Chapter 10: Phase Transformations

ISSUES TO ADDRESS...

• Transforming one phase into another takes time.

- How does the rate of transformation depend on time and *T*?
- How can we slow down the transformation so that we can engineering non-equilibrium structures?
- Are the mechanical properties of non-equilibrium structures better?

Phase transformation

- Takes time (transformation rates: kinetics).
- Involves movement/rearrangement of atoms.
- Usually involves changes in microstructure
- 1. "Simple" diffusion-dependent transformation: no change in number of compositions of phases present (e.g. solidification of pure elemental metals, allotropic transformation, recrystallization, grain growth).
- 2. Diffusion-dependent transformation: transformation with alteration in phase composition and, often, with changes in number of phases present (e.g. eutectoid reaction).
- 3. Diffusionless transformation: e.g. rapid T quenching to "trap" metastable phases.

T_R = recrystallization temperature

Adapted from Fig. 7.22, *Callister 7e.* The influence of annealing T on the tensile strength and ductility of a brass alloy.

Iron-Carbon Phase Diagram

Phase Transformations

Nucleation

- nuclei (seeds) act as template to grow crystals
- for nucleus to form rate of addition of atoms to nucleus must be faster than rate of loss
- once nucleated, grow until reach equilibrium

Driving force to nucleate increases as we increase ΔT

- supercooling (eutectic, eutectoid)
- superheating (peritectic)

Small supercooling → few nuclei - large crystals Large supercooling → rapid nucleation - many nuclei, small crystals

Chapter 10

Solidification: Nucleation Processes

- Homogeneous nucleation
 - nuclei form in the bulk of liquid metal
 - requires supercooling (typically 80-300°C max)
- Heterogeneous nucleation
 - much easier since stable "nucleus" is already present
 - Could be wall of mold or impurities in the liquid phase
 - allows solidification with only 0.1-10°C supercooling

Homogeneous Nucleation

Thermodynamic parameters:

- Free energy G (or Gibbs free energy)
- Enthalpy H: internal energy of the system and the product of its volume multiplied by the pressure
- Entropy S: randomness or disorder of the atoms or molecules

 ΔG is important---a phase transformation will occur spontaneously only when ΔG has a negative value.

 $\Delta G = \Delta H - T \Delta S$

Chapter 10

Homogeneous Nucleation

Homogeneous Nucleation & Energy Effects

Kinetics of solid state reactions

Critical nucleus size (r_c) and the activation energy (ΔG^*)

$$\Delta G = \frac{4}{3}\pi r^3 \Delta G_v + 4\pi r^2 \gamma$$

Take the derivative and set equal to zero to find max.

$$\frac{d(\Delta G)}{dr} = \frac{4}{3}\pi(\Delta G_v)(3r^2) + 4\pi\gamma(2r) = 0$$
$$r_c = -\frac{2\gamma}{\Delta G_v}$$

Substitution in to overall ΔG equation

$$\Delta G^* = \frac{16\pi\gamma^3}{3(\Delta G_v)^2}$$

The volume free energy change is the driving force for the solidification transformation

Kinetics of solid state reactions

In terms of latent heat of fusion ΔH_f (i.e. energy release upon solidification):

Solidification

 $r^* = \text{critical radius}$ $\gamma = \text{surface free energy}$ $T_m = \text{melting temperature}$ $\Delta H_S = \text{latent heat of solidification}$ $\Delta T = T_m - T = \text{supercooling}$

Note:
$$\Delta H_{S}$$
 = strong function of ΔT
 γ = weak function of ΔT

. r^* decreases as ΔT increases

For typical ΔT r^* ca. 100Å

Kinetics of solid state reactions

We also need to consider diffusion:

- Faster diffusion leads to more collisions between atoms.
- More collisions means higher probability of atoms sticking to each other.

Recall diffusion
$$D = D_o \exp\left(-\frac{Q_d}{kT}\right)$$

Then, the frequency of atoms sticking together is directly related to diffusion:

Frequency of attachment:
$$v_d \propto \exp\left(-\frac{Q_d}{kT}\right)$$

Kinetics of solid state reactions

Combining liquid instability and diffusion effects together:

Rate of Nucleation (units: nuclei per unit volume per second)

Example problem: critical radius and activation energy for nucleation

A) If pure liquid gold is cooled to 230°C below its melting point, calculate the critical radius and the activation energy. Values for the latent heat of fusion and surface free energy are -1.16x10⁹J/m³ and 0.132J/m², respectively.

$$\Delta G^* = \frac{16\pi\gamma^3}{3\Delta H_f^2} \left(\frac{T_m}{T_m - T}\right)^2$$
1.32nm
9.64x10⁻¹⁹J
B) Calculate the number of atoms per nucleus of this critical size. Au is FCC with a = 0.413nm.
unit cells/particle = $\frac{\text{critical nucleus volume}}{\text{unit cell volume}} = \frac{\frac{4}{3}\pi\gamma^*}{a^3} = 137$
4 atoms/unit cell
548 atoms/critical nucleus
Chapter 10-15

F

Rate of Phase Transformations

Kinetics – time dependence of nucleation, growth and transformation rates.

- Hold temperature constant & measure transformation vs. time
 - How is transformation measured?
 - microscopic examination
 - X-ray diffraction have to do many samples
 - electrical conductivity follow one sample
 - sound waves one sample

Rate of Phase Transformation

• r often small: equilibrium not possible!

