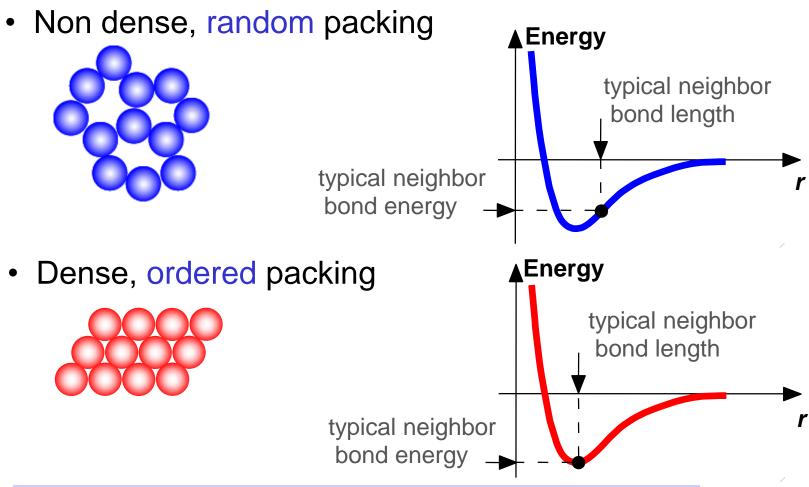
Chapter 3: The Structure of Crystalline Solids

ISSUES TO ADDRESS...

- How do atoms assemble into solid structures?
 (for now, focus on metals)
- How does the density of a material depend on its structure?
- When do material properties vary with the sample (i.e., part) orientation?

Energy and Packing



Dense, ordered packed structures tend to have lower energies.

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
 - -many ceramics
 - -some polymers

Noncrystalline materials...

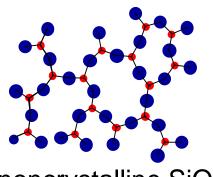
- atoms have no periodic packing
- occurs for: -complex structures

-rapid cooling

"Amorphous" = Noncrystalline

crystalline SiO₂ Adapted from Fig. 3.22(a), Callister 7e.

xygen

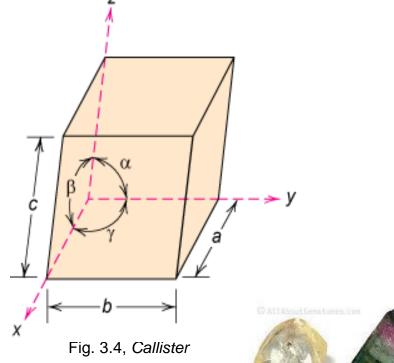


noncrystalline SiO₂ Adapted from Fig. 3.22(b), Callister 7e.

Section 3.3 – Crystal Systems

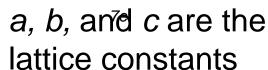
Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

Lattice: three-dimensional array of points coinciding with atom position (or sphere centers)



7 crystal systems

14 crystal lattices



Trigonal

Tetragonal

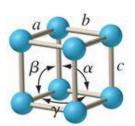
Orthorhombic

Monoclinic

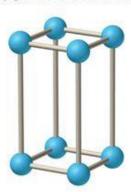
Triclinic

7 crystal systems

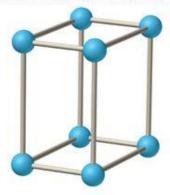
Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



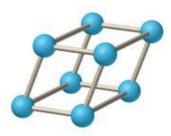
Simple cubic a = b = c $\alpha = \beta = \gamma = 90^{\circ}$



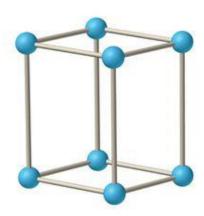
Tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$



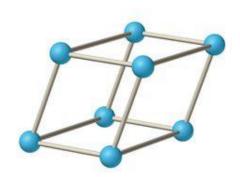
Orthorhombic $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$



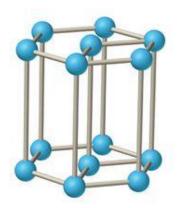
Rhombohedral a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$



