

How can this be modified to run for 1 year on a battery?

From the last lecture:

5 #include =mspd30.h=

7// set pin numbers for MSPA30FR2433:

2 const byte buttonPin = 0x80; // P2.7 (Button 2)
9 const byte ledPin = 0x02; // P1.1 (Green LED)

10 volatile unsigned char buttonState = @; // variable for reading the pushbutton status
11
12 1int main(void)

R
14 //setup
15 WOTCTL = WOTPW + WOTHOLD: A7 stop the watchdog
16 A/ 1nitialize the LED pin as an output:
17 PLDIR |= ledPin;
18

g9 // pushbutton pin already input by default after Power Up
20 A oset up pull up resistor for pushbutton pin
21 P20UT |= buttonPin: // pull-up
22 PZREM |= buttonPin; // enable resistor
23 /Moop
24 while (1)
25 {
26 // read the state of the pushbutton value:
27 buttonState = P2IN & buttonPin;
28
29 A/ the buttonState is TRUE if pushbutton is pressed
30 if (buttonState) {
cil A/ turn GREEN LED bit on:
32 P1OUT |=ledPin;
33 b
34 else {
35 A/ turn GREEN LED bit off:
36 PLOUT &= ~ledPin;
37 b
38 I

GOING LOW POWER

delay() vs. sleep()

The loop{) blinks the LED twice, enters delay() state for 10 seconds,
.p{] it ¥ const wintB_t myLED = RED_LED;
then blinks once, and goes to sleep() for 10 seconds. % const wintB_t myButton = PUSHZ;

void setup()
With sleep() and sleepSeconds(), the MCU enters LPM3.

CPU is disabled. el)
MCLK and SMCLK are disabled. i
DCO's de generator is disabled.

(myLED, QUTPUT);

void flash()
{

(myLED, HIGH):
ACLK rermains active. 02 {1ea);
) i (myLED, LOW);
As a conseguence of SMCLK being disabled, background processes o}
such as Serial transmit and receive will halt or get scrambled. .
void loop()
{
sleep() applies for milliseconds and sleepSeconds() for seconds. Hém :
r
()
{18880 ;
0
(10);

Motice the difference of power consumption between delayl) and
sleep().

delay() requires 2 mW or 1 ma

sleep() requires less than 0.1 mw.

The peaks correspond to the LED blinking twice before delay(),
and once before sleep().

Use Hardware Interrupt (PUSH2) to WakeUp a processor put to sleep

suspend() and wakeup()

With suspend(), the MCU enters LPMA4.
CPU is disabled.
ACLK is disabled.
MCLE and SMCLE are disabled.
DCO's de generator is disabled.
Crystal oscillator is stopped.

The MCU can anly react to a hardware interrupt, triggered here by
PUSHZ. The interrupt calls the button!SR() routine and launches
wakeup() to return to active mode.

This example is based on Frank Milburn's code (June 2015), which is
derived from @spirilis at 43ch.com

The peak corresponds to the LED turned on and happens just after
PUSH2 is pressed.

const uintd_t myLED = RED_LED;
const wintd_t myButtom = PUSHZ;

void buttonISR()
{

wakeupl);

void setup()

{myLED, OUTPUT);
{myButton, INPUT_PULLUP);

{myButton, » FALLING);
}
void loop()
{
(myLED, HIGH);
{188);
(myLED, LOW);

ki)

https://embeddedcomputing.weebly.com/ultra-low-power-with-msp430.htm|

EmbeddedSeries MSP430 MCU Day .

MSP430 is Ultra-Low Power + Performance

MSP430

Ultra-Low Power MCUs

ARROW ELECTRONICS AND TEXAS INSTRUMENTS '}EXAS
N\ROUV. NTRUMENTS

EmbeddedSeries MSP430 MCU Day _

Ultra-Low Power Activity Profile 07,,
\

Active

A‘U’E‘rage———— - O S S . . -_— .

