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ORIGINAL RESEARCH

Peak Detection of Somatosensory Evoked Potentials Using an
Integrated Principal Component Analysis—Walsh Method

Krishnatej Vedala,* llker Yaylali,1 Mercedes Cabrerizo,* Mohammed Goryawala,* and Malek Adjouadi*

Summary: Clinical application of somatosensory evoked potentials (SSEP)
in intraoperative neurophysiological monitoring still requires anywhere
between 200 to 500 trials, which is excessive and introduces a delay during
surgery. In this study, the analysis was performed on the data recorded in 20
patients undergoing surgery during which the posterior tibial nerve was
stimulated and SSEP response was recorded from scalp. The first 10 trials
were analyzed using an eigen decomposition technique, and a signal
extraction algorithm eliminated the common components of the signals not
contributing to the SSEP. A unique Walsh transform operation was then used
to identify the position of the SSEP event within the clinical requirements of
10% time in latency deviation and 50% peak-to-peak amplitude deviation
using only 10 trials. The algorithm also shows consistency in the results in
monitoring SSEP in up to 6-hour surgical procedures even under this
significantly reduced number of trials.

Key Words: Somatosensory evoked potentials, Eigen decomposition, Walsh
transform, SSEP detection.

(J Clin Neurophysiol 2012;0: 1-9)

Somatosensory evoked potential (SSEP) monitoring is an integral
part of most of the present day spinal surgeries. This involves
monitoring of the P37 and N45 peaks of the bipolar EEG recordings
from their initial value (called baseline value) throughout the surgical
procedure. The primary difficulty ever since the concept was intro-
duced has been to improve the signal-to-noise ratio (SNR) of the
readings. A simple but powerful signal averaging method was
introduced (Dawson, 1947) to improve the SNR by /N, where N
is the number of signals (trials). The shortcomings of this method
however can be summarized as follows:

1. The SNR of raw SSEP signal is very low requiring a large
value for N varying from 200 to 500 per subject (Regan,
1990); and

2. alarger value of N would require more time to identify the
SSEP event.

As a consequence, the approach taken in this study is to
expedite the detection of SSEP with an optimal number of trials

From the *Center for Advanced Technology and Education, College of Engineering
and Computing, Florida International University, Miami, Florida, U.S.A.; and
TDepartment of Clinical Neurophysiology, Oregon Health & Science Univer-
sity, Portland, Oregon, U.S.A.

The experimental work of this study was carried out under the support of
IRB#052708-03 and IRB#100410-00, and collected data as a routine part of
a spine surgery were deidentified at the source.

Address correspondence and reprint requests to Malek Adjouadi, PhD, Center for
Advanced Technology and Education, College of Engineering & Computing,
Florida International University, 10555 W. Flagler Street, EC 2672, Miami,
FL 33174, U.S.A.; e-mail: adjovadi@fiu.edu.

Copyright © 2012 by the American Clinical Neurophysiology Society

ISSN: 0736-0258/12/0000-0001

(limited to 10 in this case) that will ultimately allow for timely
decision by the surgeons.

The signal averaging approach remains the most prevalent
method for intraoperative neurophysiological monitoring (Hussain,
2008), and a faster approach of recording SSEP signals would make
spinal surgeries safer (Taylor et al., 1994). Current systems rely on
peak detection or area under the SSEP curve (Taylor et al., 1994) for
automating the SSEP detection. There is a need for better algorithms
that minimize these unyielding numbers of trials and are able to
remove automatically those signals that are fraught with noise.

A first approach that addressed the issue of decreasing the
number of trials is based on a parametric decomposition of SSEP
signals (Bai et al., 2001), which was later revisited using Bayesian
analysis (Truccolo et al., 2003). Another approach involved the use
of amplitude modulated stimulus and performing steady-state anal-
ysis on the recorded signals (Noss et al., 1996). The latency, that is,
the time difference between the successive trials, was also exploited
for noise removal (Kong and Oiu, 2001). Recent advances in func-
tional source separation of SSEP signals (Porcaro et al., 2009) pro-
vide better insight into the EEG signal characteristics that can be
used for SSEP signal detection. Artificial neural network processing
has been used successfully to classify auditory evoked potentials and
to classify anesthetic states but still requiring 1,000 trials (Zhang
et al., 2001). A phase-based technique (Simpson et al., 2000)
designed to improve this averaging rate reduced successfully this
number to 200 trials. An improved SSEP recording scheme has been
proposed (MacDonald et al., 2005) that can improve the SNR dras-
tically and a rapid recording can be obtained.