Eutectoid Transformation Rate

• Growth of pearlite from austenite: Diffusive flow of C needed cementite (Fe₃C) Austenite (γ) grain Ferrite (α) α boundary V γ γ pearlite Ω Adapted from α Fig. 9.15, growth Callister 7e. direction α y (% pearlite) معرف 10 Recrystallization 0 (Jall 0 Dercent austenite 600°C rate increases (ΔT) larger) 65<mark>0°C</mark> with ΔT . 50 Adapted from 675°C Fig. 10.12, $(\Delta T \text{ smaller})$ Callister 7e. 0 102 103 10 Time (s)

Course pearlite \rightarrow formed at higher T - softer Fine pearlite \rightarrow formed at low T - harder

Nucleation and Growth

 Reaction rate is a result of nucleation <u>and</u> growth of crystals.

• Examples:

Chapter 10

Transformations & Undercooling

Chapter 10 - 22

Isothermal Transformation Diagrams T-T-T plots

- Fe-C system, $C_o = 0.76$ wt% C
- Transformation at $T = 675^{\circ}$ C. T: hold constant

Effect of Cooling History in Fe-C System

- Eutectoid composition, $C_o = 0.76$ wt% C
- Begin at *T* > 727°C
- Rapidly cool to 625°C and hold isothermally.

Pearlite

FIGURE 10.6 Photomicrographs of (*a*) coarse pearlite and (*b*) fine pearlite. $3000 \times$. (From K. M. Ralls et al., *An Introduction to Materials Science and Engineering*, p. 361. Copyright © 1976 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.)

Coarse (quenched to higher T)

Fine (quenched to lower T)

Transformations with Proeutectoid Materials

*C*₀ = 1.13 wt% C

Hypereutectoid composition – proeutectoid cementite

Chapter 10 - 2

Non-Equilibrium Transformation Products: Fe-C

- Bainite:
 - --α lathes (strips) with long rods of Fe₃C
 --diffusion controlled.
- Isothermal Transf. Diagram

<mark>5 μΜ</mark>

(Adapted from Fig. 10.17, *Callister, 7e.* (Fig. 10.17 from *Metals Handbook*, 8th ed., Vol. 8, *Metallography, Structures, and Phase Diagrams*, American Society for Metals, Materials Park, OH, 1973.)

Spheroidite: Fe-C System

- Spheroidite:
 - -- α grains with spherical Fe₃C
 - --diffusion dependent.
 - --heat bainite or pearlite for long times
 - --reduces interfacial area (driving force)

For example: 700°C, 18-24h

(Adapted from Fig. 10.19, *Callister, 7e.* (Fig. 10.19 copyright United States Steel Corporation, 1971.)

Martensite: Fe-C System

Martensite needles Austenite

(Adapted from Fig. 10.21, *Callister, 7e.* (Fig. 10.21 courtesy United States Steel Corporation.)

- γ to M transformation..
 - -- is rapid! Diffusionless transformation
 - -- % transf. depends on T only.

Martensite Formation

M = martensite is body centered tetragonal (BCT)

Diffusionless transformation BCT if C > 0.15 wt% BCT \rightarrow few slip planes \rightarrow hard, brittle

Phase Transformations of Alloys

- Effect of adding other elements Change transition temp.
- Cr, Ni, Mo, Si, Mn retard $\gamma \rightarrow \alpha + Fe_3C$ transformation
 - Plain carbon steelsAlloy steels

Cooling Curve

plot temp vs. time

Isothermal heat treatment is not the most practical to conduct

Continuous cooling

Adapted from Fig. 10.25, *Callister 7e*.

Chapter 10 - 33

Dynamic Phase Transformations

On the isothermal transformation diagram for 0.45 wt% C Fe-C alloy, sketch and label the time-temperature paths to produce the following microstructures:

- a) 42% proeutectoid ferrite and 58% coarse pearlite
- b) 50% fine pearlite and 50% bainite
- c) 100% martensite
- d) 50% martensite and 50% austenite

Example Problem for *C*_o = 0.45 wt%

a) 42% proeutectoid ferrite and 58% coarse pearlite

Example Problem for $C_o = 0.45$ wt%

b) 50% fine pearlite and 50% bainite

Example Problem for $C_o = 0.45$ wt%

Mechanical Prop: Fe-C System (1)

• More wt% C: TS and YS increase, %EL decreases.

Mechanical Prop: Fe-C System (2)

• Fine vs coarse pearlite vs spheroidite

- Hardness: fine > coarse > spheroidite
- %RA: fine < coarse < spheroidite

Adapted from Fig. 10.30, *Callister 7e*. (Fig. 10.30 based on data from *Metals Handbook: Heat Treating*, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, pp. 9 and 17.)

Mechanical Prop: Fe-C System (3)

• Fine Pearlite vs Martensite:

• Hardness: fine pearlite << martensite.

Martensite: not related to microstructure, rather to the effectiveness of the interstitial carbon atoms in hindering dislocation motion, and the relatively few slip systems for BCT structure.

Tempering Martensite

- reduces brittleness of martensite,
- reduces internal stress caused by quenching.

Adapted from Fig. 10.33, *Callister 7e.* (Fig. 10.33 copyright by United States Steel Corporation, 1971.)

- produces extremely small Fe_3C particles surrounded by α .
- decreases TS, YS but increases %RA

Summary: Processing Options

