Problem 2.10 The forces acting on the sailplane are represented by three vectors. The lift \mathbf{L} and drag \mathbf{D} are perpendicular, the magnitude of the weight \mathbf{W} is 3500 N, and $\mathbf{W} + \mathbf{L} + \mathbf{D} = 0$. What are the magnitudes of the lift and drag?

Solution: Draw the force triangle and then use the geometry plus

\[
\cos 25° = \frac{|L|}{|W|}
\]
\[
\sin 25° = \frac{|D|}{|W|}
\]

$|W| = 3500$ N

$|L| = 3500 \cos 25°$

$|D| = 3500 \sin 25°$

$|L| = 3170$ N

$|D| = 1480$ N
Problem 2.23 A fish exerts a 40-N force on the line that is represented by the vector \mathbf{F}. Express \mathbf{F} in terms of components using the coordinate system shown.

Solution:

\[F_x = |\mathbf{F}| \cos 60^\circ = (40)(0.5) = 20 \text{ (N)} \]

\[F_y = -|\mathbf{F}| \sin 60^\circ = -(40)(0.866) = -34.6 \text{ (N)} \]

\[\mathbf{F} = 20\hat{i} - 34.6\hat{j} \text{ (N)} \]
Problem 2.40 The hydraulic actuator BC in Problem 2.39 exerts a 1.2-kN force F on the joint at C that is parallel to the actuator and points from B toward C. Determine the components of F.

Solution: From the solution to Problem 2.39,

$$e_{BC} = -0.78i + 0.625j$$

The vector F is given by $F = |F|e_{BC}$

$$F = (1.2)(-0.78i + 0.625j) \text{ (k \cdot N)}$$

$$F = -937i + 750j \text{ (N)}$$
Problem 2.46 Four groups engage in a tug-of-war. The magnitudes of the forces exerted by groups B, C, and D are $|F_B| = 800$ lb, $|F_C| = 1000$ lb, $|F_D| = 900$ lb. If the vector sum of the four forces equals zero, what are the magnitude of F_A and the angle α?

Solution: The strategy is to use the angles and magnitudes to determine the force vector components, to solve for the unknown force F_A and then take its magnitude. The force vectors are

\[F_B = 800(\cos 110^\circ + \sin 110^\circ) = -273.6 \mathbf{i} + 751.75 \mathbf{j} \]
\[F_C = 1000(\cos 30^\circ + \sin 30^\circ) = 866 \mathbf{i} + 500 \mathbf{j} \]
\[F_D = 900(\cos(-20^\circ) + \sin(-20^\circ)) = 845.72 \mathbf{i} - 307.8 \mathbf{j} \]

\[F_A = |F_A|(\cos(180 + \alpha) + \sin(180 + \alpha)) \]
\[= |F_A|(-\cos \alpha - \sin \alpha) \]

The sum vanishes:

\[F_A + F_B + F_C + F_D = l(1438.1 - |F_A| \cos \alpha) \]
\[+ j(944 - |F_A| \sin \alpha) = 0 \]

From which $F_A = 1438.1 \mathbf{i} + 944 \mathbf{j}$. The magnitude is

\[|F_A| = \sqrt{(1438)^2 + (944)^2} = 1720 \text{ lb} \]

The angle is:

\[\tan \alpha = \frac{944}{1438} = 0.6565, \text{ or } \alpha = 33.3^\circ \]
Problem 2.83 The distance from point \(O \) to point \(A \) is 20 ft. The straight line \(AB \) is parallel to the \(y \) axis, and point \(B \) is in the \(x-z \) plane. Express the vector \(\mathbf{r}_{OA} \) in terms of scalar components.

Strategy: You can resolve \(\mathbf{r}_{OA} \) into a vector from \(O \) to \(B \) and a vector from \(B \) to \(A \). You can then resolve the vector form \(O \) to \(B \) into vector components parallel to the \(x \) and \(z \) axes. See Example 2.9.

Solution: See Example 2.10. The length \(BA \) is, from the right triangle \(OAB \),

\[
|\mathbf{r}_{AB}| = |\mathbf{r}_{OA}| \sin 30^\circ = 20(0.5) = 10 \text{ ft.}
\]

Similarly, the length \(OB \) is

\[
|\mathbf{r}_{OB}| = |\mathbf{r}_{OA}| \cos 30^\circ = 20(0.866) = 17.32 \text{ ft}
\]

The vector \(\mathbf{r}_{OB} \) can be resolved into components along the axes by the right triangles \(OBP \) and \(OBQ \) and the condition that it lies in the \(x-z \) plane.