The approach proposed in this study reduces this average to
an optimal number of 10 trials using an eigen-decomposition
technique coupled with a unique Walsh operator that is able to
pinpoint the position of maximum amplitude, which serve as an
indicator of the presence of SSEP. A measure of caution is taken, in
that a thorough mathematical assessment of the eigen components is
performed at the onset to remove any trial that is fraught with noise
in order not to burden the averaging process with the intention not to
exceed 10 trials as a maximum. In the clinical cases involved in this
study, with a stimulus rate of 3.1 Hz, using 200 to 500 trials, the time
required to record the trials varies anywhere between 1 minute and
3 minutes. Standard algorithms often consider time—amplitude var-
iations between individual trials and common features between the
individual signals. The later fact led to the use of the principal com-
ponent analysis (PCA) for estimating components associated with
noise (Glaser and Ruchkin, 1976; Moore, 1981; Regan, 1990; Suter,
1970). The PCA is based on eigen decomposition of the raw SSEP
signal matrix. A modified version of PCA-based signal decomposition
technique named Algorithm for Multiple Signal Extraction (AMUSE)
(Crespo-Garcia et al., 2008; Tong et al., 1990) is used to reduce the
number of trials to 10. Walsh transform is implemented such as to
automate the latency detection after the SSEP signal is obtained. The
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broad scope of applicability of the Walsh transform yielded, as exam-
ples, excellent results in (1) extracting stereo features to recover depth
information in 2-dimensional images (Adjouadi and Candocia, 1994;
Adjouadi et al., 1996; Candocia and Adjouadi, 1997) and (2) detect-
ing interictal spikes in EEG data as a means to detect seizures in
pediatric epilepsy (Adjouadi et al., 2004, 2005; Tito et al., 2010).
In this SSEP application, a second-order Walsh operator has shown
to be extremely effective in localizing the SSEP under only 10 trials
even when the morphology of this signal is not yet quite similar
as that of the morphology expected with a larger number of trials
(200-500).

METHOD

Structure of the Algorithm
The structure of the proposed algorithm is illustrated in Figure 1
and explanations for each step are as follows:

1. The original data matrix, which certainly includes noisy
signals, is generated using recorded SSEP signals during

successive trials from the same bipolar recording channel
spanning the rows

x(1) xw) o] e

o |M) B0 |||

xltn) xztn) . Xm(n) x(};)r
where X (n) = [x1(n) x2(n) Xm(n) xur(n)]" is the nth

trial data, x(n) is the vector of nth trial and x,,(n) is the mth sample
from nth trial data.

2. The AMUSE algorithm (Crespo-Garcia et al., 2008; Tong
et al., 1991), similar to the PCA, is applied on the matrix X
following the steps below:

(a) Compute the N X N covariance matrix: R, = X.X7

(b) Determine the singular values ® of R, using singular
value decomposition technique giving three matri-
ces: U is a unitary matrix, V' is a diagonal matrix
for transformation, and ® is the required matrix:
R, =V.O.U

was observed

Given data of N trials after which the required signal

!

h

Arrange the nth trial as the nt

row of matrix X(n)

v
Apply AMUSE algorithm

1]

| Reconstruct the individual signals X,(n) = HT - Y, (n) |

1

| Obtain a single time series (x,) by averaging the rows of X, (n). |

1

ripple and 50dB stop-band ripple

Filter the signal x, using a Sth order elliptical
IIR low-pass filter with cut-off frequency of 250Hz, 0.1dB pass-band

1

crossing in the first differential and a maxima or minima in

Automate the peak detection exploiting the fact that it corresponds to zero

the second differential.

FIG. 1. Flowchart for the algorithm
discussed is displayed in the left

column and the details of AMUSE
algorithm below it are indicated by

-
AMUSE algorithm
Obtain covariance matrix R, of the
input matrix X(n)
V< T
Obtain the singular values using singular value
decomposition (SVD) R, =V -&-U
¥
Gaussian noise is removed by subtracting the noice variance (o?)
X = X — 02 where 0> = mean (<I>_1/2 -V X)
v
Obtain covariance of X and compute its eigenvalues E
and eigenvectors A
v
Transformation matrix H = AT . & /2. V |
\_

the arrow.
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(c) Remove the Gaussian noise components by
subtracting the noise variance estimated as the
mean of the singular, matrix with the equation
o’ = mean{fbf- V-X) such that X;, = X — o2

(d) Determine the covariarice of X}, and further decom-
pose it to find its eigenvalues and the corresponding
eigenvectors A to be used in the next step. This step
ensures that all the singular values are distinct.