Monoclinic $a \neq b \neq c$ $\gamma \neq \alpha = \beta = 90^{\circ}$



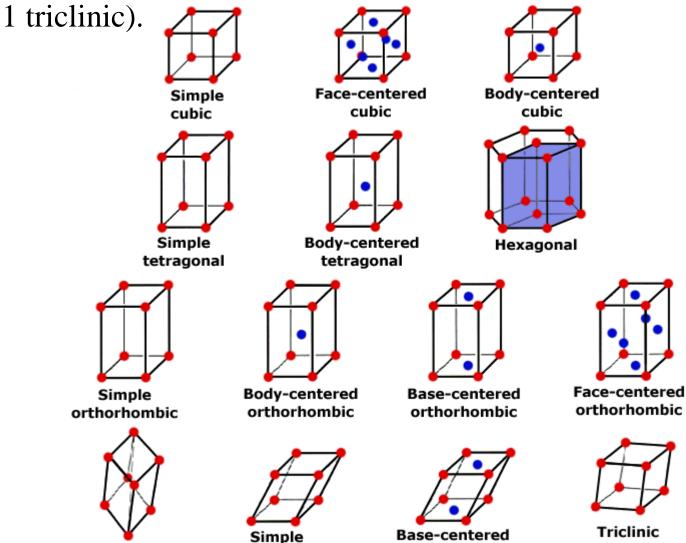
Triclinic $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$



Hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$

14 different crystal lattices, called **Bravais Lattices**. (3 different cubic types, 2 different tetragonal types, 4 different orthorhombic types, 2 different monoclinic types, 1 rhombohedral, 1 hexagonal,

monoclinic



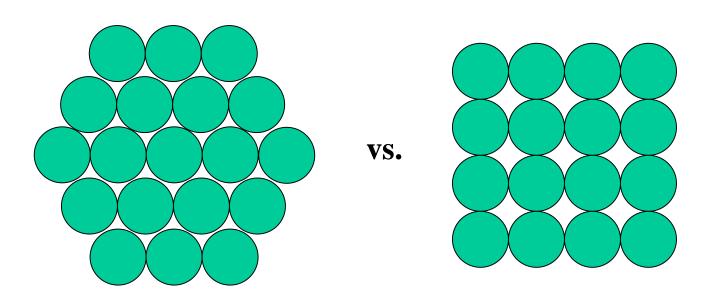
Monoclinic

Rhombohedral

Section 3.4 – Metallic Crystal Structures

 How can we stack metal atoms to minimize empty space?

2-dimensions



Now stack these 2-D layers to make 3-D structures

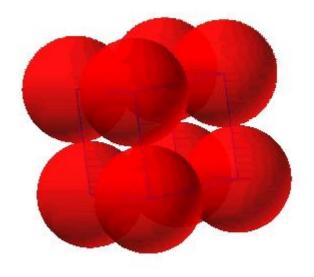
Metallic Crystal Structures

- Tend to be densely packed.
- Reasons for dense packing:
 - Typically, only one element is present, so all atomic radii are the same.
 - Metallic bonding is not directional.
 - Nearest neighbor distances tend to be small in order to lower bond energy.
 - Electron cloud shields cores from each other
- Have the simplest crystal structures.

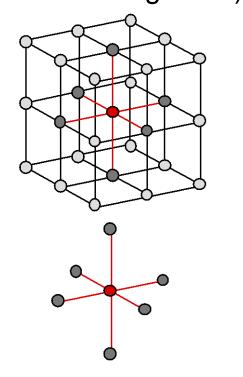
We will examine three such structures...

Simple Cubic Structure (SC)

- Rare due to low packing denisty (only Po has this structure)
- Close-packed directions are cube edges.

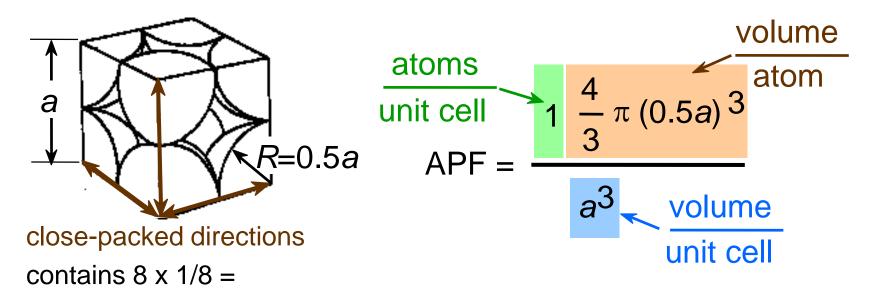


Coordination # = 6 (# nearest neighbors)

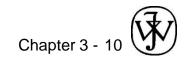


Atomic Packing Factor (APF)

• APF for a simple cubic structure = 0.52



1 atom/unit cell Adapted from Fig. 3.23, Callister 7e.

