
 1

Files in C
● In C, each file is simply a sequential

stream of bytes. C imposes no
structure on a file.

● A file must first be opened properly
before it can be accessed for reading or
writing. When a file is opened, a
stream is associated with the file.

● Successfully opening a file returns a
pointer to (i.e., the address of) a file
structure, which contains a file
descriptor and a file control block.

 2

* FILE - a structure containing the
information about a file or text stream
needed to perform input or output operations
on it, including:

● a file descriptor
● the current stream position
● an end-of-file indicator
● an error indicator
● a pointer to the stream's buffer, if
applicable

File structure

 3

Files in C
● The statement:

FILE *fptr1, *fptr2 ;
declares that fptr1 and fptr2 are pointer
variables of type FILE. They will be
assigned the address of a file
descriptor, that is, an area of memory
that will be associated with an input or
output stream.

● Whenever you are to read from or write
to the file, you must first open the file
and assign the address of its file
descriptor (or structure) to the file
pointer variable.

 4

Opening Files
● The statement:

fptr1 = fopen ("mydata", "r") ;
 would open the file mydata for input
(reading).

● The statement:
fptr2 = fopen ("results", "w") ;

 would open the file results for output
(writing).

● Once the files are open, they stay open
until you close them or end the program
(which will close all files.)

 5

Testing for Successful Open
● If the file was not able to be opened,

then the value returned by the fopen
routine is NULL.

● For example, let's assume that the file
mydata does not exist. Then:

FILE *fptr1 ;
fptr1 = fopen ("mydata", "r") ;
if (fptr1 == NULL)
{

 printf ("File 'mydata' did not
open.\n") ;

}

 6

Name Notes

stdin a pointer to a FILE which refers to
the standard input stream, usually a
keyboard.

stdout a pointer to a FILE which refers to
the standard output stream, usually a
display terminal.

stderr a pointer to a FILE which refers to
the standard error stream, often a
display terminal

File pointers predefined
in stdio.h

 7

Standard IO

● When a program begins execution, three file streams are
already defined and open.
– stdin, standard input
– stdout, standard output
– stderr, standard error

● The first two are sent to “normal” IO. Typically the
keyboard and screen.

● The first two are buffered by default. Minimise expensive
system calls by sending data in chunks. Can control
buffering via the standard function setbuf().

● The stderr stream is reserved for sending error
messages. It is typically directed to the screen and is
unbuffered.

 8

Functions in stdio.h are divided into two
categories: file manipulation and input-

output.

Name Function

fopen() opens a file for certain types of reading or writing
- returns FILE pointer

fclose() closes a file associated with the FILE * value passed
to it

rewind() positions to beginning of file

fseek() position to any location within file

feof() check if end-of-file indicator has been set

ferror() checks whether an error indicator has been set for a
given stream

 9

Using File Input/Output

create
FILE
structure
pointer

fopenfopen()
Open the
file for
input/
output

 10

fopen()
• A file is referred to by a file-pointer. This is a pointer to a

structure typedef called FILE.
• The FILE structure is only ever accessed by a pointer. It

hides its members behind abstract type-name, and is
manipulated solely by standard IO functions.

• To open a file, call fopen().
• if ((fp = fopen("direct.txt", "wb")) ==

NULL)
• {
• fprintf(stderr, "Error opening

file.");
• exit(1);
• }
•
• Two arguments:

1. The file name. eg, myfile.txt
2. The file mode. “r”, “w”, “rb”, “wb”

• Return value: Pointer to file if successful. NULL if
unsuccessful.

• Always check return value for NULL.

 11

Fopen Mode Parameter

 12

fclose()

● To close a file, pass the file pointer to fclose().
● General form:

int fclose(FILE *fp);

• fclose() breaks the connection with the file and frees the
file pointer.

● Good practice to free file pointers when a file is no longer
needed as most OSs have a limit on the number of files a
program may have open at any given time.

● Note, fclose() is called automatically for each open file
when the program terminates.

 13

Sequential File Operations

● Once a file is open, operations on the file
(reading and writing) usually work through
the file sequentially – from the beginning to
the end.

● There are four basic types of file IO:
● Character by character.
● Line by line.
● Formatted IO.
● Binary IO.

 14

Text File I/O

create
FILE
structure

fopen()

fgetc()
fgets()
fscanf()

fprintf()
fputs()
fputc()

fclose()

string

string

Input

Output

 15

Character Input

● Character input functions:
● fgetc() returns one character from a file
● fgets() gets a string from the file (ending at newline or end-

of-file)
● fscanf() works like the original scanf function

● Return values:
● On success: the next character in the input stream.
● On error: EOF.
● On end-of-file: EOF.