() Obtain the transformation matrix # = AT-®72. )
(f) Determine the independent components as Y (n) =
HX

3. Individual components were then studied and those that
had the difference between first 2 consecutive frequency
peaks less than —30 dB/Hz were removed. To remove
a component, the corresponding row of Y (n) was replaced
with zeros and a new matrix Y,(n) was consequently
constructed.

4. New individual signals as rows of X were then retrieved
from the matrix Y (n) obtained in the previous step using
the equation: X,.(n) = H” -Y,.(n)

5. Arithmetic mean was computed across each column to
obtain a single time varying signal and was passed through
a 250 Hz low-pass filter, for experimental reasons that are
detailed in the implementation section.

6. Detection of the peak that coincides with the occurrence of
the SSEP was automated using the Walsh transformation
method (Adjouadi et al., 2004, 2005; Smith, 1981; Weide
et al., 1978) to indicate the evoked potential response.

In retrospect, the AMUSE algorithm is equivalent to cascad-
ing two PCA systems (Tong et al., 1991), with the following basic
assumptions:

e Data is a set of zero-mean wide-sense ergodic process, the com-
ponents of which are mutually independent.
e Noise in the data is assumed zero-mean white Gaussian noise.

Implementation

As an illustrative example, Figure 2 shows comparative
results of the algorithm using 10 trials for a subject in contrast with
the results obtained using the conventional method with 200 trials.
MATLAB programs were created by the authors that take the raw
signal vector and the possible number of components as input and
returns the estimated components, the transformation matrix, and
reconstructed signals as the output. Once the components are esti-
mated, filtering is used to remove unwarranted components.

The present study involved initially 16 subjects with the
objective to estimate the location of the SSEP event using only 10
trials in comparison with the locations provided by clinical experts
using 200 to 500 trials, and 4 other subjects were later included in the
study with recordings provided at different stages of their respective
surgical procedures. These last data sets were assessed to ascertain
consistency and reproducibility of the results in time latencies and
peak-to-peak amplitudes. For the recording process, two bipolar
channels C3-C4 and Cz-F; were used to record the desired signals.
The SSEP signals were recorded by applying stimuli of intensity
45 mA and pulse duration of 200 microseconds at the posterior tibial
nerve of the right leg with a 3.1-Hz repetition rate. The positive
terminal of stimulus is connected to the distal end, and the negative
terminal to the proximal end of the tibial nerve. The amplifier gain
was set to 10, and a 25 pV trial rejection threshold is used. The
data were recorded at 6,400 Hz sampling rate for a duration of 100
milliseconds and with the 60 Hz external interference component

Copyright © 2012 by the American Clinical Neurophysiology Society
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FIG. 2. Comparison between the results of the algorithm
using 10 trials (solid line) and the clinical data using 200 trials
(dotted line). Time instances shown to the left of the markers
are the locations where the evoked potential was detected
using the Walsh transformation method on C3-C4 signal. The
time values on the right hand side of the markers are the time
instances of the SSEP selected by clinical experts.

removed, yielding 640 samples per signal. The raw trial signals
are band limited from 10 to 1,000 Hz, and the clinical average
was between 30 and 500 Hz. For illustration purposes, the 10 result-
ing independent components in one of the studies are shown in
Figure 3 with similar results obtained for the other recording chan-
nel. From these plots, it is evident that the higher eigenvectors are the
ones representing the low-frequency components.

AMUSE Algorithm—Noise Components Filtering

An important observation was that the lower eigenvalue
components had very sharp power peaks at single frequency and
the higher eigenvalue components had sharp spikes at multiple
frequencies. The cause can be attributed to the statistical variance
exhibited by the higher magnitude eigenvalues.

It can be inferred that because these singular frequency
components will contribute solely to their corresponding frequencies,
they can be eliminated. For reconstruction purposes, the components
that have less than 2 peaks higher than —30 dB/Hz were removed.
The —30 dB/Hz threshold was arbitrarily chosen based on the total
power contribution of the component. To show the significance of
the observation, raw data from the first 10 trials are averaged in time
compared with the average of 200 trials from the same subject during
the same operation; the low-frequency components were estimated
and removed, and a final signal was obtained as shown in Figure 4.