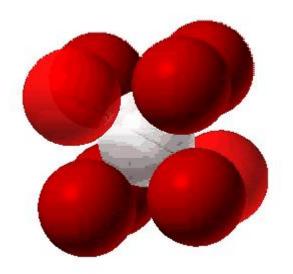


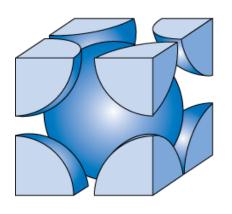
Body Centered Cubic Structure (BCC)

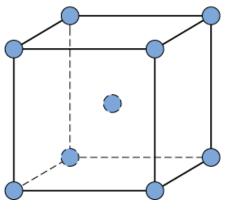
- Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

Coordination # = 8





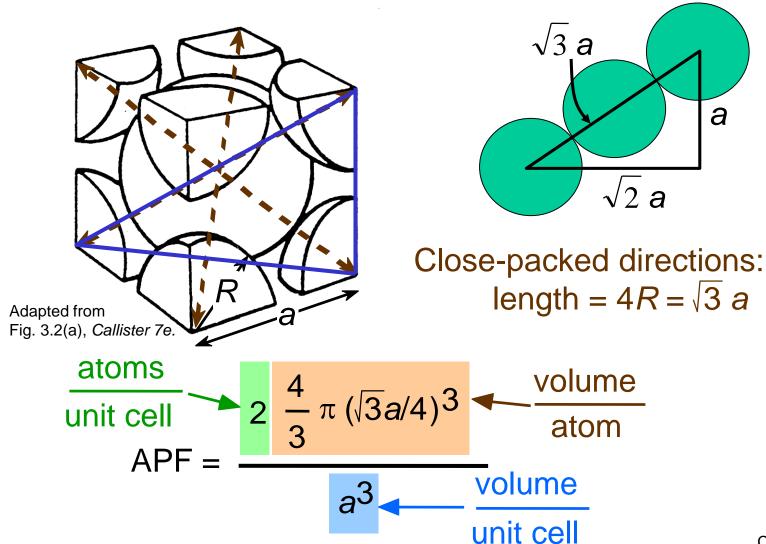


Adapted from Fig. 3.2, *Callister 7e.*

2 atoms/unit cell: 1 center + 8 corners x 1/8

Atomic Packing Factor: BCC

APF for a body-centered cubic structure = 0.68

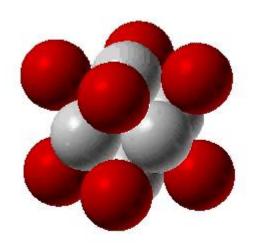


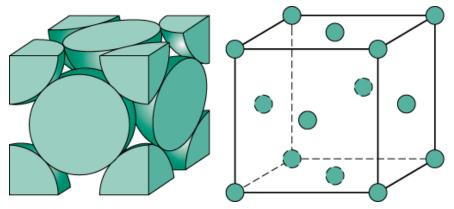
Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

Coordination # = 12





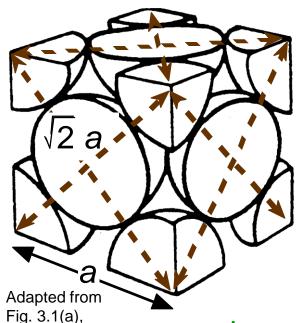
Adapted from Fig. 3.1, Callister 7e.

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

Atomic Packing Factor: FCC

• APF for a face-centered cubic structure = 0.74

maximum achievable APF



Callister 7e.

Close-packed directions: length = $4R = \sqrt{2} a$

Unit cell contains:

