M14 — [2C communication protocol

https://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/

12C

12C is a multi-master protocol that uses 2 signal lines. The two I2C signals are called ‘serial data’
(SDA) and ‘serial clock’ (SCL). There is no need of chip select (slave select) or arbitration logic.
Virtually any number of slaves and any number of masters can be connected onto these 2 signal
lines and communicate between each other using a protocol that defines:

— 7-bits slave addresses: each device connected to the bus has got such a unique address;

— data divided into 8-bit bytes

— a few control bits for controlling the communication start, end, direction and for an
acknowledgment mechanism.

: 1 VCC : :
| 1’Cdevice #1 ¢ I T ¢ [’Cdevice #2 |
i : Pull-up E i
: f resistors E :
| SDAIn | 1 SDA E SDAin !
1 % . : > !
i —»ﬂ:r ‘. 01_1:11*— i
'+ SDA out : ; SDA out :
! SCLin | scL i scLin |
. » o ' 2 T >
= | e
' SCL out 1 ! SCL out E
: 1 GND : :
: b 4 :

Figure 4: I?C bus with 2 devices connected. SDA and SCL are connected to VCC through pull-
up resistors. Each device controls the bus lines outputs with open drain buffers.

<

-
~ =

jER:

uC ADC DAC e
Master|| Slave || Slave || Slave

An example schematic with one =
master (a microcontroller), three slave
nodes (an ADC, a DAC, and a

microcontroller), and pull-up resistors
RF‘

The data rate has to be chosen between 100 kbps, 400 kbps and 3.4 Mbps, respectively called standard

mode, fast mode and high speed mode. Some I2C variants include 10 kbps (low speed mode) and 1 Mbps
(fast mode +) as valid speeds.

Physically, the I2C bus consists of the 2 active wires SDA and SCL and a ground connection (refer to figure
4). The active wires are both bi-directional. The I2C protocol specification states that the IC that initiates a

data transfer on the bus is considered the Bus Master. Consequently, at that time, all the other ICs are
regarded to be Bus Slaves. o . o
J https://en.wikipedia.org/wiki/I12C

A particular strength of 12C is the capability of a microcontroller to control a network of device chips
with just two general-purpose I/O pins and software

Applications et

I2C is appropriate for peripherals where simplicity and low manufacturing cost are more important than speed. Common applications of
the 12C bus are:

» Describing connectable devices via small ROM configuration tables to enable "plug and play” operation, such as
« Serial Presence Detect (SPD) EEPROMSs on dual in-line memory modules (DIMMs), and o et '
« Extended Display Identification Data (EDID) for monitors via VGA, DVI and HDMI connectors. '

« System management for PC systems via SMBus;

« SMBus pins are allocated in both Conventional PCI| and PCI Express connectors.
» Accessing real-time clocks and NVRAM chips that keep user settings.
» Accessing low-speed DACs and ADCs. —N
» Changing contrast, hue, and color balance settings in monitors (via Display Data Channel). STMicroelectronics 24C08: Serial &

. o EEPROM with IFC bus

« Changing sound volume in intelligent speakers.
« Controlling small (e.q. feature phone) OLED or LCD displays.
» Reading hardware monitors and diagnostic sensors, e.g. a fan's speed.

« Turning on and turning off the power supply of system components.]

Detalls

First, the master will issue a START condition. This acts as an ‘Attention’ signal to all of
the connected devices. All ICs on the bus will listen to the bus for incoming data.

Then the master sends the ADDRESS of the device it wants to access, along with an
indication whether the access is a Read or Write operation (Write in our example). Having
received the address, all IC’s will compare it with their own address. If it doesn’t match,
they simply wait until the bus is released by the stop condition (see below). If the address
matches, however, the chip will produce a response called the ACKNOWLEDGE signal.

Once the master receives the acknowledge, it can start transmitting or receiving DATA. In
our case, the master will transmit data. When all is done, the master will issue the STOP
condition. This is a signal that states the bus has been released and that the connected
ICs may expect another transmission to start any moment.

When a master wants to receive data from a slave, it proceeds the same way, but sets the
RD/nWR bit at a logical one. Once the slave has acknowledged the address, it starts
sending the requested data, byte by byte. After each data byte, it is up to the master to
acknowledge the received data (refer to figure 5).