Standby

Minimize active time

Maximize time in Low Power Modes

Interrupt driven performance on-demand with <1us wakeup time
Always-On, Zero-Power Brownout Reset (BOR)

ARROW ELECTRONICS AMND TEXAS INSTRUMENTS m
mnmj\L INSTRUMENTS

EmbeddedSeries

Ultra-Low Power is in Our DNA

+ MSP430 designed for ULP ¥ Multiple operating modes
from grﬂund up - 100 nA power down {RAM retained)
— (0.3 pA standby
* Peripherals optimized to — 110 pA / MIPS from RAM
reduce power and minimize e B CES TR e
CPU usage ¥ Instant-on stable high-speed clock
+ Intelligent, low power /1.8 - 3.6V single-supply operation
peripherals can operate
——» | independently of CPU and let ¥ Zero-power, always-on BOR

the system stay in a lower v <50nA pin leakage
power mode longer
www.ti.com/ulp

¥ CPU that minimizes cycles per task

' Low-power intelligent peripherals
— ADC that automatically transfers data
— Timers that consume negligible power
— 100 nA analog comparators

¥ Performance over required
operating conditions

rwuu ARROW ELECTROMNICS AMD TEXAS INSTRUMENTS INSTRUMENTS

EmbeddedSeries MSP430 MCU Day _

MSP430 Low Power Modes 0,,

——

Active
DCO on

ACLK on
220pA

LPM4
* RAM/SFR retained

LPM3

» RTC function

« LCD driver

« RAM/SFR retained

See all LPMs...

Specific values vary by device

ARROW ELECTROMNICS AMD TEXAS INSTRUMENTS mu
mnmj\-,~ MENTS

EmbeddedSeries MSP430 MCU Day _

Always-on Brownout Reset 0,,

+ Brown-out reset (BOR) forces the MCU to reset both on power-up/down
— When V-:c rises and when Vi falls below normal operating range, a POR is triggered.

— Zero-power Brown Qut Reset

— Always-on and active in all modes of operation.
Tek Prevu (o1

(VCC/BOR

MCU

w ARROW ELECTROMNICS AMD TEXAS INBSTRUMENTS TEXASII'IETRIIMEI'ITS

1% active per day is approximately 14.4 minutes operation in 24 hours

EmbeddedSeries MSP430 MCU Day _

Average Current Consumption & Battery
Life @ 1% Active (~14.4 Minutes)

MSP430G20xx| 6.34 years (3.6uA) h

MSP430F26xx| 4 years

MSP430 delivers 2-3x longer battery life h
--------- e
PIC24F XLP F
f 1 | 'r 1 f
5 10 Years
Example: Portable measurement system - ~_ Eny |

* Active power consumption is important in this example i

* Average = Standby*(99%) + Active*(1%)
* Used peripherals will impact total current consumption

ARROW ELECTROMNICS AND TEXAS INSTRUMENTS
MN.-I\.N‘ INSTRUMENTS

EmbeddedSeries MSP430 MCU Day _

Average Current Consumption & Battery
Life @ 0.1% Active (1.4 Minutes)

20+ year
operation!

MSP430G20xx| 25 years (0.9uA)

MSP430F26xx

PIC24F XLP

Example: Wireless sensor network

* Standby & Active power are equally important
* Average = Standby*(99.9%) + Active*(0.1%)
* Used peripherals will impact total current consumption

w ARROW ELECTROMNICS AND TEXAS INSTRUMENTS
-

EmbeddedSeries MSP430 MCU Day _
ULP is Easy! &

« Using our Low Power Modes are easy
* Enter low power mode with 7 line of code!

void main{void)
{
WOT init(); // initialize Watchdog Tirmer
while(1)
{
__bis SR register(LPM3 _bits + GIE); // Enler LPVE, enable intermupls
activelVode(); /f in active mode. Do stuff!
}
}

#pragma vecto=WOT_VECTOR
__interrupt void watchdog_timer (void)
{
__bic SR regster_on_exit(LPMB_bits); // Clear LPVB bits from O(SR), Leave LPVE, enter adiive mode

}

Low Power Mode Overview

Operating

Made Interrupt Sources

3
5
=
2

Timars, ADC, DA, LISART WOT, 10, comaoarator, WS, B
interrupt, USCH, ATC, cther parpherals

. . : Tirmars, ADC, D&, USART, WOT, 70, comparator, LISI, B
LFMO LU i shidown, penpheral ciocks avaisbie. . B = = @ i 't LG, AT, ther perpherals

Tirmars, ADC, DS UEART, WOT, 1D, compazator, US, B4
infesrupt. UBCL, ATC, other perpherals

Timars, ADC, DA, LISART, WOT, 10, compamtor, US), Ba.