$$6 \times 1/2 + 8 \times 1/8$$

= 4 atoms/unit cell

atoms
unit cell

APF =
$$\frac{4}{3}\pi (\sqrt{2}a/4)^3$$
 volume

atom

unit cell

FCC Stacking Sequence

ABCABC... Stacking Sequence

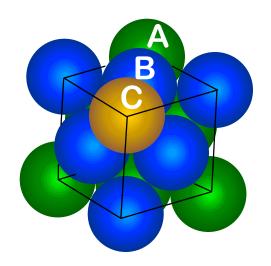
• 2D Projection

A sites

B sites

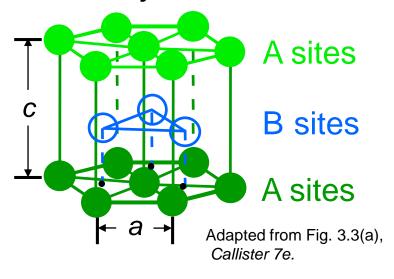
C sites

FCC Unit Cell

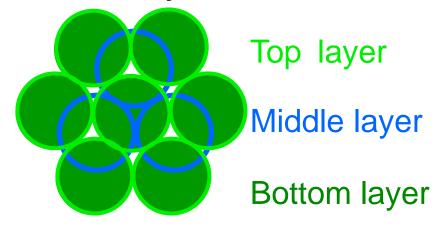


Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection



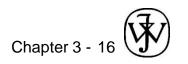
2D Projection



- Coordination # = 12
- APF = 0.74
- c/a = 1.633

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn



Theoretical Density, p

Density =
$$\rho = \frac{\text{Mass of Atoms in Unit Cell}}{\text{Total Volume of Unit Cell}}$$

$$\rho = \frac{n A}{V_C N_A}$$

where n = number of atoms/unit cell

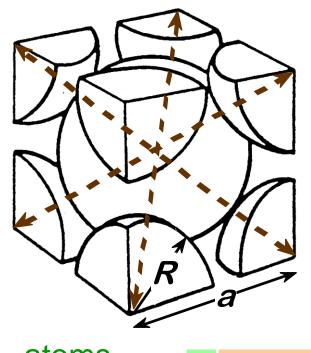
A = atomic weight

 V_C = Volume of unit cell = a^3 for cubic

 N_A = Avogadro's number

 $= 6.023 \times 10^{23} \text{ atoms/mol}$

Theoretical Density, p



volume

unit cell

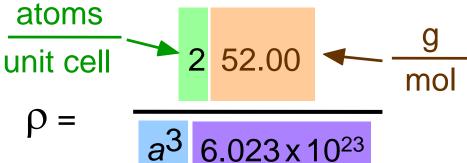
• Ex: Cr (BCC)

$$A = 52.00 \text{ g/mol}$$

$$R = 0.125 \text{ nm}$$

$$n = 2$$

$$a = 4R\sqrt{3} = 0.2887 \text{ nm}$$

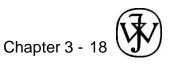


 $\rho_{\text{theoretical}} = 7.18 \text{ g/cm}^3$

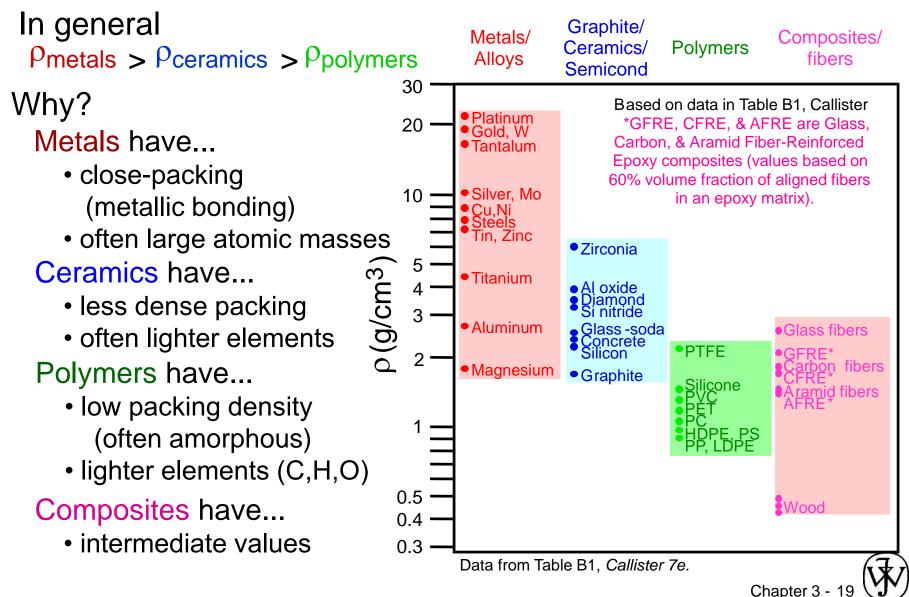
 $\rho_{\text{actual}} = 7.19 \text{ g/cm}^3$

atoms

mol



Densities of Material Classes



Crystals as Building Blocks

Some engineering applications require single crystals:

--diamond single crystals for abrasives

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.) Fig. 8.33(c), *Callister 7e.* (Fig. 8.33(c) courtesy of Pratt and Whitney).

