Chapter 11-13: Metal Alloys and Ceramics Applications and Processing ISSUES TO ADDRESS...

- How are metal alloys classified and how are they used?
- What are some of the common fabrication techniques?
- How can properties be modified by post heat treatment

- Structures of ceramic materials
- Point defects, impurities, types of ceramic
- Processing and applications

Taxonomy of Metals

Steels

Refinement of Steel from Ore

http://www.youtube.com/watch?v=i6BIyQJZdTg

Ferrous Alloys

```
Iron containing – Steels - cast irons
```

```
Nomenclature AISI & SAE

10xx Plain Carbon Steels

11xx Plain Carbon Steels (resulfurized for machinability)

15xx Mn (10 ~ 20%)

40xx Mo (0.20 ~ 0.30%)

43xx Ni (1.65 - 2.00%), Cr (0.4 - 0.90%), Mo (0.2 - 0.3%)

44xx Mo (0.5%)
```

where xx is wt% C x 100 example: 1060 steel – plain carbon steel with 0.60 wt% C

Stainless Steel -- >11% Cr

Cast Iron

- Ferrous alloys with > 2.1 wt% C
 more commonly 3 4.5 wt%C
- low melting (also brittle) so easiest to cast
- Cementite decomposes to ferrite + graphite $Fe_3C \rightarrow 3 Fe(\alpha) + C (graphite)$
 - generally a slow process

Fe-C True Equilibrium Diagram

Graphite formation promoted by

- Si > 1 wt%
- slow cooling

Adapted from Fig. 11.2, *Callister 7e.* (Fig. 11.2 adapted from *Binary Alloy Phase Diagrams*, 2nd ed., Vol. 1, T.B. Massalski (Ed.in-Chief), ASM International, Materials Park, OH, 1990.)

Chapter 11 - 7

Types of Cast Iron

Gray iron

- graphite flakes
- weak & brittle under tension
- stronger under compression
- excellent vibrational dampening
- wear resistant

Ductile iron

- add Mg or Ce
- graphite in nodules not flakes
- matrix often pearlite better ductility

Adapted from Fig. 11.3(a) & (b), Callister 7e.

Types of Cast Iron

White iron

- <1wt% Si so harder but brittle
- more cementite

Malleable iron

- heat treat at 800-900°C
- graphite in rosettes
- more ductile

Adapted from Fig. 11.3(c) & (d), Callister 7e.

Production of Cast Iron

Limitations of Ferrous Alloys

- 1) Relatively high density
- 2) Relatively low conductivity
- 3) Poor corrosion resistance

Nonferrous Alloys

Based on discussion and data provided in Section 11.3, Callister 7e.

Chapter 11 - 13

Metal Fabrication

- How do we fabricate metals?
 - Blacksmith hammer (forged)
 - Molding cast
- Forming Operations
 - Rough stock formed to final shape

The shape of a metal piece is changed by plastic deformation

Hot working

VS.

- T high enough for recrystallization
- Larger deformations possible
- Deformation energy are less
- some surface oxidation.

- Cold working
 well below T_m
- the strain hardens
- smaller deformations
- high quality surface finish

- Casting- mold is filled with metal
 - metal melted in furnace, perhaps alloying elements added. Then cast in a mold
 - most common, cheapest method
 - gives good production of shapes: large or complicated shapes
 - weaker products, internal defects
 - good option for brittle materials

Metal Fabrication Methods - II

CASTING

FORMING

Sand Casting

(large parts, e.g.,auto engine blocks,fire hydrants, large pipe fittings)

• trying to hold something that is hot

JOINING

- what will withstand >1600°C?
- cheap easy to mold => sand!!!
- pack sand around form (pattern) of desired shape

Metal Fabrication Methods - II

CASTING

FORMING

Sand Casting

(large parts, e.g., auto engine blocks)

Investment Casting

(low volume, complex shapes e.g., jewelry, turbine blades) plaster die formed

wax

around wax prototype

JOINING

- pattern is made from paraffin or wax.
- mold made by encasing in plaster of paris
- melt the wax & the hollow mold is left
- pour in metal

Gas and arc welding, or Laser beam welding

Thermal Processing of Metals

Annealing: Heat to T_{anneal} , then cool slowly.

