Module 7 - Pulse Width Modulation

Timer_A Compare Capture Register - used to generate PWM

This is from the Reference Manual, example has 6 CCR's, but our chip has 3 CCR's for Timer_A3

Output Modes

As you may have already seen, each CCR register has its own associated pin. For CCR1 on Timer0 this pin would be named "TA0.1". Depending upon which mode you put the CCR into; this pin can be used as an input (for Capture) or an output (for either Capture or Compare).

When the pin is used as an output, its value is determined by the OUT bit-field in its control register. The exact details for this are TA0.1 = TA0CCTL1.OUT. (Sometimes you'll just see this OUT bit abbreviated as OUT1.)

Besides routing the CCR OUT signal to a pin, it can also be used by other MSP430 peripherals. For example, on some devices the A/D converter could be triggered by the timer directly.

So, what is the value of OUT for any given CCR register?

The value of OUT is determined by the OutputMode, as we discussed earlier. (Each CCR control register has its own OUTMOD bit-field). This setting tells the OUT bit how to react as each compare or capture occurs. As previously stated, there are 8 different OutputMode choices.

For example, setting OUTMOD $=0$ mean it's not changed by the timer's hardware. That is, it's under software control. You can set OUT to whatever you like by writing to it in the CCRx control register.

In the case of the MSP430, any timer can generate a PWM waveform by configuring the CCR registers appropriately. In fact, if you are using a Timer_A5, you could output 4 or 5 different PWM waveforms.

PWM Signals - Up to one per CCR

- Duty cycle ("on" time) is set by selecting Output Mode and varying CCRx value
- In this example, CCRO - CCR1 = amount of time Signal is High

Timer_A Compare Capture Register - used to generate PWM

12.2.5.1 Output Modes

The output modes are defined by the OUTMOD bits and are described in Table 12-2. The OUTn signal is changed with the rising edge of the timer clock for all modes except mode 0 . Output modes $2,3,6$, and 7 are not useful for output unit 0 because EQUn = EQU0.

Table 12-2. Output Modes

OUTMOD	Mode	Description
000	Output	The output signal OUTn is defined by the OUT bit. The OUTn signal updates immediately when OUT is updated.
001	Set	The output is set when the timer counts to the TAxCCRn value. It remains set until a reset of the timer, or until another output mode is selected and affects the output.
010	Toggle/Reset	The output is toggled when the timer counts to the TAxCCRn value. It is reset when the timer counts to the TAxCCRO value.
011	Set/Reset	The output is set when the timer counts to the TAxCCRn value. It is reset when the timer counts to the TAxCCR0 value.
100	Toggle	The output is toggled when the timer counts to the TAxCCRn value. The output period is double the timer period.
101	Reset	The output is reset when the timer counts to the TAxCCRn value. It remains reset until another output mode is selected and affects the output.
110	Toggle/Set	The output is toggled when the timer counts to the TAxCCRn value. It is set when the timer counts to the TAxCCRO value.
111	Reset/Set	The output is reset when the timer counts to the TAxCCRn value. It is set when the timer counts to the TAxCCRO value.

These output modes combine with what 'count' Mode is being used

The OUTn signal is changed when the timer reaches the TAxCCRn and TAxCCR0 values, depending on the output mode. An example is shown in Figure 12-13 using TAxCCR0 and TAxCCR1.

Figure 12-13. Output Example - Timer in Continuous Mode

The OUTn signal is changed when the timer counts up to the TAxCCRn value and rolls from TAxCCR0 to zero, depending on the output mode. Figure 12-12 shows an example using TAxCCR0 and TAxCCR1.

Fiaure 12-12. Output Example - Timer in Up Mode

The Up/Down mode supports applications that require dead times between output signals (see Section 12.2.5). For example, to avoid overload conditions, two outputs driving an H-bridge must never be in a high state simultaneously. In the example shown in Figure 12-9, the $\mathrm{t}_{\text {dead }}$ is:
$\mathrm{t}_{\text {dead }}=\mathrm{t}_{\text {timer }} \times($ TAxCCR1 - TAxCCR2 $)$
Where:
$\mathrm{t}_{\text {dead }}=$ Time during which both outputs need to be inactive
$\mathrm{t}_{\text {timer }}=$ Cycle time of the timer clock
TAxCCRn $=$ Content of capture/compare register n

Figure 12-9. Output Unit in Up/Down Mode

The OUTn signal changes when the timer equals TAxCCRn in either count direction and when the timer equals TAxCCR0, depending on the output mode. Figure 12-14 shows an example using TAxCCR0 and TAxCCR2.

