UART - Serial Communications
MSP430FR2433 eUSCI interface

Universal Asynchronous Receive and Transmit

CPU

UARTmodule

UART - Serial Communication - Block Diagram

Serial communication stands for the process of sending data one bit at a time, sequentially, through the
bus or communication channel.

e Shift registers are a fundamental method of conversion between serial and parallel forms of data, and
therefore are a part of every UART.

e Serial communication has two primary forms,
(synchronous and asynchronous) there are also two forms of UART, known as:
e UART - Universal Asynchronous Receiver/Transmitter
e USART -Universal Synchronous/Asynchronous Receiver/Transmitter

. The1 asynchronous type of transmitter generates a data clock internally depending on the MCU clock
cycles.

e There is no incoming clock signal associated with the data. To achieve proper communication
between two modules, both of them have to have the same clock cycle length (rate) , which means
that they must work on the same BAUD rate.

e BAUD: a unit used to measure the speed of signaling or data transfer, equal to the number of pulses or
bits per second: baud rate.

The serial communication goes through independent ends of a line :
e TX (transmission) and
e RX (reception).

Communication can be :
» Simplex - One direction only, transmitter to receiver
» Half Duplex — Devices take turns transmitting and receiving
» Full Duplex - Devices can send and receive at the same time

From the transmitter the TX line is the same as the RX line from the receiver. The data stream always has the same
direction through every line.

In the idle states lines are pulled high. This allows recognition by the receiver side that there is a transmitter on the other
side which is connected to the bus. (Stop condition or bits)

UART
RX
TX |
GND X

https://www.mikroe.com/blog/uart-serial-communication

Data are transmitted in 8 bit bytes (characters) using the serial protocol RS232
Com ports are used on personal computer for serial communications

Frame starts with "Start Bit" which is logic low and is used to signal the receiver that a new frame is coming. Next 5-9 bits
carry the data and parity bit. The part of the frame is configurable depending on the code set employed. After the data, is the
parity bit, if the data length is not 9 bits. The parity bit is not used very often, but in the case of noisy buses, parity bits can be
a good method to avoid reception of the wrong data packets. It represents the surm of the data bits. Even parity means when
the sum is even this bit will be 1, and in the case of odd this bit will be 0. If odd parity is used, the bit values will be reversed,

(even sumis 0, and odd is 1).

The end of the frame can have one or two stop bits. Stop bits are always logical high. The difference in the logic between start
and stop bits allows break detection on the bus. These bits are also called synchronization bits because they mark the

beginning and the end of the packet.

EStart D0 DI D2 D3 D4 D5 D6 D7 Parity Stop |

Bits bit (sb) (msb) bit bit :

| —(>ic>! -
Sampling 1.5 bit 1.0 bit; etc.

; { Duration of one byte (10-12 bit periods) i

- P

The falling edge of the start bit enables the baud rate generator and the UART state
machine checks for a valid start bit.

If no valid start bit is detected the UART state machine returns to its idle state and the
baud rate generator is turned off again.

If a valid start bit is detected, a full character is received by the Rx.

https://os.mbed.com/users/embeddedartists/notebook/lpc812-max-experiment_uart/

Terminology:

The baud rate specifies how fast data is sent over the bus and it is specified in bits per second. It is allowed to choose any
speed for the baud rate but actually there are values that are used as a standard. The most common and standardized value is
9600. Other standard baud rates are : 1200, 2400, 4800, 19200, 38400, 57600 and 115200. Baud rates higher then 115200 can
be used but usually that causes a lot of errors in transmission.

The shortcuts used for describing the UART bus configuration are usually in form :
<DATA_BITS=<5TOP_BITS=>
Examples :

« 9600 8N1 9600 baud rate, 8 bits of data, No parity, 1 stop bit
* 115200 8E2 115200 baud rate, 8 bits of data, Even parity, 2 stop bits

Data flow control in R5-232 introduced the usage of two additional lines known as RTS and CTS. These twao lines from the
view of an embedded developer are nothing more than simple GPIO pins, but usage of them from the view of a software
developer can bring a lot of benefits - we will discuss this later. To properly understand what data flow control is we have to

know what DTE and DCE are.

