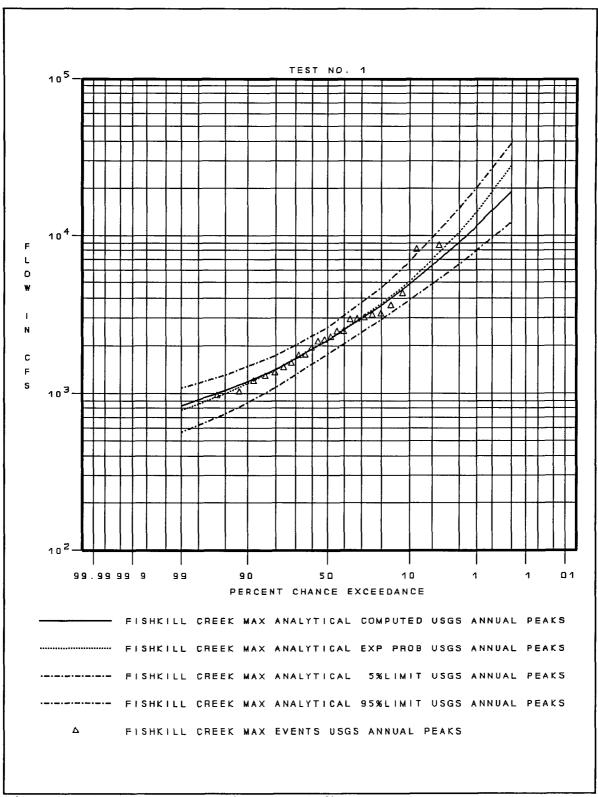
-FREQUENCY CURVE- 01-3735 FISHKILL CREEK AT BEACON, NEW YORK

| SED ON      | ICY PLO      |       | 01-3735<br>VALUES - | FISHKILL C<br>FLOW IN CFS | REEK AT BEA | CON, NE | n york | DA=190 SQ | MI         |   |        | 194    | 5-68    | v    |
|-------------|--------------|-------|---------------------|---------------------------|-------------|---------|--------|-----------|------------|---|--------|--------|---------|------|
|             | •            | •     | •                   | •                         | •           | •       | •••••  |           | •          |   | •      | •      | •       | ·-X- |
| :           | :            |       | •                   | •                         | •           | •       | :      |           | :          |   | :      | :      | x :     | •    |
| •           | •            | •     | •                   | •                         | •           | •       | •      |           | •          |   | •      | x      | •       |      |
|             | ••••••       | ·     | ••••••              | •                         | ••••••      | •       | •      |           | ·          |   | •      |        |         |      |
| :           | •            | •     | •                   | •                         | •           | :       | :      |           | . o        | 0 | . X    | :      | •       |      |
| •           | •            | •     | •                   | •                         | •           | •       | •      |           | •          | x | •      | •      | •       |      |
|             |              | •     |                     |                           | •           |         |        |           | •          | ^ |        | :      | •       |      |
|             | ••••••       | ••••• | •••••••             | •••••••••••               | ••••••      |         |        | 0         | х          |   |        | •      |         |      |
| •           | •            | -     | •                   | •                         | •           | •       | •      | хо        | •          |   | -      | •      | •       |      |
| :           | :            | :     |                     | •                         | :           | :       | o. c   | o ô O     | :          |   | -      | :      |         |      |
| •           | •            | :     | :                   |                           |             | : o     | 0.     |           | :          |   | •      | •      | •       |      |
|             | •            | •     | •                   | •                         | -           | 0 040   | •      |           | •          |   |        | -      |         |      |
|             | -            | •     | •                   | •                         | .00         |         |        |           | •          |   | -      | -      | -       |      |
| :           | •            | :     | •                   | •                         | о.<br>хо.   | :       | :      |           | •          |   | :      | •      | :       |      |
| •           | •            | •     | •                   | хоо                       | •           | •       | •      |           | •          |   | -      | •      | -       |      |
| <u></u>     |              | •     | 0                   | -X0                       | •           | ••••••  | •      |           | •<br>••••• |   | •<br>• | •      | •<br>•• |      |
| :           | •            | ż     | •                   | •                         | :           | •       | :      |           | •          |   | :      | :      | •       |      |
| •           | •            | •     | -                   | •                         | •           | •       | •      |           | •          |   | •      | •      | •       |      |
|             | •            | :     | •                   | •                         | •           | :       | •      |           | •          |   | :      | -      | :       |      |
| 500<br>99.9 | <b>99.</b> 7 | 99.   | 97.                 | 90.                       | 70.         | 50.     | 30.    | 1         | <br>0.     |   | 3.     | <br>1. | .3      |      |

LEGEND - O=OBSERVED VALLE, H=HIGH CUTLIER OR HISTORIC VALLE, L=LOW CUTLIER, Z=ZERO OR MISSING, X=OCMPUTED CURVE

| 00          |              |                 |     | ADJUSTMEN |           |           |      |    |            |    |         |     |   |
|-------------|--------------|-----------------|-----|-----------|-----------|-----------|------|----|------------|----|---------|-----|---|
| •           | •            | •               | •   | •         | •         | •         | •    |    | •          | •  | •       | •   |   |
| •           | •            | •               | -   | •         | •         | •         | •    |    | •          | •  | •       | •   |   |
| :           | :            | :               |     | •         | •         | •         | •    |    | •          | •  |         | :   |   |
|             | •            | •               | •   | •         |           | •         |      |    |            |    | -       |     | х |
| •           | •            | •               | -   | •         | •         | •         |      |    | •          | •  |         | •   |   |
| <b>~</b>    | •            | •               | -   | •         | •         | •         | •    |    | •          | •  | •       | . • |   |
| 00          |              |                 |     |           |           | ********* |      |    |            |    | ******* | -x  |   |
|             | •            | •               |     | •         | •         | •         | •    |    | •          | •  | •       | •   |   |
|             |              |                 | -   |           | :         |           |      |    |            | :  | x       |     |   |
|             |              |                 | •   | •         |           | •         | •    |    | -          |    | •       | •   |   |
|             | •            | •               | •   | •         | •         | •         | •    |    | •          | •  | •       | •   |   |
| 00          |              |                 |     |           |           |           |      |    |            | X- |         |     |   |
| -           | •            | •               | -   | •         | •         | •         | •    |    | . 0<br>.0  | •  | •       | •   |   |
| •           | •            | :               |     | •         | •         | •         | •    | 1  | . x        |    | •       | •   |   |
| :           | :            | :               | -   | :         |           | :         | :    |    | . ^        | :  | :       | :   |   |
| •           | •            | -               | -   | •         |           |           |      |    |            |    |         | •   |   |
| 00          |              |                 |     |           |           |           |      | )  | <b>K</b>   |    |         |     |   |
| •           | •            | •               | •   | •         | •         | •         | •    | 0  | •          | •  | •       | •   |   |
| •           | •            | •               | •   | •         | •         | •         | •    | хо | •          | •  | •       | •   |   |
| •           | •            | •               | -   | •         | •         | •         | 0.00 |    | •          | •  | •       | :   |   |
|             |              |                 |     | •         |           |           | 0.   |    |            | :  |         |     |   |
|             | •            |                 | -   |           | •         | . 00      | ).   |    | •          |    |         |     |   |
| •           | -            | -               | •   | •         | •         | 0040      | •    |    | •          | •  | •       | •   |   |
| 00          |              |                 |     |           | (         | )         |      |    |            |    |         |     |   |
| •           | •            | •               | •   | •         | .00<br>0. | •         | •    |    | •          | ·  | •       | •   |   |
| •           | •            | :               |     |           | x 0 .     | •         | •    |    | •          | •  | •       | •   |   |
| :           |              |                 | •   | . 0 0     |           |           | :    |    |            | :  | :       |     |   |
|             | -            | -               | -   | X         |           | •         |      |    | -          |    |         | -   |   |
| 00          |              |                 |     | 0         |           |           |      |    |            |    |         |     |   |
| •           | •            | •               | •   | •         | •         | •         | •    |    | -          | •  | •       | •   |   |
| •           | •            | Х               | -   | •         | •         | •         | •    |    | •          | •  | •       | •   |   |
| •           | •            | :               | •   | •         | •         | •         | •    |    |            | •  | •       | :   |   |
| :           |              | :               |     |           |           | •         |      |    |            | :  | :       |     |   |
| 00<br>99.9  |              |                 |     |           |           |           |      |    |            |    |         |     |   |
| <b>79.9</b> | <b>99.</b> 7 | <del>9</del> 9. | 97. | 90.       | 70.       | 50.       | 30.  | 10 | D <b>.</b> | 3. | 1.      | .3  |   |

-FREQUENCY PLOT - 01-3735 FISHKILL CREEK AT BEACON, NEW YORK DA=190 SQ MI 1945-68


PERCENT CHANCE EXCEEDANCE

LEGEND - O=OBSERVED VALUE, H=HIGH OUTLIER OR HISTORIC VALUE, L=LOW OUTLIER, Z=ZERO OR MISSING, X=OOMPUTED OURVE

--ZWRITE: /TEST NO. 1/FISHKILL CREEK/FREQ-FLOW/MAX EVENTS/1945-68/USGS ANNUAL PEAKS/

--ZWRITE: /TEST NO. 1/FISHKILL CREEK/FREQ-FLOW/MAX ANALYTICAL/1945-68/USGS ANNUAL PEAKS/

+ END OF RUN + + NORMAL STOP IN FFA +



DSPLAY plot of final frequency curve (see Appendix C).

# 2.2 Test No. 2 - Adjusting for High Outliers

The input data for Test 2 are the same as that for Example 2 in Appendix 12 of the WRC Guidelines. Test 2 illustrates the application to data with a high outlier. Note that preliminary results are output to enable comparison of the systematic data results with the results adjusted for a high outlier.

#### COMMAND LINE

#### FFA I=TEST2.DAT O=TEST2.OUT DSS=FFA

#### INPUT

|          |                              | OD FLOW FREQUENC |            |                   |         |
|----------|------------------------------|------------------|------------|-------------------|---------|
|          |                              |                  | DJUSTING F | OR A HIGH OUTLIER |         |
|          | FLOYD RIVER AT               |                  |            |                   |         |
|          |                              | RIVER AT JAMES,  | IOWA       | DA=882 SQ MI      | 1935-73 |
| GS       | 6005                         | -0.3             |            |                   |         |
| SI       | 1892                         | 70000            |            |                   |         |
|          |                              |                  | LOW//1935- | 73/ANNUAL PEAKS/  |         |
| QR       | 600506281935                 | 1460             |            |                   |         |
| QR       | 600503101936                 | 4050             |            |                   |         |
| QR       | 600505271937                 | 3570             |            |                   |         |
| QR<br>QR | 600509151938<br>600503121939 | 2060<br>1300     |            |                   |         |
| QR       | 600506051940                 | 1390             |            |                   |         |
| QR       | 600503111941                 | 1720             |            |                   |         |
| QR       | 600506041942                 | 6280             |            |                   |         |
| QR       | 600506171943                 | 1360             |            |                   |         |
| QR       | 600505131944                 | 7440             |            |                   |         |
| QR       | 600503121945                 | 5320             |            |                   |         |
| QR       | 600503011946                 | 1400             |            |                   |         |
| QR       | 600506251947                 | 3240             |            |                   |         |
| QR       | 600503171948                 | 2710             |            |                   |         |
| QR       | 600503051949                 | 4520             |            |                   |         |
| QR       | 600506191950                 | 4840             |            |                   |         |
| QR       |                              | 8320             |            |                   |         |
| QR       | 600503311952                 | 13900            |            |                   |         |
| QR       | 600506081953                 | 71500            |            |                   |         |
| QR       | 600506221954                 | 6250             |            |                   |         |
| QR       | 600507101955                 | 2260             |            |                   |         |
| QR       | 600507131956                 | 318              |            |                   |         |
| QR       | 600507051957                 | 1330             |            |                   |         |
| QR       | 600506311958                 | 970              |            |                   |         |
| QR<br>QR | 600506011959<br>600503291960 | 1920<br>15100    |            |                   |         |
| QR       | 600503021961                 | 2870             |            |                   |         |
| QR       | 600503291962                 | 20600            |            |                   |         |
| QR       | 600506021963                 | 3810             |            |                   |         |
| QR       | 600509091964                 | 726              |            |                   |         |
| QR       | 600504021965                 | 7500             |            |                   |         |
| QR       | 600502101966                 | 7170             |            |                   |         |
| QR       | 600506191967                 | 2000             |            |                   |         |
| QR       | 600507211968                 | 829              |            |                   |         |
| QR       | 600504051969                 | 17300            |            |                   |         |
| QR       | 600503041970                 | 4740             |            |                   |         |
| QR       | 6005 1971                    | 13400            |            |                   |         |
| QR       | 6005 1972                    | 2940             |            |                   |         |
| QR       | 6005 1973                    | 5660             |            |                   |         |
| ED       |                              |                  |            |                   |         |

#### **OUTPUT**

| <pre>FFA * * U.S. ARMY CORPS OF ENGINEERS * FROOD FREQUENCY ANALYSIS * U.S. ARMY CORPS OF ENGINEERS * PROGRAM DATE: FEB 1982 * * THE HYDROLOGIC ENGINEERING CENTER * VERSION DATE: 10 JAN 1992 * 609 SECOND STREET * TO JAN 92 10:45:42 * DAYIS, CALIFORNIA 95516 * 10 JAN 92 10:45:42 * (916) 756-1104 * ***********************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ******                                  | **********                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| <ul> <li>PROGRAM DATE: FEB 1962 * THE HYDROLOGIC ENGINEERING CENTER * VERSION DATE: 10 JAN 1992 * 609 SECOND STRET * 09 SECOND STRET * 10 JAN 92 10:45:42 * 0AVIS, CALIFORNIA 95616 * 10 JAN 92 10:45:42 * 016) 756-1104 * * * * * * * * * * * * * * * * * * *</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ······································  | * *                                     |
| <ul> <li>VERSION DATE: 10 JAN 1992 * * 609 SECOND STREET * 609 SECOND STREET * RUN DATE AND TIME: * * DAVIS, CALIFORNIA 95616 * 10 JAN 92 10:45:42 * * (916) 756-1104 * * * * * * * * * * * * * * * * * * *</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LECCO INCLUDENCI ANALISIS               | U.S. ARM CORFS OF ENGINEERS             |
| <pre>* RUN DATE AND TIME: * * DAVIS, CALIFORNIA 95616 * * 10 JAN 92 10:45:42 * * (916) 756-1104 * * * * * * * * * * * * * * * * * * *</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FROMAN DATE. FEB 1702                   |                                         |
| <pre>* Now off off off off off off off off off o</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | OUV SECOND STREET                       |
| <pre>* * * * * * * * * * * * * * * * * * *</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NON DATE AND TIME.                      | DAVIS, CALIFORNIA 35010                 |
| <pre>INPUT FILE NAME: TEST2.DAT<br/>OUTPUT FILE NAME: TEST2.OUT<br/>DSS FILE NAME: TEST2.OUT<br/>DSS FILE NAME: FFA<br/>DSSZOPEN: Existing File Opened, File: FFA.DSS<br/>Unit: 71; DSS Version: 6-FN<br/>**TITLE RECORD(S)**<br/>TI TEST NO. 2 FLOOD FLOW FREQUENCY ANALYSIS PROGRAM<br/>TI WRC APPENDIX 12, EXAMPLE 2 - ADJUSTING FOR A HIGH OUTLIER<br/>TI FLOYD RIVER AT JAMES, IA<br/>**STATION IDENTIFICATION**<br/>ID 06-6005 FLOYD RIVER AT JAMES, IOWA DA=882 SQ MI 1935-73<br/>**GENERALIZED SKEW**<br/>ISTN GGMSE SKEW<br/>GS 6005 .00030<br/>**SPECIAL STATION INFORMATION**<br/>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br/>SI 1892 0 70000. 0. 0 0 0<br/>**DSS WRITE PATHNAME**<br/>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br/>**SYSTEMATIC EVENTS**<br/>39 EVENTS TO BE ANALYZED<br/>**END OF INPUT DATA**<br/>ED +</pre> | * 10 JAN 92 10:45:42 *                  | * (916) 756-1104 *                      |
| INPUT FILE NAME: TEST2.DAT<br>OUTPUT FILE NAME: TEST2.OUT<br>DSS FILE NAME: FFA<br>DSSZOPEN: Existing File Opened, File: FFA.DSS<br>Unit: 71; DSS Version: 6-FN<br>**TITLE RECORD(S)**<br>TT TEST NO. 2 FLOOD FLOW FREQUENCY ANALYSIS PROGRAM<br>TT WRC APPENDIX 12, EXAMPLE 2 - ADJUSTING FOR A HIGH OUTLIER<br>TT FLOYD RIVER AT JAMES, IA<br>**STATION IDENTIFICATION**<br>ID 06-6005 FLOYD RIVER AT JAMES, IOWA DA=882 SQ MI 1935-73<br>**GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED +                                                               | * *                                     |                                         |
| OUTPUT FILE NAME: TEST2.OUT<br>DSS FILE NAME: FFA<br>DSSZOPEN: Existing File Opened, File: FFA.DSS<br>Unit: 71; DSS Version: 6-FN<br>**TITLE RECORD(S)**<br>IT TEST NO. 2 FLOOD FLOW FREQUENCY ANALYSIS PROGRAM<br>IT WRC APPENDIX 12, EXAMPLE 2 - ADJUSTING FOR A HIGH OUTLIER<br>IT FLOYD RIVER AT JAMES, IA<br>**STATION IDENTIFICATION**<br>ID 06-6005 FLOYD RIVER AT JAMES, IOWA DA=882 SQ MI 1935-73<br>**GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED +                                                                                             | ******************                      | *************************************** |
| Unit: 71; DSS Version: 6-FN<br>**TITLE RECORD(S)**<br>IT TEST NO. 2 FLOOD FLOW FREQUENCY ANALYSIS PROGRAM<br>IT WRC APPENDIX 12, EXAMPLE 2 - ADJUSTING FOR A HIGH OUTLIER<br>IT FLOYD RIVER AT JAMES, IA<br>**STATION IDENTIFICATION**<br>ID 06-6005 FLOYD RIVER AT JAMES, IOWA DA=882 SQ MI 1935-73<br>**GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                | OUTPUT FILE NAME: TEST2.OUT             |                                         |
| TT TEST NO. 2 FLOOD FLOW FREQUENCY ANALYSIS PROGRAM<br>TT WRC APPENDIX 12, EXAMPLE 2 - ADJUSTING FOR A HIGH OUTLIER<br>TT FLOYD RIVER AT JAMES, IA<br>**STATION IDENTIFICATION**<br>ID 06-6005 FLOYD RIVER AT JAMES, IOWA DA=882 SQ MI 1935-73<br>**GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                        |                                         |                                         |
| TT WRC APPENDIX 12, EXAMPLE 2 - ADJUSTING FOR A HIGH OUTLIER<br>TT FLOYD RIVER AT JAMES, IA<br>**STATION IDENTIFICATION**<br>ID 06-6005 FLOYD RIVER AT JAMES, IOWA DA=882 SQ MI 1935-73<br>**GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                             | **TITLE RECORD(S)**                     |                                         |
| TT FLOYD RIVER AT JAMES, IA<br>**STATION IDENTIFICATION**<br>ID 06-6005 FLOYD RIVER AT JAMES, IOWA DA=882 SQ MI 1935-73<br>**GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                             | TT TEST NO. 2 FLOOD FLOW FREQUENCY A    | NALYSIS PROGRAM                         |
| **STATION IDENTIFICATION**<br>ID 06-6005 FLOYD RIVER AT JAMES, IOWA DA=882 SQ MI 1935-73<br>**GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                            | TT WRC APPENDIX 12, EXAMPLE 2 - ADJU    | STING FOR A HIGH OUTLIER                |
| ID 06-6005 FLOYD RIVER AT JAMES, IOWA DA=882 SQ MI 1935-73<br>**GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                          | TT FLOYD RIVER AT JAMES, IA             |                                         |
| ID 06-6005 FLOYD RIVER AT JAMES, IOWA DA=882 SQ MI 1935-73<br>**GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                         |
| **GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                         |
| ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID 06-6005 FLOYD RIVER AT JAMES, IO     | WA DA=882 SQ MI 1935-73                 |
| ISTN GGMSE SKEW<br>GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |
| GS 6005 .00030<br>**SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | **GENERALIZED SKEW**                    |                                         |
| **SPECIAL STATION INFORMATION**<br>IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 151N GGMSE SKEW                         |                                         |
| IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48 8005 .00030                          |                                         |
| IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG<br>SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **SDECIAL STATION INFORMATION**         |                                         |
| SI 1892 0 70000. 0. 0 0 0<br>**DSS WRITE PATHNAME**<br>ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                         |
| <pre>**DSS WRITE PATHNAME** ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/ **SYSTEMATIC EVENTS**     39 EVENTS TO BE ANALYZED **END OF INPUT DATA** ED **********************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                         |
| ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31 1072 0 10000. 0.                     | 0 0 0                                   |
| ZW /TEST NO. 2/FLOYD RIVER/FREQ-FLOW//1935-73/ANNUAL PEAKS/<br>**SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **DSS WRITE PATHNAME**                  |                                         |
| **SYSTEMATIC EVENTS**<br>39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | //1935-73/ANNIAL DEAKS/                 |
| 39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | //////////////////////////////////////  |
| 39 EVENTS TO BE ANALYZED<br>**END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | **SYSTEMATIC EVENTS**                   |                                         |
| **END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |
| ED ++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **END OF INPUT DATA**                   |                                         |
| ****************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ED ++++++++++++++++++++++++++++++++++++ | ****                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *****                                   | ******                                  |

| <br>-PRELIMINARY | RESULTS - |
|------------------|-----------|
| <br>-PRELIMINARY | RESULTS - |

\_\_\_\_\_

|        | EVE | NTS AN | ALYZED |      |       | RED EVENTS |          |
|--------|-----|--------|--------|------|-------|------------|----------|
|        |     |        | FLOW   |      | WATER | FLOW       | WEIBULL  |
| MON    | DAY | YEAR   | CFS    | RANK | YEAR  | CFS        | PLOT POS |
| 6      | 28  | 1935   | 1460.  | 1    | 1953  | 71500.     | 2.50     |
| 3      | 10  | 1936   | 4050.  | 2    | 1962  | 20600.     | 5.00     |
| 5      | 27  | 1937   | 3570.  | 3    | 1969  | 17300.     | 7.50     |
| 9      | 15  | 1938   | 2060.  | 4    | 1960  | 15100.     | 10.00    |
| 3      | 12  | 1939   | 1300.  | 5    | 1952  | 13900.     | 12.50    |
| 6      | 5   | 1940   | 1390.  | 6    | 1971  | 13400.     | 15.00    |
| 3      | 11  | 1941   | 1720.  | 7    | 1951  | 8320.      | 17.50    |
| 6      | 4   | 1942   | 6280.  | 8    | 1965  | 7500.      | 20.00    |
| 6      | 17  | 1943   | 1360.  | 9    | 1944  | 7440.      | 22.50    |
| 5      | 13  | 1944   | 7440.  | 10   | 1966  | 7170.      | 25.00    |
| 5<br>3 | 12  | 1945   | 5320.  | 11   | 1942  | 6280.      | 27.50    |
| 36     | 1   | 1946   | 1400.  | 12   | 1954  | 6250.      | 30.00    |
| 6      | 25  | 1947   | 3240.  | 13   | 1973  | 5660.      | 32.50    |
| 3      | 17  | 1948   | 2710.  | 14   | 1945  | 5320.      | 35.00    |
| 3      | 5   | 1949   | 4520.  | 15   | 1950  | 4840.      | 37.50    |
| 6      | 19  | 1950   | 4840.  | 16   | 1970  | 4740.      | 40.00    |
| 3      | 28  | 1951   | 8320.  | 17   | 1949  | 4520.      | 42.50    |
| 3      | 31  | 1952   | 13900. | 18   | 1936  | 4050.      | 45.00    |
| 6      | 8   | 1953   | 71500. | 19   | 1963  | 3810.      | 47.50    |
| 6      | 22  | 1954   | 6250.  | 20   | 1937  | 3570.      | 50.00    |
| 7      | 10  | 1955   | 2260.  | 21   | 1947  | 3240.      | 52.50    |
| 7      | 13  | 1956   | 318.   | 22   | 1972  | 2940.      | 55.00    |
| 7      | 5   | 1957   | 1330.  | 23   | 1961  | 2870.      | 57.50    |
| 6      | 31  | 1958   | 970.   | 24   | 1948  | 2710.      | 60.00    |
| 6      | 1   | 1959   | 1920.  | 25   | 1955  | 2260.      | 62.50    |
| 3      | 29  | 1960   | 15100. | 26   | 1938  | 2060.      | 65.00    |
| 3<br>3 | 2   | 1961   | 2870.  | 27   | 1967  | 2000.      | 67.50    |
| 3      | 29  | 1962   | 20600. | 28   | 1959  | 1920.      | 70.00    |
| 6      | 2   | 1963   | 3810.  | 29   | 1941  | 1720.      | 72.50    |
| 9      | 9   | 1964   | 726.   | 30   | 1935  | 1460.      | 75.00    |
| 4      | 2   | 1965   | 7500.  | 31   | 1946  | 1400.      | 77.50    |
| 2      | 10  | 1966   | 7170.  | 32   | 1940  | 1390.      | 80.00    |
| 6      | 19  | 1967   | 2000.  | 33   | 1943  | 1360.      | 82.50    |
| 7      | 21  | 1968   | 829.   | 34   | 1957  | 1330.      | 85.00    |
| 4      | 5   | 1969   | 17300. | 35   | 1939  | 1300.      | 87.50    |
| 3      | 4   | 1970   | 4740.  | 36   | 1958  | 970.       | 90.00    |
| 0      | 0   | 1971   | 13400. | 37   | 1968  | 829.       | 92.50    |
| 0      | 0   | 1972   | 2940.  | 38   | 1964  | 726.       | 95.00    |
| 0      | 0   | 1973   | 5660.  | 39   | 1956  | 318.       | 97.50    |

