6.9 through 6.12 For the beam and loading shown, consider section n-n and determine (a) the largest shearing stress in that section, (b) the shearing stress at point a.

\[V = 45 \text{ kips} \]

Table

<table>
<thead>
<tr>
<th>Part</th>
<th>(A (\text{in}^2))</th>
<th>(d (\text{in}))</th>
<th>(A\bar{d}^2 (\text{in}^4))</th>
<th>(\bar{I} (\text{in}^4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange</td>
<td>6.00</td>
<td>4.7</td>
<td>132.54</td>
<td>0.18</td>
</tr>
<tr>
<td>Web</td>
<td>3.30</td>
<td>0</td>
<td>0</td>
<td>21.296</td>
</tr>
<tr>
<td>Flange</td>
<td>6.00</td>
<td>4.7</td>
<td>132.54</td>
<td>0.18</td>
</tr>
<tr>
<td>[\Sigma]</td>
<td></td>
<td></td>
<td>265.08</td>
<td>21.656</td>
</tr>
</tbody>
</table>

\[I = \Sigma A\bar{d}^2 + \Sigma \bar{I} \]
\[= 265.08 + 21.656 \]
\[= 286.736 \text{ in}^4 \]

\[Q = A_1\bar{y}_1 + A_2\bar{y}_2 \]
\[= (6.00)(4.7) + (0.375)(4.4)(2.2) = 31.83 \text{ in}^3 \]

\[t = 0.375 \text{ in.} \]

\[\gamma_{\text{max}} = \frac{VQ}{It} = \frac{(45)(31.83)}{(286.736)(0.375)} = 13.32 \text{ ksi} \]

\[Q_a = A_1\bar{y}_1 + A_3\bar{y}_3 \]
\[= (6.00)(4.7) + (0.375)(0.4)(4.4 + 4.0) \]
\[= 28.83 \text{ in}^3 \]

\[t = 0.375 \text{ in.} \]

\[\gamma_a = \frac{VQ_a}{It} = \frac{(45)(28.83)}{(286.736)(0.375)} = 12.07 \text{ ksi} \]
6.9 through 6.12 For the beam and loading shown, consider section n-n and determine (a) the largest shearing stress in that section, (b) the shearing stress at point a.

By symmetry \(R_A = R_B \)

\[+1 \sum F_y = 0: \quad R_A + R_B - 10 - 10 = 0 \]

\[R_A = R_B = 10 \text{ kips} \]

From the shear diagram, \(V = 10 \text{ kips at n-n} \).

\[I = \frac{1}{12} b h^3 - \frac{1}{12} b h^3 \]

\[= \frac{1}{12}(4)(4)^3 - \frac{1}{12}(3)(3)^3 = 14.583 \text{ in}^4 \]

\[Q = A_1 y_1 + A_2 y_2 = (3)\left(\frac{1}{2}\right)(1.75) + (2)\left(\frac{1}{2}\right)(2)(1) \]

\[= 4.625 \text{ in}^3 \]

\[t = \frac{1}{2} + \frac{1}{2} = 1 \text{ in.} \]

\[\tau_{max} = \frac{VQ}{It} = \frac{(10)(4.625)}{(14.583)(1)} = 3.17 \text{ ksi} \]

(b) \[Q = A \bar{y} = (4)\left(\frac{1}{2}\right)(1.75) = 3.5 \text{ in}^3 \]

\[t = \frac{1}{2} + \frac{1}{2} = 1 \text{ in.} \]

\[\tau = \frac{VQ}{It} = \frac{(10)(3.5)}{(14.583)(1)} = 2.40 \text{ ksi} \]
Problem 6.18

For the wide-flange beam with the loading shown, determine the largest \(P \) that can be applied, knowing that the maximum normal stress is 160 MPa and the largest shearing stress using the approximation \(\tau_m = V/A_{\text{web}} \) is 100 MPa.

\[
+3 \sum M = 0 = -3.6 R_A + 3.0 P + 2.4 P + 1.8 P = 0
\]

\[R_A = 2P \]

Draw shear and bending moment diagrams.

\[M_B = 2P L_{AB} \quad M_C = M_D = 3P L_{AB} \]

\[|V|_{\text{max}} = 2P \quad |M|_{\text{max}} = 3P L_{AB} \]

Bending. For \(W360 \times 122 \)

\[
S = 2010 \times 10^3 = 2010 \times 10^6
\]

\[
\frac{|M|_{\text{max}}}{G_{\text{all}}} = \frac{3PL_{AB}}{6_{\text{all}}} = S
\]

\[
P = \frac{G_{\text{all}} S}{3L_{AB}} = \frac{(160 \times 10^6)(2010 \times 10^3)}{(3)(0.6)} = 178.7 \times 10^3
\]