--turbine blades

- Properties of crystalline materials often related to crystal structure.
 - --Ex: Quartz fractures more easily along some crystal planes than others.

(Courtesy P.M. Anderson)

Anisotropic

PolycrystalsMost engineering materials are polycrystals.

Adapted from Fig. K, color inset pages of Callister 5e. (Fig. K is courtesy of Paul E. Danielson. Teledyne Wah Chang Albany)

Nb-Hf-W plate with an electron beam weld.

- Each "grain" is a single crystal.
- If grains are randomly oriented, overall component properties are not directional.
- Grain sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

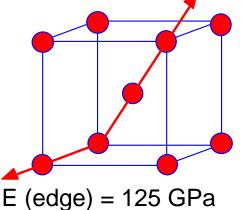
Isotropic

Single vs Polycrystals

Single Crystals

-Properties vary with direction: anisotropic.

-Example: the modulus of elasticity (E) in BCC iron: E (diagonal) = 273 GPa



Data from Table 3.3. Callister 7e. (Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, 1989.)

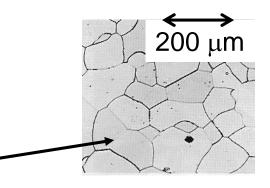
Polycrystals

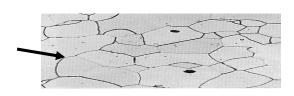
-Properties may/may not vary with direction.

-If grains are randomly oriented: isotropic.

 $(E_{poly iron} = 210 GPa)$

-If grains are textured, anisotropic.





Adapted from Fig. 4.14(b), Callister 7e. (Fig. 4.14(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards. Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].)

Section 3.6 – Polymorphism

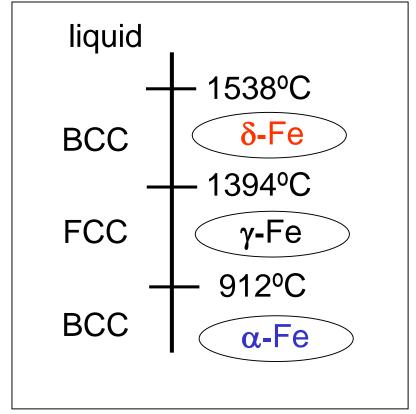
 Two or more distinct crystal structures for the same material (allotropy/polymorphism)

titanium

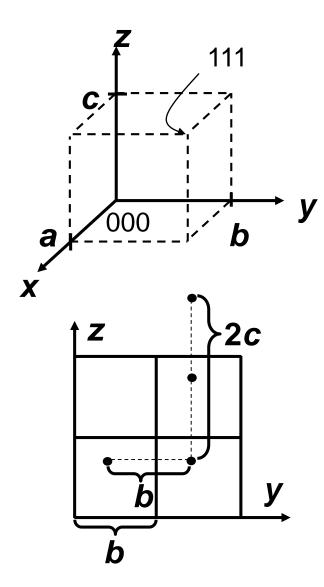
 α , β -Ti

carbon diamond, graphite

iron system



Section 3.8 Point Coordinates



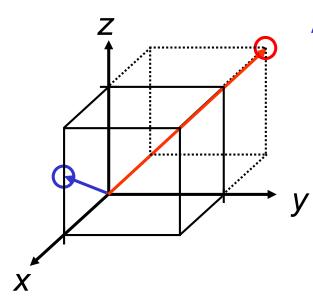
Point coordinates for unit cell center are

a/2, b/2, c/2 $\frac{1}{2}\frac{1}{2}\frac{1}{2}$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants → identical position in another unit cell

Crystallographic Directions



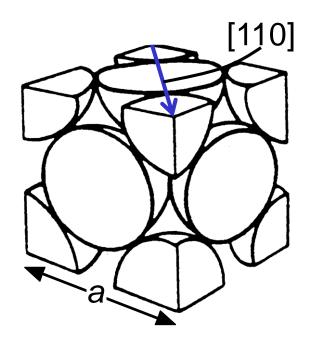
Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions *a*, *b*, and *c*
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas [uvw]

families of directions < uvw>

Linear Density

 Linear Density of Atoms = LD = Unit length of direction vector

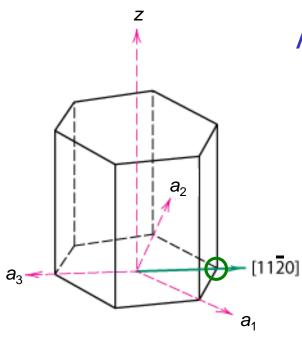


ex: linear density of Al in [110] direction

$$a = 0.405 \text{ nm}$$

atoms
$$LD = \frac{2}{\sqrt{2a}} = \frac{3.5 \text{ nm}^{-1}}{1}$$
length

HCP Crystallographic Directions



Adapted from Fig. 3.8(a), Callister 7e.