-PLOTTING POSITIONS- 06-6005 FLOYD RIVER AT JAMES, IOWA

-SKEW WEIGHTING -

| BASED ON  | 39 EVENTS,  | MEAN-SQUARE  | ERROR OF  | STATION  | SKEW = | .158 |
|-----------|-------------|--------------|-----------|----------|--------|------|
| DEFAULT O | R INPUT MEA | N-SQUARE ERR | OR OF GEN | ERALIZED | SKEW = | .302 |

#### PRELIMINARY RESULTS

#### -FREQUENCY CURVE- 06-6005 FLOYD RIVER AT JAMES, IOWA

|                               | EXPECTED<br>PROBABILITY<br>IN CFS                                                         | PERCE<br>CHAN<br>EXCEEL                                                               | ICE                 | CONFIDENCE<br>.05<br>FLOW IN                                                                                    | .95                                                                                                         |
|-------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 34100.<br>21500.              | 76000.<br>54500.<br>38300.<br>23000.<br>14900.<br>8980.<br>3530.<br>1420.<br>888.<br>600. | .2<br>.5<br>1.0<br>2.0<br>5.0<br>10.0<br>20.0<br>50.0<br>80.0<br>90.0<br>95.0<br>99.0 |                     | 199000.<br>130000.<br>91500.<br>62800.<br>36000.<br>22300.<br>12700.<br>4700.<br>1970.<br>1300.<br>933.<br>514. | 50100.<br>37000.<br>28800.<br>21900.<br>14600.<br>10100.<br>6490.<br>2650.<br>1000.<br>595.<br>385.<br>170. |
|                               | SY                                                                                        | STEMATIC                                                                              | STATIS              | STICS                                                                                                           |                                                                                                             |
| LOG TRANS                     | FORM: FLOW, CFS                                                                           | 6                                                                                     |                     | NUMBER OF EVE                                                                                                   | INTS                                                                                                        |
| STANDARD DEV<br>Computed skew |                                                                                           | 3.5553<br>.4642<br>.3566<br>.3000<br>.1000                                            | HIGH<br>LOW<br>ZERO | FORIC EVENTS<br>1 OUTLIERS<br>OUTLIERS<br>D OR MISSING<br>FEMATIC EVENTS                                        | 0<br>0<br>0<br>39                                                                                           |

| FINAL | RESULTS |
|-------|---------|
|       |         |

| <u> </u>              | EVE  | NTS AN |              |          | ORDERED EVENTS |            |          |  |  |  |
|-----------------------|------|--------|--------------|----------|----------------|------------|----------|--|--|--|
| 1                     |      |        | FLOW         |          | WATER          | FLOW       | WEIBULL  |  |  |  |
| MON                   | DAY  | YEAR   | CFS          | RANK     |                | CFS        | PLOT POS |  |  |  |
|                       |      |        |              |          |                |            |          |  |  |  |
| 6                     | 28   | 1935   | 1460.        | 1        | 1953           | 71500.     | 1.20     |  |  |  |
| 3                     | 10   | 1936   | 4050.        | 2        | 1962           | 20600.     | 3.09     |  |  |  |
| 5                     | 27   | 1937   | 3570.        | 3        | 1969           | 17300.     | 5.66     |  |  |  |
| 9                     | 15   | 1938   | 2060.        | 4        | 1960           | 15100.     | 8.23     |  |  |  |
| 3                     | 12   | 1939   | 1300.        | 5        | 1952           | 13900.     | 10.80    |  |  |  |
| 6                     | 5    | 1940   | 1390.        | 6        | 1971           | 13400.     | 13.36    |  |  |  |
| 3                     | 11   | 1941   | 1720.        | 7        | 1951           | 8320.      | 15.93    |  |  |  |
| 6                     | 4    | 1942   | 6280.        | 8        | 1965           | 7500.      | 18.50    |  |  |  |
| 6                     | 17   | 1943   | 1360.        | 9        | 1944           | 7440.      | 21.07    |  |  |  |
| 5                     | 13   | 1944   | 7440.        | 10       | 1966           | 7170.      | 23.64    |  |  |  |
| 3                     | 12   | 1945   | 5320.        | 11       | 1942           | 6280.      | 26.20    |  |  |  |
| 5<br>3<br>3<br>6<br>3 | 1    | 1946   | 1400.        | 12       | 1954           | 6250.      | 28.77    |  |  |  |
| 6                     | 25   | 1947   | 3240.        | 13       | 1973           | 5660.      | 31.34    |  |  |  |
| 3                     | 17   | 1948   | 2710.        | 14       | 1945           | 5320.      | 33.91    |  |  |  |
| 3                     | 5    | 1949   | 4520.        | 15       | 1950           | 4840.      | 36.48    |  |  |  |
| 36                    | 19   | 1950   | 4840.        | 16       | 1970           | 4740.      | 39.05    |  |  |  |
| 3                     | 28   | 1951   | 8320.        | 17       | 1949           | 4520.      | 41.61    |  |  |  |
| 3                     | 31   | 1952   | 13900.       | 18       | 1936           | 4050.      | 44.18    |  |  |  |
| 6                     | 8    | 1953   | 71500.       | 19       | 1963           | 3810.      | 46.75    |  |  |  |
| 6                     | 22   | 1954   | 6250.        | 20       | 1937           | 3570.      | 49.32    |  |  |  |
| 7                     | 10   | 1955   | 2260.        | 21       | 1947           | 3240.      | 51.89    |  |  |  |
| 7                     | 13   | 1956   | 318.         | 22       | 1972           | 2940.      | 54.45    |  |  |  |
| 7                     | 5    | 1957   | 1330.        | 23       | 1961           | 2870.      | 57.02    |  |  |  |
| 6                     | 31   | 1958   | 970.         | 24       | 1948           | 2710.      | 59.59    |  |  |  |
| 6                     | 1    | 1959   | 1920.        | 25       | 1955           | 2260.      | 62.16    |  |  |  |
| 3                     | 29   | 1960   | 15100.       | 26       | 1938           | 2060.      | 64.73    |  |  |  |
| 3                     | 2    | 1961   | 2870.        | 27       | 1967           | 2000.      | 67.30    |  |  |  |
| 3                     | 29   | 1962   | 20600.       | 28       | 1959           | 1920.      | 69.86    |  |  |  |
| 6                     | 2    | 1963   | 3810.        | 29       | 1941           | 1720.      | 72.43    |  |  |  |
| j õ                   | 9    | 1964   | 726.         | 30       | 1935           | 1460.      | 75.00    |  |  |  |
| 4                     | ź    | 1965   | 7500.        | 31       | 1946           | 1400.      | 77.57    |  |  |  |
| 2                     | 10   | 1966   | 7170.        | 32       | 1940           | 1390.      | 80.14    |  |  |  |
| 6                     | 19   | 1967   | 2000.        | 33       | 1943           | 1360.      | 82.70    |  |  |  |
| 7                     | 21   | 1968   | 829.         | 34       | 1957           | 1330.      | 85.27    |  |  |  |
| 4                     | 5    | 1969   | 17300.       | 35       | 1939           | 1300.      | 87.84    |  |  |  |
| 3                     | 4    | 1970   | 4740.        | 36       | 1958           | 970.       | 90.41    |  |  |  |
| Ĭŏ                    | ō    | 1971   | 13400.       | 37       | 1968           | 829.       | 92.98    |  |  |  |
| ŏ                     | ŏ    | 1972   | 2940.        | 38       | 1964           | 726.       | 95.55    |  |  |  |
| ŏ                     | ŏ    | 1973   | 5660.        | 39       | 1956           | 318.       | 98.11    |  |  |  |
| Ľ                     |      |        |              |          |                |            |          |  |  |  |
| NOTE                  | - PL | OTTING | POSITIONS E  | BASED ON | HISTORI        | C PERIOD ( | H) = 82  |  |  |  |
| 1                     |      |        | F HISTORIC E |          |                |            |          |  |  |  |
|                       |      |        | FACTOR FOR   |          |                |            | •        |  |  |  |
|                       |      |        |              |          |                |            |          |  |  |  |

-PLOTTING POSITIONS- 06-6005 FLOYD RIVER AT JAMES, IOWA

-OUTLIER TESTS -

LOW OUTLIER TEST

BASED ON 39 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.671

0 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF 206.8

#### HIGH OUTLIER TEST

BASED ON 39 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.671

1 HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF 62395. OR INPUT BASE OF 70000.

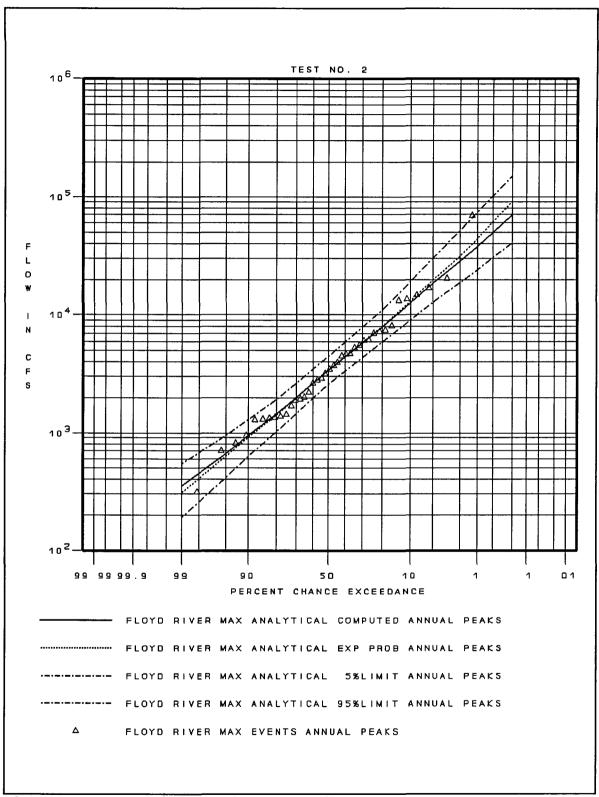
NOTE - COLLECTION OF HISTORICAL INFORMATION AND COMPARISONS WITH SIMILAR DATA SETS SHOULD BE EXPLORED IF NOT INCORPORATED IN THIS ANALYSIS.

STATISTICS AND FREQUENCY CURVE ADJUSTED FOR 1 HIGH OUTLIER(S) AND 0 HISTORIC EVENT(S)

-SKEW WEIGHING -

BASED ON 82 EVENTS, MEAN-SQUARE ERROR OF STATION SKEW = .073 DEFAULT OR INPUT MEAN-SQUARE ERROR OF GENERALIZED SKEW = .302

FINAL RESULTS


| - FREQUENCY | CURVE- | 06-6005 | FLOYD | RIVER | AT | JAMES, | IOWA |
|-------------|--------|---------|-------|-------|----|--------|------|

|                                                                                                             | EXPECTED<br>PROBABILITY<br>IN CFS                                                         | PERCI<br>CHAI<br>EXCEEL                    | ICE                              | CONFIDENCE<br>.05<br>FLOW IN                                                                                    | .95                                                                                                        |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 70900.<br>50800.<br>38700.<br>28800.<br>18600.<br>12700.<br>8010.<br>3390.<br>1470.<br>958.<br>676.<br>356. | 61300.<br>44700.<br>32100.<br>19900.<br>13200.<br>8180.<br>3390.<br>1440.<br>923.<br>637. |                                            | .0<br>.0<br>.0<br>.0<br>.0<br>.0 | 152000.<br>101000.<br>73000.<br>51200.<br>30300.<br>19300.<br>11300.<br>4440.<br>1960.<br>1320.<br>967.<br>551. | 41300.<br>31000.<br>24500.<br>19000.<br>12900.<br>9170.<br>6020.<br>2590.<br>1040.<br>632.<br>419.<br>195. |
|                                                                                                             |                                                                                           | ADJUSTED                                   | STATIS                           | STICS                                                                                                           |                                                                                                            |
| LOG TRANS                                                                                                   | FORM: FLOW, CF                                                                            | 6                                          |                                  | NUMBER OF EVE                                                                                                   | NTS                                                                                                        |
| STANDARD DEV<br>Computed skew<br>Regional skew                                                              |                                                                                           | 3.5374<br>.4377<br>.1654<br>.3000<br>.1000 | HIGH<br>LOW<br>ZERC<br>SYS1      | TORIC EVENTS<br>1 OUTLIERS<br>OUTLIERS<br>D OR MISSING<br>TEMATIC EVENTS<br>TORIC PERIOD                        | 0<br>1<br>0<br>0<br>39<br>82                                                                               |

--ZWRITE: /TEST NO. 2/FLOYD RIVER/FREQ-FLOW/MAX EVENTS/1935-73/ANNUAL PEAKS/

--ZWRITE: /TEST NO. 2/FLOYD RIVER/FREQ-FLOW/MAX ANALYTICAL/1935-73/ANNUAL PEAKS/

| +1 | +++++++++++++++++++++++++++++++++++++++ |       |     |       |     |  |  |  |  |
|----|-----------------------------------------|-------|-----|-------|-----|--|--|--|--|
| ÷  | END OF                                  | RUN   |     |       | +   |  |  |  |  |
| +  | NORMAL                                  | STOP  | IN  | FFA   | +   |  |  |  |  |
| ++ | ++++++                                  | +++++ | +++ | +++++ | +++ |  |  |  |  |



DSPLAY plot of final frequency curve (see Appendix C).

#### 2.3 Test No. 3 - Testing and Adjusting for a Low Outlier

The input data for Test 3 are the same as that for Example 3 in Appendix 12 of the WRC Guidelines. Test 3 illustrates the application to data with a low outlier. Note that the program outputs the test value in the input flow units and automatically screens for low outliers. If low outliers are found, the program outputs the preliminary results to allow comparison with the final results.

#### COMMAND LINE

### FFA I=TEST3.DAT O=TEST3.OUT DSS=FFA

#### INPUT

|    |          | 7       |              | -       |        |         |        |           |       |               |  |
|----|----------|---------|--------------|---------|--------|---------|--------|-----------|-------|---------------|--|
|    |          |         | OD FLOW      |         |        |         |        |           |       |               |  |
| 11 | WRC APPE | ENDIX 1 | 2, EXAMP     | LE 3 ·  | TESTI  | NG AND  | ADJUS  | TING FOR  | A LOW | OUTLIER       |  |
|    |          |         | RJONES       |         |        |         |        |           |       |               |  |
|    | 01-6140  | BACK C  |              | JONES   | SPRING | is, Wes | TVA    | DA=243    | SQ MI | 1929-31,39-73 |  |
|    | 016140   |         | 0.5          |         |        |         |        |           |       |               |  |
|    |          | -       |              | C/FREQ- | FLOW// | 1929-7  | 3/ANNU | AL PEAKS, | /     |               |  |
| QR | 614004   |         | 8750         |         |        |         |        |           |       |               |  |
| QR | 6140102  |         | 15500        |         |        |         |        |           |       |               |  |
| QR | 6140050  |         | 4060         |         |        |         |        |           |       |               |  |
| QR | 6140020  |         | 6300         |         |        |         |        |           |       |               |  |
| QR | 6140042  |         | 3130         |         |        |         |        |           |       |               |  |
| QR | 6140040  |         | 4160         |         |        |         |        |           |       |               |  |
| QR | 6140052  |         | 6700         |         |        |         |        |           |       |               |  |
| QR | 614010   |         | 22400        |         |        |         |        |           |       |               |  |
| QR | 6140032  | 241944  | 3880         |         |        |         |        |           |       |               |  |
| QR | 6140091  |         | 8050         |         |        |         |        |           |       |               |  |
| QR | 6140060  |         | 4020         |         |        |         |        |           |       |               |  |
| QR | 6140031  | 151947  | 1600         |         |        |         |        |           |       |               |  |
| QR | 6140041  | 141948  | 4460         |         |        |         |        |           |       |               |  |
| QR | 6140123  |         | 4230         |         |        |         |        |           |       |               |  |
| QR | 6140020  | 021950  | 3010         |         |        |         |        |           |       |               |  |
| QR | 6140120  | 051950  | 9150         |         |        |         |        |           |       |               |  |
| QR | 6140042  | 281952  | 5100         |         |        |         |        |           |       |               |  |
| QR | 6140112  | 221952  | <b>9</b> 820 |         |        |         |        |           |       |               |  |
| QR | 6140030  | 021954  | 6200         |         |        |         |        |           |       |               |  |
| QR | 614008′  | 191955  | 10700        |         |        |         |        |           |       |               |  |
| QR | 6140031  | 151956  | 3880         |         |        |         |        |           |       |               |  |
| QR | 6140021  |         | 3420         |         |        |         |        |           |       |               |  |
| QR | 6140032  | 271958  | 3240         |         |        |         |        |           |       |               |  |
| QR | 6140060  | 031959  | 6800         |         |        |         |        |           |       |               |  |
| QR | 6140050  | 091960  | 3740         |         |        |         |        |           |       |               |  |
| QR | 6140021  | 191961  | 4700         |         |        |         |        |           |       |               |  |
| QR | 6140032  | 221962  | 4380         |         |        |         |        |           |       |               |  |
| QR | 6140032  |         | 5190         |         |        |         |        |           |       |               |  |
| QR | 6140011  | 101964  | 3960         |         |        |         |        |           |       |               |  |
| QR | 6140030  | 061965  | 5600         |         |        |         |        |           |       |               |  |
| QR | 6140     | 1966    | 4670         |         |        |         |        |           |       |               |  |
| QR | 6140     | 1967    | 7080         |         |        |         |        |           |       |               |  |
| QR | 6140     | 1968    | 4640         |         |        |         |        |           |       |               |  |
| QR | 6140     | 1969    | 536          |         |        |         |        |           |       |               |  |
| QR | 6140     | 1970    | 6680         |         |        |         |        |           |       |               |  |
| QR | 6140     | 1971    | 8360         |         |        |         |        |           |       |               |  |
| QR | 6140     | 1972    | 18700        |         |        |         |        |           |       |               |  |
| QR | 6140     | 1973    | 5210         |         |        |         |        |           |       |               |  |
|    |          |         |              |         |        |         |        |           |       |               |  |

QR 6140 ED

#### **OUTPUT**

\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\* \* FFA \* \* \* FLOOD FREQUENCY ANALYSIS \* \* U.S. ARMY CORPS OF ENGINEERS \* PROGRAM DATE: FEB 1982 \* \* THE HYDROLOGIC ENGINEERING CENTER \* \* \* \* VERSION DATE: 10 JAN 1992 609 SECOND STREET \* RUN DATE AND TIME: \* \* \* DAVIS, CALIFORNIA 95616 \* 10 JAN 92 10:45:47 \* \* \* (916) 756-1104 + \* \*\*\*\*\* \*\*\*\*\*\* INPUT FILE NAME: TEST3.DAT OUTPUT FILE NAME: TEST3.OUT DSS FILE NAME: FFA -----DSS---ZOPEN: Existing File Opened, File: FFA.DSS Unit: 71; DSS Version: 6-FN \*\*TITLE RECORD(S)\*\* TT TEST NO. 3 FLOOD FLOW FREQUENCY ANALYSIS PROGRAM WRC APPENDIX 12, EXAMPLE 3 - TESTING AND ADJUSTING FOR A LOW OUTLIER ΤT TT BACK CREEK NEAR JONES SPRINGS, WV **\*\*STATION IDENTIFICATION\*\*** ID 01-6140 BACK CR NEAR JONES SPRINGS, WEST VA DA=243 SQ MI 1929-31,39-73 \*\*GENERALIZED SKEW\*\* ISTN GGMSE SKEW GS 016140 .000 .50 \*\*DSS WRITE PATHNAME\*\* ZW /TEST NO. 3/BACK CREEK/FREQ-FLOW//1929-73/ANNUAL PEAKS/ **\*\*SYSTEMATIC EVENTS\*\* 38 EVENTS TO BE ANALYZED** \*\*END OF INPUT DATA\*\* \*\*\*\*\*\*\* ------PRELIMINARY RESULTS ----

-SKEW WEIGHING -

BASED ON 38 EVENTS, MEAN-SQUARE ERROR OF STATION SKEW = .197 DEFAULT OR INPUT MEAN-SQUARE ERROR OF GENERALIZED SKEW = .302

#### PRELIMINARY RESULTS

| CURVE                                                                                                          | COMPUTED EXPECTED<br>CURVE PROBABILITY<br>FLOW IN CFS                    |                                    | ENT<br>NCE<br>DANCE        | CONFIDENCE LIMITS<br>.05 .95<br>'FLOW IN CFS                                                                    |                                                                                                    |  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| 28900.<br>24600.<br>21500.<br>18500.<br>14700.<br>11900.<br>9130.<br>5390.<br>3080.<br>2280.<br>1760.<br>1070. | 27000.<br>23200.<br>19600.<br>15200.<br>9240.<br>5390.<br>3040.<br>2210. |                                    | .0<br>.0<br>.0<br>.0<br>.0 | 45200.<br>37200.<br>31600.<br>26300.<br>20000.<br>15500.<br>11500.<br>6430.<br>3710.<br>2810.<br>2230.<br>1440. | 21100.<br>18400.<br>14300.<br>11700.<br>9650.<br>7580.<br>4520.<br>2460.<br>1730.<br>1280.<br>700. |  |
|                                                                                                                | SYS                                                                      | STEMATIC                           | STATIS                     | STICS                                                                                                           | · · · · · ·                                                                                        |  |
| LOG TRANS                                                                                                      | FORM: FLOW, CFS                                                          | S                                  |                            | NUMBER OF EVE                                                                                                   | NTS                                                                                                |  |
| MEAN<br>STANDARD DEV<br>COMPUTED SKEW<br>REGIONAL SKEW<br>ADOPTED SKEW                                         |                                                                          | .2804 HIG<br>7311 LOW<br>.5000 ZER |                            | FORIC EVENTS<br>H OUTLIERS<br>OUTLIERS<br>D OR MISSING<br>FEMATIC EVENTS                                        | 0<br>0<br>0<br>38                                                                                  |  |

