Problem 6.17

6.17 For the wide-flange beam with the loading shown, determine the largest load P that can be applied, knowing that the maximum normal stress is 24 ksi and the largest shearing stress using the approximation $\tau_m = V/A_{web}$ is 14.5 ksi.

\[\sum M_c = 0: -15R_a + 9P = 0 \]
\[R_a = 0.6P \]

Draw shear and bending moment diagrams.

\[|V|_{max} = 0.6P \quad |M|_{max} = 0.6P L_{AB} \]

\[L_{AB} = 6 \text{ ft} = 72 \text{ in.} \]

Bending. For W24x104, $S = 258 \text{ in}^3$

\[S = \frac{|M|_{max}}{6_{all}} = \frac{0.6P L_{AB}}{6_{all}} \]

\[P = \frac{6_{all} S}{0.6 L_{AB}} = \frac{(24)(258)}{(0.6)(72)} = 143.3 \text{ kips} \]

Shear. $A_{web} = d t_w$

\[= (24.06)(0.500) \]
\[= 12.03 \text{ in}^2 \]

\[\tau = \frac{|V|_{max}}{A_{web}} = \frac{0.6P}{A_{web}} \]

\[P = \frac{\tau A_{web}}{0.6} = \frac{(14.5)(12.03)}{0.6} = 291 \text{ kips} \]

The smaller value of P is the allowable value. $P = 143.3 \text{ kips}$
6.21 and 6.22 For the beam and loading shown, consider section n-n and determine the shearing stress at (a) point a, (b) point b.

- **Section n-n**
 - **Part** A (mm2) | y (mm) | Ay (103 mm3) | d (mm) | Ad^2 (106 mm4) | I (106 mm4)
 - 1 3200 90 788 25 2.000 0.1067
 - 2 1600 40 64 -25 1.000 0.8533
 - 3 1600 40 64 -25 1.000 0.8533
 - **Σ** 6400 416 4.000 1.8133

- **Shear force diagram**
 - $V_{max} = 90$ kN

- **Moment of Inertia**
 \[I = \sum A d^2 + \sum I = (4.000 + 1.8133) \times 10^6 \text{ mm}^4 = 5.8133 \times 10^6 \text{ mm}^4 = 5.8133 \times 10^{-6} \text{ m}^4 \]

- **Shear Stress (a)**
 \[A = (80)(10) = 1600 \text{ mm}^2 \]
 \[\bar{y} = 25 \text{ mm} \]
 \[Q_a = A \bar{y} = 40 \times 10^3 \text{ mm}^3 = 40 \times 10^{-6} \text{ m}^3 \]
 \[\tau_a = \frac{VQ_a}{It} = \frac{(90 \times 10^3)(40 \times 10^{-6})}{(5.8133 \times 10^{-6})(20 \times 10^3)} = 31.0 \times 10^6 \text{ Pa} = 31.0 \text{ MPa} \]

- **Shear Stress (b)**
 \[A = (30)(20) = 600 \text{ mm}^2 \]
 \[\bar{y} = 65 - 15 = 50 \text{ mm} \]
 \[Q_b = A \bar{y} = 30 \times 10^3 \text{ mm}^3 = 30 \times 10^{-6} \text{ m}^3 \]
 \[\tau_b = \frac{VQ_b}{It} = \frac{(90 \times 10^3)(30 \times 10^{-6})}{(5.8133 \times 10^{-6})(20 \times 10^3)} = 23.2 \times 10^6 \text{ Pa} = 23.2 \text{ MPa} \]
Problem 6.28

A beam having the cross section shown is subjected to a vertical shear \(V \). Determine (a) the horizontal line along which the shearing stress is maximum, (b) the constant \(k \) in the following expression for the maximum shearing stress

\[
\tau_{\text{max}} = k \frac{V}{A}
\]

where \(A \) is the cross-sectional area of the beam.

\[
A = \frac{1}{2} bh \quad I = \frac{1}{36} bh^3
\]

For a cut at location \(y \),

\[
A(y) = \frac{1}{2} \left(\frac{by}{h} \right) y = \frac{by^2}{2h}
\]

\[
\bar{y}(y) = \frac{2}{3} h - \frac{2}{3} y
\]

\[
Q(y) = A \bar{y} = \frac{by^2}{3} (h - y)
\]

\[
\tau(y) = \frac{VA}{It} = \frac{V \frac{by^2}{3} (h - y)}{\left(\frac{1}{36} bh^3 \right) \frac{by}{h}} = \frac{12 V y (h - y)}{bh^3} = \frac{12 V}{bh^3} (hy - y^2)
\]

(a) To find location of maximum of \(\tau \), set \(\frac{d\tau}{dy} = 0 \).

\[
\frac{d\tau}{dy} = \frac{12 V}{bh^3} (h - 2y_m) = 0 \quad y_m = \frac{1}{2} h \quad \text{i.e. at mid-height}
\]

(b) \(\tau_m = \frac{12 V}{bh^3} (hy_m - y_m^2) = \frac{12 V}{bh^3} \left[\frac{1}{2} h^2 - (\frac{1}{2} h)^2 \right] = \frac{3V}{bh^2} = \frac{3}{2} \bar{\tau} \)

\[
k = \frac{3}{2} = 1.500
\]
Problem 6.37

6.37 and 6.38 The extruded beam shown has a uniform wall thickness of \(\frac{1}{8} \) in. Knowing that the vertical shear in the beam is 2 kips, determine the shearing stress at each of the five points indicated.