ex:

 $\frac{1}{2}$, $\frac{1}{2}$, -1, 0

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions a_1 , a_2 , a_3 , or c
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas

[uvtw] => [1120] projections onto a₁ and a₂ axes

dashed red lines indicate

HCP Crystallographic Directions

Hexagonal Crystals

 4 parameter Miller-Bravais lattice coordinates are related to the direction indices (i.e., u'v'w') as follows.

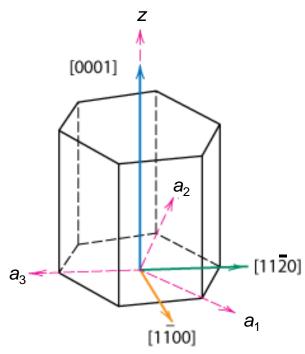


Fig. 3.8(a), Callister 7e.

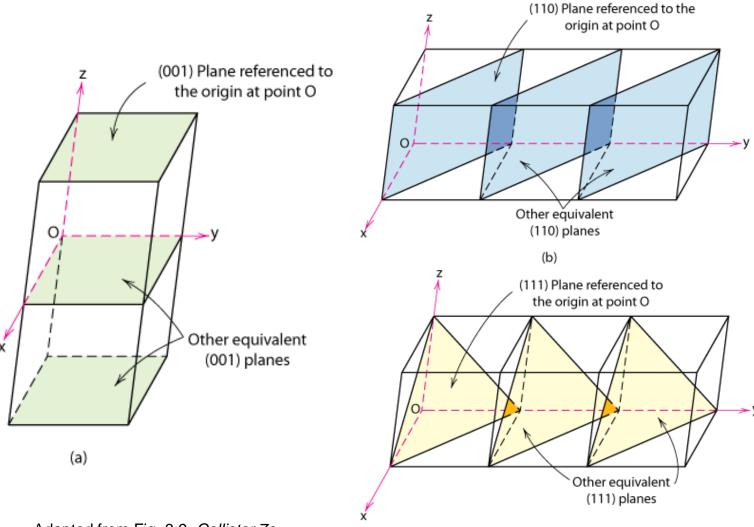
$$[u'v'w'] \rightarrow [uvtw]$$

$$u = \frac{1}{3}(2u'-v')$$

$$v = \frac{1}{3}(2v'-u')$$

$$t = -(u+v)$$

$$w = w'$$



Adapted from Fig. 3.9, Callister 7e.

(c)

 Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions & common multiples. All parallel planes have same Miller indices.

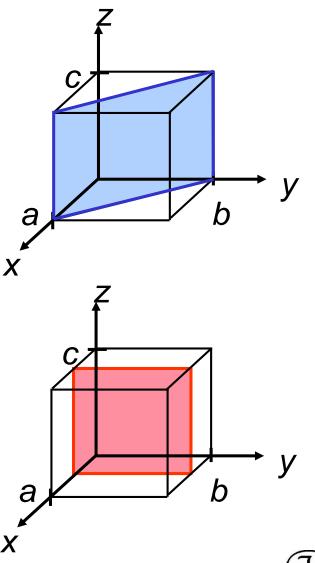
Algorithm

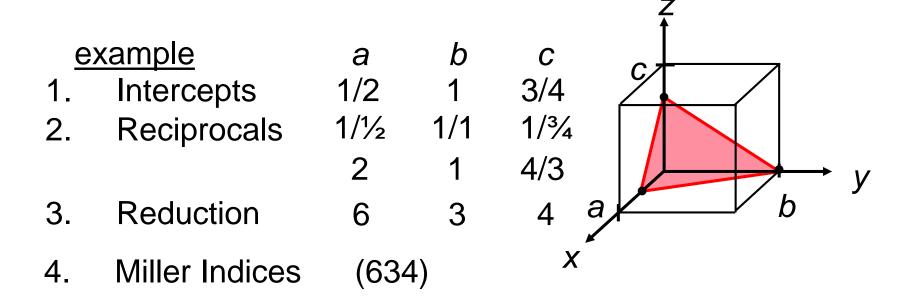
- 1. Read off intercepts of plane with axes in terms of a, b, c
- 2. Take reciprocals of intercepts
- 3. Reduce to smallest integer values
- 4. Enclose in parentheses, no commas i.e., (hkl)