1000 1800 1700 900 Acm Normalizing-1600 Temperature (°F) 1500 Full annealing 800 A_3 1400 -1300 A_1 700 1200 600 0.2 0.4 1.6 0 0.6 0.8 1.0 1.2 1.4 Composition (wt% C)

Temperature (°C)

Chapter 11 - 23

Heat Treatments

Summary-metal alloy

- Steels: increase TS, Hardness (and cost) by adding
 --C (low alloy steels)
 Or) (Nie Ma, W (bish allow steels)
 - --Cr, V, Ni, Mo, W (high alloy steels)
 - --ductility usually decreases w/additions.
- Non-ferrous:
 - --Cu, AI, Ti, Mg, Refractory, and noble metals.
- Fabrication techniques:
 - --forming, casting, joining.
- Thermal treatment

Ceramics

Traditional ceramics: china, porcelain, bricks, tiles, glass, etc.

Ceramic Bonding

- Interatomic Bonding:
 - -- Mostly ionic, some covalent.
 - -- % ionic character increases with difference in electronegativity. % ionic character= $\{1-\exp[-(0.25)(X_A-X_B)^2]\}x100$
- Large vs small ionic bond character:

Adapted from Fig. 2.7, Callister 7e.

Most ceramics are compounds between metallic and nonmetallichelement

Ionic Crystals

Table 12.1For SeveralCeramic Materials, Per-cent Ionic Character ofthe Interatomic Bonds			Note: larger anion radius		
	Percent Ionic				
Material	Character	Cation Radius (nm)	<u>Anion Radius (nm)</u>		
CaF_2	89	0.100	0.133		
MgO	73	0.072	0.14		
NaCl	67	0.102	0.182		
Al_2O_3	63	0.053	0.140		
SiO ₂	51	0.040	0.140		
Si_3N_4	30				
ZnS	18				
SiC	12	Cations: metallic ions, positively charged			

Crystal { •The magnitude of the electrical charge on each of the component ions •The relative sizes of the cations and anions

Most ionic crystals can be considered as close-packed structure of anions with cations in the interstitial sites.

Ceramic Crystal Structures

Oxide structures

- oxygen anions much larger than metal cations
- close packed oxygen in a lattice (usually FCC)
- cations in the holes of the oxygen lattice

Site Selection

Which sites will cations occupy?

- 1. Size of sites
 - does the cation fit in the site

for each cation prefers to have as many nearest-neighbor anion; the anions also desire a maximum number of cation nearest neighbors.

2. Stoichiometry

- if all of one type of site is full, the remainder have to go into other types of sites.
- 3. Bond Hybridization

Ionic Bonding & Structure

1. Size - Stable structures:

--maximize the # of nearest oppositely charged neighbors.

m, p determined by charge neutrality

Chapter 11 - 3

Coordination # and Ionic Radii

^rcation

- Coordination # increases with
- Issue: How many anions can you arrange around a cation?

^rcation Coord ranion # 2 < 0.155 linear triangular 0.155 - 0.225 3 0.225 - 0.414 T_{D} 4 0.414 - 0.732 6 O_H

0.732 - 1.0 8 Cubic Adapted from Table 12.2, *Callister 7e.*

Cation-anion stable configuration

Cation Site Size

• Determine minimum $r_{\text{cation}}/r_{\text{anion}}$ for O_{H} site (C.N. = 6)

$$2r_{anion} + 2r_{cation} = \sqrt{2}a$$
$$a = 2r_{anion}$$

$$2r_{anion} + 2r_{cation} = 2\sqrt{2}r_{anion}$$

$$r_{anion} + r_{cation} = \sqrt{2}r_{anion}$$
 $r_{cation} = (\sqrt{2} - 1)r_{anion}$

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = 0.414$$

Site Selection II

2. Stoichiometry

- If all of one type of site is full, the remainder have to go into other types of sites.
- Ex: FCC unit cell has 4 O_H and 8 T_D sites.

