
Timer A (0 and 1) and PWM

EE3376

General Peripheral Programming Model

l  Each peripheral has a range of addresses in the memory map
–  peripheral has base address (i.e. 0x00A0)
–  each register used in the peripheral has an offset from the base

l  some registers are for control
l  bits to enable the peripheral
l  bits to configure specific modes of operation
l  bits to determine level of clock division

l  some registers are for status which is generally read-only
l  error conditions are represented with a bit in status register
l  completion status

l  some registers are for data
l  data to be transmitted is written to data registers
l  data received can be read from data registers
l  data measured (i.e. ADC) can be read from data registers

Pulse Width Modulation

l  Most commonly used for motor control
–  switching mode for efficiency with transistor drive circuit

l  One time configuration – stand alone operation
l  Pulse Width Modulation

–  like a poor man’s version of Digital to Analog Converter
l  take average value of square wave with variable duty cycle
l  low power output – must buffer with driving circuit for high power

applications (motors, etc)
l  can change analog value, but much slower than D/A

l  Generates a square wave
–  control of frequency
–  control of duty cycle
–  control of polarity - starts high, ends low OR starts low, ends high
–  control of alignment – left vs. center
–  8 independent channels on Port P (P for PWM)

Pulse Width Modulation

50%

75%

25%

10%

Pulse Width Modulation

50%

selected
clock

counter
value 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

duty
cycle

period

PWM frequency = Fsc / (period)
 = 100KHz / 10 = 10 KHz

PWM duty cycle = ((period – duty cycle) / (period)) * 100%

 = ((10 – 5) / 10) * 100% = 50%

PWM Simple Design Example

8 bit counter

duty cycle

period

8 bit compare

8 bit compare

write to
duty cycle

write to
period

clksel
output

=

=

load
latch

r

s

Functions of Timers

l  stop watch
l  captures time of external events

–  for instance rising edge of input pin
–  allows for period and pulse width measurements

l  creates output waveform
–  rising edge programmed for specific time
–  falling edge programmed for specific time

l  pulse accumulations
–  count cycles while input is asserted
–  count the number of rising edges on input

l  creates periodic interrupts

Input Capture Mode

TAR 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12

capture time
of first rising
edge - LAST

capture time
of second rising
edge - NEW

l  input pin can be programmed in variety of ways
l  In this example,

–  Port input interrupt is enabled
–  Input rising edge causes interrupt – which captures time on TAR
–  TAR is recorded and compared against previous captured value
–  LAST value is subtracted from NEW to get period of waveforms

Port pin
as Input

Output Compare Mode (8 channels)

TAR 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9

CCR1
CCR0

l  Can program edges relative to time in TAR

l  Can generate periodic interrupts with same mechanism

l  Set OUTMODE if output is used, don’t if only needing
 periodic interrupts.

port pin
as output

Pulse Accumulation (edge based)

TAR 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2

Increments
on every rising
edge in this example

l  Counts the number of rising edges over time
l  For a fixed time, can calculate the average frequency

Port pin selected
as TACLK

Pulse Accumulation (gated time)

TAR0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 4 5 6 6 6 6

l  Interrupt for rising and falling edges of port 1
l  One interrupt enables TAR and one disables
l  Use other timer to measure straight time for comparison
l  TAR0 / TAR1 is ratio of on versus off.

Port pin
as Input

TAR1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MSP430 User’s Manual

MSP430 User’s Manual

Select clock to run counter

Clock divider of selected clock

Counter mode

Interrupt flag and enable
Must read TAIV to determine which is responsible
and to clear the bit. IRQ occurs if TAR == 0

MSP430 User’s Manual

Source Freq Divide Res Freq Period
SMCLK 16MHz 1 1/16 uS 240 Hz 4ms
SMCLK 1MHz 1 1 uS 240 Hz 66 mS
SMCLK 1MHz 8 8 uS 2 Hz 0.5 S
ACLK 32KHz 1 31 uS ½ Hz 2 S
ACLK 32KHz 8 240 uS 1/16 Hz 16 S

In continuous mode, TAR overflow details

MSP430 User’s Manual
Counter

3 Compare Channels

MSP430 User’s Manual

Capture mode allows TAR to be captured
at a specific event – example paddle
wheel rotation for wind speed calculation

Capture mode input select – two IO possible.
Gnd and Vdd are for software enabled capture.

Capture Vs. Compare mode select

Input should always be synchronized

TACCTLx continued

Output Mode – for Pulse Width Modulation
or other modes with an output pin.
See next slide for detailed examples.

Not an interrupt. Flags missed capture event.

If enabled in compare mode, irq if CCR == TAR
If enabled in capture mode, irq after an input event and TAR

 is “recorded” in CCR.

One time delay

Normally for centered PWM

Normally for centered PWM

Normally for PWM

Normally for PWM

Simple 50% duty wave

One time delay

Up down mode
Centered non-overlapping
PWM for sophisticated
motor control.
Not on test in this class.

32 bit counter extension example

l  If 16 bit counter is running at 1 MHz, rollover
occurs every 216 * (1 / 1MHz) = 64 milliseconds

l  By extending to 32 bits, rollover period is much
longer – 232 * (1 / 1MHz) ~ 4000 seconds

l  Set overflow interrupt service routine to
increment a global variable - 16 bit
TAR_extended - which represents the upper 16
bits of a 32 bit word.

TAR= 0x170 TAR_extended- SRAM
15 0 15 0

31 0

Note on programming MSP430

 P1DIR |= 0x41; // P1.0 and P1.6 to output
 P1SEL |= 0x41;
 P1SEL2 |= 0x01;

 CCR0 = 1000; //PWM Period - Freq = (SMCLK freq)/(CCR0 value)
 //eg,SMCLK = 1MHZ so 1MHZ/1000 = 1Khz is the PWM Freq
 CCTL1 = OUTMOD_7; //CCR1 toggle/set
 CCTL2 = OUTMOD_7; //CCR2 toggle/reset
 CCR1 = 0; //CCR1 PWM duty cycle
 TACTL = TASSEL_2 + MC_1;

Typical programming style is to use header file abbreviations
for registers and bit patterns.
TACTL is the TA0CTL register at 0x160
TASSEL_2 is (2*0x0100u)) = 0x0200 unsigned – picks the SMCLK
MC_1 = (0x0020) – picks “up to CCR0” mode.
TASSEL_2 | MC_1 = 0x0220 which programs both the mode and clock.

msp430x22x4_ta_03

msp430x22x4_ta_03

msp430x22x4_ta_03

msp430x22x4_ta_05

msp430x22x4_ta_05

msp430x22x4_ta_05

msp430x22x4_ta_07

msp430x22x4_ta_07

msp430x22x4_ta_16

msp430x22x4_ta_16

msp430x22x4_ta_16

msp430x22x4_ta_22

ta_22