-FREQUENCY CURVE- 01-6140 BACK CR NEAR JONES SPRINGS, WEST VA

| FINAL | RESULTS |
|-------|---------|
|-------|---------|

| -PLOTTING POSITIONS | - 01-6140 BACK CR | NEAR JONES SPRINGS | , WEST VA |
|---------------------|-------------------|--------------------|-----------|
|---------------------|-------------------|--------------------|-----------|

|     | EVE | NTS ANA |        | ORDERED EVENTS |       |        |          |
|-----|-----|---------|--------|----------------|-------|--------|----------|
| I   |     |         | FLOW   |                | WATER | FLOW   | WEIBULL  |
| MON | DAY | YEAR    | CFS    | RANK           | YEAR  | CFS    | PLOT POS |
| 4   | 17  | 1929    | 8750.  | 1              | 1943  | 22400. | 2.56     |
|     |     |         |        |                |       |        |          |
| 10  | 23  | 1929    | 15500. | 2              | 1972  | 18700. | 5.13     |
| 5   | 8   | 1931    | 4060.  | 3              | 1930  | 15500. | 7.69     |
| 2   | 4   | 1939    | 6300.  | 4              | 1955  | 10700. | 10.26    |
| 4   | 20  | 1940    | 3130.  | 5              | 1953  | 9820.  | 12.82    |
| 4   | 6   | 1941    | 4160.  | 6              | 1951  | 9150.  | 15.38    |
| 5   | 22  | 1942    | 6700.  | 7              | 1929  | 8750.  | 17.95    |
| 10  | 15  | 1942    | 22400. | 8              | 1971  | 8360.  | 20.51    |
| 3   | 24  | 1944    | 3880.  | 9              | 1945  | 8050.  | 23.08    |
| 9   | 18  | 1945    | 8050.  | 10             | 1967  | 7080.  | 25.64    |
| 6   | 3   | 1946    | 4020.  | 11             | 1959  | 6800.  | 28.21    |
| 3   | 15  | 1947    | 1600.  | 12             | 1942  | 6700.  | 30.77    |
| 4   | 14  | 1948    | 4460.  | 13             | 1970  | 6680.  | 33.33    |
| 12  | 31  | 1948    | 4230.  | 14             | 1939  | 6300.  | 35.90    |
| 2   | 2   | 1950    | 3010.  | 15             | 1954  | 6200.  | 38.46    |
| 12  | 5   | 1950    | 9150.  | 16             | 1965  | 5600.  | 41.03    |
| 4   | 28  | 1952    | 5100.  | 17             | 1973  | 5210.  | 43.59    |
| 11  | 22  | 1952    | 9820.  | 18             | 1963  | 5190.  | 46.15    |
| 3   | 2   | 1954    | 6200.  | 19             | 1952  | 5100.  | 48.72    |
| 8   | 19  | 1955    | 10700. | 20             | 1961  | 4700.  | 51.28    |
| 32  | 15  | 1956    | 3880.  | 21             | 1966  | 4670.  | 53.85    |
| 2   | 10  | 1957    | 3420.  | 22             | 1968  | 4640.  | 56.41    |
| 3   | 27  | 1958    | 3240.  | 23             | 1948  | 4460.  | 58.97    |
| 6   | 3   | 1959    | 6800.  | 24             | 1962  | 4380.  | 61.54    |
| 52  | 9   | 1960    | 3740.  | 25             | 1949  | 4230.  | 64.10    |
| 2   | 19  | 1961    | 4700.  | 26             | 1941  | 4160.  | 66.67    |
| 3   | 22  | 1962    | 4380.  | 27             | 1931  | 4060.  | 69.23    |
| 3   | 20  | 1963    | 5190.  | 28             | 1946  | 4020.  | 71.79    |
| 1   | 10  | 1964    | 3960.  | 29             | 1964  | 3960.  | 74.36    |
| 3   | 6   | 1965    | 5600.  | 30             | 1956  | 3880.  | 76.92    |
| 0   | 0   | 1966    | 4670.  | 31             | 1944  | 3880.  | 79.49    |
| 0   | 0   | 1967    | 7080.  | 32             | 1960  | 3740.  | 82.05    |
| l o | Ó   | 1968    | 4640.  | 33             | 1957  | 3420.  | 84.62    |
| 0   | Ó   | 1969    | 536.   | 34             | 1958  | 3240.  | 87.18    |
| Ó   | Ó   | 1970    | 6680.  | 35             | 1940  | 3130.  | 89.74    |
| 0   | 0   | 1971    | 8360.  | 36             | 1950  | 3010.  | 92.31    |
| 0   | 0   | 1972    | 18700. | 37             | 1947  | 1600.  | 94.87    |
| Ō   | Õ   | 1973    | 5210.  | 38             | 1969  | 536.   | 97.44    |
|     |     |         |        |                |       |        |          |

-OUTLIER TESTS -

#### LOW OUTLIER TEST

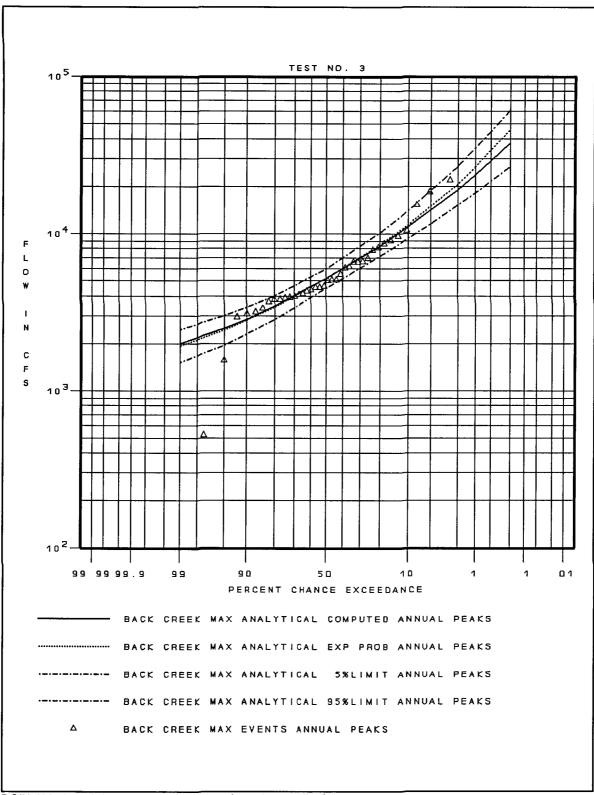
BASED ON 38 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.661 1 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF 945.8 STATISTICS AND FREQUENCY CURVE ADJUSTED FOR 1 LOW OUTLIER(S)

#### HIGH OUTLIER TEST

BASED ON 37 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.650 0 HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF 22760. -SKEW WEIGHING -

| BASED ON 38 EVENTS   | MEAN-SQUARE EF | RROR OF STATION | SKEW = | .186 |
|----------------------|----------------|-----------------|--------|------|
| DEFAULT OR INPUT MEA | N-SQUARE ERROR | OF GENERALIZED  | SKEW = | .302 |

#### FINAL RESULTS


| FREQUENCY (                                                                                                    | URVE- 01-6140                                                                      | BACK CR                                    | NEAR                 | JONES SPRINGS,                                                                                        | WEST VA                                                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| COMPUTED<br>CURVE<br>FLOW                                                                                      |                                                                                    | PERCI<br>CHAI<br>EXCEEI                    | NCE                  | CONFIDENCE<br>.05<br>FLOW IN                                                                          | .95                                                                                                           |  |  |
| 37700.<br>29300.<br>23900.<br>19400.<br>14400.<br>11200.<br>8440.<br>5230.<br>3490.<br>2910.<br>2530.<br>2020. | 33900.<br>26700.<br>21000.<br>15000.<br>11500.<br>5230.<br>3460.<br>2860.<br>2480. | 1                                          | .0<br>.0<br>.0<br>.0 | 61000.<br>44800.<br>35000.<br>27100.<br>18900.<br>14100.<br>6030.<br>4070.<br>3440.<br>3040.<br>2490. | 27000.<br>21700.<br>18300.<br>15200.<br>11700.<br>9390.<br>7250.<br>4510.<br>2890.<br>2340.<br>1990.<br>1520. |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                          | SYNTHETIC STATISTICS                                                               |                                            |                      |                                                                                                       |                                                                                                               |  |  |
| LOG TRANSI                                                                                                     | LOG TRANSFORM: FLOW, CFS NUMBER OF EVENTS                                          |                                            |                      |                                                                                                       |                                                                                                               |  |  |
| MEAN<br>STANDARD<br>COMPUTED<br>REGIONAL<br>ADOPTED                                                            | DEV<br>SKEW<br>SKEW                                                                | 3.7413<br>.2315<br>.6238<br>.5000<br>.6000 | HIGH<br>LOW<br>ZER(  | TORIC EVENTS<br>H OUTLIERS<br>OUTLIERS<br>D OR MISSING<br>FEMATIC EVENTS                              | 0<br>0<br>1<br>0<br>38                                                                                        |  |  |

FREQUENCY CURVE- 01-6140 BACK CR NEAR JONES SPRINGS WEST VA

--ZWRITE: /TEST NO. 3/BACK CREEK/FREQ-FLOW/MAX EVENTS/1929-73/ANNUAL PEAKS/

--ZWRITE: /TEST NO. 3/BACK CREEK/FREQ-FLOW/MAX ANALYTICAL/1929-73/ANNUAL PEAKS/

| ****** |         |       |     |       |     |  |
|--------|---------|-------|-----|-------|-----|--|
| +      | END OF  | RUN   |     |       | +   |  |
| +      | NORMAL  | STOP  | IN  | FFA   | +   |  |
| ++     | +++++++ | +++++ | +++ | +++++ | +++ |  |



DSPLAY plot of final frequency curve (see Appendix C).

# 2.4 Test No. 4 - Zero-Flood Years

The input data for Test 4 are the same as that for Example 4 in Appendix 12 of the WRC Guidelines. Test 4 illustrates the application to data that includes several zero-flood events.

#### COMMAND LINE

# FFA I=TEST4.DAT O=TEST4.OUT P=Y DSS=FFA

| T      | WRC APPEN | IDIX 12 | 2, EXAMP       | LE 4 - ZI | ERO FLOOD  | YEARS           |         |         |
|--------|-----------|---------|----------------|-----------|------------|-----------------|---------|---------|
| T      | ORESTIMBA | CREEL   | <b>ČNEAR N</b> | EWMAN, C  | A          |                 |         |         |
| D      | 11-2745   | OREST   | MBA CRE        | EK NEÅR I | NEWMAN, CA | DA=134 SQ       | MI      | 1932-73 |
|        | 12745     |         | -0.3           |           |            |                 |         |         |
| ZW     | /TEST NO. | 4/0R1   | ESTIMBA        | CREEK/FRI | EQ-FLOW//1 | 932-73/ANNUAL F | PFAKS/  |         |
|        | 27450208  |         | 4260           |           |            |                 | 2/11(0) |         |
| R      | 27450129  | 1933    | 345            |           |            |                 |         |         |
|        | 27450101  |         | 516            |           |            |                 |         |         |
| R      | 27450408  |         | 1320           |           |            |                 |         |         |
|        | 27450213  |         | 1200           |           |            |                 |         |         |
| R      | 27450213  |         | 2180           |           |            |                 |         |         |
|        | 27450211  |         | 3230           |           |            |                 |         |         |
| R      | 27450309  |         | 115            |           |            |                 |         |         |
|        | 27450227  |         | 3440           |           |            |                 |         |         |
| R      | 27450404  |         | 3070           |           |            |                 |         |         |
|        | 27450124  |         | 1880           |           |            |                 |         |         |
| R      | 27450121  | 1943    | 6450           |           |            |                 |         |         |
| R      | 27450229  | 1944    | 1290           |           |            |                 |         |         |
| R      | 27450202  | 1945    | 5970           |           |            |                 |         |         |
| R      | 27451225  | 1945    | 782            |           |            |                 |         |         |
| R      | 2745      | 1947    | 0              |           |            |                 |         |         |
| R      | 2745      | 1948    | 0              |           |            |                 |         |         |
| R      | 27450312  | 1949    | 335            |           |            |                 |         |         |
| R      | 27450205  | 1950    | 175            |           |            |                 |         |         |
| R      | 27451203  | 1950    | 2920           |           |            |                 |         |         |
| R      | 27450112  | 1952    | 3660           |           |            |                 |         |         |
| R      | 27451207  | 1952    | 147            |           |            |                 |         |         |
| R      | 2745      | 1954    | 0              |           |            |                 |         |         |
| R      | 27450119  | 1955    | 16             |           |            |                 |         |         |
| R      | 27451223  | 1955    | 5620           |           |            |                 |         |         |
| R      | 27450224  | 1957    | 1440           |           |            |                 |         |         |
|        | 27450402  |         | 10200          |           |            |                 |         |         |
|        | 27450216  |         | 5380           |           |            |                 |         |         |
|        | 27450210  |         | 448            |           |            |                 |         |         |
| R      |           | 1961    | 0              |           |            |                 |         |         |
| R      | 27450215  |         | 1740           |           |            |                 |         |         |
| IR     | 27450201  |         | 8300           |           |            |                 |         |         |
| R      | 27450122  |         | 156            |           |            |                 |         |         |
| R      |           | 1966    | 560            |           |            |                 |         |         |
| R      | 27451230  |         | 128            |           |            |                 |         |         |
| IR     | 27450124  |         | 4200           |           |            |                 |         |         |
| R      |           | 1968    | 0              |           |            |                 |         |         |
| R      | 27450125  |         | 5080           |           |            |                 |         |         |
| R      | 27450301  |         | 1010           |           |            |                 |         |         |
| R      | 27451221  |         | 584            |           |            |                 |         |         |
| R<br>R |           | 1972    | 0              |           |            |                 |         |         |
| -      | 27450211  | 17/2    | 1510           |           |            |                 |         |         |

| TA | пт | TT |
|----|----|----|
|    |    |    |
|    |    |    |

### **OUTPUT**

| * FFA *<br>* FLOOD FREQUENCY ANALYSIS *<br>* PROGRAM DATE: FEB 1982 *<br>* VERSION DATE: 10 JAN 1992 *<br>* RUN DATE AND TIME: *<br>* 10 JAN 92 10:45:51 *<br>* | * THE HYDROLOGIC ENGINEERING CENTER *<br>* 609 SECOND STREET *<br>* DAVIS, CALIFORNIA 95616 * |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| INPUT FILE NAME: TEST4.DAT<br>OUTPUT FILE NAME: TEST4.OUT<br>DSS FILE NAME: FFA                                                                                 |                                                                                               |
| DSSZOPEN: Existing File Op<br>Unit: 71; DSS                                                                                                                     |                                                                                               |
| **TITLE RECORD(S)**<br>TT TEST NO. 4 FLOOD FLOW FREQUENCY A<br>TT WRC APPENDIX 12, EXAMPLE 4 - ZERO<br>TT ORESTIMBA CREEK NEAR NEWMAN, CA                       |                                                                                               |
| **STATION IDENTIFICATION**<br>ID 11-2745 ORESTIMBA CREEK NEAR NEW                                                                                               | MAN, CA DA=134 SQ MI 1932-73                                                                  |
| **GENERALIZED SKEW**<br>ISTN GGMSE SKEW<br>GS 112745 .00030                                                                                                     |                                                                                               |
| **DSS WRITE PATHNAME**<br>ZW /TEST NO. 4/ORESTIMBA CREEK/FREQ-                                                                                                  | FLOW//1932-73/ANNUAL PEAKS/                                                                   |
| **SYSTEMATIC EVENTS**<br>42 EVENTS TO BE ANALYZED                                                                                                               |                                                                                               |
| **END OF INPUT DATA**<br>ED ++++++++++++++++++++++++++++++++++++                                                                                                |                                                                                               |
|                                                                                                                                                                 |                                                                                               |

NOTE - ADOPTED SKEW EQUALS COMPUTED SKEW AND PRELIMINARY FREQUENCY STATISTICS ARE FOR THE CONDITIONAL FREQUENCY CURVE BECAUSE OF ZERO OR MISSING EVENTS.

—PRELIMINARY RESULTS —

### PRELIMINARY RESULTS

| Contraction of the local division of the loc |                                                                                       |                                            |                                  |                                                                                                           |                                                           | _ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---|
| CURVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EXPECTED<br>PROBABILITY<br>IN CFS                                                     | PERCI<br>CHAI<br>EXCEEI                    | NCE                              | CONFIDENCE<br>.05<br>FLOW IN                                                                              | .95                                                       | ; |
| 20400.<br>17400.<br>15100.<br>12600.<br>9220.<br>6690.<br>4260.<br>1470.<br>379.<br>165.<br>78.<br>16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19200.<br>16400.<br>13500.<br>9750.<br>6950.<br>4360.<br>1470.<br>363.<br>151.<br>67. |                                            | .0<br>.0<br>.0<br>.0<br>.0<br>.0 | 46600.<br>38600.<br>32400.<br>26100.<br>18000.<br>12300.<br>7320.<br>2250.<br>583.<br>272.<br>139.<br>35. | 8590.<br>7330.<br>5560.<br>4160.<br>2750.<br>977.<br>225. |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CON                                                                                   | DITIONAL                                   | STATIS                           | STICS                                                                                                     |                                                           |   |
| LOG TRANSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FORM: FLOW, CFS                                                                       | 6                                          |                                  | NUMBER OF EVE                                                                                             | NTS                                                       |   |
| MEAN<br>STANDARD<br>COMPUTED<br>REGIONAL<br>ADOPTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEV<br>SKEW<br>SKEW                                                                   | 3.0786<br>.6443<br>.8360<br>.3000<br>.8360 | HIGH<br>LOW<br>ZERC              | TORIC EVENTS<br>1 OUTLIERS<br>OUTLIERS<br>D OR MISSING<br>TEMATIC EVENTS                                  | 0<br>0<br>6<br>42                                         |   |

-FREQUENCY CURVE- 11-2745 ORESTIMBA CREEK NEAR NEWMAN, CA

### CONDITIONAL PROBABILITY ADJUSTED ORDINATES

| - FREQUENCY | CURVE- | 11-2745 | ORESTIMBA | CREEK | NEAR | NEWMAN, | CA |
|-------------|--------|---------|-----------|-------|------|---------|----|
|             |        |         |           |       |      |         |    |

|        | EXPECTED<br>PROBABILITY<br>IN CFS | PERCENT<br>CHANCE<br>Exceedance | CONFIDENCE<br>.05<br>FLOW IN | .95 |
|--------|-----------------------------------|---------------------------------|------------------------------|-----|
| 19869. | -1.                               | .2                              | -1.                          | -1. |
| 16898. | -1.                               | .5                              | -1.                          | -1. |
| 14498. | -1.                               | 1.0                             | -1.                          | -1. |
| 12025. | -1.                               | 2.0                             | -1.                          | -1. |
| 8624.  | -1.                               | 5.0                             | -1.                          | -1. |
| 6101.  | -1.                               | 10.0                            | -1.                          | -1. |
| 3735.  | -1.                               | 20.0                            | -1.                          | -1. |
| 1077.  | -1.                               | 50.0                            | -1.                          | -1. |
| 104.   | -1.                               | 80.0                            | -1.                          | -1. |
| 0.     | -1.                               | 90.0                            | -1.                          | -1. |
| 0.     | -1.                               | 95.0                            | -1.                          | -1. |
| 0.     | -1.                               | 99.0                            | -1.                          | -1. |

| QUE<br>D ( |            | - TO | 11-2745 | ORESTIMBA (<br>FLOW IN CFS | CREEK NEAR                             | NEWMAN | I, CA    | DA=134 S    | SQ MI   |     | 1932      | 2-73 |     |
|------------|------------|------|---------|----------------------------|----------------------------------------|--------|----------|-------------|---------|-----|-----------|------|-----|
| ю          |            |      |         |                            |                                        |        |          |             |         |     |           | х.   | -X- |
| :          | :          | :    | •       | •                          | •                                      | :      |          |             | :       | :   |           | ^ :  |     |
| •          | •          | •    | •       | •                          | •                                      | •      | -        |             | •       | •   | х         | •    |     |
| •          | •          | •    | •       | •                          | •                                      | •      | -        |             | •       | . X | •         | •    |     |
| o          | •••••••••• | ·    | ·       |                            |                                        | •      | •••••    |             | •<br>   | 0   | •••••••   | ·    |     |
| •          | •          | •    | •       | •                          | -                                      | •      |          |             | . X     | •   | •         | •    |     |
| :          | :          | :    | :       | •                          |                                        | :      |          |             | . 0     | •   | :         | :    |     |
| •          | -          |      |         |                            |                                        | :      |          |             | хo      |     |           |      |     |
| o          |            | •    | •       | •                          | •                                      | •      |          | 00          | 00      |     |           | •    |     |
| ·.         |            |      |         | •                          | •                                      | •      |          | 0           | •       |     |           |      |     |
| •          | •          | •    | •       | •                          |                                        | •      | •        | 0           | •       | •   | •         | •    |     |
| •          | •          | -    | •       | •                          | •                                      | •      | ċ        | . OOX       | •       | -   | •         | •    |     |
| :          | :          | :    | :       |                            | :                                      | :      | 0.       |             |         | :   | :         | :    |     |
| •          | -          | •    | •       | •                          | •                                      | •      | <u> </u> |             | •       | •   | •         | •    |     |
| o          |            |      | •       | ·                          | •                                      | •      | 0.       |             | •       |     | ••••••    | ·    |     |
| •          | •          | •    | -       | •                          | •                                      | •      | 00.      |             | •       | •   | •         | •    |     |
| •          | -          | -    | -       | •                          | •                                      | •      | 0.       | ,           | •       | •   | •         | •    |     |
| :          | :          | :    |         | •                          |                                        | 0.0    |          |             | •       | •   | :         | :    |     |
| o          | •          | •    | •       | •                          | •                                      | ×      | -        |             | •       | •   | •         | •    |     |
| U          |            |      |         |                            |                                        | 0      |          |             |         |     |           |      |     |
|            |            |      |         | •                          |                                        | ο.     |          | •           | •       | -   | •         | •    |     |
| ٠          | •          | •    | •       | •                          | •                                      | •      | •        |             | •       | •   | -         | •    |     |
| :          | :          | :    | :       |                            | :                                      | ω :    |          |             | :       | :   | :         | :    |     |
| 0          |            |      |         |                            | ······································ |        |          |             |         |     |           |      |     |
| •          | •          | •    | •       | •                          | .0                                     | -      | •        |             | •       | •   | •         | •    |     |
| :          |            | :    |         |                            | .o                                     |        |          |             |         | :   | :         |      |     |
| ٠          | -          | •    | •       | •                          | 0                                      | •      | •        | ,           | •       | -   | -         | •    |     |
| :          | :          | :    | :       |                            | :                                      | :      |          |             |         | :   | :         | :    |     |
|            | •          | •    | •       | -                          | •                                      | •      | -        |             | •       | •   | •         | •    |     |
| 0          |            |      |         |                            | 0.                                     |        |          | *********** | **      |     |           |      | ••  |
| :          |            | :    |         |                            | ŏ.                                     | :      |          |             |         |     | :         |      |     |
| •          | •          | •    | •       | •                          | <u> </u>                               | •      | -        |             | •       | •   | •         | •    |     |
| :          | :          |      | :       | •                          | ° .                                    | :      |          |             | •       | :   | :         | :    |     |
| 0          |            |      |         |                            | -X                                     |        |          |             |         |     |           |      |     |
| •          | -          | •    | •       | •                          | -                                      | •      | -        |             | •       | -   | •         | •    |     |
| :          | :          | :    |         |                            | •                                      | •      |          |             |         | •   | :         | :    |     |
| •          | •          | •    | •       | •                          | •                                      | •      | -        | 1           | •       | •   | •         | •    |     |
| o          | •          | •    | •       | •                          |                                        | •      |          |             | •       | •   | •         | •    |     |
| ٠.         | -          |      | •       | •                          |                                        |        |          |             | •       | •   | •         |      |     |
| •          | •          | •    | •       | •                          | •                                      | •      | -        |             | •       | •   | •         | •    |     |
| :          | -          | :    | •       | •                          | •                                      | :      |          |             | :       | :   | :         | :    |     |
|            | •          |      | •       | •                          |                                        | •      | -        |             | •       | •   | •         | •    |     |
| •          | •          | •    | •       | -                          | •                                      | •      | •        | •           | •       | •   | •         | •    |     |
| o          | ·          | ·•   | ••••••  | •                          | ••••••                                 | •      | ••••••   |             | ••••••• | •   | ••••••••• | ••   |     |
| •          | •          | •    | •       | • _                        | •                                      | •      | -        |             | -       | •   | •         | •    |     |
| •          | •          | •    | •       | . 0                        | •                                      | •      | •        |             | •       | •   | •         | •    |     |
| :          | •          | :    | :       |                            | •                                      | :      |          |             | •       | •   | :         | :    |     |
| ~          | •          | •    | _ •     |                            | •                                      | •      | •        |             | •       | •   | •         | •    | _   |
| 0<br>9.9   | 99.7       | 99.  | 97.     | ZZZ-Z-Z<br>90.             | 70.                                    | 50.    | 30       | )_          | 10.     | 3.  | 1.        | .3   |     |
|            |            |      |         | HHIGH OUTLIE               |                                        |        |          | -           |         |     |           |      |     |