<u>exa</u>	<u>mple</u>	a	b	C
1.	Intercepts	1	1	∞
2.	Reciprocals	1/1	1/1	1/∞
		1	1	0
3.	Reduction	1	1	0

4.	Miller I	ndices	(110)
----	----------	--------	-------

example		а	b	С
1.		1/2	∞	∞
2.	Reciprocals	1/1/2	1/∞	1/∞
		2	0	0
3.	Reduction	2	0	0
4.	Miller Indices	(100)		





Family of Planes {hkl}

Ex: $\{100\} = (100), (010), (001), (\bar{1}00), (0\bar{1}0), (00\bar{1})$

Crystallographic Planes (HCP)

In hexagonal unit cells the same idea is used

<u>e</u>	<u>kample</u>	a_1	a_2	a_3	C	/
1.	Intercepts	1	∞	-1	1	
2.	Reciprocals	1	1/∞	-1	1	
		1	0	-1	1	
3.	Reduction	1	0	-1	1	
					a_3	
4.	Miller-Bravais Ir	ndices	(10 ²	<u>-</u> 11)	J	

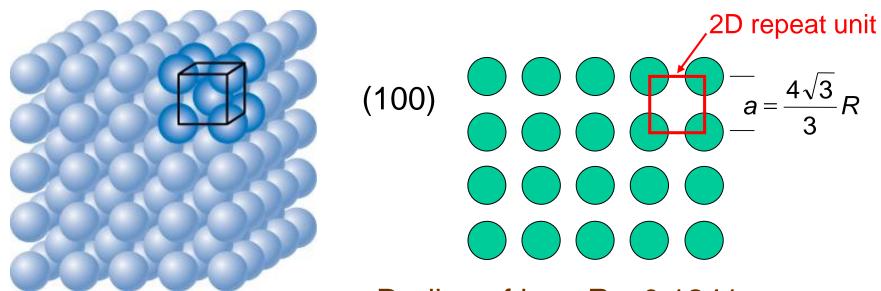
Adapted from Fig. 3.8(a), Callister 7e.

a₁

- We want to examine the atomic packing of crystallographic planes
- Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
 - a) Draw (100) and (111) crystallographic planes for Fe.
 - b) Calculate the planar density for each of these planes.

Planar Density of (100) Iron

Solution: At T < 912°C iron has the BCC structure.



Adapted from Fig. 3.2(c), Callister 7e.

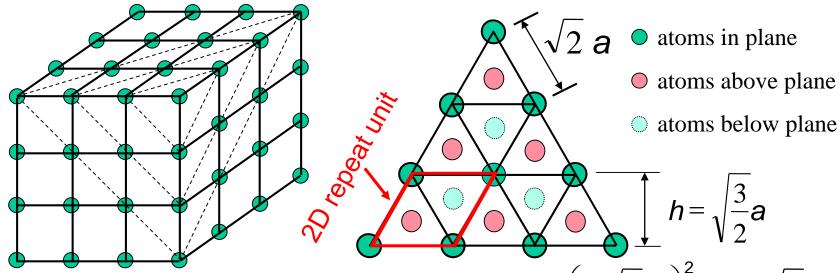
Radius of iron R = 0.1241 nm

Planar Density =
$$\frac{1}{a^2} = \frac{1}{\left(\frac{4\sqrt{3}}{3}R\right)^2} = 12.1 \frac{\text{atoms}}{\text{nm}^2} = \frac{1.2 \times 10^{19} \frac{\text{atoms}}{\text{m}^2}}{2D \text{ repeat unit}}$$