Figure 12-14. Output Example - Timer in Up/Down Mode

Table 12-6. TAxCCTLn Register Description

7-5	OUTMOD	RW	Oh	Output mode. Modes 2, 3, 6, and 7 are not useful for TAxCCR0 because EQUx $\begin{aligned} & =\text { EQU0. } \\ & 000 \mathrm{~b}=\text { OUT bit value } \\ & 001 \mathrm{~b}=\text { Set } \\ & 010 \mathrm{~b}=\text { Toggle/reset } \\ & 011 \mathrm{~b}=\text { Set/reset } \\ & 100 \mathrm{~b}=\text { Toggle } \\ & 101 \mathrm{~b}=\text { Reset } \\ & 110 \mathrm{~b}=\text { Toggle/set } \\ & 111 \mathrm{~b}=\text { Reset/set } \end{aligned}$
4	CCIE	RW	Oh	Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag. Ob = Interrupt disabled $1 \mathrm{~b}=$ Interrupt enabled
3	CCl	R	Oh	Capture/compare input. The selected input signal can be read by this bit.
2	OUT	RW	Oh	Output. For OUTMOD $=0$, this bit directly controls the state of the output. Ob = Output low $1 \mathrm{~b}=$ Output high

Figure 12-13. Output Example - Timer in Continuous Mode

EQU - The nomenclature used in the MSP430 User's Guide.

Apparently, there is an EQU (equate) signal inside the timer for each CCR. For example, the equate signal for CCR1 would be called EQU1.

While these EQU values cannot be read directly from any of the timer control registers, the documentation makes use of them to describe when a comparison becomes true.

Therefore, when the timer counter (TAR) becomes equal to a compare register (CCR), the associated EQU signal becomes true.

This can be seen in the following diagram captured from the TIMER_A documentation. Notice how EQU0 becomes true when TAR=CCRO; likewise, EQU1 becomes true when TAR=CCR1.

EQU: When TAR = CCR

- Nomenclature used in MSP430 User's Guide
- EQUO and EQU1 are names for when CCRO and CCR1 compare events occur (e.g. CCR1 = TAR)
- Similar EQUn events exist for each CCR register
- TAIFG is the generic timer interrupt whenever the count (in TAR) goes to zero

Timer CCR (Compare) Output Mode 01

- Each CCR has it's own signal (e.g. TAO.1)
- Input for capture (CCI)
- Output for compare (OUT)
- Used as output, the value in register bit CCRn.OUT is routed to TAO.n
- Value of OUT is affected by Output Mode (CCRn.OUTMOD) as described over the next few slides
- If OUTMOD=0, then OUT bit (and hence the signal) is under software control

Output Mode 1

- OUTMOD = 01 is called "Set"
- This means that OUT (e.g. TAO.1) is set on EQU1
- That is, whenever TAR=CCR1

OUTMOD = 2 ("Toggle/Reset" mode)

OutputMode 2 is a bit more interesting than the previous output modes. Notice how this mode is called "Toggle/Reset". Each of these names corresponds to a different event.

- Toggle - This means that $\mathrm{OUT}_{\mathrm{n}}$ should be toggled whenever TAR=CCR n
- Reset - This implies that OUT=0 (i.e. reset) whenever TAR=CCR0

In other words, when the OutputModes are defined by two names, the first one dictates the value of OUTn whenever the TAR=CCR ${ }_{n}$ (i.e. whenever $E Q U_{n}$ becomes true). The second name describes what happens to $O U T_{n}$ whenever TAR=CCRO.

Timer CCR (Compare) Output Mode 02

- OUT is actually affected by two events:
- EQUn : when TAR=CCRn
- EQUO : when TAR=CCRO
- In other words, the two events are CCRnIFG and CCROIFG, respectively
- Output Mode 02 is called:

Toggle	Reset
on EQUn	on CCRO

- As stated earlier, CCRO is special It affects all other CCR compare outputs in this same way
- Note: In this example, EQUO and TAIFG happen at the same time; but TAIFG does not affect OUT

Output Mode 2

- OUTMOD = 02 is called "Toggle/Reset"
- This means that OUT (e.g.TA0.1) is Toggled upon EQU1
- And Reset on EQUO (i.e. CCRO match)

Putting this out on a GPIO pin ..

By showing both OUTMOD=1 and OUTMOD=2 in the same diagram, you can see how the value of OUT n can be very different depending upon the OutputMode selected.

Timer CCR (Compare) Output Mode 02

- OUT is actually affected by two events:
- EQUn : when TAR=CCRn
- EQUO : when TAR=CCRO
- In other words, the two events are CCRnIFG and CCROIFG, respectively
- Output Mode 02 is called: Toggle/Reset

Here's an example of routine TAO.2 (i.e. OUT2) to a GPIO pin:

Capture "Output Modes" Summary

- Use different OUTMOD settings to create various signal patterns
- Output modes 2, 3, 6, and 7 are not useful for output unit 0 because EQUn = EQUO
- This summary is for the "UP" mode. User's Guide has similar diagrams for Continuous and UpDown counter modes

Do these look like PWM signals? Here's a simple PWM example...