● If return value is EOF, can determine what caused it by calling either
feof() or ferror().

 16

Character Output

● Character output functions:
● fputc() writes one character to a file
● fputs() writes a string to a file
● fprintf() enables printf output to be written to

any file

• putchar(c) is equivalent to putc(c,
stdout).

● Return values:
● On success: the character that was written.
● On error: EOF.

 17

Example

FILE *fp;
int c;

fp = fopen(“myfile.txt”, “r”);
if (fp == NULL)

exit(1);

while((c = getc(fp)) != EOF)
putc(c, stdout);

fclose(fp);

 18

Formatted IO

int fprintf(FILE *fp, const char *format, ...);

int fscanf(FILE *fp, const char *format, ...);

● These functions are generalisations of
printf() and scanf(), respectively.

● In fact, printf() and scanf() are
equivalent to

fprintf(stdout, format, arg1, arg2, ...);

fscanf(stdin, format, arg1, arg2, ...);

 19

Line (string) Input

● Read a line from a file:
char *fgets(char *buf, int max, FILE *fp);

● Returns after one of the following:
● Reads (at most) max-1 characters from the file.
● Reads a \n character.
● Reaches end-of-file.
● Encounters an error.

● Return values:
● On success: pointer to buf. Note, fgets() automatically appends a \0

to the end of the string.
● On end-of-file: NULL.
● On error: NULL.

● Use feof() or ferror() to determine if an error has occurred.

 20

Line Output

● Character strings may be written to file
using

int fputs(const char *str, FILE *fp);

● Not actually line output. It does not
automatically append a \n and consecutive
calls may print strings on the same line.

● Return values:
● On success: zero.
● On error: EOF.

 21

Binary IO

● When reading and writing binary files, may
deal with objects directly without first
converting them to character strings.

● Direct binary IO provided by
size_t fread(void *ptr, size_t size, size_t nobj, FILE *fp);

size_t fwrite(const void *ptr, size_t size, size_t nobj, FILE *fp);

● Can pass objects of any type. For example,
struct Astruct mystruct[10];

fwrite(&mystruct, sizeof(Astruct), 10, fp);

 22

Binary File I/O

create
FILE
structure

fopen()
fread()

fwrite()

fclose()

data
block

data
block

Input

Output

 23

Binary File Input

 /* Read the data into array[SIZE]. */

 if (fread(array, sizeof(int), SIZE, fp) != SIZE)

 {

 fprintf(stderr, "Error reading file.");

 exit(1);

 }

 24

Binary File Output

/* Save array[SIZE] to the file. */

 if (fwrite(array, sizeof(int), SIZE, fp) != SIZE)

 {

 fprintf(stderr, "Error writing to file.");

 exit(1);

 }

 25

Random File Operations

● IO is not confined to sequential motion
through a file. May also shift the file position
back and forth to any specified location.

● Three functions:
long ftell(FILE *fp);

int fseek(FILE *fp, long offset, int from);

void rewind(FILE *fp);

● Operate differently on text files as to binary
files.

 26

Where are you in the file? - ftell()

/* Rewind the stream. */

 rewind(fp);

 printf("\n\nAfter rewinding, the position is back at %ld",
 ftell(fp));

 27

Seek to a specific position in file
Function prototype

 int fseek(FILE *stream_pointer, long offset, int origin);

The fseek function moves the file pointer associated with the
stream to a new location that is offset bytes from origin

Argument meaning:

 * stream_pointer is a pointer to the stream FILE structure
of which the position indicator should be changed;
 * offset is a long integer which specifies the number of
bytes from origin where the position indicator should be
placed;
 * origin is an integer which specifies the origin position.
It can be:
 o SEEK_SET: origin is the start of the stream
 o SEEK_CUR: origin is the current position
 o SEEK_END: origin is the end of the stream

 28

Position to a single integer

 /* Move the position indicator to the specified element. */

 if ((fseek(fp, (offset*sizeof(int)), SEEK_SET)) != NULL)
 {
 fprintf(stderr, "\nError using fseek().");
 exit(1);
 }

 /* Read in a single integer. */

 fread(&data, sizeof(int), 1, fp);

 29

fseek example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 H e l l o W o r l d
E
O
F

fseek(fp, (7*sizeof(char)), SEEK_SET)

File Contents - characters stored in file

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Standard IO
	Slide 8
	Slide 9
	fopen()
	Slide 11
	fclose()
	Sequential File Operations
	Slide 14
	Character Input
	Character Output
	Example
	Formatted IO
	Line Input
	Line Output
	Binary IO
	Slide 22
	Slide 23
	Slide 24
	Random File Operations
	Slide 26
	Slide 27
	Slide 28
	Slide 29