FINAL RESULTS

| MON DAY         YEAR         CFS         RANK         YEAR         CFS         PL           2         8         1932         4260.         1         1958         10200.           1         29         1933         345.         2         1963         8300.           1         1         1934         516.         3         1943         6450.           4         8         1935         1320.         4         1945         5970.           2         13         1936         1200.         5         1956         5620.           2         13         1937         2180.         6         1959         5380.           2         11         1938         3230.         7         1969         5080.           3         9         1939         115.         8         1932         4260.                                                                                 | IBULL         .0T       POS         2.33       4.65         6.98       9.30         11.63       13.95         16.28       16.28 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| FLOW         WATER         FLOW         WATER         FLOW         WE           MON DAY         YEAR         CFS         RANK         YEAR         CFS         PL           2         8         1932         4260.         1         1958         10200.           1         29         1933         345.         2         1963         8300.           1         1         1934         516.         3         1943         6450.           4         8         1935         1320.         4         1945         5970.           2         13         1936         1200.         5         1956         5620.           2         13         1937         2180.         6         1959         5380.           2         11         1938         3230.         7         1969         5080.           3         9         1939         115.         8         1932         4260. | OT POS<br>2.33<br>4.65<br>6.98<br>9.30<br>11.63<br>13.95                                                                        |
| MON DAY         YEAR         CFS         RANK         YEAR         CFS         PL           2         8         1932         4260.         1         1958         10200.           1         29         1933         345.         2         1963         8300.           1         1         1934         516.         3         1943         6450.           4         8         1935         1320.         4         1945         5970.           2         13         1936         1200.         5         1956         5620.           2         13         1937         2180.         6         1959         5380.           2         11         1938         3230.         7         1969         5080.           3         9         1939         115.         8         1932         4260.                                                                                 | OT POS<br>2.33<br>4.65<br>6.98<br>9.30<br>11.63<br>13.95                                                                        |
| 2         8         1932         4260.         1         1958         10200.           1         29         1933         345.         2         1963         8300.           1         1         1934         516.         3         1943         6450.           4         8         1935         1320.         4         1945         5970.           2         13         1936         1200.         5         1956         5620.           2         13         1937         2180.         6         1959         5380.           2         11         1938         3230.         7         1969         5080.           3         9         1939         115.         8         1932         4260.                                                                                                                                                                             | 2.33<br>4.65<br>6.98<br>9.30<br>11.63<br>13.95                                                                                  |
| 1       29       1933       345.       2       1963       8300.         1       1       1934       516.       3       1943       6450.         4       8       1935       1320.       4       1945       5970.         2       13       1936       1200.       5       1956       5620.         2       13       1937       2180.       6       1959       5380.         2       11       1938       3230.       7       1969       5080.         3       9       1939       115.       8       1932       4260.                                                                                                                                                                                                                                                                                                                                                                    | 4.65<br>6.98<br>9.30<br>11.63<br>13.95                                                                                          |
| 1       1       1934       516.       3       1943       6450.         4       8       1935       1320.       4       1945       5970.         2       13       1936       1200.       5       1956       5620.         2       13       1937       2180.       6       1959       5380.         2       11       1938       3230.       7       1969       5080.         3       9       1939       115.       8       1932       4260.                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.98<br>9.30<br>11.63<br>13.95                                                                                                  |
| 1       1       1934       516.       3       1943       6450.         4       8       1935       1320.       4       1945       5970.         2       13       1936       1200.       5       1956       5620.         2       13       1937       2180.       6       1959       5380.         2       11       1938       3230.       7       1969       5080.         3       9       1939       115.       8       1932       4260.                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.98<br>9.30<br>11.63<br>13.95                                                                                                  |
| 4       8       1935       1320.       4       1945       5970.         2       13       1936       1200.       5       1956       5620.         2       13       1937       2180.       6       1959       5380.         2       11       1938       3230.       7       1969       5080.         3       9       1939       115.       8       1932       4260.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.30<br>11.63<br>13.95                                                                                                          |
| 2       13       1936       1200.       5       1956       5620.         2       13       1937       2180.       6       1959       5380.         2       11       1938       3230.       7       1969       5080.         3       9       1939       115.       8       1932       4260.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.63<br>13.95                                                                                                                  |
| 2       13       1937       2180.       6       1959       5380.         2       11       1938       3230.       7       1969       5080.         3       9       1939       115.       8       1932       4260.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.95                                                                                                                           |
| 3 9 1939 115. 8 1932 4260.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 |
| 3 9 1939 115. 8 1932 4260.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.60                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.93                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.95                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.58                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.91                                                                                                                           |
| 2 29 1944 1290. 13 1941 3070.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.23                                                                                                                           |
| 2 2 1945 5970. 14 1951 2920.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.56                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34.88                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37.21                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39.53                                                                                                                           |
| 3 12 1949 335. 18 1973 1510.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41.86                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.19                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.51                                                                                                                           |
| 1 12 1952 3660. 21 1944 1290.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48.84                                                                                                                           |
| 12 7 1952 147. 22 1936 1200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51.16                                                                                                                           |
| 0 0 1954 0. 23 1970 1010.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53.49                                                                                                                           |
| 1 19 1955 16. 24 1946 782.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.81                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.14                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60.47                                                                                                                           |
| 4 2 1958 10200. 27 1934 516.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62.79                                                                                                                           |
| 2 16 1959 5380. 28 1960 448.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65.12                                                                                                                           |
| 2 10 1960 448. 29 1933 345.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67.44                                                                                                                           |
| 0 0 1961 0. 30 1949 335.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69.77                                                                                                                           |
| 2 15 1962 1740. 31 1950 175.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72.09                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74.42                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76.74                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79.07                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81.40                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83.72                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86.05                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88.37                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90.70                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93.02                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95.35                                                                                                                           |
| 2 11 1973 1510. 42 1961 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97.67                                                                                                                           |

-PLOTTING POSITIONS- 11-2745 ORESTIMBA CREEK NEAR NEWMAN, CA

-OUTLIER TESTS -

LOW OUTLIER TEST

BASED ON 36 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.639

1 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF  $\ 23.9$  based on the statistics after  $\ 6$  zero or missing events deleted

STATISTICS AND FREQUENCY CURVE ADJUSTED FOR 1 LOW OUTLIER(S) AND/OR 6 ZERO OR MISSING EVENT(S)

#### HIGH OUTLIER TEST

BASED ON 35 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.628

0 HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF 41786.

-SKEW WEIGHING -

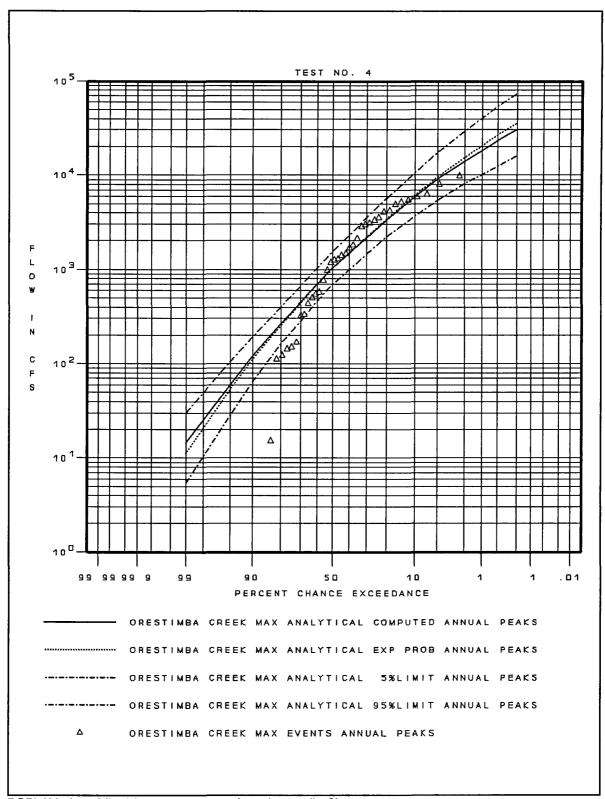
| BASED ON 4 | 2 EVENTS, | MEAN-SQUAR  | RE ERROR | OF STATION  | SKEW = | .167 |
|------------|-----------|-------------|----------|-------------|--------|------|
| DEFAULT OR | INPUT MEA | N-SQUARE EI | RROR OF  | GENERALIZED | SKEW = | .302 |

FINAL RESULTS

-FREQUENCY CURVE- 11-2745 ORESTIMBA CREEK NEAR NEWMAN, CA

| COMPUTED<br>CURVE<br>FLOW                                                                              | EXPECTED<br>PROBABILITY<br>IN CFS                                              | PERCI<br>CHAI<br>EXCEEL                 | NCE                        | CONFIDENCE<br>.05<br>FLOW IN                                                                              | .95                                                                                                |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 31000.<br>23700.<br>18700.<br>14200.<br>9160.<br>6000.<br>3450.<br>1050.<br>266.<br>121.<br>60.<br>15. | 27200.<br>21000.<br>15600.<br>9770.<br>6260.<br>3540.<br>1050.<br>258.<br>113. | 1                                       | .0<br>.0<br>.0<br>.0<br>.0 | 75500.<br>54800.<br>41300.<br>29900.<br>17800.<br>10900.<br>5770.<br>1570.<br>405.<br>195.<br>105.<br>31. | 16200.<br>12800.<br>10400.<br>8160.<br>5520.<br>3770.<br>2260.<br>708.<br>161.<br>65.<br>29.<br>5. |
|                                                                                                        | S                                                                              | YNTHETIC                                | STATIS                     | STICS                                                                                                     |                                                                                                    |
| LOG TRANSI                                                                                             | FORM: FLOW, CF                                                                 | S                                       |                            | NUMBER OF EVE                                                                                             | INTS                                                                                               |
| MEAN<br>STANDARD<br>COMPUTED<br>REGIONAL<br>ADOPTED S                                                  | DEV<br>SKEW<br>SKEW                                                            | 2.9657<br>.6682<br>5682<br>3000<br>5000 | HIGH<br>LOW<br>ZERO        | TORIC EVENTS<br>1 OUTLIERS<br>OUTLIERS<br>0 OR MISSING<br>TEMATIC EVENTS                                  | 0<br>0<br>1<br>6<br>42                                                                             |

| EQUE<br>Ed o | ESULTS<br>NCY PL<br>N COMP | OT - 1 | 11-274<br>ALUES | 5 ORES"<br>- FLOW | TIMBA CR<br>In CFS           | REEK N | IEAR NEWN | IAN, CA | DA=134 SG | MI     |    | 1932-7                   | 3                |
|--------------|----------------------------|--------|-----------------|-------------------|------------------------------|--------|-----------|---------|-----------|--------|----|--------------------------|------------------|
| 00·          | ••••••••••                 | • • •  | •••••           |                   | •                            |        | •         | •       |           | •••••• |    |                          |                  |
| •            | -                          | •      | •               |                   | •                            |        | •         | •       | -         | •      | •  | •                        | •                |
| :            | -                          | :      | :               |                   | :                            |        | :         | •       | -         | :      | -  | :                        | : x              |
| -            | •                          | •      | •               |                   | •                            |        | •         | •       | -         | •      | •  | •                        | •                |
| :            | •                          | •      |                 |                   | •                            |        | •         | •       | •         | •      | •  | - X                      | •                |
| 0            |                            |        |                 |                   |                              |        |           |         |           |        | ·  |                          |                  |
| •            | •                          | •      | •               |                   | •                            |        | •         | •       | -         | •      | •  | X                        | -                |
| -            | -                          | :      | :               |                   | :                            |        |           | •       | -         |        | :х | :                        | :                |
| •            | •                          | •      | •               |                   | •                            |        | •         | -       | -         | •      | •  | •                        | •                |
| <u>0</u>     |                            | •••••• | <b>:</b>        |                   | •                            |        | •         | •       | •         | •      |    | ·                        | ·                |
| •            | •                          | •      | •               |                   | •                            |        | •         | •       | •         | . x    | •  | •                        | •                |
| :            | :                          | :      | :               |                   | •                            |        | :         |         |           | . 0    | •  | •                        | :                |
| •            | •                          | •      | •               |                   | •                            |        | •         | •       | 00        | хо     | •  | •                        | •                |
| ю <b>:</b>   | •••••                      | ·      | ·               |                   | •                            |        | •         | •       | . 00      | •      | •  | •                        | •                |
| •            | •                          | -      | •               |                   | •                            |        |           |         | ~~        | -      |    |                          |                  |
| •            | -                          | •      | •               |                   | •                            |        | •         | - ·     | 00X       | •      | •  | •                        | •                |
| :            | :                          |        | :               |                   | -                            |        | •         | : č     |           | •      | •  | :                        | •                |
| •            | •                          | -      | •               |                   | •                            |        | •         | . 0.    |           | •      | •  | •                        | •                |
| :            | :                          | :      | :               |                   | •                            |        | •         | : oʻ    |           |        | :  | :                        | :                |
| 0            |                            |        |                 |                   |                              |        |           |         |           |        |    |                          |                  |
| -            | •                          | •      | -               |                   | •                            |        | •         |         | •         | •      | •  | •                        | •                |
| •            | :                          | :      | :               |                   |                              |        | •         | . 0     |           | -      | :  | :                        | :                |
| •            | •                          | •      | -               |                   | •                            |        | . c       | .00     | •         | -      | •  | •                        | •                |
| ю <b>:</b>   |                            | •••••• | ·····           |                   | •<br>• • • • • • • • • • • • |        | ·         | x       |           | •      | •  | •••••••                  | •<br>• • • • • • |
| •            | •                          | -      | •               |                   | •                            |        | •         | • •     |           | -      | •  | •                        | •                |
| :            | :                          | :      | :               |                   | -                            |        | . 0       |         |           | -      | :  | :                        | •                |
| •            | •                          | •      | •               |                   | •                            |        | • •       |         | •         | •      | •  | -                        |                  |
| 0 <b>:</b>   |                            | •      | ••••••          |                   | •                            |        |           |         |           |        | •  | •                        | •                |
| •            | •                          | •      | -               |                   | •                            |        | . oĭ      |         |           | •      | •  | •                        | •                |
| :            | •                          | -      | •               |                   | •                            |        | ά         | • •     |           | •      | •  | •                        | •                |
| :            | :                          | :      | :               |                   | •                            |        | •         |         |           |        | •  |                          | :                |
| •            | •                          | •      | •               |                   | . )                          | K      | •         | • •     |           | •      | •  | •                        | •                |
| :            | •                          | :      | :               |                   | •                            |        |           | ••••    |           |        | •  | •                        | •                |
| 0            |                            | •••••• |                 |                   |                              |        |           |         |           |        |    |                          |                  |
| :            | :                          |        | •               |                   | •                            | 0      | •         |         |           | •      | •  | •                        | •                |
| •            | •                          | •      | -               |                   |                              | 0      | •         |         | •         | •      | •  | •                        |                  |
| •            | •                          | •      | •               |                   | х<br>. о                     | 0      | •         | • •     |           | •      | •  | •                        | •                |
| 0            |                            | ·      | ·····           |                   |                              |        |           |         |           |        |    |                          |                  |
| •            | •                          | •      | •               |                   | •                            |        | •         | • •     |           | •      | •  | •                        | •                |
| :            | :                          | :      | :               |                   | •                            |        | -         | • •     |           | •      | -  | -                        | :                |
| •            | •                          | •      | •               | x                 | •                            |        | •         |         |           | •      | •  | •                        | •                |
| o            | ·····                      | ·····  | ·               |                   | •                            |        | •         | ••••••• | ,<br>     | •      | •  | •<br>• • • • • • • • • • | <b>.</b>         |
| •            | •                          | •      |                 |                   | •                            |        | •         |         |           | •      | •  | -                        | •                |
| :            | •                          | •      | •               |                   | •                            |        | •         | • •     |           | •      | •  | •                        | :                |
| •            | -                          | •      | :               |                   | •                            |        | •         |         | •         | •      | •  | •                        | •                |
| •            | •                          | •      | •               |                   | •                            |        | •         | • •     |           | •      | •  | •                        | •                |
|              | -                          | :      | :               |                   | •                            |        | •         | • •     |           | •      |    | •                        | :                |
| 0            |                            |        |                 |                   |                              | •••••• |           |         |           |        |    |                          |                  |
| :            | :                          | :      | :               |                   | . г                          |        |           | • •     |           | •      |    | •                        | :                |
| •            | •                          | ż      | •               |                   | •                            |        | •         |         |           | •      |    | -                        | •                |
| :            | •                          |        | •               |                   | •                            |        | •         |         |           | •      | •  | •                        |                  |
| 0<br>9.9     |                            |        |                 | -ZZ;              | z-z-z                        |        | -         |         |           | -<br>  |    |                          |                  |
| n n          | <b>99.</b> 7               | 99.    | <b>-</b> 97.    | 9                 | 0.                           | 7      | 0. 5      | 0. 30   | ). 1      | 0. :   | 3. | 1:                       | 3                |


LEGEND - DEOBSERVED VALLE, HEHIGH OUTLIER OR HISTORIC VALLE, LELOW OUTLIER, ZEZERO OR MISSING, XECOMPUTED OURVE

| 00<br>00             |                           | -   |     | •           |            |     | :   | :          |         |               | :      | :   | :       | •      |
|----------------------|---------------------------|-----|-----|-------------|------------|-----|-----|------------|---------|---------------|--------|-----|---------|--------|
|                      |                           |     |     | -           | •          |     | :   | :          |         | •             | •      | •   | -       | •      |
|                      | -                         |     |     | •           |            |     | :   | •          |         |               |        |     |         |        |
|                      |                           |     |     |             | :          |     | •   |            |         | •             | •      | •   | •       | . x    |
|                      |                           |     |     | :           | •          |     |     | :          |         |               | -      | :   | : x     | :      |
|                      | •                         |     |     | ••••••      | -          |     |     | •          |         |               | •      | •   |         |        |
|                      | •                         | •   |     |             |            |     | •   | •          |         | •             | •      | •   | ÷       | •      |
| 00                   |                           |     |     |             |            |     |     |            |         |               |        |     |         |        |
| :<br>00 <sup>-</sup> | •                         | :   |     |             |            |     |     |            |         |               | -      | Żх  | :       | :      |
| 00 <sup>:</sup>      |                           | •   |     | •           | -          |     | •   | •          |         |               | -      | •   | •       | •      |
|                      | ·:                        |     |     | •           | •          |     | •   | •          |         | •             | •      | •   | •       | •      |
| :                    | •                         |     |     |             | <b>-</b> - |     |     | ·····      |         | ,<br>         | х      |     |         |        |
| :                    | -                         | •   |     | •           |            |     | •   | •          |         |               | •      | •   | •       |        |
| -                    | -                         | •   |     | -           | •          |     | •   | •          |         |               | . 0    | •   | •       | •      |
|                      | •                         | •   |     |             | •          |     | •   | •          |         | •             | żо     | •   | •       | •      |
| -                    |                           | :   |     |             |            |     | :   | :          |         | 00            |        |     | :       | :      |
| 00                   |                           |     |     |             |            |     |     |            |         | 0             |        |     |         |        |
| -                    | •                         | •   |     | •           | •          |     | •   | •          |         | 0             | •      | •   | •       | •      |
| :                    | :                         | :   |     | •           | :          |     | :   | :          |         | 00X           | •      | :   | •       | :      |
| -                    | •                         | -   |     | •           |            |     |     | •          | Ċ       | 0             | •      |     |         | •      |
| •                    | •                         | •   |     | •           | •          |     | •   | •          | 0.      | •             | •      | •   | •       | •      |
| :                    | •                         |     |     | •           | •          |     | •   | •          | o .     |               | •      | •   | •       | •      |
| œ                    |                           |     |     |             | ·····      |     |     |            | 0       |               | •••••• |     |         | ·      |
| •                    | •                         | •   |     | -           | •          |     |     | -          | 0       |               | •      | •   | •       | •      |
| •                    | •                         | •   |     | -           | •          |     | •   | •          | 0       |               | •      | •   | •       | •      |
| :                    | :                         |     |     | :           | :          |     | :   | ο.α        | ິ       |               | •      | •   | •       | •      |
|                      | :                         |     |     | :           |            |     | :   |            | -       |               | •      | :   |         | :      |
| 00                   |                           |     |     |             |            |     |     | 0-X        |         |               |        |     |         |        |
| •                    | •                         | •   |     | •           | •          |     | •   | ο:         |         |               | •      | •   | •       | •      |
| :                    | :                         | :   |     |             | :          |     | :   | • :        |         |               | •      | :   | •       | :      |
| •                    | •                         | •   |     | •           | •          |     | -   | -          |         | •             | •      |     | -       | •      |
| œ <b>:</b>           | •                         | •   |     | •           | •          |     | . α | <b>.</b> . |         |               | -      | •   | •       | •      |
| <i>J</i>             |                           |     |     |             |            |     | . 0 |            |         |               |        |     |         |        |
|                      |                           |     |     | 2           | :          |     |     | :          |         |               | -      |     | •       | :      |
| •                    | •                         | •   |     | •           | •          |     | ò   | -          | •       |               | -      | •   | -       | •      |
| •                    | •                         | •   |     | •           | •          |     | •   | -          | •       | •             | •      | •   | •       | •      |
| :                    | :                         | :   |     | :           |            | Х   | •   | •          |         |               |        | •   |         | :      |
|                      | -                         | •   |     | •           |            |     |     |            |         |               |        | -   | -       |        |
| 00                   |                           |     |     |             |            |     |     |            |         |               |        |     |         |        |
| •                    | •                         | •   |     | •           | •          | c   | 0.  | •          | •       |               | •      | •   | •       | •      |
| :                    | :                         | :   |     | •           | :          | 0   |     | :          | -       |               | •      | •   | •       | :      |
| -                    | •                         | •   |     | •           |            | 0   | •   | •          |         |               | •      | -   |         | •      |
|                      |                           | •   |     | •           | X          | 0   | •   | •          |         |               | •      | •   | •       | •      |
| ~                    |                           |     |     |             |            |     |     |            |         |               |        |     | <b></b> |        |
| -                    | •                         | :   |     | •           | :          |     | •   | :          |         |               | •      | •   | •       | •      |
| •                    | •                         | •   |     | •           | •          |     | •   | •          |         |               | -      | •   | •       | •      |
| •                    | •                         | •   |     | : x         | -          |     | •   | •          | •       |               | •      | •   | •       | •      |
| 50                   |                           |     |     | · · · · · · | ·····      |     |     | ·          |         |               |        | •   | •       | •<br>• |
| •                    | •                         |     |     | -           | •          |     | •   |            | -       |               |        | -   | •       | •      |
| -                    | -                         | •   |     | •           | •          |     | •   | •          |         |               | -      | -   | •       | •      |
| •                    | •                         | •   |     | •           | •          |     | •   | •          | •       |               | •      | •   | •       | •      |
| :                    | :                         | :   |     | -           | :          |     | •   | :          |         |               | -      |     | •       |        |
| -                    | •                         | •   |     | -           | -          |     | -   | •          | -       |               | •      | •   | •       | •      |
| 20:                  | •                         | •   |     | •           | •          |     | •   | •          |         |               | •      |     | •       | •      |
| J                    |                           |     |     |             |            |     |     |            |         |               |        |     |         |        |
|                      |                           | :   |     | •           | :          | L   | •   | :          |         |               | -      | • • |         | :      |
| -                    |                           | •   |     | •           | -          | -   | •   |            | -       |               | •      | •   | •       | -      |
| -                    | •                         | •   |     | •           | -          |     | •   | •          | -       |               | •      | •   | •       | •      |
| 10                   |                           | X   | 7-  | •<br>7      |            | 7-7 | •   | •          | ••••••• |               |        | •   |         | •      |
| 10<br>99.9           | <b>99.</b> 7 <sup>–</sup> | 99. | - 9 | 7           | <b>90.</b> |     | 70. | 50.        | 30      | ) <b>.</b> 10 | ).     | 3.  | 1:      | 3      |

LEGEND - O=OBSERVED VALUE, H=HIGH OUTLIER OR HISTORIC VALUE, L=LOW OUTLIER, Z=ZERO OR MISSING, X=OOMPUTED OURVE

--ZWRITE: /TEST NO. 4/ORESTIMBA CREEK/FREQ-FLOW/MAX EVENTS/1932-73/ANNUAL PEAKS/

--ZWRITE: /TEST NO. 4/ORESTIMBA CREEK/FREQ-FLOW/MAX ANALYTICAL/1932-73/ANNUAL PEAKS/



DSPLAY plot of final frequency curve (see Appendix C).

### 2.5 Test No. 5 - Use of IPROUT, CLIMIT, and BASEPK

This test illustrates the use of three variables which modify the standard mode of computation and output. On the J1 record, the value for IPROUT is 33 which is the sum of 1 (to suppress the printout of the input data for preliminary results) and 32 (to suppress the printout of the input data for expected probability adjustment). The variable CLIMIT on the J2 record sets the confidence limit probability. In this case, .01 specifies the .01 and .99 confidence limit curves. This data set includes two very low values and the second lowest value just missed being classified as a low outlier. As both of these values were below 2,000 cfs, this amount was input for the variable BASEPK and the program identified any values below 2,000 cfs as low outliers.