START and STOP are unique conditions on the bus that are closely dependent of the I2C
bus physical structure. Moreover, the I2C specification states that data may only change on
the SDA line if the SCL clock signal is at low level; conversely, the data on the SDA line is
considered as stable when SCL is in high state (refer to figure 6 hereafter).

r— =" r=— ="

T\ /TN /T

8 ¢ P
L _ L — 4
START STOP
CONDITION CONDITION

] -—

N\

1 -

I —

scL _/__/_ _
DATA LINE | CHANGE

| STABLE - |OF DATA |
| DATA VALID ALLOWED|

— Expansion to 10-bits device addressing

Any 12C device must have a built-in 7 bits address. In theory, this means that there would be only
128 different I12C devices types in the world. Practically, there are much more different 12C devices
and it is a high probability that 2 devices have the same address on a I2C bus. To overcome this
limitation, devices often have multiple built-in addresses that the engineer can chose through
external configuration pins on the device. The I2C specification also foresees a 10-bits addressing
scheme in order to extend the range of available devices address.

Practically, this has got the following impact on the I2C protocol (refer to figure 7):
— Two address words are used for device addressing instead of one.

— The first address word MSBs are conventionally coded as “11110” so any device on the bus is
aware the master sends a 10 bits device address.

START

A9

A8

Rd/
nWr

ACK

A7

AB

Ad

Ad

A3

A2

A1

A0

ACK

First address word

Second address word

10 bits address:

A9

A8

A7

A6

AS

A4

A3

A2

A1l

AQ

Figure 7: 1?C 10-bits addressing. A 10-bits address is split into 2 words. The first word contains a
conventional code on its 5 most significant bits to mark a 10-bits address, followed by the 2 MSBs of the
10-bits address and the Rd/nWR bit. The second address word contains the 8 least significant bits of the
10-bits address. This addition ensures backward compatibility with the 7-bits addressing scheme.

SSD1306

Advance Information

128 x 64 Dot Matrix
OLED/PLED Segment/Common Driver with Controller

https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf

http://robotcantalk.blogspot.com/2015/03/interfacing-arduino-with-ssd1306-driven.html

Figure 8-7 : I'C-bus data format

Mote: Co — Continuation bat
DviCH — Data / Command Selection bt
ACK - Acknowledgement
SA0 — Slave address it
I FAW# — Read / Write Selection bat

Write mode & — Start Condition / P — Stop Condition

HERE HERRER
E}llll |l lll!l | E{P}Qa Control h}-t::{:'_’"} Data byte F}Qg f_nnlm] h".-tn;, l I LHL |'.1nt1! I Jﬁ.ﬁ
L1111 g [TTT TR LT 11 =
E A e M o
Slave Address m = 0 words 1 h}t:, n = 0 bytes
MSB..........cceeeee LSB
(1111
SSD1306 PR
NN
A
SSD1306
Slave Address
RERRR
Q2000000 &
L=
v

Control byte

SSD1306

Figure 8-8 : Definition of the Start and Stop Condition

SDA

SCL

tHSTART

tssToP

START condition

STOP condition

Write Mode - is the only mode for the display. So, the MSP430 is going to be the 12C master

and the OLED, the 12C slave. As per the protocol, after the start condition, the Slave Address
(SLA) needs to be sent.

SSD1306 Slave Adress (SLA) is 0x3C

The back of the PCB shows that the 0x78 jumper has
been soldered. The sheet says that the slave adress is a
7-bit code that can be either 0x3C (011-1100) or 0x3D
(011-11001), based on the SAO bit (LSB of the adress).
The SAO bit can be controlled by the D/C# pin of the
SSD1306 (not to be confused with the D/C# bit of the
control byte in the above image!). They have soldered the
pin to GND. Moreover, since, the OLED will always be
interfaced in WRITE mode, the 12C First Byte will be the
7-bit SLA and the WRITE mode bit (0) - which becomes
the byte, 0x78.

After sending the SLA+Mode byte, in order to do anything with the OLED, a Control Byvte needs to be sent.
The Control Byte determines whether the upcoming bytes would be treated as Data (which is written directly
to the GDDRAM) or as Commands (to the internal MCU). Also controls the length of the upcoming bytes -
single or stream (multiple bytes to received by the 5501306 until 12C Stop condition).