Shear. \(A_{\text{web}} = d t_w = (363)(13.0) = 4.719 \times 10^3 \text{ mm}^2 = 4.719 \times 10^3 \]

\[
\tau = \frac{|V|_{\text{max}}}{A_{\text{web}}} = \frac{2P}{A_{\text{web}}}
\]

\[
P = \frac{\tau A_{\text{web}}}{2} = \frac{(100 \times 10^6)(4.719 \times 10^3)}{2} = 236 \times 10^3
\]

The smaller value of \(P \) is the allowable one. \(P = 178.7 \text{ kN} \)
Problem 6.22

6.21 and 6.22 For the beam and loading shown, consider section \(n-n \) and determine the shearing stress at (a) point \(a \), (b) point \(b \).

\[R_A = R_B = 12 \, \text{kips} \]

Draw shear diagram.

\[V = 12 \, \text{kips} \]

Determine section properties.

<table>
<thead>
<tr>
<th>Part</th>
<th>(A (\text{in}^2))</th>
<th>(\bar{y} (\text{in}))</th>
<th>(A\bar{y} (\text{in}^3))</th>
<th>(d (\text{in}))</th>
<th>(Ad^2 (\text{in}^4))</th>
<th>(I (\text{in}^4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>2</td>
<td>16</td>
<td>5.333</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>-1</td>
<td>8</td>
<td>2.667</td>
</tr>
<tr>
<td>Σ</td>
<td>12</td>
<td>24</td>
<td>24</td>
<td></td>
<td>8.000</td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{y} = \frac{\Sigma A\bar{y}}{\Sigma A} = \frac{24}{12} = 2 \, \text{in.} \]

\[I = \Sigma Ad^2 + \Sigma I = 32 \, \text{in}^4 \]

(a) \[A = 1 \, \text{in}^2 \quad \bar{y} = 3.5 \, \text{in.} \quad Q_a = A\bar{y} = 3.5 \, \text{in}^3 \]

\[t = 1 \, \text{in.} \]

\[\tau_a = \frac{VQ_a}{It} = \frac{(12)(3.5)}{(32)(1)} = 1.3125 \, \text{ksi} \]

(b) \[A = 2 \, \text{in}^2 \quad \bar{y} = 3 \, \text{in.} \quad Q_b = A\bar{y} = 6 \, \text{in}^3 \]

\[t = 1 \, \text{in.} \]

\[\tau_b = \frac{VQ_b}{It} = \frac{(12)(6)}{(32)(1)} = 2.25 \, \text{ksi} \]
6.25 through 6.28 A beam having the cross section shown is subjected to a vertical shear \(V \). Determine (a) the horizontal line along which the shearing stress is maximum, (b) the constant \(k \) in the following expression for the maximum shearing stress

\[
\tau_{\text{max}} = k \frac{V}{A}
\]

where \(A \) is the cross-sectional area of the beam.

\[
A = 2 \left(\frac{1}{2}bh \right) = bh \\
I = 2 \left(\frac{1}{6}bh^3 \right) = \frac{b}{6}h^3
\]

For a cut at location \(y \), where \(y \leq h \)

\[
A(y) = \frac{1}{2} \left(\frac{by}{h} \right)y = \frac{by^2}{2h}
\]

\[
\bar{y}(y) = h - \frac{2}{3}y
\]

\[
Q(y) = A \bar{y} = \frac{by^2}{2} - \frac{by^3}{3h}
\]

\[
t(y) = \frac{by}{h}
\]

\[
\tau(y) = \frac{VQ}{It} = V \frac{6}{bh^2} \cdot \frac{h}{by} \cdot \frac{by^2}{2} - \frac{by^3}{3h} = \frac{V}{bh} \left[3(\frac{y}{h}) - 2(\frac{y^2}{h}) \right]
\]

(a) To find the location of maximum of \(\tau \), set \(\frac{d\tau}{dy} = 0 \).

\[
\frac{d\tau}{dy} = \frac{V}{bh^2} \left[3 - 4 \frac{y_m}{h} \right] = 0 \\
\frac{y_m}{h} = \frac{3}{4} \quad \text{i.e.} \quad \pm \frac{3}{4}h \text{ from neutral axis.}
\]

(b) \[
\tau(y_m) = \frac{V}{bh} \left[3 \left(\frac{3}{4} \right) - 2 \left(\frac{3}{4} \right)^2 \right] = \frac{9}{8} \frac{V}{bh} = 1.125 \frac{V}{A} \quad k = 1.125
Problem 6.38