### COMMAND LINE

## FFA I=TEST5.DAT O=TEST5.OUT P=Y DSS=FFA

| ττ       | TEST NO. 5               | FLOOD FLOW  | FREQUE | NCY ANAL | YSIS PRO | GRAM       |              |         |
|----------|--------------------------|-------------|--------|----------|----------|------------|--------------|---------|
|          |                          |             |        |          |          |            | NFIDENCE LIM | ITS     |
| TT       | (CLIMIT), A              | ND A BASE F | EAK DI | SCHARGE  | (BASEPK) | ,          |              |         |
| J1       |                          | 33          |        |          |          |            |              |         |
| J2       |                          | .01         |        |          |          |            |              |         |
| 1D       |                          | ASKASKIA RI | VER AT | VANDALI  | A,ILL    | DA=1980 S  | Q MI         | 1908-70 |
| GS       | 5925                     | 4           |        |          |          |            |              |         |
| SI       |                          |             | 200    | -        |          |            |              |         |
|          | /TEST NO. 5              |             | RIVER/ | FREQ-FLC | W//1908- | 70/USGS AN | INUAL PEAKS/ |         |
| QR       | 5925050619               |             |        |          |          |            |              |         |
| QR       | 59250414190              |             |        |          |          |            |              |         |
| QR       | 5925030119               |             |        |          |          |            |              |         |
| QR       | 5925050119               |             |        |          |          |            |              |         |
| QR       | 5925100419               |             |        |          |          |            |              |         |
| QR       | 5925072119               |             |        |          |          |            |              |         |
| QR       | 5925013119               |             |        |          |          |            |              |         |
| QR<br>QR | 5925060519               |             |        |          |          |            |              |         |
| QR       | 5925051119               |             |        |          |          |            |              |         |
| QR       | 5925031919<br>5925051919 |             |        |          |          |            |              |         |
| QR       | 59250418192              |             |        |          |          |            |              |         |
| QR       | 59250317192              |             |        |          |          |            |              |         |
| QR       | 59251215192              |             |        |          |          |            |              |         |
| QR       | 59250316192              |             |        |          |          |            |              |         |
| QR       | 59250917192              |             |        |          |          |            |              |         |
| QR       | 59250320192              |             |        |          |          |            |              |         |
| QR       | 59251201192              |             |        |          |          |            |              |         |
| QR       | 59250514192              |             |        |          |          |            |              |         |
| QR       | 59250114193              |             |        |          |          |            |              |         |
| QR       | 5925091819               |             |        |          |          |            |              |         |
| QR       | 5925012419               |             |        |          |          |            |              |         |
| QR       | 5925051519               |             |        |          |          |            |              |         |
| QR       | 5925081919               |             |        |          |          |            |              |         |
| QR       | 5925051619               |             |        |          |          |            |              |         |
| QR       | 59250326193              |             |        |          |          |            |              |         |
| QR       | 59250115193              |             |        |          |          |            |              |         |
| QR       | 59250331193              |             |        |          |          |            |              |         |
| QR       | 59250314193              | 39 16000    |        |          |          |            |              |         |
| QR       | 59250503194              | 40 6760     |        |          |          |            |              |         |
| QR       | 59250612194              | 41 4560     |        |          |          |            |              |         |

### **INPUT**

| QR | 592507121942 | 13600 |
|----|--------------|-------|
| QR | 592505181943 | 52200 |
| QR | 592504241944 | 31000 |
| QR | 592506101945 | 21500 |
| QR | 592505041946 | 13000 |
| QR | 592506101947 | 12300 |
| QR | 592503281948 | 19000 |
| QR | 592502161949 | 25000 |
| QR | 592501041950 | 51300 |
| QR | 592506291951 | 31000 |
| QR | 592504151952 | 10500 |
| QR | 592503051953 | 5680  |
| QR | 592504191954 | 505   |
| QR | 592504251955 | 5000  |
| QR | 592502271956 | 7840  |
| QR | 592506291957 | 62700 |
| QR | 592508041958 | 12400 |
| QR | 592502121959 | 17200 |
| QR | 592506301960 | 11800 |
| QR | 592504101961 | 34400 |
| QR | 592503251962 | 17100 |
| QR | 592505221963 | 9000  |
| QR | 592505041964 | 8500  |
| QR | 592505041965 | 5350  |
| QR | 592505191966 | 11900 |
| QR | 592512101966 | 27000 |
| QR | 592512231967 | 20800 |
| QR | 592501311969 | 20700 |
| QR | 592506161970 | 30000 |
| ED |              |       |

39

Test no. 5 INPUT (continued)

### **OUTPUT**

\*\*\*\*\* \*\*\*\*\* FFA \* \* ÷ FLOOD FREQUENCY ANALYSIS \* \* U.S. ARMY CORPS OF ENGINEERS \* \* \* THE HYDROLOGIC ENGINEERING CENTER \* PROGRAM DATE: FEB 1982 VERSION DATE: BETA 2/91 \* \* 609 SECOND STREET DAVIS, CALIFORNIA 95616 RUN DATE AND TIME: \* ٠ \* 07 FEB 91 \* \* \* 10:45:59 (916) 756-1104 • • ٠ \*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\* INPUT FILE NAME: TEST5.DAT OUTPUT FILE NAME: TEST5.OUT DSS FILE NAME: FFA -----DSS----ZOPEN: Existing File Opened, File: FFA.DSS Unit: 71; DSS Version: 6-FN \*\*TITLE RECORD(S)\*\* TT TEST NO. 5 FLOOD FLOW FREQUENCY ANALYSIS PROGRAM EXAMPLE USE OF PRINTOUT SUPPRESSION (IPROUT), OTHER CONFIDENCE LIMITS ŦΤ (CLIMIT), AND A BASE PEAK DISCHARGE (BASEPK) ŤΤ \*\*JOB RECORD(S)\*\* IPPC ISKFX IPROUT IFMT IWYR IPNCH IUNIT ISMRY IREG .11 0 0 33 0 0 0 0 Ω 0 B CLIMIT NDSSCV IEXT A J2 .00 .00 0 0 .01 **\*\*STATION IDENTIFICATION\*\*** 1908-70 05-5925 KASKASKIA RIVER AT VANDALIA, ILL DA=1980 SQ MI ID \*\*GENERALIZED SKEW\*\* GGMSE ISTN SKEW GS 5925 .000 - .40 **\*\*SPECIAL STATION INFORMATION\*\*** IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG SI 0 0 0. 2000. 0 0 0 \*\*DSS WRITE PATHNAME\*\* ZW /TEST NO. 5/KASKASKIA RIVER/FREQ-FLOW//1908-70/USGS ANNUAL PEAKS/ **\*\*SYSTEMATIC EVENTS\*\*** 60 EVENTS TO BE ANALYZED \*\*END OF INPUT DATA\*\* -------PRELIMINARY RESULTS -----SKEW WEIGHING -. 199 BASED ON 60 EVENTS, MEAN-SQUARE ERROR OF STATION SKEW =

DEFAULT OR INPUT MEAN-SQUARE ERROR OF GENERALIZED SKEW =

.302

### PRELIMINARY RESULTS

| COMPUTED<br>CURVE<br>FLOW |                | PERCE<br>CHAN<br>EXCEEL | ICE    | CONFIDENCE<br>.01<br>FLOW IN | .99    |
|---------------------------|----------------|-------------------------|--------|------------------------------|--------|
| 58300.                    |                |                         | .2     | 96600.                       | 40900. |
| 53300.                    | 55100.         |                         | .5     | 86500.                       | 37900. |
| 49100.                    | 50500.         | 1.                      | .0     | 78100.                       | 35200. |
| 44300.                    | 45400.         | 2.                      | .0     | 69000.                       | 32200. |
| 37200.                    | 37900.         | 5.                      | .0     | 55800.                       | 27600. |
| 31100.                    | 31500.         | 10.                     | .0     | 45000.                       | 23600. |
| 24300.                    | 24500.         | 20.                     | .0     | 33600.                       | 18800. |
| 13600.                    | 13600.         | 50.                     | .0     | 17500.                       | 10700. |
| 6530.                     | 6450.          | 80.                     | .0     | 8420.                        | 4770.  |
| 4180.                     | 4060.          | 90.                     | 0      | 5600.                        | 2810.  |
| 2790.                     | 2660.          | 95.                     | .0     | 3930.                        | 1720.  |
| 1200.                     | 1070.          | 99.                     | .0     | 1910.                        | 603.   |
|                           | SY             | STEMATIC                | STATIS | STICS                        |        |
| LOG TRANS                 | FORM: FLOW, CF | s                       |        | NUMBER OF EVE                | NTS    |
| MEAN                      |                | 4.0869                  | HIST   | FORIC EVENTS                 | 0      |
| STANDARD                  | DEV            | .3486                   | HIGH   | I OUTLIERS                   | 0      |
| COMPUTED                  | SKEW -         | 1.0942                  | LOW    | OUTLIERS                     | 0      |
| REGIONAL                  | SKEW           | 4000 ZER0               |        | O OR MISSING                 | 0      |
| ADOPTED                   | SKEW           | 8000                    | SYST   | TEMATIC EVENTS               | 60     |
| I                         |                |                         |        |                              |        |

## -FREQUENCY CURVE- 05-5925 KASKASKIA RIVER AT VANDALIA, ILL

#### PRELIMINARY RESULTS

| DO                | NCY PLI<br>N Comp |          | US-5925<br>ALUES - F | KASKASKIA<br>LOW IN CFS | KIVER AT \   | ANDALIA | ,ILL D | A=1980 S | ų MI        |     | 1908 | 8-70 |   |
|-------------------|-------------------|----------|----------------------|-------------------------|--------------|---------|--------|----------|-------------|-----|------|------|---|
| 0                 |                   |          |                      |                         |              |         |        |          |             |     |      |      |   |
| -                 | •                 | •        | •                    | -                       | •            | •       | •      |          | •           | •   | •    | •    |   |
| •                 | •                 | •        | •                    | •                       | •            | •       | •      |          | •           | •   | •    | •    |   |
| •                 | •                 | •        | •                    | •                       | •            | •       | •      |          | •           | . o | •    | •    |   |
| -                 |                   | :        | :                    | •                       |              | :       | :      |          |             |     | :    | x:   | х |
| 0                 |                   |          |                      |                         |              |         |        |          | 0           | 0   | X    |      |   |
| -                 | •                 | •        | •                    | •                       | •            | •       | -      |          | •           | . X | •    | •    |   |
| •                 | •                 | •        | •                    | •                       | •            | •       | •      |          | . o<br>.o x | •   | •    | •    |   |
| •                 | •                 | •        | •                    | •                       | •            | •       | •      | 00)      |             | •   | •    | •    |   |
|                   | :                 | :        | :                    |                         | •            |         | •      | 0,       |             | •   | :    | :    |   |
| •                 | •                 |          | •                    | •                       | •            |         | •      | X O .    |             |     | •    |      |   |
| •                 | •                 | •        | •                    | -                       | •            |         | •      | 0.       |             | -   | •    | •    |   |
| 0                 |                   |          |                      |                         |              |         |        | <b>w</b> |             |     |      |      |   |
| •                 | •                 | •        | •                    | •                       | •            | •       | α      | •        | •           | •   | •    | •    |   |
| :                 | :                 | •        | •                    | •                       | •            | x c     | ω.     | •        |             | •   | •    | •    |   |
|                   | •                 | -        |                      |                         | -            | 000000  |        |          |             | :   |      | :    |   |
| .•                | •                 | •        | •                    | •                       |              | , co    |        |          | •           | •   | •    |      |   |
| 0                 |                   |          |                      |                         | 000-         |         |        |          |             |     |      |      |   |
| •                 | •                 | •        | •                    | •                       | . 000<br>000 | •       | •      | •        |             | •   | •    | •    |   |
|                   | •                 | •        | •                    | • •                     | ω.           | •       | •      | •        | •           | •   | •    | •    |   |
|                   |                   |          | :                    |                         | x:           |         | :      |          |             |     | :    | :    |   |
| •                 | •                 | -        | •                    | 0000                    |              |         | •      |          |             |     |      | •    |   |
| 0                 |                   |          | •••••••              | 0                       |              |         |        |          |             |     |      |      |   |
| •                 | •                 | •        | . 0                  | 0.<br>X                 | •            | •       | •      | •        |             | •   | •    | •    |   |
| •                 | •                 | •        | •                    | ^                       | •            | •       | •      | •        | •           | •   | •    | •    |   |
| :                 | :                 | :        |                      | :                       | •            | :       | •      |          |             | :   | :    | :    |   |
| •                 | •                 |          | . x                  | -                       | •            |         |        |          |             |     |      |      |   |
| •                 | •                 | •        | •                    | •                       | -            | •       | •      |          |             | -   | -    |      |   |
|                   | •                 | •        | •                    | •                       | •            | •       | •      | •        |             | •   | •    | •    |   |
| 0                 |                   |          |                      |                         |              |         |        |          |             |     |      |      |   |
| :                 | :                 |          | •                    | :                       | •            | •       | :      | •        | •           | •   | :    | :    |   |
| -                 | -                 | •        | •                    | •                       |              |         |        |          |             |     |      | -    |   |
| •                 |                   | х        | .0                   | •                       |              | •       |        |          |             | •   | •    |      |   |
|                   | •                 | -        | •                    | •                       | •            | •       | •      |          |             | •   | •    | •    |   |
| 0                 |                   |          |                      |                         |              |         |        | ••••••   |             |     |      |      |   |
| :                 | •                 | •        | •                    |                         | •            | •       | •      | •        |             | •   | •    | •    |   |
| :                 |                   |          | •                    |                         | •            | :       | •      |          |             | :   | :    | :    |   |
| •                 | •                 | -        | •                    | •                       | •            | •       | •      |          |             |     | •    |      |   |
|                   | •                 | •        | •                    | •                       | •            | •       | •      | -        |             | •   | •    | •    |   |
| 0<br>9 <b>.</b> 9 | <b>99.</b> 7      | (<br>99. | 97.                  | 90 <b>.</b>             | 70.          | 50.     | 30.    | 10       | ·           | 3.  | 1.   | .3   |   |
| - • •             |                   |          | <i></i>              | /vi                     | ·v.          | <i></i> |        |          | -           | J.  | ••   | ب.   |   |

LEGEND - O=OBSERVED VALLE, H=HIGH OUTLIER OR HISTORIC VALLE, L=LOW OUTLIER, Z=ZERO OR MISSING, X=OOMPUTED OURVE

FINAL RESULTS

. RESULTS \_\_\_\_\_

| -PLOTTING | POSITIONS- | 05-5925 | KASKASKIA RIV | 'ER AT | VANDALIA, | ILL |
|-----------|------------|---------|---------------|--------|-----------|-----|
|-----------|------------|---------|---------------|--------|-----------|-----|

|             | EVE      | NTS AN       | ALYZED           |          | ORD          | ERED EVENTS      |                |
|-------------|----------|--------------|------------------|----------|--------------|------------------|----------------|
| 1           |          |              | FLOW             |          | WATER        | FLOW             | WEIBULL        |
| MON         | DAY      | YEAR         | CFS              | RANK     | YEAR         | CFS              | PLOT POS       |
| 5           | 6        | 1908         | 7870.            | 1        | 1957         | 62700.           | 1.64           |
| 4           | 14       | 1909         | 7670.            | 2        | 1943         | 52200.           | 3.28           |
| 3           | 1        | 1910         | 7020.            | 3        | 1950         | 51300.           | 4.92           |
| 5           | 1        | 1911         | 5670.            | 4        | 1938         | 40700.           | 6.56           |
| 10          | 4        | 1911         | 13000.           | 5        | 1961         | 34400.           | 8.20           |
| 7           | 21       | 1915         | 15800.           | 6        | 1944         | 31000.           | 9.84           |
| 1           | 31<br>5  | 1916<br>1917 | 14400.           | 7<br>8   | 1951<br>1970 | 31000.<br>30000. | 11.48          |
| ŝ           | 11       | 1917         | 16800.<br>8880.  | 9        | 1970         | 27000.           | 13.11<br>14.75 |
| 3           | 19       | 1919         | 11000.           | 10       | 1949         | 25000.           | 16.39          |
| 5           | 19       | 1920         | 12600.           | 11       | 1945         | 21500.           | 18.03          |
| 4           | 18       | 1922         | 18800.           | 12       | 1968         | 20800.           | 19.67          |
| 3           | 17       | 1923         | 14300.           | 13       | 1969         | 20700.           | 21.31          |
| 12          | 15       | 1923         | 10500.           | 14       | 1927         | 20000.           | 22.95          |
| 3           | 16       | 1925         | 9980.            | 15       | 1948         | 19000.           | 24.59          |
| 9           | 17       | 1926         | 8460.            | 16       | 1922         | 18800.           | 26.23          |
| 3           | 20       | 1927         | 20000.           | 17       | 1933         | 17500.           | 27.87          |
| 12          | 1        | 1927         | 12200.           | 18       | 1959         | 17200.           | 29.51          |
| 5           | 14       | 1929         | 12200.           | 19       | 1962         | 17100.           | 31.15          |
| 1           | 14       | 1930         | 11500.           | 20       | 1917         | 16800.           | 32.79          |
| 9           | 18       | 1931         | 1270.            | 21       | 1939<br>1915 | 16000.           | 34.43          |
| 5           | 24<br>15 | 1932<br>1933 | 5550.<br>17500.  | 22<br>23 | 1915         | 15800.<br>14900. | 36.07<br>37.70 |
| 8           | 19       | 1934         | 4250.            | 24       | 1916         | 14400.           | 39.34          |
| 5           | 16       | 1935         | 11200.           | 25       | 1923         | 14300.           | 40.98          |
| 3           | 26       | 1936         | 7290.            | 26       | 1942         | 13600.           | 42.62          |
| 1           | 15       | 1937         | 14900.           | 27       | 1946         | 13000.           | 44.26          |
| 3           | 31       | 1938         | 40700.           | 28       | 1912         | 13000.           | 45.90          |
| 3           | 14       | 1939         | 16000.           | 29       | 1920         | 12600.           | 47.54          |
| 5           | 3        | 1940         | 6760.            | 30       | 1958         | 12400.           | 49.18          |
| 6           | 12       | 1941         | 4560.            | 31       | 1947         | 12300.           | 50.82          |
| 7           | 12       | 1942         | 13600.           | 32       | 1928         | 12200.           | 52.46          |
| 5           | 18       | 1943         | 52200.           | 33       | 1929         | 12200.           | 54.10          |
| 4           | 24       | 1944<br>1945 | 31000.<br>21500. | 34<br>35 | 1966<br>1960 | 11900.<br>11800. | 55.74<br>57.38 |
|             | 10<br>4  | 1945         | 13000.           | 36       | 1930         | 11500.           | 57.50          |
| 5           | 10       | 1940         | 12300.           | 37       | 1935         | 11200.           | 60.66          |
| 3           | 28       | 1948         | 19000.           | 38       | 1919         | 11000.           | 62.30          |
| 2           | 16       | 1949         | 25000.           | 39       | 1952         | 10500.           | 63.93          |
| 1           | 4        | 1950         | 51300.           | 40       | 1924         | 10500.           | 65.57          |
| 6           | 29       | 1951         | 31000.           | 41       | 1925         | 9980.            | 67.21          |
| 4           | 15       | 1952         | 10500.           | 42       | 1963         | 9000.            | 68.85          |
| 3           | 5        | 1953         | 5680.            | 43       | 1918         | 8880.            | 70.49          |
| 4           | 19       | 1954         | 505.             | 44       | 1964         | 8500.            | 72.13          |
| 4           | 25       | 1955         | 5000.            | 45       | 1926         | 8460.            | 73.77          |
| 2           | 27       | 1956         | 7840.            | 46       | 1908         | 7870.            | 75.41          |
| 6           | 29<br>4  | 1957<br>1958 | 62700.<br>12400. | 47<br>48 | 1956<br>1909 | 7840.<br>7670.   | 77.05<br>78.69 |
| 8           | 12       | 1958         | 17200.           | 48<br>49 | 1909         | 7290.            | 80.33          |
| 6           | 30       | 1959         | 11800.           | 50       | 1930         | 7020.            | 81.97          |
| 4           | 10       | 1961         | 34400.           | 51       | 1940         | 6760.            | 83.61          |
|             | 25       | 1962         | 17100.           | 52       | 1953         | 5680.            | 85.25          |
| 3<br>5<br>5 | 22       | 1963         | 9000.            | 53       | 1911         | 5670.            | 86.89          |
| 5           | 4        | 1964         | 8500.            | 54       | 1932         | 5550.            | 88.52          |
| 5           | 4        | 1965         | 5350.            | 55       | 1965         | 5350.            | 90.16          |
| 5           | 19       | 1966         | 11900.           | 56       | 1955         | 5000.            | 91.80          |
| 12          | 10       | 1966         | 27000.           | 57       | 1941         | 4560.            | 93.44          |
| 12          | 23       | 1967<br>1960 | 20800.<br>20700. | 58<br>50 | 1934<br>1031 | 4250.<br>1270.   | 95.08          |
| 1 6         | 31<br>16 | 1969<br>1970 | 30000.           | 59<br>60 | 1931<br>1954 | 505.             | 96.72<br>98.36 |
| Ľ           | 10       |              | 50000.           | 00       | 17.54        |                  | 70.00          |

-OUTLIER TESTS -

LOW OUTLIER TEST

BASED ON 60 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.837

COMPUTED LOW OUTLIER TEST VALUE 1253.2 2 LOW OUTLIER(S) IDENTIFIED BELOW INPUT BASE OF 2000.0

STATISTICS AND FREQUENCY CURVE ADJUSTED FOR 2 LOW OUTLIER(S)

#### HIGH OUTLIER TEST

BASED ON 58 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.824

0 HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF 78238.

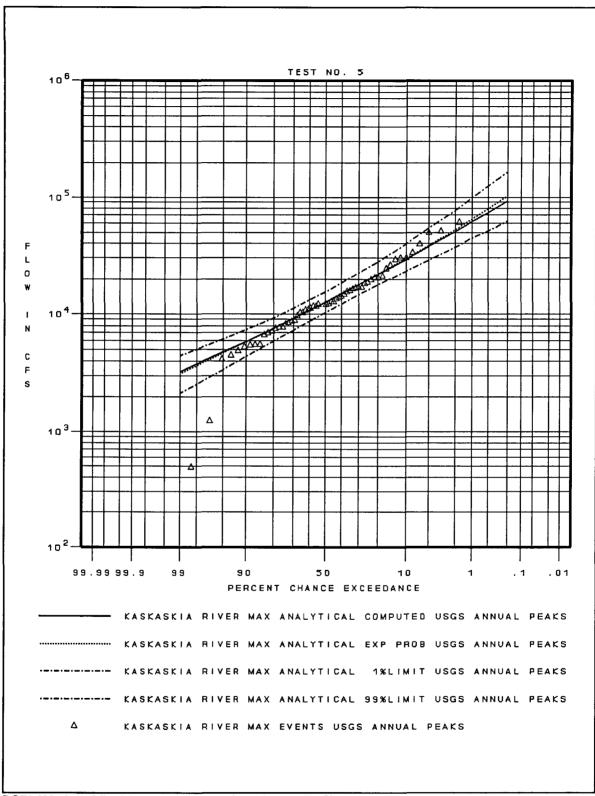
-SKEW WEIGHING -

| BASED ON  | 60 EVENTS,  | MEAN-SQUARE  | ERROR OF  | STATION  | SKEW = | .113 |
|-----------|-------------|--------------|-----------|----------|--------|------|
| DEFAULT O | R INPUT MEÅ | N-SQUARE ERF | OR OF GEN | ERALIZED | SKEW = | .302 |

FINAL RESULTS

-FREQUENCY CURVE- 05-5925 KASKASKIA RIVER AT VANDALIA, ILL

| CURVE                                                                                                            | EXPECTED<br>PROBABILITY<br>IN CFS                                          | PERCE<br>CHAI<br>EXCEEL                   | ICE                              | CONFIDENCE<br>.01<br>FLOW IN                                                                                       | .99                                                                                                              |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 93600.<br>74600.<br>62100.<br>51000.<br>38200.<br>29700.<br>22100.<br>12800.<br>7650.<br>5910.<br>4810.<br>3310. | 80900.<br>66100.<br>53400.<br>39300.<br>22300.<br>12800.<br>7590.<br>5830. | .                                         | .0<br>.0<br>.0<br>.0<br>.0<br>.0 | 167000.<br>126000.<br>99900.<br>78200.<br>54700.<br>40400.<br>28400.<br>15500.<br>9360.<br>7410.<br>6170.<br>4460. | 63500.<br>52500.<br>44900.<br>37900.<br>29500.<br>23600.<br>18000.<br>10500.<br>5930.<br>4370.<br>3410.<br>2150. |
|                                                                                                                  | S'                                                                         | YNTHETIC                                  | STATIS                           | STICS                                                                                                              |                                                                                                                  |
| LOG TRANS                                                                                                        | FORM: FLOW, CF                                                             | S                                         |                                  | NUMBER OF EVE                                                                                                      | INTS                                                                                                             |
| MEAN<br>STANDARD<br>COMPUTED<br>REGIONAL<br>ADOPTED                                                              | DEV<br>SKEW<br>SKEW                                                        | 4.1163<br>.2738<br>.3993<br>4000<br>.2000 | HIGH<br>LOW<br>ZERO              | TORIC EVENTS<br>1 OUTLIERS<br>OUTLIERS<br>D OR MISSING<br>TEMATIC EVENTS                                           | 0<br>0<br>2<br>0<br>60                                                                                           |