Control Byte

Deciphering this took some trial and error and real sloooooow reading of section 8.1.5.2 (Writing mode
for 12C) point 5. The Control Byte has these

Co : bit 8 : Continuation Bit

* 1 = no-continuation (only one byte to follow)

* 0 = the controller should expect a stream of bytes.

D/C# @ bit 7 : Data/Command Select bit

* 1 = the next byte or byte stream will be Data.

* 0=a Command byte or byte stream will be coming up next.
Bits 6-0 will be all zeros.

Usage:

@x80 :5ingle Command byte

exee : Command Stream

@xCe :Single Data byte

@x4@ : Data Stream

OLED has an 128x64 SRAM driven display with 64 rows divided as 8 Pages and 128 Columns.

Row re-mapping

PAGED (COMO-COMT) PAGED (COM 63-COMS6)
PAGEI (COMB-COMIS5) PAGE1 (COM 55-COM4S)
PAGE2 (COMI6-COM23) PAGE2 (COMA47-COM40)
PAGE3 (COM24-COM31) PAGE3 (COM39-COM32)
PAGES (COM32.COM39) PAGE4 (COM31.COM24)
PAGES (COM40-COM4T) PAGES (COM23-COMI16)
PAGES (COMAS-COMSS) PAGES (COMI5-COMS)
PAGET (COM56-COM63) PAGET (COM 7-COMD)

SEGO SEG127

Column re-mapping SEG |27 =seeneee- & SEGO

Each PAGE will have 8 rows (COM pins) and 128 byte-sized column fractions called SEGMENT . The whole
mapping is fully customizable, ie: You can rearrange the COM/COL assignment to have the xy(0,0) at any
corner. The GDDRAM is divided into Pages to allow easy writing of character sized sprites. That means you can
also use this OLED as a 8-line character display by default.

& = N O M~
o — o o foel B e e
QOO0 0 oo o o
'_”dmh: B 8 5 " R R R R E R E Llhmﬁ
A PR R W) W) O U B
1 _JLSB D0 COMI16
COMILT
FAG]‘:I LI B B O B B I :
1 1 ! :
. MSE D7 COM23

— Each box represents one bit of image data

http://www.diymalls.com/OLED/0.96-blue-and-yellow-oled-display

&

For 0.96 inch: 0.96 inch use SSD1306 drive chip. Copy "Adafruit SSD1306.h" and
"Adafruit_ GFX.h" into "x:\arduino-1.X.X\libraries".

In order to reduce the pins’ number, we use a hardware RESET system. So the
standard library form Adafruit or u8glib may not very suitable. Make sure you are
using our provided libraries, It's very important. If those files already in you
libraries, replace it.

You can download our SSD1306 OLED display Arduino library from github which comes
with example code. The library can print text, bitmaps, pixels, rectangles, circles and lines.
It uses 1K of RAM since it needs to buffer the entire display but its very fast!

The code is simple to adapt to any other microcontrolle

https://libraries.io/github/adafruit/Adafruit-GFX-Library

Document link: http://www.diymalls.com/files/IIC_OLED.zip
user name and password is diymall

The drivers for these two displays are very different. The monochrome
SSD1306 does not have direct access to the display memory, so we have
to write to an in-memory frame-buffer, then use that to refresh the screen.
Clearing the display is as simple as doing a memset on the entire frame
buffer in SRAM - but that only clears the frame buffer. You need to call
display() to actually upload the cleared buffer to the display.

So the problem now is the Adafruit_SSD1306 library with its heavy SRAM use of 1KB for
the display buffer.

https://www.best-microcontroller-projects.com/ssd1306.htm|

https://github.com/olikraus/u8g2/wiki/u8g2reference

Examples:

M14 — Example 1 — just light up the display — Initialization details
M14 — Example 2 — alternating test patterns

M14 — Example 3 — Grove graphics test demo

M14 — Example 4 — oledApp test demo

These programs show the complicated initialization command sequence
required by the SSD 1306 and OLED

They also show code segments that are examples which can be used in
application programs

Examples 1 & 2 talk directly through the USCBO software, 3 & 4 use the
Energia Wire library - YMMV

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