If for a specific ceramic each unit cell has 6 cations and the cations prefer O_H sites

4 in O_H 2 in T_D

Site Selection III

- 3. Bond Hybridization significant covalent bonding
 - the hybrid orbitals can have impact if significant covalent bond character present
 - For example in SiC
 - $X_{\rm Si} = 1.8$ and $X_{\rm C} = 2.5$

% ionic character = 100 {1 - exp[-0.25($X_{si} - X_c$)²]} = 11.5%

- ca. 89% covalent bonding
- both Si and C prefer *sp*³ hybridization
- Therefore in SiC get T_D sites

Example: Predicting Structure of FeO

• On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation	Ionic radius (nm)
AI ³⁺	0.053
Fe ²⁺	0.077
Fe ³⁺	0.069
Ca ²⁺	0.100

0.140

0.181

0.133

Anion

F-

Answer:

 $\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.077}{0.140}$ = 0.550

based on this ratio, --coord # = 6 --structure = NaCI

Data from Table 12.3, *Callister 7e.*

Rock Salt Structure

Same concepts can be applied to ionic solids in general. Example: NaCl (rock salt) structure

• Na⁺ $r_{Na} = 0.102 \text{ nm}$ • Cl⁻ $r_{Cl} = 0.181 \text{ nm}$

 $r_{\rm Na}/r_{\rm Cl} = 0.564$

 \therefore cations prefer O_H sites

MgO and FeO

MgO and FeO also have the NaCl structure

So each oxygen has 6 neighboring Mg²⁺

ABX₃ Crystal Structures

Mechanical Properties

We know that ceramics are more brittle than metals. Why?

- Consider method of deformation
 - slippage along slip planes
 - in ionic solids this slippage is very difficult
 - too much energy needed to move one anion past another anion

Silicate Ceramics

Most common elements on earth are Si & O

- SiQ₂ (silica) polymórphic crystalline structures are quartz, crystobalite, & tridymite
- The strong Si-O bond leads to a strong, high melting material (1710°C)

Amorphous Silica

- Silica gels amorphous SiO₂
 - Si⁴⁺ and O²⁻ not in well-ordered lattice
 - Charge balanced by H⁺ (to form OH⁻) at "dangling" bonds
 - very high surface area > 200 m²/g
 - SiO₂ is quite stable, therefore unreactive
 - makes good catalyst support

Adapted from F 12.11, Callister O2− Si⁴⁺ OH[−]

Silica Glass

- Dense form of amorphous silica
 - Charge imbalance corrected with "counter cations" such as Na⁺
 - Borosilicate glass is the pyrex glass used in labs
 - better temperature stability & less brittle than sodium glass
 - In addition to the quartz, sodium carbonate, and calcium carbonate traditionally used in glassmaking, boron is used in the manufacture of borosilicate glass. Typically, the resulting glass composition is about 70% silica, 10% boric oxide, 8% sodium oxide, 8% potassium oxide, and 1% calcium oxide (lime).
 - Borosilicate glass begins to soften around 821 °C

Chapte

Layered Silicates

Layered Silicates

 Kaolinite clay alternates (Si₂O₅)²⁻ layer with Al₂(OH)₄²⁺ layer

Note: these sheets loosely bound by van der Waal's forces Chapter 11 - 46

Layered Silicates

- Can change the counterions
 - this changes layer spacing
 - the layers also allow absorption of water
- Micas $KAI_3Si_3O_{10}(OH)_2$
 - smooth surface for AFM sample holder
- Bentonite
 - used to seal wells
 - packaged dry
 - swells 2-3 fold in H_2O
 - pump in to seal up well so no polluted ground water seeps in to contaminate the water supply.