#### FINAL RESULTS

| ED O     | NCY PLO      | UTED VA                 | LUES - F | KASKASKIA<br>LOW IN CFS |        |          |          | A=1980 S |    |     |             | ., | -70 |   |
|----------|--------------|-------------------------|----------|-------------------------|--------|----------|----------|----------|----|-----|-------------|----|-----|---|
| 00       |              |                         |          |                         |        |          |          |          |    |     |             |    |     |   |
| •        | •            | •                       | •        | •                       | •      | •        | •        |          | •  | •   |             | -  | -   | Х |
| •        | •            | •                       | •        | •                       | -      | •        | •        |          | •  | •   |             | •  | •   |   |
| •        | •            | •                       | •        | •                       | •      | •        | •        |          | •  | •   |             |    | х.  |   |
| •        | •            | •                       | •        | •                       | •      | •        | •        |          | •  | •   | 0 3         | X  | •   |   |
| <u></u>  | •            | •<br>•                  | •        | •                       | •      | •        | •        |          |    |     |             | •  | •   |   |
| ~.       | -            | _                       | _        |                         |        |          |          |          |    | -0/ |             |    |     |   |
|          | -            |                         |          |                         |        |          | •        |          | ох |     |             | •  | •   |   |
|          | -            |                         |          |                         |        |          |          |          | 0  | :   |             |    |     |   |
|          |              | -                       |          | •                       | •      |          |          | 000      |    | •   |             |    |     |   |
|          |              | -                       |          | •                       | •      |          |          | 0 )      | (  |     |             |    |     |   |
|          | -            | •                       | •        | •                       |        |          |          | ο.       |    |     |             |    |     |   |
|          | •            |                         | •        | •                       |        | •        | •        | XO .     |    | •   |             | -  |     |   |
| 00       |              |                         |          |                         |        |          |          | <b>∞</b> |    |     |             |    |     |   |
| •        | •            | -                       | •        | •                       | -      | •        |          |          | •  | •   |             | •  | •   |   |
| •        | •            | •                       | •        | •                       | •      | •        | <u>.</u> |          |    | •   |             | •  | •   |   |
| •        | •            | •                       | •        | •                       | •      |          | ω.       |          |    | •   | •           | •  | -   |   |
| •        | •            | •                       | •        | •                       | •      | <u>.</u> | •        |          | •  | •   | •           | •  | -   |   |
| <u></u>  | •            | •                       | •        | •                       | ·œ-    |          | •        |          |    | •   | • • • • • • | •  | •   |   |
| ~.       |              | _                       | _        |                         | യ്     |          |          |          |    |     |             |    |     |   |
|          | :            | :                       | •        | •                       | хооо , | •        | •        |          |    |     |             |    |     |   |
|          |              |                         |          | . 0                     | . 00   |          |          |          |    |     |             |    |     |   |
|          |              | •                       |          | •                       |        |          |          |          |    |     |             |    |     |   |
| •        | •            | •                       | •        | xoco                    | •      |          |          |          | ,  |     |             |    | •   |   |
| 00       |              |                         |          | 0                       |        |          |          |          |    |     |             |    |     |   |
| •        | -            | •                       | . 0      | 0.                      | •      | •        | •        | •        | •  | •   | •           | •  | •   |   |
| •        | •            | •                       | •        | •                       | •      | •        | •        |          | •  | •   | •           | •  | •   |   |
| •        | •            | ×                       | •        | •                       | •      | •        | •        | •        |    | •   |             | •  | •   |   |
| •        | •            | ^                       | •        | •                       | •      | •        | •        |          |    | •   | •           | •  | •   |   |
|          | •            | •                       | •        | •                       | •      | •        | •        | •        |    | •   | •           | •  | •   |   |
|          | -            |                         |          | •                       |        |          |          |          |    |     |             |    |     |   |
| 00       |              |                         |          |                         |        |          |          |          |    |     |             |    |     |   |
|          |              |                         |          | •                       |        |          | •        |          |    |     |             |    |     |   |
| •        |              | •                       |          | •                       | •      | •        | •        |          |    |     |             |    | -   |   |
| •        | •            | •                       | •        | •                       | •      | •        | •        |          |    | •   |             |    | •   |   |
| •        | •            | •                       | ۰L       | •                       | •      | •        | •        |          |    | •   | •           | •  | -   |   |
| <b>m</b> | •            | •                       | •        | •                       | •      | •        | •        | •        |    | •   | •           | •  | •   |   |
| 00       |              |                         |          |                         |        |          |          |          |    |     |             |    |     |   |
| •        | •            | •                       | •        | •                       | •      | •        | •        | •        |    | •   | •           |    | •   |   |
| •        | •            | •                       | •        | -                       | •      | •        | •        | •        |    | •   | •           | •  | •   |   |
| •        | •            | •                       | •        | •                       | •      | •        | •        | •        |    | •   | •           |    | •   |   |
|          | •            |                         |          |                         | •      | •        | •        | •        |    | •   |             |    | •   |   |
| 00       |              | L                       |          | ••••••••••••            |        |          | ••••••   |          |    |     |             |    |     |   |
| 99.9     | <b>99.</b> 7 | <b>99.</b> <sup>–</sup> | 97.      | 90.                     | 70.    | 50.      | 30.      | 10       | h  | 3.  | 1           | ۱. | .3  |   |

LEGEND - O=OBSERVED VALLE, H=HIGH OUTLIER OR HISTORIC VALLE, L=LOW OUTLIER, Z=ZERO OR MISSING, X=OOMPUTED OURVE

--ZWRITE: /TEST NO. 5/KASKASKIA RIVER/FREQ-FLOW/MAX EVENTS/1908-70/USGS ANNUAL PEAKS/

--ZWRITE: /TEST NO. 5/KASKASKIA RIVER/FREQ-FLOW/MAX ANALYTICAL/1908-70/USGS ANNUAL PEAKS/



DSPLAY plot of final frequency curve (see Appendix C).

## 2.6 Test No. 6 - Use of IPPC, IFMT, QR Records and IYRL

This test illustrates the use of variables which modify the standard mode of operation and provide for the incorporation of historic flood peaks. On the J1 record, the value of IPPC is 2 to compute the median plotting positions rather than the Weibull. The IPROUT value of 21 is the sum of 1 (to suppress input data listing for preliminary results), 4 (to suppress the plot of preliminary results), and 16 (to suppress the plot based on the computed values, i.e., without the expected probability adjustment, from the final results). IFMT is 2 as the input data are prepared in the format of four 8-column fields for day, month, year-end flow. HP records were used in this test to demonstrate the laser jet plot, see plot following the output data.

A historic flood peak of 15,000 cfs which occurred in 1843 is input on the QH record. This value is the highest known value up to the present time, even though the systematic record stopped in 1955. Therefore, the year 1974 is input for IYRL on the SI record.

### COMMAND LINE

## FFA I=TEST6.DAT O=TEST6.OUT

|            |           |          |          |              | INFUT                  |         |
|------------|-----------|----------|----------|--------------|------------------------|---------|
| TT TEST NO | ). 6 FLOC | D FLOW I | REQUENCY | ANALYSIS PR  | OGRAM                  |         |
| TT EXAMPLE | USE OF    | MEDIAN P | LOT POSI | TIONS(IPPC), | WRC FORMAT(IFMT), HIST | TORIC   |
|            |           |          |          |              | ND LAST YEAR OF DATA(  |         |
| J1 2       |           | 21       | 2        |              |                        |         |
| ID 01-4765 | 5 RIDLEY  | CREEK AT | MOYLAN,  | PA           | DA=31.9 SQ MI          | 1932-55 |
| GS 4765    |           | .4       |          |              |                        |         |
| SI         | 1974      |          |          |              |                        |         |
| HP PLOT6.P |           |          |          |              | 31.9 SQ MI             |         |
| HP TEST NO |           |          |          |              |                        |         |
| HP Ridley  |           |          |          |              |                        |         |
|            | Creek at  |          |          |              |                        |         |
| QH 5       | 8         | 1843     | 15000    |              |                        |         |
| 28         | 3         | 1932     | 891      |              |                        |         |
| 23         | 8         | 1933     | 2680     |              |                        |         |
| 5          | 3         | 1934     | 1080     |              |                        |         |
| 9          | 7         | 1935     | 3000     |              |                        |         |
| 3          | 1         | 1936     | 1590     |              |                        |         |
| 22         | 2         | 1937     | 770      |              |                        |         |
| 23         | 7         | 1938     | 3320     |              |                        |         |
| 3          | 2         | 1939     | 978      |              |                        |         |
| 15         | 3         | 1940     | 1770     |              |                        |         |
| 7          | 2         | 1941     | 746      |              |                        |         |
| 13         | 8         | 1942     | 1000     |              |                        |         |
| 30         | 12        | 1942     | 980      |              |                        |         |
| 6          | 1         | 1944     | 865      |              |                        |         |
| 18         | 9         | 1945     | 1040     |              |                        |         |
| 26         | 12        | 1945     | 1000     |              |                        |         |
| 22         | 5         | 1947     | 483      |              |                        |         |
| 5          | 5         | 1948     | 740      |              |                        |         |
| 30         | 12        | 1948     | 1040     |              |                        |         |
| 3          | 8         | 1950     | 1590     |              |                        |         |
| 25         | 11        | 1950     | 5720     |              |                        |         |
| 11         | 3         | 1952     | 1490     |              |                        |         |
| 22         | 11        | 1952     | 918      |              |                        |         |
| 14         | 12        | 1953     | 670      |              |                        |         |
| 18         | 8         | 1955     | 4390     |              |                        |         |

INPUT

### **OUTPUT**

\*\*\*\*\* \*\*\*\*\* FFA \* FLOOD FREQUENCY ANALYSIS \* \* U.S. ARMY CORPS OF ENGINEERS PROGRAM DATE: FEB 1982 VERSION DATE: 10 JAN 1992 بد \* \* THE HYDROLOGIC ENGINEERING CENTER \* \* \* 609 SECOND STREET RUN DATE AND TIME: DAVIS. CALIFORNIA 95616 • -+ 10 JAN 91 12:11:39 \* \* \* (916) 756-1104 \* \* \* \*\*\*\*\*\* \*\*\*\*\*\* INPUT FILE NAME: TEST6.DAT OUTPUT FILE NAME: TEST6.OUT \*\*TITLE RECORD(S)\*\* TT TEST NO. 6 FLOOD FLOW FREQUENCY ANALYSIS PROGRAM TT EXAMPLE USE OF MEDIAN PLOT POSITIONS(IPPC), WRC FORMAT(IFMT), HISTORIC TT DATA(QR CARD). AND PERIOD OF KNOWLEDGE BEYOND LAST YEAR OF DATA(IYRL) \*\*JOB RECORD(S)\*\* IPPC ISKFX IPROUT IWYR IPNCH IFMT IUNIT ISMRY IREG J1 2 0 21 2 0 0 0 0 0 **\*\*STATION IDENTIFICATION\*\*** ID 01-4765 RIDLEY CREEK AT MOYLAN, PA DA=31.9 SQ MI 1932-55 \*\*GENERALIZED SKEW\*\* ISTN GGMSE SKEW GS 4765 .000 .40 **\*\*SPECIAL STATION INFORMATION\*\*** IYRA IYRL HITHRS LOTHRS LOGT NDEC NSIG SI 0 1974 0. 0. 0 0 0 \*\*HP PLOT \*\* HP PLOT FILE IHPCV KLIMIT IPER BAREA HP PLOT6.PCL 0 31.9 SQ MI 0 0 HP TEST NO. 6 HP Ridley Creek HP Ridley Creek at Moylan.PA **\*\*HISTORIC EVENTS\*\*** QH 5 8 1843 15000. **\*\*SYSTEMATIC EVENTS\*\*** 24 EVENTS TO BE ANALYZED \*\*END OF INPUT DATA\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\* ------PRELIMINARY RESULTS ----SKEW WEIGHTING -

BASED ON 24 EVENTS, MEAN-SQUARE ERROR OF STATION SKEW = .315 DEFAULT OR INPUT MEAN-SQUARE ERROR OF GENERALIZED SKEW = .302

### PRELIMINARY RESULTS

| - FREQUENCY | CURVE- | 01-4765 | RIDLEY | CREEK | AT | MOYLAN, | PA |
|-------------|--------|---------|--------|-------|----|---------|----|
|-------------|--------|---------|--------|-------|----|---------|----|

| CURVE                                                                                                 | EXPECTED<br>PROBABILITY<br>IN CFS | PERCI<br>CHAI<br>EXCEEI                    | ICE                        | CONFIDENCE<br>.05<br>FLOW IN                                                                             | .95                                                                                                 |
|-------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 13600.<br>9890.<br>7680.<br>5910.<br>4080.<br>3000.<br>2130.<br>1200.<br>754.<br>613.<br>527.<br>414. | 13400.<br>9640.<br>6950.          |                                            | .0<br>.0<br>.0<br>.0<br>.0 | 30000.<br>19800.<br>14300.<br>10200.<br>6320.<br>4300.<br>2830.<br>1490.<br>944.<br>783.<br>685.<br>556. | 8280.<br>6360.<br>5170.<br>4150.<br>3030.<br>2320.<br>1710.<br>962.<br>562.<br>438.<br>363.<br>267. |
|                                                                                                       | SY                                | STEMATIC                                   | STATIS                     | STICS                                                                                                    |                                                                                                     |
| LOG TRANS                                                                                             | FORM: FLOW, CF                    | S                                          |                            | NUMBER OF EVE                                                                                            | NTS                                                                                                 |
| MEAN<br>STANDARD<br>COMPUTED<br>REGIONAL<br>ADOPTED                                                   | DEV<br>SKEW<br>SKEW               | 3.1120<br>.2740<br>.9416<br>.4000<br>.7000 | HIGH<br>LOW<br>ZERO        | TORIC EVENTS<br>1 OUTLIERS<br>OUTLIERS<br>0 OR MISSING<br>TEMATIC EVENTS                                 | 0<br>0<br>0<br>24                                                                                   |

-PLOTTING POSITIONS- 01-4765 RIDLEY CREEK AT MOYLAN, PA

|        | EVE  | NTS ANA |             |           |         | RED EVENTS |          |  |
|--------|------|---------|-------------|-----------|---------|------------|----------|--|
|        |      |         | FLOW        |           | WATER   | FLOW       | MEDIAN   |  |
| MON    | DAY  | YEAR    | CFS         | RANK      | YEAR    | CFS        | PLOT POS |  |
| 8      | 5    | 1843    | 15000.      | 1         | 1843    | 15000.     | .53      |  |
| 3      | 28   | 1932    | 891.        | 2         | 1951    | 5720.      | 2.97     |  |
| 8      | 23   | 1933    | 2680.       | 3         | 1955    | 4390.      | 7.09     |  |
| 3      | 5    | 1934    | 1080.       | 4         | 1938    | 3320.      | 11.21    |  |
| 7      | 9    | 1935    | 3000.       | 5         | 1935    | 3000.      | 15.34    |  |
| 1      | 3    | 1936    | 1590.       | 6         | 1933    | 2680.      | 19.46    |  |
| 2      | 22   | 1937    | 770.        | 7         | 1940    | 1770.      | 23.58    |  |
| 7      | 23   | 1938    | 3320.       | 8         | 1936    | 1590.      | 27.70    |  |
| 2<br>3 | 3    | 1939    | 978.        | 9         | 1950    | 1590.      | 31.83    |  |
| 3      | 15   | 1940    | 1770.       | 10        | 1952    | 1490.      | 35.95    |  |
| 2      | 7    | 1941    | 746.        | 11        | 1934    | 1080.      | 40.07    |  |
| 8      | 13   | 1942    | 1000.       | 12        | 1949    | 1040.      | 44.19    |  |
| 12     | 30   | 1942    | 980.        | 13        | 1945    | 1040.      | 48.32    |  |
| 1      | 6    | 1944    | 865.        | 14        | 1946    | 1000.      | 52.44    |  |
| 9      | 18   | 1945    | 1040.       | 15        | 1942    | 1000.      | 56.56    |  |
| 12     | 26   | 1945    | 1000.       | 16        | 1943    | 980.       | 60.68    |  |
| 5      | 22   | 1947    | 483.        | 17        | 1939    | 978.       | 64.81    |  |
| 5      | 5    | 1948    | 740.        | 18        | 1953    | 918.       | 68.93    |  |
| 12     | 30   | 1948    | 1040.       | 19        | 1932    | 891.       | 73.05    |  |
| 8      | 3    | 1950    | 1590.       | 20        | 1944    | 865.       | 77.17    |  |
| 11     | 25   | 1950    | 5720.       | 21        | 1937    | 770.       | 81.30    |  |
| 3      | 11   | 1952    | 1490.       | 22        | 1941    | 746.       | 85.42    |  |
| 11     | 22   | 1952    | 918.        | 23        | 1948    | 740.       | 89.54    |  |
| 12     | 14   | 1953    | 670.        | 24        | 1954    | 670.       | 93.67    |  |
| 8      | 18   | 1955    | 4390.       | 25        | 1947    | 483.       | 97.79    |  |
| NOTE   | - PL | OTTING  | POSITIONS E | BASED ON- | HISTORI | C PERIOD ( | H) = 132 |  |
|        | NU   | MBER OF | HISTORIC E  | EVENTS PL | US HIGH | OUTLIERS(  | z) = 1   |  |
|        | WE   | IGHTING | FACTOR FOR  | R SYSTEMA | TIC EVE | NTS (W) =  | 5.4583   |  |

-OUTLIER TESTS -

HIGH OUTLIER TEST

BASED ON 24 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.467 0 HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF 6136. STATISTICS AND FREQUENCY CURVE ADJUSTED FOR 0 HIGH OUTLIER(S) AND 1 HISTORIC EVENT(S)

#### LOW OUTLIER TEST

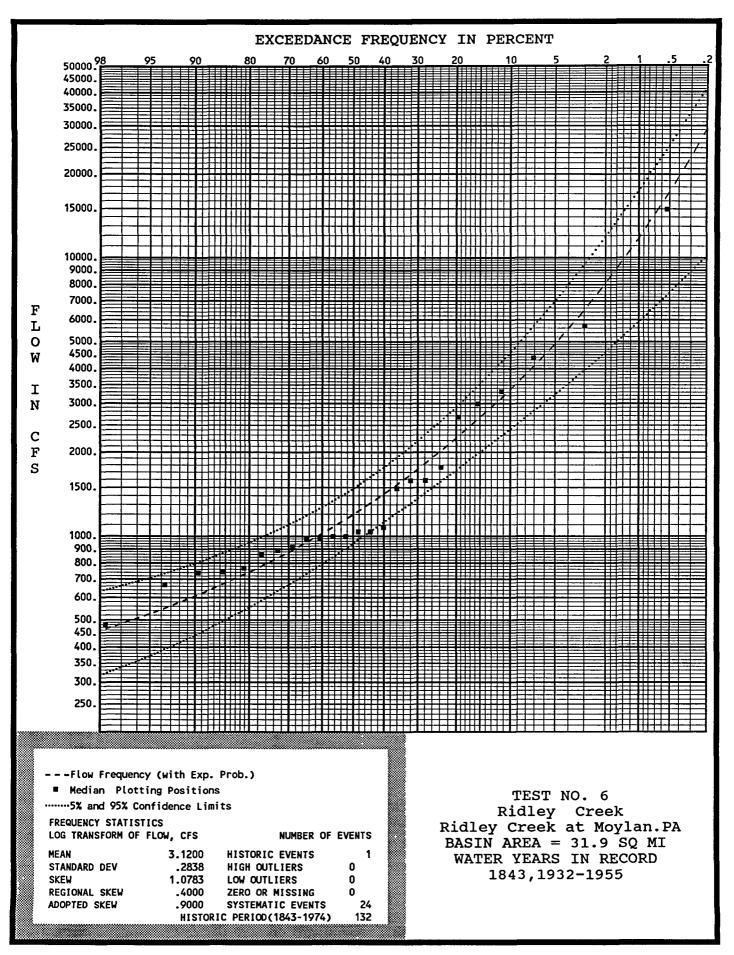
BASED ON 132 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 3.109

0 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF 172.9

-SKEW WEIGHTING -

| BASED ON 132 EVENT | S, MEAN-SQUARE ERROR OF STATION | SKEW = | .116 |
|--------------------|---------------------------------|--------|------|
| DEFAULT OR INPUT M | EAN-SQUARE ERROR OF GENERALIZED | SKEW = | .302 |

FINAL RESULTS


-FREQUENCY CURVE- 01-4765 RIDLEY CREEK AT MOYLAN, PA

| CURVE                                                                                                  | EXPECTED<br>PROBABILITY<br>IN CFS                                                                       | PERCI<br>CHAI<br>EXCEEL                     | ICE                              | CONFIDENC<br>.05<br>FLOW IN                                                                              | .95                                                                                                  |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 17600.<br>12200.<br>9100.<br>6740.<br>4440.<br>3160.<br>2180.<br>1200.<br>754.<br>623.<br>545.<br>446. | 29300.<br>17400.<br>11800.<br>8110.<br>4920.<br>3360.<br>2240.<br>1200.<br>744.<br>608.<br>526.<br>423. | 1                                           | .0<br>.0<br>.0<br>.0<br>.0<br>.0 | 42000.<br>25900.<br>17700.<br>12000.<br>7050.<br>4600.<br>2920.<br>1490.<br>953.<br>800.<br>710.<br>597. | 10200.<br>7550.<br>5950.<br>4630.<br>3260.<br>2430.<br>1730.<br>948.<br>557.<br>442.<br>374.<br>291. |
|                                                                                                        |                                                                                                         | ADJUSTED                                    | STATIS                           | STICS                                                                                                    | <u> </u>                                                                                             |
| LOG TRANS                                                                                              | FORM: FLOW, CF                                                                                          | s                                           |                                  | NUMBER OF EV                                                                                             | ENTS                                                                                                 |
| MEAN<br>STANDARD<br>COMPUTED<br>REGIONAL<br>ADOPTED                                                    | DEV<br>SKEW<br>SKEW                                                                                     | 3.1200<br>.2838<br>1.0783<br>.4000<br>.9000 | HIGI<br>LOW<br>ZER(<br>SYS)      | TORIC EVENTS<br>H OUTLIERS<br>OUTLIERS<br>D OR MISSING<br>TEMATIC EVENTS<br>TORIC PERIOD                 |                                                                                                      |

HP PLOT WRITTEN TO THE FILE: PLOT6.PCL

+ END OF RUN + + NORMAL STOP IN FFA +

\*\*\*\*\*



HP Plot of final frequency curve (see HP record in Appendix B).

# **APPENDIX A**

# **USING HEC-FFA**

### A.1 Introduction

FFA may be executed through the standard "command line" format or through a MENU shell. If the MENU is used, on-line help is available through the COED editor, similar to several other HEC programs.

## A.2 Using the Command Line

As with many computer programs, the command line may be used to specify the required files for execution. To run FFA, the input and output files must be specified. A sample execution line is:

This will execute FFA with an input file called IN.DAT and an output file called OUT.OUT. If omitted, the user would be prompted to input the desired file names. Other files that can be specified on the command line are the DSS files and a station statistics file (see SS record). For example:

If printer plots are desired, then the command line must contain,

PLOT=YES (or abbreviated to P=Y).

Specifying this on the command line is necessary to obtain printer plots, but the output suppression on the J1 record overrides this option.

For a quick reference of the command line input specification parameters, at the prompt type:

FFA ? [enter]

The information in Table A-1 will be displayed on the screen.

| UNIT | VERSION<br>KEYWORD | *ABREV | **MAX | DEFAULT     |
|------|--------------------|--------|-------|-------------|
| 5    | INPUT              | 1      | 30    | CON         |
| 6    | OUTPUT             | 0      | 30    | CON         |
| NOP  | PLOT               | P      | 1     | NO          |
| NOP  | SSRECORD           | S      | 30    | SSRECORD    |
| 8    | TAPE8              | Т      | 30    | SCRATCH.002 |
| 9    | TAPE9              | TAPE9  | 30    | SCRATCH.03  |
| NOP  | DSSFILE            | D      | 30    |             |

Table A-1

# A.3 Using the FFA MENU

FFAMENU is a menu program that assists in transfers between files, editing an input file, executing a program, and viewing the results. To use the FFA menu, simply type FFAMENU at the DOS prompt and select an operation, such as select files, edit file, ... etc. FFAMENU will make batch files to run FFA for the user. From the FFAMENU "Run" (program execution) line, you can toggle between the following programs: FFA, FGRAPH, DSPLAY, and DSSUTL. COED, see next paragraph, is executed form the FFAMENU "create/edit input file" line. FFA and FGRAPH are provided in the HEC FFA package; DSPLAY and DSSUTL must be obtained separately from your vendor.

