MECHANICS OF BREATHING

NORMAL BREATHING

How Do We Breath?

Inspiration is normally activeExpiration is normally passive.

Muscles of Respiration

Inspiratory muscles

- Diaphragm.
- External intercostals.
- Accessory muscles.
 - Include sternomastoids, scalene muscles, and alae nasi.

Expiratory muscles

- Abdominal muscles.
- Internal intercostals.

Figure 1: Respiratory Pressures

Q62

Important Respiratory Pressure Differences.

Airway pressure gradient: $P_{M} - P_{AIV}$ Transpulmonary pressure: $\mathbf{P}_{\mathsf{TP}} = \mathbf{P}_{\mathsf{AIV}} - \mathbf{P}_{\mathsf{PI}}$ Transchest wall pressure: $P_{TC} = P_{PI} - P_{bs}$ Transmural respiratory system pressure: $P_{RS} = P_{ALV} - P_{bs}$

Balance of Static Forces

Three Ways to Inflate the Lungs

Increase alveolar pressure

Positive pressure respirators.

Decrease body surface pressure

"Iron lungs"

Activate inspiratory muscles

Normal way to breath.

Inflation Dynamics

- Transmural pressure must overcome:
 - Elastic recoil forces
 - Airway resistance to flow.

MECHANICS OF BREATHING

Part 2

ELASTIC CHARACTERISTICS OF THE LUNG

Inflation Hysteresis

Lung Compliance vs. Volume

Two Major Forces affect Lung Compliance

Tissue elastic forces
Surface tension forces.

Air vs. Saline Inflation

Surface Tension.

- At every <u>gas-liquid interface</u> surface tension develops.
- Surface Tension is a liquid property
- LaPlace's Law:

$$T = \frac{P_1 \cdot r_1}{2} = \frac{P_2 \cdot r_2}{2}$$

If $r_1 > r_2$ Then, $P_2 > P_1$

<u>Result</u>: Small Bubble Collapses

Surface Tension.

- At every <u>gas-liquid interface</u> surface tension develops.
- Surface Tension is a liquid property
- LaPlace's Law:

$$T = \frac{P_1 \cdot r_1}{2} = \frac{P_2 \cdot r_2}{2}$$

If $r_1 > r_2$ Then, $P_2 > P_1$

<u>Result</u>: Small Bubble Collapses

Surfactant

- Secreted by Type II alveolar cells
 Dipalmitoyl phosphatidyl choline
 Lines alveoli
 Unique surface tension properties:
 - Average surface tension low.
 - Surface tension varies with area:
 - Surface tension rises as area gets bigger
 - Surface tension falls as area gets smaller.

Figure 4: Surfactant

Physiological Importance of Surfactant

- Increases lung compliance (less stiff)
- Promotes alveolar stability and prevents alveolar collapse
- Promotes dry alveoli:
 - Alveolar collapse tends to "suck" fluid from pulmonary capillaries
 - Stabilizing alveoli prevents fluid transudation by preventing collapse.

Infant Respiratory Disease Syndrome (IRDS)

Surfactant starts late in fetal life - Total gestation: 39 wks – Surfactant: 23 wks — 32-36 wks Infants with immature surfactant (IRDS) - Stiff, fluid-filled lungs - Atelectatic areas (alveolar collapse) Collapsed alveoli are poorly ventilated Effective right to left shunt (Admixture) [lecithin]/[sphingomyelin] ratio **Gestational Maturity**

 Dependent Lung—the lung in the lowest part of the gravitational field
 base when in the upright position
 dorsal portion when supine.

Gravity and Lung Inflation

Figure 5: Regional Compliance Differences During Inflation

Regional Lung Volume vs. Regional Lung Ventilation

In the upright posture: – Relative lung volume is greater at the apex

- Lung is less compliant (stiffer) at the apex
- Regional lung ventilation is greatest at the base

Time Constants for Emptying

 Important regional inhomogeneities:
 – regional differences in airway resistances

 regional differences in elastic characteristics

 High resistance and high compliance cause slow emptying.

Specific Compliance

Specific Compliance = $\frac{\text{Compliance}}{\text{FRC}}$

Normalization allows comparison of tissue elastic characteristics

Question: How would compliance differ in a child and an adult, both with normal lungs?