It should be indicated that the signal obtained after filtering is
still not smooth enough to obtain a valid inference. The average
signal obtained was filtered using an eighth-order Butterworth low-
pass filter with a cutoff frequency of 250 Hz. The signal was then
tested for the maxima and minima using the first-order and second-
order differentials. The peaks in the Walsh-transformed signal are
then used to automate the identification of the evoked response.
A difference operator can be used, but they have a serious drawback
of being highly susceptible to noise and a smoothing operator has to
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be involved to improve the differentiator’s SNR. The Walsh differ-
entiation method (Adjouadi et al., 2004, 2005) was used to overcome
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the problem, as described below.

Walsh Transform—Automated Peak Detection
The second-order Walsh operator of length 4 (W} = w?),
equivalent to a 4-point second-order differentiation operator, was
convolved with the average signal to obtain a Walsh-transformed

EEG Amplitude

SSEP Amplitude
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Time (ms)
Average of 10 raw trials B
-0.6
B 3

SSEP Amplitude
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Filtered signal from 10 trials D
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FIG.3. Y,(n). The 10 components of the 10 trials
recorded (X; (n)) from the Cz-F; channel and
decomposed using AMUSE algorithm. The x-axis
represents the sampling time intervals, and the
y-axis represents the amplitude of these
components.

signal whose peak location is found to determine the peak locations
of the SSEP (at least for 70% of the cases where noise was not

preponderant). The magnitude of each of the points as a function
of time of this Walsh-transformed signal was defined by performing
the following convolution:

20 40 60 80
Time (ms)
Low frequency components

100

20 40 60 80
Time (ms)
Average signal from 200 trials

100

W =

(W% * Xﬁnal) )

E

FIG. 4. Significance of removing the
low-frequency components: A,
Average of raw signals from 10 trials.
B, Noise components estimated from
the 10 trials in Figure 3. Average of
raw signals from 200 trials (C) and
signal obtained after filtering signal in
A (D), showing the possible location
of the SSEP response. The x-axis
represents the time in seconds.
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4 107 1x10'3 FIG. 5. Application of Walsh
transform to identify the position of
= the SSEP: A, Left column displays the
§o 2 0.5 signal obtained using conventional
5§F averaging. The plot on the top left
‘g«; 0 0 shows the given average signal
&) obta'lned from 200 trials, and the '
== possible location of evoked potential
& -2 =03 response using the Walsh operation is
= shown below it. B, Right column
-4 -1 displays the signal obtained using the
0 = “T(?me (mg) 80 9 <0 ‘}Igme (mg? 80 proposed algorithm, and the detected
location of evoked potential response
Given signal using 200 trials and Algorithm signal using 10 trials and obtained using the Walsh operation is
A its corresponding Walsh transform B its corresponding Walsh transform shown below it.
where w; = [1 —1 —1 1] isthe Walsh kernel, which is func-  automatically, the next maximum point with opposite polarity
tionally similar to the second-order derivative and the center point defines the second peak.
difference [1 —2 1], and where the symbol “*” represents the con- Figure 5 shows the process as it applies for subject 2, and as
volution operation. The peaks of W are obtained to localize the two can be seen, the method effectively filters the noise and highlights
peaks of the SSEP response corresponding to P37 and N45 for the the evoked response with just 10 trials. The figure compares the time
tibial nerve. The Walsh maximum always corresponds to either P37 occurrence of Walsh-transformed peaks detected on the given aver-
or N45 that is verified from the sign of the amplitude of the signal at age signal in Figure SA with that from the signal obtained from
the detected time instance. Once the maximum peak is obtained 10 trials using the proposed algorithm in Figure 5B. The algorithm

TABLE 1. Result Analysis of the Algorithm Implementation in Detecting the SSEP Locations for 16 Subjects