### A.4 On-line Help

FFA has an on-line help file for the HEC editor COED. This allows the user to see information about the records and variables being input. Because the help file works in conjuction with the COED editor, COED must be the editor used for creating data files. If COED is not used, the input data section of this manual provides the same information.

IF the FFAMENU program <u>is not</u> used to execute COED, add "/HP:FFA" to execution line. An example of executing COED with the help file for Test #1 would be:

### COED TEST1.DAT /HP:FFA

If the FFA MENU program is used to operate FFA, the help file will automatically be loaded when the COED editor is called.

## APPENDIX B

## INPUT DESCRIPTION

**Flood Frequency Analysis** 

This exhibit contains a detailed description of each variable on each input record. Many of the records shown can be omitted if certain options are not required. The Summary of Input Records at the end of this exhibit shows the sequential arrangement of records and the location of variables on the records.

The location of variables for each input record is shown by field number. The records are normally divided into ten fields of eight columns each except field 1. Variables occurring in field 1 may only occupy record columns 3-8 because record columns 1 and 2 are reserved for the <u>required</u> <u>identification characters</u>. The different values a variable may assume and the conditions for each are described for each variable. Some variables are used simply to indicate whether or not a program option is to be used. The values for these variables are integer values and must be right justified (entered on the far right side of the field) without any decimal points. Other variables are assigned numbers which express the variable's magnitude. For these, either a "+" or a "-" sign where the value may also be negative, is shown in the description under "value" and the numerical value of the variable is entered as input. Where the variable value is to be zero, the variable may be left blank, since a blank field is read as zero and any number without a sign is considered positive. Unless noted otherwise, variable names beginning with the letters I, J, K, L, M or N represent integer variables and decimal point or be right justified. All others are floating point variables and may either have a decimal point or be right justified. The location of variables on records is sometimes referred to by an abbreviated designation, for example, J1.4 means the fourth field of the J1 record.

Those records that are flagged with an asterisk are required records and must be supplied for every job. Several jobs may be processed at the same time by inserting each job sequentially in the file.

## I. TITLE RECORDS

## TT Record - Title Information

| <u>Field</u> | <u>Variable</u> | <u>Value</u> | Description                                                                                                                                 |
|--------------|-----------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1-10         |                 | Alpha        | Alphanumeric information to identify the job. As many TT records may be supplied as necessary to input the desired descriptive information. |

## **II. JOB RECORDS**

### J1 Record - First Job Record

Job record which specifies program options. If omitted, default values in parentheses will be assigned. When this record is provided, the specified input options will be maintained for all succeeding stations until another J1 record is encountered.

| <u>Field</u> | <u>Variable</u> | <u>Value</u> |        | Description                                                                                                                                                                                                                                                                              |
|--------------|-----------------|--------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | IPPC<br>(1)     | +            | where: | Plotting positions in the program are<br>computed by the general formula $(m-A)/(N+1-A-B)$<br>m = order number<br>N = number of years<br>A,B = constants<br>The standard constants may be specified below. If other<br>constants are desired, they may be specified on the J2<br>record. |
|              |                 | 0 or 1       |        | Weibull plotting positions will be used for output and plotting (A and B equal 0.0).                                                                                                                                                                                                     |
|              |                 | 2            |        | Median plotting positions will be used for output and plotting (A and B equal 0.3).                                                                                                                                                                                                      |
|              |                 | 3            |        | Hazen plotting positions will be used for output and plotting (A and B equal 0.5).                                                                                                                                                                                                       |
|              |                 | 4            |        | Plotting positions constants (A and B) will be read in on J2 record.                                                                                                                                                                                                                     |

# J1 Record - First Job Record (continued)

| <u>Field</u> | <u>Variable</u> | Value  | Description                                                                                                                                                                                                                                        |
|--------------|-----------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2            | ISKFX           | 0 or 1 | Adopted skew coefficient will be the weighted value computed in accordance with the WRC Guidelines and rounded to the nearest tenth.                                                                                                               |
|              |                 | 2      | Adopted skew coefficient will be the weighted value computed as above, except it is not rounded.                                                                                                                                                   |
|              |                 | 3      | Adopted skew coefficient will be set equal to the input regional map skew coefficient which is read in on the GS record, i.e., <u>no</u> weighing with the station skew coefficient.                                                               |
| 3            | IPROUT<br>(0)   | +      | The sum of the following output codes which suppress selected portions of the normal output. For example, a value of 63 would suppress all output except the printout of the frequency curve ordinates and statistics of the <u>final</u> results. |
|              |                 | 0      | No output suppressed.                                                                                                                                                                                                                              |
|              |                 | 1      | Suppress the printout of input data, arrayed data, and plotting positions of the preliminary results.                                                                                                                                              |
|              |                 | 2      | Suppress the printout of the frequency curve ordinates and corresponding statistics of the <u>preliminary</u> results.                                                                                                                             |
|              |                 | 4      | Suppress the plot of the preliminary results.                                                                                                                                                                                                      |
|              |                 | 8      | Suppress the printout of input data, arrayed data, and plotting positions of the <u>final</u> results.                                                                                                                                             |
|              |                 | 16     | Suppress the plot based on computed flows from the final results.                                                                                                                                                                                  |
|              |                 | 32     | Suppress the plot based on the expected probability adjustment of the flows from the final results.                                                                                                                                                |
|              |                 | 64     | Suppress the printout of the frequency curve ordinates<br>and corresponding statistics of the <u>final</u> results. A value of<br>127 for IPROUT will suppress all station output except for<br>the summary of results.                            |

# J1 Record - First Job Record (continued)

| <u>Field</u> | Variable | Value  | Description                                                                                                    |
|--------------|----------|--------|----------------------------------------------------------------------------------------------------------------|
| 4            | IFMT     | 0 or 1 | Flow data is in the format specified for QH or QR records.                                                     |
|              |          | 2      | Data is in the format of four 8-column fields for day, month, year and flow (note order of day and month).     |
|              |          | 3      | Format of data is specified by FT record for month, day, year and flow (note order of day and month).          |
|              |          | 4      | Format of data is specified by FT record for day, month, year and flow (note order of day and month).          |
| 5            | IWYR     | 0      | Annual series data selected from the standard water year (October-September), IWYR will be set to 10.          |
|              |          | +      | The order number of the first month in the water year, e.g.,<br>1 for calendar year beginning in January, etc. |
| 6            | IUNIT    | 0 or 1 | Label for plot will be "CUBIC FEET PER SECOND."                                                                |
|              |          | 2      | Label for plot will be "CUBIC METERS PER SECOND."                                                              |
|              |          | 3      | Label for plot will be input on FU record.                                                                     |
| 7            | ISMRY    | 0      | No summary will be printed.                                                                                    |
|              |          | 1      | A summary of the final results will be printed for all of the stations in the run.                             |
|              |          | 2      | A summary of the preliminary results will be printed.                                                          |
|              |          | 3      | A summary of both the preliminary and the final results will be printed.                                       |

# J1 Record - First Job Record (continued)

| <u>Field</u> | <u>Variable</u> | Value                                                                                                                                                                               | Description                                                                                                                                                                                         |                                                                                                                                  |
|--------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 8            | IPNCH           | 0                                                                                                                                                                                   | No statistics written to special                                                                                                                                                                    | file.                                                                                                                            |
|              |                 | 1                                                                                                                                                                                   | Station statistics will be written                                                                                                                                                                  | for final results.                                                                                                               |
|              |                 | 2                                                                                                                                                                                   | Station statistics will be written                                                                                                                                                                  | for the preliminary results.                                                                                                     |
|              |                 | 3                                                                                                                                                                                   | Station statistics will be written results.                                                                                                                                                         | for the preliminary and final                                                                                                    |
|              |                 | Statistics will be o                                                                                                                                                                | utput in the format as shown belo                                                                                                                                                                   | ow:                                                                                                                              |
|              |                 | ltem                                                                                                                                                                                |                                                                                                                                                                                                     | Record Columns                                                                                                                   |
|              |                 | DURN - type<br>USGS part<br>Station iden<br>Number of e<br>Historic peri<br>Station mea<br>Station stan<br>Station com<br>Station regi<br>Station ado<br>Number of I<br>Number of I | ntification number<br>events in systematic record<br>iod<br>in<br>indard deviation<br>iputed skew coefficient<br>onal skew coefficient<br>pted skew coefficient<br>historic events<br>high outliers | 1- 2<br>3- 8<br>9-10<br>11-16<br>17-20<br>21-24<br>25-32<br>33-40<br>41-48<br>49-56<br>57-64<br>65-68<br>69-72<br>73-76<br>77-80 |
| 9            | IREG            |                                                                                                                                                                                     | This field is only needed when WATSTORE format. Otherwise blank.                                                                                                                                    |                                                                                                                                  |
|              |                 | 0                                                                                                                                                                                   | Delete all events with a <u>known</u><br>regulation or diversion. All flow<br>or <b>"</b> 6 in column 33 are deleted.                                                                               | records with a "1", "2", "5",                                                                                                    |
|              |                 | 2                                                                                                                                                                                   | Include all flow data, regardles                                                                                                                                                                    | s of the code in column 33                                                                                                       |

## J2 Record - Second Job Record

Job record which specifies nonstandard plotting position constants and criteria for confidence limits.

| <u>Field</u> | <u>Variable</u>  | Value | Description                                                                                                                                                                                                                                                                                                                                        |
|--------------|------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | Α                | +     | Plotting position constants A and B. Default values are those specified by IPPC (J1.1). IPPC must equal 4 to activate                                                                                                                                                                                                                              |
| 2            | В                | +     | these input constants.                                                                                                                                                                                                                                                                                                                             |
| 3            | CLIMIT<br>(0.05) | +     | Confidence limit probability for either side. Default<br>value of zero computes the .05 and the complimentary .95<br>confidence limits. The approximating equations become<br>less accurate for small sample sizes as smaller values are<br>specified, e.g., the .01 limit values are less accurate than .05<br>limit values for 10 years of data. |
| 4            | NDSSCV           | 0     | If a DSS write is used (see ZW record) then NDSSCV<br>specifies the frequency curves that are written to the DSS<br>file. If NDSSCV is not specified FFA will default to writing<br>four curves to the DSS file: the computed, the expected<br>probability and the upper and lower confidence curves.                                              |
|              |                  | 1     | Computed curve only.                                                                                                                                                                                                                                                                                                                               |
|              |                  | 2     | Expected Probability curve only.                                                                                                                                                                                                                                                                                                                   |
| 5            | IEXT             | 0     | Extended character set indicator. The default for output text is to use the extended character set. (i.e. lines around the tables in printout rather than asterisks)                                                                                                                                                                               |
|              |                  | 1     | If a printer without extended character set capability is used,<br>then set IEXT to 1. Program will print only conventional text<br>in output file.                                                                                                                                                                                                |

## FR Record - Frequency Ordinates Record

The FR record is used to specify nonstandard frequency ordinates. When specified, the number of decimal places printed in frequency curve table increases from one to two.

| <u>Field</u> | <u>Variable</u> | <u>Value</u> | Description                                                                                                                                                                                                                                                                            |
|--------------|-----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | NFRQ            | +            | NFRQ is the number of frequency ordinates that will be specified (up to 25). If more than nine ordinates are to be input, then more FR records must be used, but NFRQ is only specified on the <u>first FR record</u> .                                                                |
| 2-10 F       | REQ(1NFRQ)      | +            | Frequency ordinates, in percent. These must be input in ascending order. The ordinates <u>1., 10. and 50. percent</u> <u>must be included in this record</u> . This is for the conditional probability adjustment. Note, for second FR record, ordinates are specified on fields 1-10. |

## FT Record - Flow Format

Provide this record if IFMT (J1.4) is 3 or 4.

| <u>Field</u> | <u>Variable</u> | <u>Value</u> | Description                                                                                                                                                                                                                                                                                 |
|--------------|-----------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1- 10        | IFRMT           | Alpha        | Format of data on records. If IFMT is 3, the format specification must have fields for data in the following order: month, day, year, and flow, "(8X, 212, I4, F8.0)" is the standard program format. The parentheses <u>must</u> be included in the format specification.                  |
|              |                 |              | If IFMT is 4, the format specification must have fields for data<br>in the following order: day month, year, and flow, e.g., "(318,<br>F8.0)" is the format of input data for the program in the WRC<br>Guidelines. The parentheses <u>must</u> be included in the format<br>specification. |

# FU Record - Variable Name and Units Labels (optional record)

| <u>Field</u> | <u>Variable</u> | Value | Description                                                                                                                                                                                                                     |
|--------------|-----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | ICD             | FU    | Record identifier.                                                                                                                                                                                                              |
| 1            | VNAME<br>(FLOW) | Char  | Variable name label, i.e., FLOW, ELEV, etc. Limited<br>to 6 characters in columns 3 through 8 and is used in<br>various table headings. Only the first four characters will be<br>used in the DSS write. The default is 'FLOW'. |
| 2            | VUNIT<br>(CFS)  | Char  | Units label, i.e., CFS, FEET, etc. May be 8 characters<br>in length. The label also is used in table headings and the<br>DSS write. The default is 'CFS '.                                                                      |

(Can be provided anytime.)

## **III. STATION DATA RECORDS**

## **ID Record** - Station Identification and Information

| <u>Fie</u> | d <u>Variable</u> | Value | Description                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------|-------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-1        | 0 ISTA            | Alpha | Alphanumeric information such as station number, location,<br>drainage area, period of record, etc. Although columns 2-8<br>may be used for station identification, only columns 3<br>through 48 are printed as a heading for each table. If this<br>record is not provided, the brief station identification on the<br>GS record (GS.1) will be used. if a GS record is not<br>provided, the array is filled with blanks |

## **GS Record** - Generalized skew

This record is used to specify the generalized (regional map) skew coefficient which will be weighted with the station skew coefficient in accordance with the Bulletin 17B Guidelines. If this record is not provided, the computed station skew coefficient, founded to the nearest tenth if ISKFX(J1.2) is equal to 0 or 1, will be used in computing the frequency curve. If the GS record is included in the input file, but all fields are left blank, FFA will proceed with the analysis with a generalized skew of 0 with a mean square error of 0.302 (the default value).

| <u>Field</u> | <u>Variable</u> | <u>Value</u> | Description                                                                                                                                                                                                                 |
|--------------|-----------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | ISTN            | Alpha        | Brief alphanumeric identification of station, e.g., could be<br>USGS station number, to assist in identifying record. If a ID<br>record is not provided, the information in this field will be<br>used to label the output. |
| 2            | GGMSE           | +            | Mean squared error (MSE) of the generalized skew if Plate I,<br>Bulletin 17b is not used. If left blank, a value of 0.302 will be<br>used to correspond with Plate I.                                                       |
| 3            | SKEW            | +            | Regional (Generalized) skew coefficient.                                                                                                                                                                                    |

# SI Record - Special Station Information

This record is used to input a historic period other than that represented by the flow data records, to specify the number of high outliers in the systematic record, and to input a base peak discharge.

| Field | <u>Variable</u> | Value | Description                                                                                                                                                                                                                                             |  |
|-------|-----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1     | IYRA            | +     | The earliest year for defining a period during which the<br>largest recorded events (see NOUTL, SI.3) or historic events<br>(see QH records) are known to be a maximum. If left blank,<br>IYRA will be the first year found on either QH or QR records. |  |
| 2     | IYRL            | +     | The last year of the period for which the historic information applies. if left blank, IYRL will be the last year found on either QH or QR records.                                                                                                     |  |
| 3     | HITHRS          | +     | Magnitude of high outlier flood peak. All flood peaks in the systematic record (QR records) greater than or equal to HITHRS, are treated as high outliers in the historic period IYRA to IYRL.                                                          |  |
|       |                 | 0     | If historic data is provided and HITHRS is not specified, it will default to the lowest historic peak.                                                                                                                                                  |  |
| 4     | LOTHRS          | +     | Magnitude of low threshold flood peak. Any recorded event less than or equal to LOTHRS will be treated as a low outlier.                                                                                                                                |  |
|       |                 | 0     | The program automatically applies the WRC procedures to identify and adjust for low outliers (default).                                                                                                                                                 |  |
| 5     | LOGT<br>(1)     |       | Logarithmic transformation indicator for frequency analysis.                                                                                                                                                                                            |  |
|       |                 | -1    | No transformation.                                                                                                                                                                                                                                      |  |
|       |                 | 0,1   | Log (base 10) transformation, default.                                                                                                                                                                                                                  |  |
| 6     | NDEC<br>(0)     | +     | Number of decimal places to print in tables of plotting positions and frequency curve ordinates; 0, 1, 2, or 3 allowed.                                                                                                                                 |  |
| 7     | NSIG<br>(3)     |       | Number of significant figures in output of computed frequency curve ordinates.                                                                                                                                                                          |  |
|       |                 | -1    | No rounding will be done.                                                                                                                                                                                                                               |  |
|       |                 | 0     | Round to 3 significant figures, default.                                                                                                                                                                                                                |  |
|       |                 | +     | Round values to NSIG significant figures.                                                                                                                                                                                                               |  |

## **SS Record** - Station Statistics

With this record, FFA can be used to calculate log Pearson type III frequencies given; mean, standard deviation, and skew of the logarithm of the flows. The output tabulated frequency curve is in the same format as would normally be produced for systematic data.

This record can be input manually using the nonstandard fields listed below or can generated by FFA on a previous run. FFA will generate this record and write it to a file specified on the execution line (see IPNCH variable, field 8 on the J1 record). Common fields are not used for the station statistics because it contains 14 pieces of information. The columns numbers for the variables are listed rather than field numbers.

To calculate the frequency curve the only variables required are the mean, standard deviation and the adopted skew. The mean and standard deviation must be input, but FFA will calculate the adopted skew if the computed skew, the generalized skew and the number of years of record are input.

| <u>Columns</u> | <u>Variable</u> | Value | Description                                                           |
|----------------|-----------------|-------|-----------------------------------------------------------------------|
| 3-8            | DURN            | Alpha | Type of analysis. If left blank DURN will default to 'PEAK' analysis. |
| 9-11           | IPART           | Alpha | USGS part number.                                                     |
| 11-16          | ISTN            | Alpha | Station identification number.                                        |
| 17-20          | NSYS            | +     | Number of events in systematic record.                                |
| 21-24          | NYR             | +     | Historic period.                                                      |
| 25-32          | ХМ              | +     | Station mean.                                                         |
| 33-40          | S               | +     | Station standard deviation.                                           |
| 41-48          | G               | +     | Station computed skew coefficient.                                    |
| 49-56          | SKEW            | +     | Station regional map skew coefficient.                                |
| 57-64          | AG              | +     | Station adopted skew coefficient.                                     |
| 65-68          | NHIS            | +     | Number of historic events.                                            |
| 69-72          | NOUTL           | +     | Number of high outliers.                                              |
| 73-76          | NLOW            | +     | Number of low outliers.                                               |
| 77-80          | NZMSG           | +     | Number of zero or missing flows.                                      |

\* The value of AG will only be used for the adopted skew if the values for G and SKEW are left blank. Otherwise, the adopted skew will be computed by weighing G and SKEW via their mean square error (MSE). The MSE for G is determined based on the maximum value of NSYS and NYR, and for SKEW via the value specified on the GS record (default equals 0.302).

#### ZW Record - DSS Write Pathname (optional record)

This record specifies the pathname in which to write the plotting position information and frequency curve ordinates. A ZW record must be provided for each data set for which frequency relations are to be written to a DSS file.

| <u>Field</u> | <u>Variable</u> | Value | Description                                                                                                                                                                                                                                                                                               |
|--------------|-----------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | ICD             | ZW    | Record identifier.                                                                                                                                                                                                                                                                                        |
| 1-10         | СРАТН           | Char  | Character pathname to be assigned to curves written to a DSS file. Either pathname parts A, B, C, E, and F if the first ZW record, or just the parts that are being changed may appear in columns 3-80. The parts must be separated by a space or comma. Each pathname part may not exceed 32 characters. |

An example ZW record with a full pathname is:

ZW /TEST NO 1/FISHKILL CREEK/FREQ-FLOW//1945-68/USGS ANNUAL PEAKS/

The same example with pathname parts is:

```
ZW A=TEST NO 1 B=FISHKILL CREEK C=FREQ-FLOW E=1945-68 F=USGS ANNUAL PEAKS
```

The usual conventions for DSS pathnames are:

- A = Project or Basin name.
- B = Stream, gage or location name.

C = Curve parameters. This part contains the two parameter names for the data. Example valid parameters are FREQ-FLOW, FREQ-ELEV, FREQ-STAGE, FREQ-STORAGE, and FREQ-PRECIP. The FREQ part of the label is used by DSPLAY to set the probability scale; therefore, should not be changed.

D = Further identifies the curves. This part cannot be specified by the user and is assigned by the program, depending on the output as follows: a) For plotting positions and input events, 'MAX EVENTS'; or b) For computed frequency curve ordinates, 'MAX ANALYTICAL'. There are four curves contained within this pathname. They have the labels 'COMPUTED' for the computed ordinates, 'EXP PROB' for the expected probability ordinates, and two curves with 'x% LIMIT' for the upper and lower confidence limit curves.

E = Usually used as a time descriptor for data. This part is not required.

F = Unique user defined descriptor to identify the source of the data, the conditions, etc; i.e., USGS, WATSTORE, RESERVOIR INFLOW, NATURAL, etc.

An example of a paired data pathname written to HEC-DSS when a ZW record is specified is:

/TEST NO. 1/FISHKILL CREEK/FREQ-FLOW/MAX EVENTS/1945-68/USGS ANNUAL PEAKS/

### HP Records - Write Hewlet Packard Laser Jet Printer File

The HP record specifies the file name and title information necessary for FFA to produce a frequency plot. The file FFA produces contains the Hewlet Packard(HP) printer control characters necessary to produce the frequency plot. This file can then be sent to the printer for the plot. The codes in the file are in the Hewlet Packard Laser Jet II format, but most laser printers are HP compatible thus, plot files produced with this function can be printed on most laser printers.

Up to ten HP records can be input. The first HP record is used to enter the plot file name, the control variables and the basin area; the remaining HP records are used to enter the other title information that appears on the frequency plot.

The HP plot has a title area with room for 10 rows of information. The basin area input on the first HP record takes one of the rows and the period of record determined from the data set reserves an additional 3 rows. This leaves 6 title-information rows to be specified by the user. The default for FFA is to determine the period of record from the data set, though this option can be overridden with the variable IPER (HP.7) which would leave 9 rows for title information available for the user.

The basin area is specified in a different location than other information in an attempt to force the user to include the basin area on the plot; however, the basin area requirement can be overridden.

See example of HP record on TEST NO. 6 in Section 2 of this manual.

## **FIRST HP RECORD**

| <u>Field</u> | Variable | Value | Description                                                                                                                                                                                                                                                                  |
|--------------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | ICD      | HP    | Record Identifier.                                                                                                                                                                                                                                                           |
| 1-4          | HPFILE   | alpha | Enter the file path(if desired) and the file name for the HP plot file. For example: PLOT6.PCL                                                                                                                                                                               |
| 5            | IHPCV    | 0, 1  | IHPCV specifies the frequency curves to be written to<br>HPFILE. IF IHPCV equals 0 or 1, the expected probability<br>curve will be written to HPFILE.                                                                                                                        |
|              |          | 2     | Computed curve will be written to HPFILE.                                                                                                                                                                                                                                    |
|              |          | 3     | Both the expected and computed curves will be written to HPFILE.                                                                                                                                                                                                             |
|              |          | 4     | No frequency curves will be written to HPFILE (only the plotting positions will be on plot).                                                                                                                                                                                 |
| 6            | KLIMIT   | 0     | KLIMIT specifies wether of not the confidence limits will be written to HPFILE. If not specified, KLIMIT will default to 0 and write the confidence limits.                                                                                                                  |
|              |          | 1     | The confidence limits will not be written to HPFILE.                                                                                                                                                                                                                         |
| 7            | IPER     | 0     | FFA will automatically determine the period of record in water years and write on the title area of plot. (HP records 7-9 cannot be specified.)                                                                                                                              |
|              |          | 1     | The period of record will not be calculated (HP records 7-9 can be specified for additional title information).                                                                                                                                                              |
| 8-9          | BAREA    | alpha | Enter the phrase that describes the basin area for the frequency curve. For Example: 31 SQ MI. The string entered in BAREA is appended to the phrase: "BASIN AREA = ", and printed in the title area of the HP plot. If BAREA variable is blank the plot will be suppressed. |
|              |          | N     | If the area is unavailable, enter "N" in this field to override the basin area requirement.                                                                                                                                                                                  |

### SUBSEQUENT HP RECORDS

The second through seventh (or ninth) HP records are used to input title information. The area for title information in the plot has space for 10 lines, which are each 30 characters long. The basin area input from the first HP record is appended to the rows of title information. IF IPER is zero (default) the period of record will be determined from the data set and appended to the last rows in the title area. The block of titles will automatically be centered vertically and each individual title will be centered horizontally. See test no. 6 in section 2. All titles after 6 (or 9 if IPER =1) are not used.