6.37 and 6.38 The extruded beam shown has a uniform wall thickness of \(\frac{1}{8} \) in. Knowing that the vertical shear in the beam is 2 kips, determine the shearing stress at each of the five points indicated.

\[I = \frac{1}{12} (2.50)(2.50)^3 - \frac{1}{12} (2.125)(2.25)^3 = 1.2382 \text{ in}^4 \]

\[t = 0.125 \text{ in. at all sections.} \]

\[V = 2 \text{ kips} \]

\[Q_a = 0 \quad \tau_a = \frac{VQ_a}{It} = 0 \]

\[Q_b = (0.125)(1.25 \times \frac{1.25}{2}) = 0.09766 \text{ in}^3 \]

\[\tau_b = \frac{VQ_b}{It} = \frac{(2)(0.09766)}{(1.2382)(0.125)} = 1.26 \text{ ksi} \]

\[Q_c = Q_b + (1.0625)(0.125)(1.1875) = 0.25537 \text{ in}^3 \]

\[\tau_c = \frac{VQ_c}{It} = \frac{(2)(0.25537)}{(1.2382)(0.125)} = 3.30 \text{ ksi} \]

\[Q_d = 2Q_c + (0.125)^2(1.1875) = 0.52929 \]

\[\tau_d = \frac{VQ_d}{It} = \frac{(2)(0.52929)}{(1.2382)(0.125)} = 6.84 \text{ ksi} \]

\[Q_e = Q_d + (0.125)(1.125 \times \frac{1.125}{2}) = 0.60839 \]

\[\tau_e = \frac{VQ_e}{It} = \frac{(2)(0.60839)}{(1.2382)(0.125)} = 7.86 \text{ ksi} \]
Problem 6.41

6.41 An extruded beam has the cross section shown and a uniform wall thickness \(t = 0.20 \) in. Knowing that a given vertical shear \(V \) causes a maximum shearing stress \(\tau = 9 \) ksi, determine the shearing stress at the four points indicated.

\[
Q_a = (0.2)(0.5)(0.5 - 0.25) = 0.125 \text{ in}^3
\]

\[
Q_b = (0.2)(0.5)(0.3 + 0.25) = 0.055 \text{ in}^3
\]

\[
Q_c = Q_a + Q_b + (1.4)(0.2)(0.9) = 0.432 \text{ in}^3
\]

\[
Q_d = 2Q_a + 2Q_b + (3.0)(0.2)(0.9) = 0.900 \text{ in}^2
\]

\[
Q_m = Q_d + (0.2)(0.8)(0.4) = 0.964 \text{ in}^3
\]

\[
\tau = \frac{VQ}{It}
\]

Since \(V, I, \) and \(t \) are constant, \(\tau \) is proportional to \(Q \).

\[
\frac{\tau_a}{0.125} = \frac{\tau_b}{0.055} = \frac{\tau_c}{0.432} = \frac{\tau_d}{0.900} = \frac{\tau_m}{0.964} = \frac{9}{0.964}
\]

\[
\tau_a = 1.167 \text{ ksi}; \quad \tau_b = 0.513 \text{ ksi}; \quad \tau_c = 4.03 \text{ ksi}; \quad \tau_d = 8.40 \text{ ksi}
\]
6.94 The built-up wooden beam shown is subjected to a vertical shear of 8 kN. Knowing that the nails are spaced longitudinally every 60 mm at A and every 25 mm at B, determine the shearing force in the nails (a) at A, (b) at B. (Given: \(I_x = 1.504 \times 10^9 \text{ mm}^4 \).)

\[
\begin{align*}
I_x &= 1.504 \times 10^9 \text{ mm}^4 = 1504 \times 10^{-6} \text{ m}^4 \\
S_A &= 60 \text{ mm} = 0.060 \text{ m} \\
S_B &= 25 \text{ mm} = 0.025 \text{ m}
\end{align*}
\]

(a) \(Q_A = Q_1 = A_1 \bar{y}_1 = (50 \times 100) \times 150 = 750 \times 10^3 \text{ mm}^3 \)

\[
F_A = q_f A_S = \frac{VQ_1 S_A}{I} = \frac{(8 \times 10^3)(750 \times 10^{-6})(0.060)}{1504 \times 10^{-6}} = 239 \text{ N}
\]

(b) \(Q_2 = A_2 \bar{y}_2 = (300) \times 50 \times 175 = 2625 \times 10^3 \text{ mm}^3 \)

\(Q_B = 2Q_1 + Q_2 = 4125 \times 10^3 \text{ mm}^3 \)

\[
F_B = q_f A_S = \frac{VQ_2 S_B}{I} = \frac{(8 \times 10^3)(4125 \times 10^{-6})(0.025)}{1504 \times 10^{-6}} = 549 \text{ N}
\]