Active P, all clocks and penphersls avaibie. . @

CPU Is shutdown, periphseial Ciocks avaisbie. DCO
LPM i dhsabled ared the OC ganerdior can be disablad

CPL s ehutdown, cnly onie panpheral clock

LPM2 iiabie.OC ganaralr is anabled: T LR % Interrugpt, USTI, ATC, other paripheale

LPM3 CPL s shutdown, only one peripheral TN AL T Timers, ADC. DK, LISART WOT, 10, comparator, U3, Bd.
clock avadabla. DE generator B disabied. Interrupt. LSE, RTC. sther periphersls
Mo RAM retertion, ATC can be enabled, ;

LPMBS (MBPA3OFS generation only) ® & b interupt, ATC

LFMa CPU iz shutdown and all clocks disabled. e @ Ext. interrupt

LPMS Mo RAM mtention, #TC disabied. s Ext. ittt

(MSP 30 generation oaly)

Ok, so we enter a Low Power Mode which shuts
down parts of the processor.

So how do we wake up from the Low Power Mode?
Easy, use a hardware Interrupt to restart the
processor and execute the Interrupt Service Routine

— ISR

Interrupts hardware are built directly into the
processor — each device block has this hardware

What is an Interrupt?

Waiting for an Event: Family vacation

Polling
Are we there Ye,t? Wake me up when we get there...
Ave we there Yert?
Are we there yet?
Are we there yet?
Are we there yet?

Are we there Yet?
| pAve we thesrs wuat?

Both methods signal that we have arrived at our destination. In most cases, though, the use of
Interrupts tends to be much more efficient. For example, in the case of the MSP430, we often
want to sleep the processor while waiting for an event. When the event happens and signals us
with an interrupt, we can wake up, handle the event and then return to sleep waiting for the next
event.

Interrupts

http://processors.wiki.ti.com/index.php/MSP430_Design_Workshop

It is common to see “simple” example code utilize Polling. As you can see from the left-side
example below, this can simply consist of a while{} loop that keeps repeating until a button-push
is detected. The big downfall here, though, is that the processor is constantly running- asking the
guestion, “Has the button been pushed, yet?"

Waiting for an Event: Button Push

O

Polling Interrupts
while (1) { // GPIO button interrupt
// Polling GPIO button #pragma wvector=PORT1 VECTOR
while (GPIO_getinputPinValue ()==1) __interrupt veoid rx (veoid) {
GPIO_ toggleCutputOnPin() ; GPIO_ toggleQutputOnPin() ;
} }

100% CPU Load > 0.1% CPU Load

Interrupts Help Support Ultra Low Power

¢ Keep CPU asleep (i.e. in Low

Power Mode) while waiting for
event

4+ |Interrupt ‘wakes up’ CPU when
it’s required

« Another way to look at it is
that interrupts often cause a
program state change

¢ Often, work can be done by
peripherals, letting CPU stay in
LPM (e.g. Gate Time)

/ Lots of sleep time

< Gate Time = = LF‘M3} -

+ 4 1/Scan Rate -

Current

Foreground / Background Scheduling

- System Initialization

mam() { ¢ The beginning part of main() is usually dedicated
//Init to setting up your system (Chapters 3 and 4)
initPMM() ;
initClocks () ;

Background

¢ Most systems have an endless loop that runs
‘forever’ in the background

¢ In this case, ‘Background’ implies thatitrunsata

while (1) { lower priority than ‘Foreground’
background ¢ In MSP430 systems, the background loop often
or LPMx contains a Low Power Mode (LPMx) command -
} this sleeps the CPU/System until an interrupt

event wakes it up

Foreground

ISR1
get data to enabled hardware interrupt

¢ Interrupt Service Routine (ISR) runs in response

process ¢ These events may change modes in Background -

such as waking the CPU out of low-power mode
ISR2 ¢ |ISR’s, by default, are not interruptible

set a flag ¢ Some processing may be done in ISR, but it’s
usually best to keep them short

Now that we have a rough understanding of what interrupts are used for, let's discuss what
mechanics are needed to make them work. Hint, there are 4 steps to getting interrupts to work. ..

How do Interrupts Work?

Four steps to get interrupts to work....

How do Interrupts Work?

1. Aninterrupt occurs

§ ...currently executing code

S - > Interrupt occurs

next_line_of code

e UART
e GPIO
* Timers
* ADC

» Etc.

