
EEL 2880 Arrays, Pointers, Functions Summary: Page 1

1. Arrays contain objects and supply either a Reference(pointer) or Dereference(Value)
A. Subscripts begin at 0: y = array[0];
B. Array with subscript is a Value: y = array[3];
C. Array name only is a Reference (pointer): py = array

2. Functions:
A. A function has four parts: return data type, name, parameter data types and names, code
B. Functions called by value present a copy to the function.
C. Functions called by reference, a pointer (address) sent to the function.
D. Declare the function – Function prototype

1. Return data type is specified for function name
2. Call by Value: variable

int foo(int x); // called with a copy of an integer value
3. Call by Reference (pointer): - pointer or array name

int foo(int* apples); // called with a pointer to an integer
int foo(int apples[]); // called with a pointer to array first element
int foo(int apples[25]); // called with a pointer to array first element
.............
int foo(char* str); //called with a character pointer
int foo(char str[]); //called with a character pointer
int foo(char str[80]); //called with a character pointer

E. Call the function – Within the program code
1. By Value: - variable

1. y = foo (x); // call child with copy of value of integer x
2. By Reference (pointer): - array

1. status = foo(str); // call with pointer to char array (string) (see A.3 above)
2. status = foo(apples); // call with pointer to integer array apples (see A.3 above)

F. Define the function – the actual function code
1. Same as the function prototype but with braces and code
int foo(char* str) // call by reference (pointer)
{
 code block of function
}

3. Strings in 'C' language are arrays of characters
A. Data type char is used for characters
B. A string is an array of characters with newline (binary zero) as the last character.
C. The compiler treats characters within quotes as a string
D. Examples:
1 char str[80]=”Hello World”; // declare a fixed dimension character array (string)

 printf (str); // called by Reference - pointer to a string
2 // compiler autodimension array with initialization declaration

 char srg[]=”This is an example\n”; // 18 chars + newline
 printf (srg); // called by Reference - pointer to a string
3 // in printf, string stored in memory by compiler with printf called by Reference

 printf (“This is an example \n”); // called by Reference - pointer to a string

4. Pointer Operators:
A. Declare a pointer using ‘*’: int* ptrToMyValue;
B. Dereference the pointer – get the value at that address: int A = *ptrToMyValue
C. Address of: '&': get a reference pointer - point to the value address: ptrToMyValue = &A;

5. Change a Parent variable value: Call by Reference (pointer) to modify a single variable
A. Declaration:

1. int foo (int *x); // Call by Reference
2. int x;

B. Call in parent code:
3. y = foo(&x); // Call with pointer

C. Function definition:
4. int foo (int *x); // Call by reference
5. {
6. int tmp;
7. tmp = *x //get contents of x;
8. *x += 5; // change contents of x;
9. return tmp; // return original value of x;
10. }