With Data Flow Control

Without Data Flow Control

eUSCI Interrupts in MSP430

IE2

IFG2

Device Manager — Windows 10

Using MSP430 Launchpad Serial Port
In Launchpad, the TUSB3410 chip(inside the emulator section) can act as a USB to Serial converter
too.lf you check under "Device Manager® you can see that as "MSP430 Application UART
COMxx" highlighted in red (here COM13).The one below that is the COM port number corresponding
to the USBto Serial Converter (USB2SERIAL).

b B Portable Devices
4 "% Ports (COM & LPT)
TS HUAWEI Mobile Connect - Application Interface (COMG3)
f? HUAWEI Mobile Connect - PC Ul Interface (COMBG2)
1Y MSP430 Application UART (COMI3) <—uSP430 Launchpad |
_ 'F USB Serial Port (COM4E) -
> E Processors :

USBZSERIAL

After you have configured the jumpers in the board ,Launch PuTTY or any other terminal program of
your choice.Put the COM port number corresponding to your launchpad serial port (here COM13)
.select the baudrate (here 9600) and open the connection.

Basic options for your PuTTY session
Specify the destination you want to connect to
Seral line Speed
comid 9600
[V Raw (O Telnet) Rlogin) SSH @ Serial

Load, save or delete a stored session
Si_wedSesu'mm

| Default Settings Load

In MSP430FR2433, P1.4 and P1.5 are configured as UCAOTXD and UCAORXD using their respective PXSEL

registers.

PIN NAME (P1.x)

FUNCTION

CONTROL BITS AND SIGNALS ("

P1DIR.x P1SELx ADCPCTLx?
P1.4 (I/0) l: 0; O: 1 00 0
UCAOTXD/UCAOSIMO X 01 0
P1.4/UCAQT XD/ TA1.CCIZA 0
UCADSIMOITA1.2/TCK/ 10 0
Ad VREF+ TA1.2 1
Ad, VREF+ X X 1(x=4)
JTAG TCK X X X
P1.5 (1/0) l: 0; O: 1 00 0
UCAORXD/UCAQOSOMI X 01 0
F1.5/UCAORXD/ TA1.CCIHA 0
UCADSOMITAT.1/TMS/ 10 0
A5 TATA 1
A5 X X 1(x=5)
JTAG TMS X X X

Read a character «+——— UCORXBUF

A

CLK RECEIVE SHIFT REGISTER |<@§———RX Pin

UCSSELX

| | I I
UCPEN UCPAR UCMSB UCTBIT

UCOCLK CLK

i . o .
Simplified Block Diagram

P ’

SMCLK

UCPEN UCPAR UCMSB UCTBIT

TX Pin

Write a character ™

http://xanthium.in/Serial-Communication-MSP430-UART-USCI_A

Real functional diagram in 3 parts — Baud Rate Generator

UCABEN
m

Receive Baudrate Generator
UCOBRx

BRCLK

UCSSELx
UCLK —— 00
Device specific — 01
SMCLK — 10
SMCLK —:‘1/

: /‘./15

= Prescaler/Divider

Modulator

Receive Clock

Transmit Clock

4 is
UCBRFx UCBRSx UCOS16

msp430fr243x_euscia0_uart_01.c

__bis SR register(SCGO); // disable FLL

CSCTL3 |= SELREF _ REFOCLK; /f Set REFO as FLL reference source
CSCTLO = 0; // clear DCO and MOD registers

CSCTL1 &= ~(DCORSEL_77; // Clear DCO frequency select bits first
CSCTLY |= DCORSEL_3: /4 Set DCO = 8MHz

CSCTLZ = FLLD O + 243; // DCODIV = 8MHz @€——

__delay cycles(3);

__bic SR register(SCGO) ; // enable FLL

while (CSCTLY & (FLLUNLOCKO | FLLUMLOCKL1)): // Poll until FLL is Tocked
CSCTL4 = SELMS DCOCLKDIV | SELA REFOCLK; // set default REFO(~32768Hz) as ACLK source, ACLK = 32768Hz
FF default DCODIV as MCLK and SMCLE source

Clock System Setup

DCOCLK = 8MHz
Therefore

MCLK and SMCLK = 8MHz
ACLK = 32768 Hz

UCLK

Device specific
SMCLK
SMCLK

UCSSELx

Sf Configure LART
UCAQCTLWG |= UCSWRST:

UCAQCTLWG |= UCSSEL__ SMCLK;
/4 Baud Rate calculation

J/ 8000000,/ (16+96800) = 52,083

// Fractional portion = 0.

| UCaGBRO = 52;

UCABEN
’