How do Interrupts Work?

1. Aninterrupt occurs

§ ...currently executing code

S F— » interrupt occurs

next_line_of code

* UART
GPIO
Timers
ADC
Etc.

2. It sets a flag bit

in a register P

Interrupt Flow

IFG bit IE bit SR.GIE
Interrupt Interrupt “Individual” “Global”
Source ‘Flag’ Int Enable Int Enable
GPIO ——{0 - -
TIMER_A —{ 1 " - —"—{ CPU
—_— -n :—"""f: - ‘
. p—
NMI —={ 0 . -
H

Interrupt Flag Reg (IFR)
bit set when int occurs; e.g.
GPIO_getinterruptStatus();
GPIO_clearInterruptFlag();

Interrupt Enable (IE); e.g. Disable: _bic SR _register(GIE);_}
GPIO_enablelnterrupt();

GPIO_disablelnterrupt();

TIMER_A_enablelnterrupt(); J

Global Interrupt Enable (GIE)
Enables ALL maskable interrupts

Enable: _ bis SR_register(GIE);

How do Interrupts Work?

1. Aninterrupt occurs 3. CPU acknowledges INT by...
e Current instruction completes
§ ...currently executing code * Saves return-to location on stack
——qe——- » interrupt occurs e Saves ‘Status Reg’ (SR) to the stack
next line of code * Clears most of SR, which turns off
e UART - T interrupts globally (SR.GIE=0)
* GPIO ¢ Determines INT source (or group)
e Timers ¢ Clears non-grouped flag" (IFG=0)
* ADC ¢ Reads interrupt vector & calls ISR
* Etc.

2. Sets a flag bit

(IFG) in register F

The final 3 items basically tell us that the processor figures out which interrupt occurred and calls
the associated interrupt service routine; it also clears the interrupt flag bit {if it's a dedicated
interrupt). The processor knows which ISR to run because each interrupt (IFG) is associated with
an ISR function via a look-up table — called the Interrupt Vector Table.

1. Aninterrupt
occurs

UART

GPIO

Timers

A/D Converter
Etc.

2. Sets a flag bit
(IFG) in register

P

How do Interrupts Work?
3. CPU acknowledges INT by...

Current instruction completes
Saves return-to location on stack
Saves ‘Status Reg’ (SR) to the stack

Clears most of SR, which turns off
interrupts globally (SR.GIE=0)

Determines INT source (or group)
Clears non-grouped flag™ (IFG=0)
Reads interrupt vector & calls ISR

ISR (Interrupt Service Routine)

Save context of system
(optional) Re-enable-interrupts
*If group INT, read IV Reg to
determines source & clear IFG
Run your interrupt’s code
Restore context of system
Continue where it left off (RETI)

An interrupt service routine (ISR}, also called an inferrupt handler, is the code you write that will
be run when a hardware interrupt occurs. Your ISR code must perform whatever task you want to
execute in response to the interrupt, but without adversely affecting the threads (i.e. code)

already running in the system.

§ ...currently executing code
- » Interrupt occurs «---p--

next_line_of code «

4. Interrupt Service Routine (ISR)

Using Interrupt Keyword

*

*
*
*

L

Compiler handles context save/restore
Call a function? Then full context is saved
No arguments, no return values

You cannot call any TI-RTOS scheduler
functions (e.g. Swi_post)

Nesting interrupts is MANUAL

Vector Table
&myISR

=5

ave context of system
(uptmnal} Re-enable interrupts

‘If group INT, read assoc IV Reg
(determines source & clears IFG)

Run your interrupt’s code
Restore context of system
Continue where it left off (RETI)

INT Source

System Reset

System NMI

User NMI

Comparator

Timer B (CCIFGO)

Timer B

WDT Interval Timer

Serial Port (A)

Serial Port (B)

A/D Convertor

GPIO (Port 1)

GPIO (Port 2)

Real-Time Clock

Priority
high

low

Interrupt Priorities (F5529)

¢ There are 23 interrupts
(partially shown here)

¢ If multiple interrupts (of the 23) are
pending, the highest priority is
responded to first

¢ By default, interrupts are not
nested ...