C;-C4 Peak Latencies C,-Fz Peak Latencies Difference Between Clinical and
(Millisecond) (Millisecond) Algorithm Latencies (Millisecond)
Subject No. Clinical Algorithm Clinical Algorithm C;3-Cy Cz-Fz
Number Trials P37 N45 P37 N45 P37 N45 P37 N45 P37 N45 P37 N45
1 196 35.0 45.0 31.4 38.4 43.0 58.0 46.9 58.6 3.6 6.6 3.9 0.6
2 100 38.0 50.0 45.8 57.2 30.0 40.0 38.8 46.2 7.8 7.2 8.8 6.2
3 34 45.0 57.0 45.0 55.8 47.0 56.0 39.2 46.2 0.0 1.2 7.8 9.8
4 102 45.0 57.0 45.0 56.2 35.0 47.0 36.6 46.8 0.0 0.8 1.6 0.2
5 200 42.0 53.0 38.4 49.2 44.2 52.0 44.2 51.1 3.6 3.8 0.0 0.9
6 227 43.4 51.7 38.8 50.3 442 52.0 41.1 52.7 4.6 1.4 3.1 0.7
7 230 40.4 47.6 36.7 49.7 40.6 48.7 48.0 61.4 3.7 2.1 7.4 12.7
8 237 51.4 60.3 452 52.0 53.1 60.0 43.4 50.2 6.2 8.3 9.7 9.8
9 221 42.1 50.3 46.1 53.0 43.2 51.5 49.1 58.0 4.0 2.7 5.9 6.5
10 229 43.7 50.4 48.8 54.8 46.4 51.8 41.6 51.4 5.1 4.4 4.8 0.4
11 214 45.0 553 50.9 58.4 46.4 56.0 52.2 67.3 5.9 3.1 5.8 11.3
12 236 36.6 40.9 36.4 48.0 40.4 479 46.4 58.0 0.2 7.1 6.0 10.1
13 234 38.7 49.0 40.6 47.5 48.1 56.0 46.1 533 1.9 1.5 2.0 2.7
14 228 41.7 48.2 50.2 57.3 423 53.4 44.2 51.3 8.5 9.1 1.9 2.1
15 225 40.9 47.9 419 48.8 41.2 50.0 44.1 51.1 1.0 0.9 2.9 1.1
16 225 35.0 40.0 37.3 444 35.0 56.8 51.7 58.8 2.3 4.4 16.7 2.0
Average 3.7 4.0 5.5 4.8
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TABLE 2. Algorithm Consistency Analysis on 3 Subjects (Numbers 17, 18, and 19) Recorded at Different Time Intervals During
AQ: 6 the Respective Surgeries

C;3-C,4 Peak Latencies (Millisecond)

Cz-Fz Peak Latencies (Millisecond)

Subject Time of Clinical Algorithm Clinical Algorithm
Number Recording P37 N45 P37 N45 P37 N45 P37 N45
17 10:24 am 40.6 50.3 433 47.5 40.0 49.5 38.1 45.2
11:01 am 41.2 60.0 40.5 47.5 41.0 60.0 40.5 48.3
11:30 am 40.1 56.4 46.7 533 40.7 49.2 39.2 55.8
11:56 am 37.5 60.0 40.0 45.5 40.6 48.9 38.8 46.2
12:22 pm 40.7 47.1 39.1 45.6 40.3 49.3 38.8 45.2
18 8:45 am 51.4 58.4 49.8 59.2 50.3 58.1 45.5 533
9:49 am 51.5 61.0 553 63.0 50.9 51.2 48.4 56.1
10:13 am 51.7 60.0 472 58.1 50.6 59.0 52.0 58.9
10:24 am 52.5 61.0 55.0 62.5 50.3 59.0 45.0 52.5
10:32 am 51.7 60.3 51.3 56.7 50.3 58.4 54.5 61.2
19 4:00 pm 40.6 48.7 49.8 57.8 41.8 48.4 394 46.6
5:00 pm 41.5 50.1 45.0 52.0 42.8 46.5 40.8 47.5
5:57 pm 41.5 49.8 459 534 41.7 50.6 38.8 459
% Interset Variation From the First Recording Set Per Subject
Difference Between Clinical and
C3-Cy Cz-Fy Algorithm Latencies (Millisecond)
Subject Clinical Algorithm Clinical Algorithm C;-Cy Cy-Fy
Number P37 N45 P37 N45 P37 N45 P37 N45 P37 N45 P37 N45
17 — — — — — — — 2.7 2.8 1.9 4.3
1.5% 19.3% 6.5% 0.0% 2.5% 21.2% 6.3% 6.9% 0.7 12.5 0.5 11.7
1.2% 12.1% 7.9% 12.2% 1.8% 0.6% 2.9% 23.5% 6.6 3.1 1.5 6.6
7.6% 19.3% 7.6% 4.2% 1.5% 1.2% 1.8% 2.2% 2.5 14.5 1.8 2.7
0.2% 6.4% 9.7% 4.0% 0.7% 0.4% 1.8% 0.0% 1.6 1.5 1.5 4.1
18 — — — — — — — — 1.6 0.8 4.8 4.8
0.2% 4.5% 11.0% 6.4% 1.2% 11.9% 6.4% 5.3% 3.8 2 2.5 4.9
0.6% 2.7% 52% 1.9% 0.6% 1.5% 14.3% 10.5% 4.5 1.9 1.4 0.1
2.1% 4.5% 10.4% 5.6% 0.0% 1.5% 1.1% 1.5% 2.5 1.5 53 6.5
0.6% 3.3% 3.0% 4.2% 0.0% 0.5% 19.8% 14.8% 0.4 3.6 4.2 2.8
19 — — — — — — — — 9.2 9.1 2.4 1.8
2.2% 2.9% 9.6% 10.0% 2.4% 3.9% 3.6% 1.9% 3.5 1.9 2 1
0.0% 0.6% 1.8% 2.4% 2.6% 8.5% 5.1% 3.4% 44 3.6 2.9 4.7
Average 2.7 4.4 2.5 4.9