Receive Baudrate Generator
UCOBRx

SET BAUD RATE

-- }16

= Prescaler/Divider

Modulator

Receive Clock

Transmit Clock

4 8
[|
UCBRFx UCBRSx \UCOS16

UCADMCTLW = 0x4900 | UCOS1E | UCBRF_1; // Remailnder - 0,083

UCAQCTLWG &= ~UCSWRST;
UCAQIE |= UCRXIE:

S see Table 21.4 & 21.5
A4 Initiglize elSCI

NOTE:
Baud Rate settings quick set up

To calculate the correct the correct settings for the baud
rate generation, perform these steps:

1. Calculate N = fBRCLK/Baud Rate
[if N > 16 continue with step 3, otherwise with step 2]
2. 0S16 = 0, UCBRO = INT(N)

W 3. 0S16 = 1, UCBRO = INT(N/16)
EEG R R 4. UCBR1 second byte of N - leave 0

// Enable USCI_AQ RX interrupt

Interrupt Vectors — All combinations for eUSCI

#pragma vector = USCI_AO VECTOR __ interrupt void USCI_AG®_ISR(void) {
switch(UCAQIV) {

case 0Ox00:
// Vector 0: No interrupts
break;
case 0x02: ... // Vector 2: UCRXIFG - Received Char Interrupt
break;
case Ox04: ... // Vector 4: UCTXIFG - Transmit BufferEmpty Interrupt
break;
case Ox06: ... // Vector 6: UCSTTIFG - START byte received
break;
case 0x08: ... // Vector 8: UCTXCPTIFG - ALl transmit complete
break;
default: break;
}
} Interrupt Flag Interrupt Condition
UCSTTIFG START byte received interrupt. This flag is set when the UART module receives a START byte.
Transmit complete interrupt. This flag is set, after the complete UART byte in the internal shift register
UCIXGPTIFG including STOP bit got shifted out and UCAxTXBUF is empty.

The UCTXIFG interrupt flag is set by the transmitter to indicate that UCAXTXBUF is ready to accept
another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is
automatically reset if a character is written to UCAXxTXBUF.

The UCRXIFG interrupt flag is set each time a character is received and loaded into UCAxRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a

system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCAxRXBUF is
read.

Actual code from example 1

91 #pragma vector=USCI_AQ VECTOR
22 _interrupt vold USCI_AQ ISR(void)
03 o

switch (UCAOIV) Echo received character

95 {
95] ¢ break;
97| case LSCIUART, LCRKIFE: / (same as putchar(TxByte))

98 while (1 (UCAGIFGEUCTXIFG)) ;
99 UCAGTXBUF = UCAGRXBUF; Polled output

- __no_operation():
01 break;

2 case USCI_UART UCTHIFG: break;
case USCI _UART UCSTTIFG: break;

- case USCI_UART _UCTXCPTIFG: break;
a5 default: break:

}

AR

e e el e
it O

UCRXEIE m—
UCMODEx UCSPB UCDORM Error Flags
/.k T T UCRXBRKIE m—]
2
Receive State Machine P Set Flags
| Set RXIFG

 WUCRXERR Receive Block Diagram

—aUCPE
—aUCFE
—aUCOE

| Set UCBRK
| Set UCADDR /UCIDLE

UCIRRXPL
UCIRRXFLx
UCIRRXFE
f IrDA Decoder
1
®—1 — Receive Shift Register 0 0 L)

UCPEN UCPAR UCMSB UCTYBIT

The UCRXIFG interrupt flag is set each time a character is received and loaded into UCAxRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a

system reset PUC signal or when UCSWRST = 1.

UCRXIFG is automatically reset when UCAXxRXBUF is read.

UCPEN UCPAR UCMSB UCTBIT
* = = %

®—| = Transmit Shift Register

UCIREN

*

L

Transmit Buffer UCAXTXBUF

IrDA Encoder

Transmit State Machine

—IUC"II!

6
UCIRTXPLx

—aUCTXADDR

e

UCMODEx UCSPB

UCAXTXD

Transmit Block Diagram

21.3.15.1 eUSCI_A Transmit Interrupt Operation
The UCTXIFG interrupt flag is set by the transmitter to indicate that UCAXTXBUF is ready to
accept another character. An interrupt request is generated if UCTXIE and GIE are also set.

UCTXIFG is automatically reset if a character is written to UCAXTXBUF.

Show Example 1 Running
Example 2 - R/G LED 115200 BAUD

Example 3 — Transmit BUFFER with ISR
9600 BAUD, ACLK LPM3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