\[
I = \frac{1}{12} (2.50)(2.50)^3 - \frac{1}{12} (2.125)(2.25)^3 = 1.2382 \text{ in}^4
\]

Add symmetric points c', b', and a'.

\[
Q_{c'} = 0
\]

\[
Q_d = (0.125)(1.125)(\frac{1.125}{2}) = 0.07910 \text{ in}^3 \quad t_d = 0.125 \text{ in.}
\]

\[
Q_c = Q_{c'} + (0.125)^2(1.1875) = 0.09765 \text{ in}^3 \quad t_c = 0.25 \text{ in.}
\]

\[
Q_b = Q_c + (2 \times 1.0625)(0.125)(1.1875) = 0.41308 \text{ in}^3 \quad t_b = 0.25 \text{ in.}
\]

\[
Q_a = Q_b + (2 \times 0.125)(1.25)(\frac{1.25}{2}) = 0.60839 \text{ in}^3 \quad t_a = 0.25 \text{ in.}
\]

\[
\tau_a = \frac{VQ_a}{It_a} = \frac{(2)(0.60839)}{(1.2382)(0.25)} = 3.93 \text{ ksi}
\]

\[
\tau_b = \frac{VQ_b}{It_b} = \frac{(2)(0.41308)}{(1.2382)(0.25)} = 2.67 \text{ ksi}
\]

\[
\tau_c = \frac{VQ_c}{It_c} = \frac{(2)(0.09765)}{(1.2382)(0.25)} = 0.63 \text{ ksi}
\]

\[
\tau_d = \frac{VQ_d}{It_d} = \frac{(2)(0.07910)}{(1.2382)(0.125)} = 1.02 \text{ ksi}
\]

\[
\tau_e = \frac{VQ_e}{It_e} = 0
\]
Problem 6.92

6.92 For the beam and loading shown, consider section n-n and determine the shearing stress at (a) point a, (b) the shearing stress at point b.

[Diagram of beam and loading]

\[R_A = R_B = 25 \text{ kips} \]

At section n-n \[V = 25 \text{ kips} \]

Locate centroid and calculate moment of inertia.

<table>
<thead>
<tr>
<th>Part</th>
<th>(A) (in²)</th>
<th>(\bar{y}) (in)</th>
<th>(A\bar{y}) (in³)</th>
<th>(d) (in)</th>
<th>(A\bar{d}^2) (in⁵)</th>
<th>(I) (in⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.875</td>
<td>6.875</td>
<td>33.52</td>
<td>2.244</td>
<td>24.55</td>
<td>0.23</td>
</tr>
<tr>
<td>2</td>
<td>10.875</td>
<td>3.625</td>
<td>39.42</td>
<td>1.006</td>
<td>11.01</td>
<td>47.68</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>15.75</td>
<td>72.94</td>
<td>56.66</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{y} = \frac{\Sigma A\bar{y}}{\Sigma A} = \frac{72.94}{15.75} = 4.631 \text{ in.} \]

\[I = \Sigma A\bar{d}^2 + \Sigma I = 56.66 + 47.86 = 83.42 \text{ in}^6 \]

(a) \[Q_a = A\bar{y} = \left(\frac{3}{4}\right)(1.5)(4.631 - 0.75) = 4.366 \text{ in}^3 \]

\[t = \frac{3}{4} = 0.75 \text{ in.} \]

\[\tau_a = \frac{VQ}{It} = \frac{(25)(4.366)}{(83.42)(0.75)} = 1.745 \text{ ksi} \]

(b) \[Q_b = A\bar{y} = \left(\frac{3}{4}\right)(3)(4.631 - 1.5) = 7.045 \text{ in}^3 \]

\[t = 0.75 \text{ in.} \]

\[\tau_b = \frac{VQ}{It} = \frac{(25)(7.045)}{(83.42)(0.75)} = 2.82 \text{ ksi} \]
Problem 6.95

Two 20 × 100-mm and two 20 × 180-mm boards are glued together as shown to form a 120 × 200-mm box beam. Knowing that the beam is subjected to a vertical shear of 3.5 kN, determine the average shearing stress in the glued joint (a) at A, (b) at B.

\[I = \frac{1}{12} (120)(200)^3 - \frac{1}{12} (80)(160)^3 = 52.693 \times 10^6 \text{ mm}^4 \]
\[= 52.693 \times 10^6 \text{ m}^4 \]

(a) \[Q_A = (80)(20)(90) = 144 \times 10^3 \text{ mm}^3 \]
\[= 144 \times 10^{-6} \text{ m}^3 \]
\[t_A = (2)(20) = 40 \text{ mm} = 0.040 \text{ m} \]
\[\tau_A = \frac{VQ_A}{I t_A} = \frac{(3.5 \times 10^3)(144 \times 10^{-6})}{(52.693 \times 10^{-6})(0.040)} \]
\[= 239 \times 10^3 \text{ Pa} = 239 \text{ kPa} \]

(b) \[Q_B = (120)(20)(90) = 216 \times 10^3 \text{ mm}^3 \]
\[= 216 \times 10^{-6} \text{ m}^3 \]
\[t_B = (2)(20) = 40 \text{ mm} = 0.040 \text{ m} \]
\[\tau_B = \frac{VQ_B}{I t_B} = \frac{(3.5 \times 10^3)(216 \times 10^{-6})}{(52.693 \times 10^{-6})(0.040)} \]
\[= 359 \times 10^3 \text{ Pa} = 359 \text{ kPa} \]