<u>HP record NO. Variable</u> <u>Field(Columns)</u> <u>Value</u> <u>Comments</u>

2-7(9) TITLE(N) 1-4 (3-32) Alpha Title information.

See the HP plot example for sample input and output (Section 2.6).

Commands to Print the HP Plot File on a Laser Printer

The file produced by FFA contains the printer control codes necessary to produce the plot. This information needs to be sent to the printer. In DOS this can be done with either the **PRINT** or the **COPY** commands. For example, if you produced the HP plot file **PLOT6.PCL**, type:

#### PRINT PLOT6.PCL

(If the computer responds with the prompt [prn], just press enter.)

Another option is to copy the file to the printer. The same example above using the copy command is:

#### COPY PLOT6.PCL LPT1

LPT1 used in this example is the path to the printer. This can vary with different computer systems, but usually LPT1 is the name for the printer.

#### QH Record - Historic Flood Peak

This record is used to input historic flood peaks that are to be weighted with the systematic record (QR records). Care must be exercised in selecting historic peaks as those peaks in the systematic record that the smallest historic peak will be treated as high outliers. Any peaks in the systematic record that are larger than the smallest input historic peak are automatically weighted along with the historic peaks. A nonstandard format and order of month and day may be used, see IFMT (J1.4).

| <u>Field</u> | <u>Variable</u> | Value | Description                                                                                                                                                                                                                                                                                                               |
|--------------|-----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | ISTN            | Alpha | Brief alphanumeric identification of station e.g., could be<br>USGS station number, to assist in identifying data.                                                                                                                                                                                                        |
| 2            | IMO,IDAY,IYR    | +     | The month, number (columns 9 and 10), the day (columns 11 and 12) and the year (columns 13-16) of the flood flow peak. The month and/or day may be left blank. The year must be the calendar year of the event if the month is indicated; otherwise, the year must be the water year. (J1.5 for establishing water year.) |
| 3            | QH              | +     | Historic annual flood peak. The program is dimensioned for up to 50 historic peaks.                                                                                                                                                                                                                                       |

#### \*QR Record - Systematic (Recorded) Flood Peak

This record is used to input recorded flood peaks. A period of years may be absent (broken record). The QR is not required in the first two columns. Two blanks or a G blank (Regional Frequency Computation program flow record) is treated as a QR record. A nonstandard format and order of month and day may be used, see IFMT (J1.4). Records after the QR records will not be used in FFA analysis.

| <u>Field</u> | <u>Variable</u> | Value | Description                                                                                                                                                                                                                                                                                                                   |
|--------------|-----------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | ISTN            | Alpha | Brief alphanumeric identification of station, e.g., could be USGS station number, to assist in identifying data.                                                                                                                                                                                                              |
| 2            | IM,IDY,IY       | +     | The month number (columns 9 and 10), the day (columns 11 and 12) and the year (columns 13-16) of the flood flow peak. The month and/or day may be left blank. The year must be the calendar year of the event if the month is indicated; otherwise, the year must be the water year. (See J1.5 for establishing water year.). |
| 3            | Q               | +     | Recorded annual flood peak. If flow was too low to record,<br>enter -1, and the data will be analyzed by the incomplete<br>record procedure. The number of QH records plus QR<br>records is dimensioned for up to 130 values.                                                                                                 |

\* Required record

### CD Record - Read Data From Hydrodata By Earth-Info (CD ROM) Data File

This record provides a link between the program FFA and the data retrieval system by HYDRODATA, where the information is stored on compact disk. The CD record replaces the QR records in FFA input file, by specifying a file name containing the peak flows in the format produced by the Hydrodata software when "Tabular" format is specified (See Appendix D).

Refer to Appendix D for an example of CD record.

| <u>Field</u> | <u>Variable</u> | Value | Description                                                                                                                                             |
|--------------|-----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | ICD             | CD    | Record identifier.                                                                                                                                      |
| 1-10         | CDFILE          | alpha | Enter the file path (if necessary) and the file name of data file retrieved from Hydrodata. Note the data must be in tabular format for FFA to read it. |

### ED Record - End of Data Record

The program reads flow data until it encounters a record that does <u>not have</u> a "20", "21", "QR", "G", and a blank, or has two blanks in the first two columns, or has a completely blank record or an ED in the first two columns. When any of these conditions occur, a new station is assumed unless there is no more data (end of file) in which case normal termination occurs.

## SUMMARY OF INPUT RECORDS

# Flood Frequency Analysis

I. Title Information:

|        | TT      | •         | Job Title I | nformation | i (as many a | as neede    | d)     |       |       |      |
|--------|---------|-----------|-------------|------------|--------------|-------------|--------|-------|-------|------|
| II. J  | ob Sp   | ecificati | on:         |            |              |             |        |       |       |      |
|        | J1      | IPPC      | ISKFX       | IPROUT     | IFMT         | IWYR        | IUNIT  | ISMRY | IPNCH | IREG |
|        | J2      | Α         | В           | CLIMIT     | NDSSCV       | IEXT        |        |       |       |      |
|        | FR      | NFRQ      | FREQ(1)     | FREQ(2)    | FREQ(3)      | etc.        |        |       |       |      |
|        | FT      | No        | onstandard  | format fo  | r flood peac | data        |        |       |       |      |
|        | FU      | VNAME     | VUNIT       |            |              |             |        |       |       |      |
| III. S | Statior | n Data C  | ards        |            |              |             |        |       |       |      |
|        | ID      | Station   | identificat | lon        |              |             |        |       |       |      |
|        | GS      | ISTN      | GGMSE       | SKEW       |              |             |        |       |       |      |
|        | SI      | IYRA      | IYRL        | HITHRS     | LOTHRS       | LOGT        | NDEC   | NSIG  |       |      |
|        | SS      | See S     | S record f  | or details | of column s  | specificati | ions   |       |       |      |
|        | ZW      | DSS p     | athname     |            |              |             |        |       |       |      |
|        | HP      | ŀ         | IPFILE      |            |              | IHPCV       | KLIMIT | IPER  | BAREA |      |
|        | QH      | ISTN      | DATE        | QH         |              |             |        |       |       |      |
|        | QR      | * ISTN    | DATE        | Q          |              |             |        |       |       |      |
|        | CD      | C         | DFILE       |            |              |             |        |       |       |      |
|        | ED*     | r         |             |            |              |             |        |       |       |      |
|        |         |           |             |            |              |             |        |       |       |      |

\* Required Records

## **APPENDIX C**

### FFA - USAGE WITH DSS AND DSPLAY

Other than the printer plots produced by FFA, graphical plots can be generated by the use of the DSPLAY program (Ref. HEC-DSS User's Manual April 1990 version). DSPLAY is a graphics package that allows the user to plot data contained in a DSS file. During execution of the FFA program, the computed frequency curve, the expected probability curve, and the confidence limits are written to a DSS file (see ZW record in Appendix B and J2 record NDSSCV variable). Through the use of the DSPLAY program, the plots shown at the end of each of the six test examples can be generated. The following commands were used.

| Command                                                                                                                               | Description                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CA.NA                                                                                                                                 | Develop a new catalog of all the data stored in the DSS file and display it in an abbreviated format on the screen.                                                                                       |
| FR OFF                                                                                                                                | Turns frame around graph off (the frames around graphical plots in section 2 were generated by the word processor used to publish this manual).                                                           |
| DA OFF                                                                                                                                | The default for the Date (DA) command is to print the date above the plot. This command turns that off.                                                                                                   |
| AX LIN,LOG                                                                                                                            | Sets the Y-axis to logarithm scale. The X-axis defaults to the probability scale because of frequency analysis.                                                                                           |
| DG BOX=THICK                                                                                                                          | Sets the main box around the plot to double thick.                                                                                                                                                        |
| GR ON,ON                                                                                                                              | Turns the major and minor grids on.                                                                                                                                                                       |
| DL CU=1 STY=0 WI=1 SY=0<br>DL CU=2 STY=1 WI=1 SY=0<br>DL CU=3 STY=2 WI=1 SY=0<br>DL CU=4 STY=2 WI=1 SY=0<br>DL CU=5 STY=-1 SY=3 SI=.6 | These commands set the individual line styles for the frequency<br>curves (curves 1-4), and the symbol type and size for the plotting<br>positions (curve 5). See HEC-DSS User's Manual for more details. |
| PL 1,2                                                                                                                                | Plot on the screen (default device) the data referenced by pathnames 1 and 2 in the DSS file catalog listing.                                                                                             |

| Command    | Description                                                                                                                                                                                                                                                                                                                                                          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEV META   | Change plotting device option to a meta file, a graphical format file.<br>This is only one option for the output, to get a hardcopy of a plot<br>directly, the printer might be selected as the output device. For this<br>case the command would be DEV PRINTER. METAFILES were used<br>in test examples so that the plots could be integrated into this<br>manual. |
| PL         | Send the previously defined option (PL 1 and 2) to the printer.                                                                                                                                                                                                                                                                                                      |
| DEV SCREEN | Reset the current plotting device to the screen.                                                                                                                                                                                                                                                                                                                     |
| FIN        | Finish the DSPLAY session and return to DOS or MENU.                                                                                                                                                                                                                                                                                                                 |

Using these commands in DSPLAY, produces a file called **METAFILE.DAT**. A commercial word processor can then import these plots into documents. The METAFILE is a Computer Graphics Metafile format (CGM) and is compatible with most word processors.

# APPENDIX D

## FFA - USAGE WITH HYDRODATA

FFA can read indirectly from the HYDRODATA CD ROM package with the CD record. To use this capability, a data file must be retrieved in tabular format and the name of this file input in the CD record. Below are a list of commands to retrieve in the tabular format. The actual file produced is shown in table D-1. Sample HYDRODATA input and output files using the retrieved CD file are shown in table D-2.

Additional flows can be added to the analysis with QR records, but the CD record must precede them in the input file.

Commands required to retrieve a data set from the HYDRODATA information system.

Execute the HPEAK.EXE program (PV for 1991 version).

Select State (HPEAK and PV are menu driven).

Select the desired station by marking: position the cursor on the station and pressing the F5 key. (F4 unmarks station.) The marked station will be in bold text.

Press ESC key to get into menu, cursor to EXPORT and press ENTER.

Select FILE and enter the desired file name.

(In the following example, the file was named DRY\_BEAV.ASC, the ASC extension is not required but was used as reminder that file is in ASCII format.)

Select FILE, then cursor to FORMAT and select the TABULAR or ASCII format.

Select GO from menu, and press ENTER.

The above actions creates a file called DRY\_BEAV.ASC (for this example). This file should reside in your FFA directory.

## TABLE D-1

## File Retrieved from the CD ROM With HYDRODATA

| Station       | DRY BEAV  |       | EK NEAR F | IMROCK | . AR | (Z.      |         |           | Id                         | 09505350  |
|---------------|-----------|-------|-----------|--------|------|----------|---------|-----------|----------------------------|-----------|
| State         | AZ        |       | Drainad   |        |      | 142      | .0      | Hydrolo   |                            | 15060202  |
| County        | 025       |       | Contrib   |        |      |          | .0      | Years     | <b>3</b>                   | 1961-1988 |
| Latitude      | 34:43:43  |       | Gage Da   |        | ••   | 3694.    |         | Continu   | ous                        | Yes /No   |
| Longitude     | 111:46:30 |       | Base Fl   |        |      | 600      |         | Ann/Par   |                            | 28 /112   |
|               |           |       |           |        |      |          |         |           |                            |           |
| Year Date     | Discharge | Dcode | Stage     | Scode  | High | AltStage | AltDate | Acode #Pa | r                          |           |
| 1961 07/14/61 | 1610.0    | 0     | 5.400     | 0      |      |          |         |           | 2                          |           |
| 1962 02/12/62 | 2510.0    | 0     | 6.860     | 0      |      |          |         |           | 1                          |           |
| 1963 08/17/63 | 3260.0    | 0     | 7.880     | 0      |      |          |         |           | 1                          |           |
| 1964 03/30/64 | 1160.0    | 0     | 5.050     | 0      |      |          |         |           | 1                          |           |
| 1965 01/06/65 |           | 0     | 9.070     | 0      |      |          |         |           | 8                          |           |
| 1966 11/23/65 | 9670.0    | 0     | 9.690     | 0      |      |          |         |           | 4                          |           |
| 1967 12/07/66 |           | 0     | 9.620     | 0      |      |          |         |           | 0                          |           |
| 1968 02/11/68 | 652.0     | 0     | 4.320     | 0      |      |          |         | ] ]       | 0                          |           |
| 1969 01/25/69 |           | 0     | 9.980     | 0      |      |          |         |           | 3                          |           |
| 1970 09/05/70 |           | 0     | 14.350    | 0      |      |          |         |           | 1                          |           |
| 1971 09/01/71 |           | 0     | 4.240     | 0      |      |          |         |           | 0                          |           |
| 1972 12/26/71 |           | o     | 6.190     | Ó      |      |          |         |           | 2                          |           |
| 1973 12/28/72 |           | Ó     | 8.220     | Ō      |      |          |         |           | 8                          |           |
| 1974 04/03/74 |           | Ō     | 3.680     | ŏ      |      |          |         |           | Õ                          |           |
| 1975 04/14/75 |           | O     | 5.080     | Ó I    |      |          |         |           | 1                          |           |
| 1976 02/09/76 | 7020.0    | o     | 8.640     | Ó      |      |          |         |           | 2                          |           |
| 1977 04/07/77 |           | O     | 3.820     | 0      |      |          |         |           | 0                          |           |
| 1978 03/01/78 |           | Ó     | 9.250     | Ō      |      |          |         |           | 7                          |           |
| 1979 12/18/78 |           | O     | 12.200    | Ó      |      |          |         |           | 8                          |           |
| 1980 02/14/80 |           | 0     | 12.530    | Ó      |      |          |         | 10        | 0                          |           |
| 1981 08/11/81 | 1250.0    | 0     | 5.100     | 0      |      |          |         |           | 1                          |           |
| 1982 03/12/82 | 7790.0    | 0     | 8.810     | Ó      |      |          |         |           | 5                          |           |
| 1983 11/30/82 |           | 0     | 8.990     | 0      |      |          |         |           | 9                          |           |
| 1984 12/04/83 | 5780.0    | 0     | 7.950     | Ō      |      |          |         |           | 9<br>2<br>3<br>3<br>3<br>2 |           |
| 1985 12/27/84 |           | 0     | 7.130     | Ó      |      |          |         |           | 3                          |           |
| 1986 11/30/85 |           | 0     | 7.190     | Ő      |      |          |         |           | 3                          |           |
| 1987 03/09/87 |           | 0     | 4.980     | Ó      |      |          |         |           | 3                          |           |
| 1988 04/25/88 |           | Ő     | 6.270     | ō      |      |          |         |           | 2                          |           |
|               |           | •     |           | - •    |      | • •      |         | • •       |                            |           |

## FFA Example Using the CD Record

## Input File

```
TT EXAMPLE OF DATA INPUT FROM HYDRODATA - CD ROM
GS -.1
CD DRY_BEAV.ASC
ED
```

# **Output File**

| * FLOOD I<br>* PROGRAM<br>* VERSION<br>* RUN D/<br>* 11 . | FFA<br>FREQUENCY ANALYSI<br>A DATE: FEB 1982<br>A DATE: BETA 2/9<br>TE AND TIME:<br>JUN 91 15:33:44 | *<br>5 *<br>21 *<br>*<br>3 * | * U.S. A<br>* THE HYDR<br>*<br>* DAV<br>* | RMY CORPS OF<br>OLOGIC ENGINE<br>609 SECOND ST<br>IS, CALIFORNI<br>(916) 756-11 | ENGINEERS<br>ERING CENTER<br>REET<br>A 95616<br>04 | *<br>*<br>*<br>* |           |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|------------------|-----------|
|                                                           | IAME: DRY_BEAV.DA<br>IAME: DRY_BEAV.OUT                                                             |                              |                                           |                                                                                 |                                                    |                  |           |
| **TITLE RECON<br>TT EXAMPLE                               | RD(S)**<br>OF DATA INPUT FRO                                                                        | M HYDRODATA                  | - CD ROM                                  |                                                                                 |                                                    |                  |           |
| **GENERALIZED<br>ISTN (<br>GS                             | ) SKEW**<br>GGMSE SKEW<br>.00010                                                                    |                              |                                           |                                                                                 |                                                    |                  |           |
| **CD FILE DAT<br>CD DRY_BEAV.A                            |                                                                                                     |                              |                                           |                                                                                 |                                                    |                  |           |
| Station                                                   | DRY BEAVER CREE                                                                                     | K NEAR RIMR                  | DCK, ARIZ.                                |                                                                                 |                                                    | Id               | 09505350  |
| State                                                     | AZ                                                                                                  | Drainage A                   | rea                                       | 142.0                                                                           | Hydrolog                                           | Unit             | 15060202  |
| County                                                    | 025                                                                                                 | Contribute                   | Area                                      | 0.0                                                                             | Years                                              |                  | 1961-1988 |
| Latitude                                                  | 34:43:43                                                                                            | Gage Datum                   |                                           | 3694.38                                                                         | Continuo                                           | JS               | Yes /No   |
| Longitude                                                 | 111:46:30                                                                                           | Base Flow                    |                                           | 600.0                                                                           | Ann/Part                                           | Cnt              | 28 /112   |
| **SYSTEMATIC<br>28 EVENI                                  | EVENTS**<br>'S TO BE ANALYZED                                                                       |                              |                                           |                                                                                 |                                                    |                  |           |
| **END OF INPL<br>ED +++++++++                             | JT DATA**                                                                                           | ·+++++++++++                 |                                           | *****                                                                           |                                                    |                  |           |

|--|

|     | EVE | NTS AN | ALYZED | ORDERED EVENTS |       |        |          |  |
|-----|-----|--------|--------|----------------|-------|--------|----------|--|
|     |     |        | FLOW   |                | WATER | FLOW   | WEIBULL  |  |
| MON | DAY | YEAR   | CFS    | RANK           | YEAR  | CFS    | PLOT POS |  |
| 7   | 14  | 1961   | 1610.  | 1              | 1970  | 26600. | 3.45     |  |
| 2   | 12  | 1962   | 2510.  | 2<br>3         | 1979  | 24200. | 6.90     |  |
| 8   | 17  | 1963   | 3260.  |                | 1980  | 18600. | 10.34    |  |
| 3   | 30  | 1964   | 1160.  | 4              | 1969  | 10600. | 13.79    |  |
| 1   | 6   | 1965   | 7970.  | 5              | 1966  | 9670.  | 17.24    |  |
| 11  | 23  | 1965   | 9670.  | 6              | 1967  | 9460.  | 20.69    |  |
| 12  | 7   | 1966   | 9460.  | 7              | 1978  | 8410.  | 24.14    |  |
| 2   | 11  | 1968   | 652.   | 8              | 1983  | 8190.  | 27.59    |  |
| 1   | 25  | 1969   | 10600. | 9              | 1965  | 7970.  | 31.03    |  |
| 9   | 5   | 1970   | 26600. | 10             | 1982  | 7790.  | 34.48    |  |
| 9   | 1   | 1971   | 537.   | 11             | 1976  | 7020.  | 37.93    |  |
| 12  | 26  | 1971   | 2740.  | 12             | 1973  | 6160.  | 41.38    |  |
| 12  | 28  | 1972   | 6160.  | 13             | 1984  | 5780.  | 44.83    |  |
| 4   | 3   | 1974   | 253.   | 14             | 1986  | 4340.  | 48.28    |  |
| 4   | 14  | 1975   | 1220.  | 15             | 1985  | 4250.  | 51.72    |  |
| 2   | 9   | 1976   | 7020.  | 16             | 1963  | 3260.  | 55.17    |  |
| 4   | 7   | 1977   | 304.   | 17             | 1972  | 2740.  | 58.62    |  |
| 3   | 1   | 1978   | 8410.  | 18             | 1988  | 2650.  | 62.07    |  |
| 12  | 18  | 1978   | 24200. | 19             | 1962  | 2510.  | 65.52    |  |
| 2   | 14  | 1980   | 18600. | 20             | 1961  | 1610.  | 68.97    |  |
| 8   | 11  | 1981   | 1250.  | 21             | 1981  | 1250.  | 72.41    |  |
| 3   | 12  | 1982   | 7790.  | 22             | 1975  | 1220.  | 75.86    |  |
| 11  | 30  | 1982   | 8190.  | 23             | 1987  | 1160.  | 79.31    |  |
| 12  | - 4 | 1983   | 5780.  | 24             | 1964  | 1160.  | 82.76    |  |
| 12  | 27  | 1984   | 4250.  | 25             | 1968  | 652.   | 86.21    |  |
| 11  | 30  | 1985   | 4340.  | 26             | 1971  | 537.   | 89.66    |  |
| 3   | 9   | 1987   | 1160.  | 27             | 1977  | 304.   | 93.10    |  |
| 4   | 25  | 1988   | 2650.  | 28             | 1974  | 253.   | 96.55    |  |

-PLOTTING POSITIONS- DRY BEAVER CREEK NEAR RIMROCK, ARIZ.

-OUTLIER TESTS -

LOW OUTLIER TEST

BASED ON 28 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.534 0 LOW OUTLIER(S) IDENTIFIED BELOW TEST VALUE OF 143.8

#### HIGH OUTLIER TEST

BASED ON 28 EVENTS, 10 PERCENT OUTLIER TEST VALUE K(N) = 2.534 O HIGH OUTLIER(S) IDENTIFIED ABOVE TEST VALUE OF 83095.

-SKEW WEIGHTING -

| BASED ON   | 28 EVEN | TS, MEAN-SQL | JARE ERROR | OF STATION  | SKEW = | .216 |
|------------|---------|--------------|------------|-------------|--------|------|
| DEFAULT OF | R INPUT | MEAN-SQUARE  | ERROR OF   | GENERALIZED | SKEW = | .302 |

#### FINAL RESULTS

| -                                                                                                            |                                                                                            |    |                                                                          | -                                                                                                                |                                                                                                           |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| COMPUTED<br>CURVE<br>FLOW                                                                                    | PERCENT<br>CHANCE<br>Exceedance                                                            |    | CONFIDENCE LIMITS<br>.05 .95<br>FLOW IN CFS                              |                                                                                                                  |                                                                                                           |  |  |  |  |  |
| 81400.<br>61500.<br>48400.<br>37000.<br>24300.<br>16500.<br>10100.<br>3680.<br>1230.<br>669.<br>397.<br>142. | 77100.<br>58100.<br>42600.<br>26700.<br>17500.<br>10400.<br>3680.<br>1180.<br>617.<br>348. | 1. | .0<br>.0<br>.0<br>.0                                                     | 224000.<br>157000.<br>117000.<br>83400.<br>49600.<br>30800.<br>17100.<br>5510.<br>1860.<br>1070.<br>677.<br>281. | 41300.<br>32600.<br>26600.<br>21100.<br>14700.<br>10400.<br>6650.<br>2470.<br>729.<br>351.<br>185.<br>51. |  |  |  |  |  |
| SYSTEMATIC STATISTICS                                                                                        |                                                                                            |    |                                                                          |                                                                                                                  |                                                                                                           |  |  |  |  |  |
| LOG TRANSI                                                                                                   | NUMBER OF EVE                                                                              |    | NTS                                                                      |                                                                                                                  |                                                                                                           |  |  |  |  |  |
| MEAN<br>STANDARD<br>COMPUTED<br>REGIONAL<br>ADOPTED                                                          | .5450 HIGH<br>.4304 LOW<br>.1000 ZERC                                                      |    | TORIC EVENTS<br>1 OUTLIERS<br>OUTLIERS<br>0 OR MISSING<br>TEMATIC EVENTS | 0<br>0<br>0<br>0<br>28                                                                                           |                                                                                                           |  |  |  |  |  |

-FREQUENCY CURVE- DRY BEAVER CREEK NEAR RIMROCK, ARIZ.

+ END OF RUN + + NORMAL STOP IN FFA +