Carbon Forms

- Carbon black amorphous surface area ca. 1000 m²/g
- Diamond
 - tetrahedral carbon
 - hard no good slip planes
 - brittle can cut it
 - large diamonds jewelry
 - small diamonds
 - often man made used for cutting tools and polishing
 - diamond films
 - hard surface coat tools, medical devices, etc.

Adapted from Fig. 12.15, *Callister 7e.*

Carbon Forms - Graphite

• layer structure – aromatic layers

- weak van der Waal's forces between layers
- planes slide easily, good lubricant

Carbon Forms - Graphite

Carbon Forms – Fullerenes and Nanotubes

- Fullerenes or carbon nanotubes
 - wrap the graphite sheet by curving into ball or tube
 - Buckminister fullerenes
 - Like a soccer ball C_{60} also C_{70} + others

Defects in Ceramic Structures

- Frenkel Defect --a cation is out of place.
- Shottky Defect

--a paired set of cation and anion vacancies.

• Equilibrium concentration of defects

Adapted from Fig. 12.21, Callister 7e. (Fig. 12.21 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley and Sons, Inc., p. 78.)

Impurities

- Impurities must also satisfy charge balance = Electroneutrality
- Ex: NaCl Na⁺ Cl⁻
- Substitutional cation impurity
 Ca²⁺

initial geometry

Ca²⁺ impurity

≫Na+

Na⁺

Substitutional anion impurity

resulting geometry

Application-classification of Ceramics

- Properties:
 - -- *Tm* for glass is moderate, but large for other ceramics.
 - -- Small toughness, ductility; large moduli & creep resist.
- Applications:
 - -- High T, wear resistant, novel uses from charge neutrality.
- Fabrication
 - -- some glasses can be easily formed
 - -- other ceramics can not be formed or cast.

Compositions and characteristics of some of the common commercial gasses

Glass Type	Composition (wt%)						
	SiO ₂	Na ₂ O	CaO	Al_2O_3	B_2O_3	Other	Characteristics and Applications
Fused silica	>99.5						High melting temperature, very low coefficient of expansion (thermally shock resistant)
96% Silica (Vycor TM)	96				4		Thermally shock and chemically resistant—laboratory ware
Borosilicate (Pyrex TM)	81	3.5		2.5	13		Thermally shock and chemically resistant—ovenware
Container (soda-lime)	74	16	5	1		4MgO	Low melting temperature, easily worked, also durable
Fiberglass	55		16	15	10	4MgO	Easily drawn into fibers—glass-resin composites
Optical flint	54	1				37PbO, 8K ₂ O	High density and high index of refraction—optical lenses
Glass–ceramic (Pyroceram [™])	43.5	14		30	5.5	6.5TiO ₂ , 0.5As ₂ O ₃	Easily fabricated; strong; resists thermal shock—ovenware

- •Optical transparency
- •Relative ease to fabricate

Application: Die Blanks

- Die blanks:
 - -- Need wear resistant properties!
- SiC, WC, AI_2O_3 , silica sand, etc

Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission. es! A₀ die Ad die Ad Adapted from Fig. 11.8 (d), *Callister 7e.*

- Die surface:
 - -- 4 μm polycrystalline diamond particles that are sintered onto a cemented tungsten carbide substrate.
 - -- polycrystalline diamond helps control fracture and gives uniform hardness in all directions.

Courtesy Martin Deakins, GE

Superabrasives, Worthington, OH. Used with permission.

Application: Cutting Tools

- Tools:
 - -- for grinding glass, tungsten, carbide, ceramics
 - -- for cutting Si wafers
 - -- for oil drilling

Solutions:

- -- manufactured single crystal or polycrystalline diamonds in a metal or resin matrix.
- -- optional coatings (e.g., Ti to help diamonds bond to a Co matrix via alloying)
- -- polycrystalline diamonds resharpen by microfracturing along crystalline planes.

oil drill bits

blades

coated single crystal diamonds

polycrystalline diamonds in a resin matrix.