Planar Density of (111) Iron

Solution (cont): (111) plane

1 atom in plane/ unit surface cell



area =
$$\sqrt{2}$$
 ah = $\sqrt{3}$ $a^2 = \sqrt{3} \left(\frac{4\sqrt{3}}{3} R \right)^2 = \frac{16\sqrt{3}}{3} R^2$

atoms

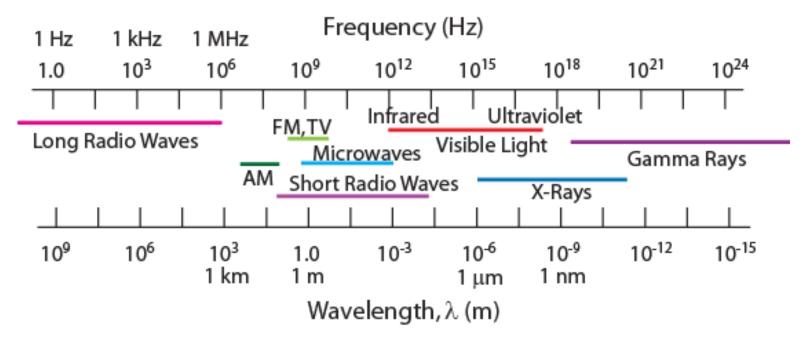
$$\frac{16\sqrt{3}}{3}R^2$$

$$= 7.0 \frac{\text{atoms}}{\text{nm}^2} =$$

$$0.70 \times 10^{19} \frac{\text{atoms}}{\text{m}^2}$$

Section 3.16 - X-Ray Diffraction

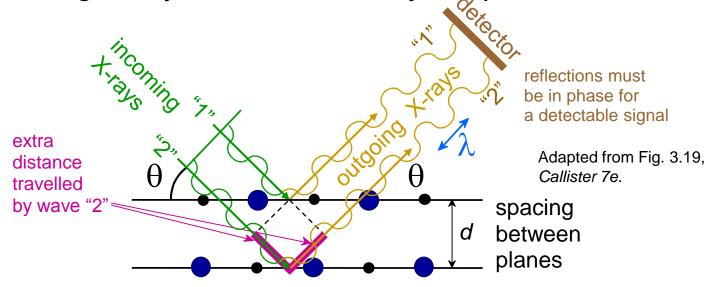
Electromagnetic Spectrum



- Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- Can't resolve spacings < λ
- Spacing is the distance between parallel planes of atoms.

X-Rays to Determine Crystal Structure

Incoming X-rays diffract from crystal planes.

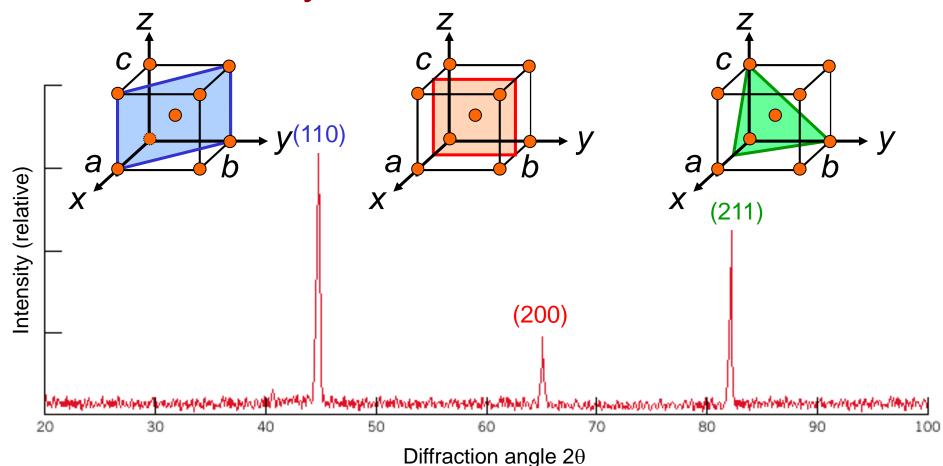


Measurement of critical angle, θ_c , allows computation of planar spacing, d.

X-ray intensity (from detector)

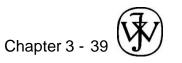


X-Ray Diffraction Pattern



Diffraction pattern for polycrystalline α -iron (BCC)

Adapted from Fig. 3.20, Callister 5e.



SUMMARY

- Atoms may assemble into crystalline or amorphous structures.
- Common metallic crystal structures are FCC, BCC, and HCP. Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Crystallographic points, directions and planes are specified in terms of indexing schemes.
 Crystallographic directions and planes are related to atomic linear densities and planar densities.

SUMMARY

- Materials can be single crystals or polycrystalline.
 Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.
- Some materials can have more than one crystal structure. This is referred to as polymorphism (or allotropy).
- X-ray diffraction is used for crystal structure and interplanar spacing determinations.