Point of Clarification - Only use modes 1, 4, and 5 for CCR0

The second bullet, in the diagram above, states that four of the Output Modes (2, 3, 6, and 7) are not useful when you are working with CCR0.

Why are they not useful?
All four of these OutputModes include two actions:

- One action when: CCRn=TAR
- A second action when: CCR0=TAR

In this case, though, CCRn = CCRO. That means these modes could be trying to change OUTO in two different ways at the same time.

Bottom Line: When using CCR0, only set OUTMOD to $0,1,4$, or 5 .

PWM, or pulse-width modulation, is commonly used to control the amount of energy going into a system. For example, by making the pulse widths longer, more energy is supplied to the system.

Looking again at the previous example where OUTMOD $=2$, we can see that by changing the difference between the values of CCRO and CCRn we can set the width of OUTn.

PWM Signal

- Duty cycle ("on" time) is set by selecting Output Mode and varying CCRx value
- In this example, CCRO - CCR1 = amount of time Signal is High

45		*****	******	
46	//	MSP430FR243x Demo - Timer1_A3, PWM TA1.1-2		
47	//			
48	//	Description: This program generates two Ph		
49	//	Timer1_A configured for up mode. The value	PWM	
50	//	period and the values in CCR1 and CCR2 the		
51	//	SMCLK as TACLK, the timer period is $\sim 1 \mathrm{~ms}$ w		
52	//	and 25\% on P1.5.		
53	//	ACLK $=\mathrm{n} / \mathrm{a}, \mathrm{SMCLK}=$ MCLK $=$ TACLK $=1 \mathrm{MHz}$		
54	//			
55	//			
56	//	MSP430FR2433		
57	//			
58	//	/\|\|		
59	//	\|		
60	//	- - \|RST		
61	//			
62	//	P1.5/TA1.1\|--> CCR1 - 75\% PWM		
63	//	P1.4/TA1.2\|--> CCR2 - 25\% PWM		
64	//			
65	//			
66		Ling Zhu Texas Instruments Inc. Feb 2015		
67	//	\|msp430fr243x_tal_16.c		
68	//		***	

MSP430FR2433
SLASE59B -OCTOBER 2015-REVISED JUNE 2017

P1.0/UCB0STE/TA0CLK/A0/Veref+
P1.1/UCB0CLK/TA0.1/A1
P1.2/UCB0SIMO/UCB0SDA/TA0.2/A2/Veref-
P1.3/UCB0SOMI/UCB0SCL/MCLK/A3
P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+
P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A5
P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A6
P1.7/UCA0STE/SMCLK/TDO/A7

```
// Modified for Energia H Watson 20180714|********************************************************************************
#include <msp430.h>
    int main(void)
日{
    WDTCTL = WDTPW | WDTHOLD; // Stop WDT
    // Configure GPIO
    P1DIR |= BIT4 + BIT5;
    P1SEL1 |= BIT4 + BIT5;
    // Disable the GPIO power-on default high-impedance mode to activate
    // previously configured port settings
    PM5CTL0 & = ~LOCKLPM5;
    TA1CCR0 = 1000-1; // PWM Period
    TA1CCTL1 = OUTMOD_7; // CCR1 reset/set
    TA1CCR1 = 750; // CCR1 PWMM duty cycle
    TA1CCTL2 = OUTMOD_7; // CCR2 reset/set
    TA1CCR2 = 250;
    TA1CTL = TASSEL__SMCLK | MC__UP | TACLR; // SMCLK, up mode, clear TAR
        bis_SR_register(LPM0_bits); // Enter LPM0
        __no_operation(); // For debugger
}
```


// MSP430FR243x Demo - Timer0_A3, PWM TA0.1-2, Up/Down Mode, 32kHz ACLK
//
// Description: This program generates two PWM outputs on P1.2,3 using
// Timer_A configured for up/down mode. The value in TACCR0, 128, defines the
// PWM pèriod/2 and the values in TACCR1 and TACCR2 the PWM duty cycles. Using
// 32 kHz ACLK as TACLK, the timer period is 7.8 ms with a 75% duty cycle on
// P1.1 and 25\% on P1.2. Normal operating mode is LPM3.
// ACLK $=$ TACLK $=$ REFO $\sim 32768 \mathrm{~Hz}$, MCLK $=$ default DCO $\sim 1.2 \mathrm{MHz}$
// //* External watch crystal on XIN XOUT is required for ACLK *//
//
// MSP430FR2433
//
//
//
//
//
//
//
//
// Ling Zhu Texas Instruments Inc.| Aug 2015
// Modified for Energia - H Watson 20180714
// msp430fr243x_ta0_20.c
$/ / * * * * * * * * * * * * * * * \bar{*} *$