Photos courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.

Application: Sensors

- Example: Oxygen sensor ZrO₂
- **Principle:** Make diffusion of ions fast for rapid response.
- Approach: Add Ca impurity to ZrO₂: -- increases O²⁻ vacancies -- increases O²⁻ diffusion rate
- Operation:
 - -- voltage difference produced when O²⁻ ions diffuse from the external surface of the sensor to the reference gas.

Chapter 11 -

Sheet Glass Forming

- Sheet forming continuous draw
 - originally sheet glass was made by "floating" glass on a pool of mercury

http://www.istockphoto.com/file_closeup/?id=2889395&refnum=1088283

Drying and Firing

• Drying: layer size and spacing decrease.

Adapted from Fig. 13.13, *Callister 7e*. (Fig. 13.13 is from W.D. Kingery, *Introduction to Ceramics*, John Wiley and Sons, Inc., 1960.)

wet slip

partially dry

"green" ceramic

Drying too fast causes sample to warp or crack due to non-uniform shrinkage

• Firing:

--*T* raised to (900-1400°C)

--vitrification: liquid glass forms from clay and flows between SiO₂ particles. Flux melts at lower *T*.

micrograph of porcelain Fired porcelain specimen

Si0₂ particle (quartz)

glass formed around the particle Adapted from Fig. 13.14, *Callister 7e*. (Fig. 13.14 is courtesy H.G. Brinkies, Swinburne University of Technology, Hawthorn Campus, Hawthorn, Victoria, Australia.)

Chapter 11 -

Mullite needles

Sintering: useful for both clay and non-clay compositions.

- Procedure:
 - -- produce ceramic and/or glass particles by grinding
 - -- place particles in mold
 - -- press at elevated T to reduce pore size.
- Aluminum oxide powder:
 - -- sintered at 1700°C for 6 minutes.

Adapted from Fig. 13.17, *Callister 7e*. (Fig. 13.17 is from W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, *Introduction to Ceramics*, 2nd ed., John Wiley and Sons, Inc., 1976, p. 483.)

Powder Pressing

Sintering - powder touches - forms neck & gradually neck thickens

- add processing aids to help form neck
- little or no plastic deformation

Uniaxial compression - compacted in single direction

Isostatic (hydrostatic) compression - pressure applied by fluid - powder in rubber envelope

Hot pressing - pressure + heat

Tape Casting

- thin sheets of green ceramic cast as flexible tape
- used for integrated circuits and capacitors
- cast from liquid slip (ceramic + organic solvent)

Ceramic Fabrication Methods-III

FORMING

GLASS PARTICULATE FORMING

CEMENTATION

- Produced in extremely large quantities.
- Portland cement:
 - -- mix clay and lime bearing materials
 - -- calcinate (heat to 1400°C)
 - -- primary constituents: tri-calcium silicate di-calcium silicate
- Adding water
 - -- produces a paste which hardens
 - -- hardening occurs due to hydration (chemical reactions with the water).
- Forming: done usually minutes after hydration begins.

Chapter 11 - 6

Applications: Advanced Ceramics

Heat Engines

- Advantages:
 - Run at higher temperature
 - Excellent wear & corrosion resistance
 - Low frictional losses
 - Ability to operate without a cooling system
 - Low density

- Disadvantages:
 - Brittle
 - Too easy to have voidsweaken the engine
 - Difficult to machine

Possible parts – engine block, piston coatings, jet engines
 Ex: Si₃N₄, SiC, & ZrO₂

Summary-2

- Ceramic materials have covalent & ionic bonding.
- Structures are based on:
 - -- charge neutrality
 - -- maximizing # of nearest oppositely charged neighbors.
- Structures may be predicted based on:
 -- ratio of the cation and anion radii.
- Defects
 - -- must preserve charge neutrality
 - -- have a concentration that varies exponentially w/T.
- Room *T* mechanical response is elastic, but fracture is brittle, with negligible deformation.
- processing and application