INTERACTIONS BETWEEN LUNGS AND CHEST WALL

General Principle

The lungs and chest wall operate in series

Lung and chestwall compliances add reciprocally:

MECHANICS OF BREATHING

Part 3

Figure 6: Chest Wall Mechanics

Chest Wall Mechanics Summary

• <u>Negative P_{TT} :</u> Found at RV and FRC. Normal tidal breathing in this condition chest wall below its unstressed volume chest tends to spring out Unstressed Volume: 65% of TLC – No net recoil Postive P_{TT}: Above 65% of TLC – volumes above 65% TLC – Chest tends to collapse (spring in).

Figure 7: Lung Mechanics

Lung Mechanics Summary

Always above unstressed volume (minimal volume = 10% TLC).
P_{TP} is positive from RV to TLC
Lungs always tends to collapse.

Figure 8: Combined Mechanics

Combined Mechanics Summary

Functional residual capacity

- Respiratory system unstressed volume
- Chest and lung recoil equal and opposite
- Pneumothorax
 - Uncouples lungs and chestwall
 - Lungs and chest wall move to their unstressed volume
 - lungs <u>always</u> recoil inward
 - chest wall springs outward below 65% TLC
 - chest wall springs inward above 65% TLC

Lung Compliance in Disease

Diseases increasing compliance: natural aging - emphysema. Diseases decreasing compliance (stiffer lung): pulmonary fibrosis edema (e.g. rheumatic heart disease)

Chestwall Compliance in Disease

Actually less compliant (stiffer): - chest wall deformation (eg. kyphoscoliosis) Functionally less compliant (stiffer): (Abdominal cavity changes) - displacement of the diaphragm (eg. pregnancy) - ascites

AIRWAY RESISTANCE

Resistive Forces and Breathing

Quiet breathing -- Air flow laminar - Resistance -- Poiseuille's Law Pressure gradient proportional to flow. High airflow (e.g. exercise) - turbulence and eddy flow Extra pressure gradient proportional to flow rate squared

Distribution of Airway Resistance

Major portion larger airways
 – specifically medium size bronchi

- Small airways (< 2 mm)</p>
 - Only 20% of total airway resistance
 - Resistance increases may foretell coming problems
 - FEF₂₅₋₇₅ supposedly sensitive

Bronchoconstrictors

 Vagal tone
 Histamine

 Bronchoconstrictors

 Beta agonists
 Anti-cholinergics

Airways and V/Q Matching

- $\uparrow P_A CO_2 \longrightarrow Bronchodilation$
 - Find high P_ACO₂ in poorly ventilated regions
 - These airways tend to dilate.
 - Promotes homogeneous ventilation

Homeostatic Summary

Low V/ Q units

- Alveolar hypoxia
- Alveolar hypercapnia
- Homeostasis

Alveolar hypercapnia tends to raise ventilation

Alveolar hypoxemia tends to lower blood flow

Result: V/ Q tends back towards normal

Airway Resistance -- Minimized by High Elastic Recoil

 Radial traction normally holds bronchi open

Low elastic recoil forces causes less radial traction and higher airway resistances:

- →Lower lung volumes
- Chronic obstructive disease (eg. Emphysema)

irway

Maximum Forced Expiration

Summary of Forced Expiration

Peak flow occurs early Envelope of effort-independence: - Flow depends only on elastic recoil. - Flow falls as expiration continues Envelope is eventually joined independent of: - Starting volume - Initial effort.

Figure 10: Flow Limitation and EPP

.

Mechanism of Flow Limitation Summary

 Force expiration: P_{PL} is positive outside the airways.

Equal pressure point (EPP).

- Point at which P_{airway} falls just enough to equal P_{PL}
- Bronchi collapse

Flow proportional to: P_{ALV} - P_{EPP}

Increased effort ——>

- Similar increases in P_{ALV} and P_{EPP} .
- Pressure difference unchanged
- Therefore, Flow unchanged.

Figure 11: Flow Limitation at Various Lung Volumes

High Lung Volume Medium Lung Volume Low Lung Volume

Flow Limitation in COPD (Emphysema)

Normal Lung Medium Volume

Emphysematous Lung Medium Volume

Forced Inspiration: is <u>Effort-Dependent</u>

P_{PL} is Negative
 Airways are held open.

Clinical Flow-Volume Loops Obstruction

http://www.ursa.kcom.edu/Department/SlideSets/Summer/MechBreathing/ PPMechBreathing.ppt