Hence,

\[
\mathbf{r}_{OB} = |\mathbf{r}_{OB}|(i \cos 30^\circ + j \cos 90^\circ + k \cos 60^\circ)
\]

or

\[
\mathbf{r}_{OB} = 15i + 0j + 8.66k.
\]

The vector \(\mathbf{r}_{BA} \) can be resolved into components from the condition that it is parallel to the \(y \)-axis. This vector is

\[
\mathbf{r}_{BA} = |\mathbf{r}_{BA}|(i \cos 90^\circ + j \cos 0^\circ + k \cos 90^\circ) = 0i + 10j + 0k.
\]

The vector \(\mathbf{r}_{OA} \) is given by \(\mathbf{r}_{OA} = \mathbf{r}_{OB} + \mathbf{r}_{BA} \), from which

\[
\mathbf{r}_{OA} = 15i + 10j + 8.66k \text{ (ft)}
\]
Problem 2.96 The cable AB exerts a 32-lb force T on the collar at A. Express T in terms of scalar components.

Solution: The coordinates of point B are $B (0, 7, 4)$. The vector position of B is $\mathbf{r}_{OB} = 0\mathbf{i} + 7\mathbf{j} + 4\mathbf{k}$.

The vector from point A to point B is given by

$$\mathbf{r}_{AB} = \mathbf{r}_{OB} - \mathbf{r}_{OA}.$$

From Problem 2.95, $\mathbf{r}_{OA} = 2.67\mathbf{i} + 2.33\mathbf{j} + 2.67\mathbf{k}$. Thus

$$\mathbf{r}_{AB} = (0 - 2.67)\mathbf{i} + (7 - 2.33)\mathbf{j} + (4 - 2.67)\mathbf{k}$$

$$\mathbf{r}_{AB} = -2.67\mathbf{i} + 4.67\mathbf{j} + 1.33\mathbf{k}.$$

The magnitude is

$$|\mathbf{r}_{AB}| = \sqrt{(-2.67)^2 + 4.67^2 + 1.33^2} = 5.54 \text{ ft}.$$

The unit vector pointing from A to B is

$$\mathbf{u}_{AB} = \frac{\mathbf{r}_{AB}}{|\mathbf{r}_{AB}|} = -0.4819\mathbf{i} + 0.8429\mathbf{j} + 0.2401\mathbf{k}.$$

The force T is given by

$$\mathbf{T}_{AB} = |\mathbf{T}_{AB}|\mathbf{u}_{AB} = 32\mathbf{u}_{AB} = -15.4\mathbf{i} + 27.0\mathbf{j} + 7.7\mathbf{k} (\text{lb})$$
Problem 2.105 The magnitudes $|U| = 10$ and $|V| = 20$.

(a) Use the definition of the dot product to determine $U \cdot V$.

(b) Use Eq. (2.23) to obtain $U \cdot V$.

Solution:

The definition of the dot product (Eq. (2.18)) is

$$U \cdot V = |U||V| \cos \theta.$$ Thus

$$U \cdot V = (10)(20) \cos(45° - 30°) = 193.2$$

- components of U and V are

$$10(i \cos 45° + j \sin 45°) = 7.07i + 7.07j$$

$$20(i \cos 30° + j \sin 30°) = 17.32i + 10j$$

Eq. (2.23) $U \cdot V = (7.07)(17.32) + (7.07)(10) = 193.2$
Problem 2.120 In Problem 2.119, what is the vector component of \(\mathbf{F} \) parallel to the surface?

Solution: From the solution to Problem 2.119,

\[\mathbf{F} = -0.123\mathbf{i} + 0.123\mathbf{j} - 0.0984\mathbf{k} \text{ (lb)} \] and

\[\mathbf{F}_{\text{NORMAL}} = 0\mathbf{i} + 0.0927\mathbf{j} + 0.0232\mathbf{k} \text{ (lb)} \]

The component parallel to the surface and the component normal to the surface add to give \(\mathbf{F}(\mathbf{F} = \mathbf{F}_{\text{NORMAL}} + \mathbf{F}_{\text{parallel}}) \).

Thus

\[\mathbf{F}_{\text{parallel}} = \mathbf{F} - \mathbf{F}_{\text{NORMAL}}. \]

Substituting, we get

\[\mathbf{F}_{\text{parallel}} = -0.1231\mathbf{i} + 0.0304\mathbf{j} - 0.1216\mathbf{k} \text{ lb} \]
Problem 2.127 Determine the cross product $r \times F$ of the position vector $r = 4i - 12j + 3k$ (m) and the force $F = 16i - 22j - 10k$ (N).

Solution:

$$r \times F = \begin{vmatrix} i & j & k \\ 4 & -12 & 3 \\ 16 & -22 & -10 \end{vmatrix}$$

$$r \times F = (120 - (-66))i + (48 - (-40))j + (-88 - (-192))k \text{ (N-m)}$$

$$r \times F = 186i + 88j + 104k \text{ (N-m)}$$