» That is, unless you re-enable INT’s
during your ISR, other interrupts will be
held off until it completes

+ It doesn’t matter if the new INT is a
higher priority

+ As already recommended, you should
keep your ISR’s short

¢ Most of these represent ‘groups’ of
interrupt source flags
» 145 |[FG’'s map into these 23 interrupts

Interrupt Vectors & Priorities (F5529)

INT Source IV Register Vector Address Loc'n Priority
System Reset SYSRSTIV | RESET_VECTOR 63 high _
System NMI SYSSNIV | SYSNMI_VECTOR 62
User NMI SYSUNIV | UNMI_VECTOR 61
Comparator cBiv | COMP_B VECTOR 60
Timer B (CCIFGO) CCIFGO |TIMERO B0 VECTOR | 59
Timer B TBOIV | TIMERO B1 VECTOR | 58
WDT Interval Timer | WDTIFG | WDT_VECTOR 57
Serial Port (A) UCAOIV | USCI_AO_VECTOR 56
Serial Port (B) UCBOIV | USCI_BO_VECTOR 55
AJD Convertor ADC12lv | ADC12_VECTOR 54
GPIO (Port 1) P1IV PORT1_VECTOR 47
GPIO (Port 2) P12y | PORT2_VECTOR 42
Real-Time Clock RTCIV | RTC_VECTOR 41

Legend: | Non-maskable |Group'd IFG bits

Maskable

Dedicated IFG bits

low

Flash

(128K)

RAM (8K)

USB RAM (2K)

Info Memory 512

Boot Loader (2K)

Peripherals (4K)

Interrupt Service Routine (Dedicated INT)

INT Source IV Register Vector Address Loc'n
WDT Interval Timer | WDTIFG | WDT_VECTOR 57

(o fpragma vector assigns w

‘mylSR’ to correct location
in ,ﬁtm table #poragma vector=A0T VECTOR

__interrupt void nyWitI SR(void) {

.
‘e __interrupt keyword tells

compiler to save/restore _
context and RETT GPl O _toggl eQutputOnPin(...);

e

¢ For a dedicated
interrupt, the MSP430
CPU auto clears the

WDTIFG flag

¢

Hardware ISR’s — Coding Practices

An interrupt routine must be declared with no arguments and must return void

+ Global variables are often used to “pass” information to or from an ISR

¢ Do not call interrupt handling functions directly (Rather, write to IFG bit)

Interrupts can be handled directly with C/C++ functions using the interrupt
keyword or pragma
... Conversely, the TI-RTOS kernel easily manages Hwi context

Calling functions in an ISR
« If a C/C++ interrupt routine doesn't call other functions, usually, only those
registers that the interrupt handler uses are saved and restored.
+ However, if a C/C++ interrupt routine does call other functions, the routine saves
all the save-on-call registers if any other functions are called
+ Why? The compiler doesn't know what registers could be used by a nested
function. It's safer for the compiler to go ahead and save them all.

Re-enable interrupts? (Nesting ISR’s)
« DON'T - it's not recommended - better that ISR's are “lean & mean”
« Ifyou do, change IE masking before re-enabling interrupts
+ Disable interrupts before restoring context and returning (RETI re-enables int's)

Beware - Only You Can Prevent Reentrancy...

b

The Code is simpler than all the detalls
Take a look at blinking the LED using a timer

How simple can it get?

Toggle LED using Timer Interrupt Service Routine

23 #include =msp430.h=

24

25 int main(void)

26 {

27 WDTCTL = WDTPW | WDTHOLD; // Stop WOT

28

29 // Configure GPIO

30 P1DIR |= BITO; // P1.0 output

31 PLOUT |= BITO; // P1.0 high

32

33 // Disable the GPIO power-on default high-impedance mode to activate
34 // previously configured port settings

35 PMSCTLO &= ~LOCKLPMS;

36

37 TAOCCTLO |= CCIE; // TACCRO interrupt enabled
38 TAOCCRO = 50000;

39 TAOCTL |= TASSEL__SMCLK | MC__UP; // SMCLK, Up mode

40

41 __bis_SR register(LPM3_bits | GIE); // Go to Sleep: Enter LPM3 w/ interrupts
42 __no_operation(); // For debug

43 }

44

45 // Timer AO interrupt service routine
46 #pragma vector = TIMERO _AO _VECTOR

47 _interrupt void Timer_A (void)

48

49 {

50 P1OUT “= BITO;

51 }

52

Video of loading and running this code:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