For the results to be consistent, the peak latencies should be within 10% of the first peak (baseline value) throughout the surgery in at least one electrode as highlighted.

was successfully implemented on 20 subjects ensuring the repeat-
ability of the algorithm.

RESULTS AND DISCUSSIONS
The details on the trials and SSEP locations of the 20 subjects

1 - 14] included in the study are summarized in Tables 1-4. For each of the

first 16 subjects, Table 1 provides the SSEP response locations for
the two bipolar recording channels obtained clinically and are con-
trasted to those locations determined by the proposed algorithm. It
includes the error (difference) in milliseconds of the estimated SSEP
location with respect to the corresponding actual location as pro-
vided by the clinicians. For 14 of these 16 subjects, the location
determined by the proposed algorithm relied solely on the first 10
trials or recorded signals. For the remaining 2 subjects, it was noted
that 2 of the first 10 trials were corrupted and were replaced by the

successively recorded signals to constitute the required 10 trials, for
consistency purposes.

With the initial findings in using these 16 subjects, 4 more
subjects were added to the study to assess consistency in detecting
the baseline peak latencies. To prove the plausibility of an SSEP
monitoring system, the system should show consistency at different
times in a single surgical procedure. Four such cases were then
obtained and analyzed for at least one consistent peak throughout the
procedure. The highlighted entries show the consistency of the
peaks, that is, within =10% of the first peak latency (baseline value)
as detected by the algorithm using 10 trials. Tables 2 and 3 show
time latencies for the 4 surgeries, and Table 4 provides the peak-
to-peak amplitudes for the subjects in Tables 2 and 3. It can be
observed that for the channels in which the time latencies were found
consistent, the amplitudes were found to be consistent within 50%
variation from the respective baseline values.

Copyright © 2012 by the American Clinical Neurophysiology Society
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TABLE 3. Algorithm Consistency Analysis for Subject 20 at Different Instances During a 6-Hour Surgical Procedure

C Z'FZ Peak
Latencies (Millisecond)

% Interset Variation From the
First Recording Set Per Subject

Difference Between Clinical and

Subject  Time of Clinical Algorithm Clinical Algorithm Algorithm Latencies (Millisecond)

Number Recording P37 N45 P37 N45 P37 N45 P37 N45 P37 N45
20 9:43 AM 49.8 58.9 45.9 54.2 — — — — 39 4.7
10:05 am 50.3 58.1 47.7 55.6 1.0% 1.4% 3.9% 2.6% 2.6 2.5

10:30 Am 50.1 59.0 50.3 57.0 0.6% 0.2% 9.6% 52% 0.2 2.0

10:55 am 50.1 58.1 46.7 59.2 0.6% 1.4% 1.7% 9.2% 3.4 1.1

11:28 am 48.4 573 45.8 58.1 2.8% 2.7% 0.2% 7.2% 2.6 0.8

11:50 Am 47.9 56.8 44.8 52.8 3.8% 3.6% 2.4% 2.6% 3.1 4.0

12:20 pm 47.1 56.7 41.9 48.0 5.4% 3.7% 8.7% 11.4% 52 8.7

12:45 pm 47.0 56.0 45.9 58.8 5.6% 4.9% 0.0% 8.5% 1.1 2.8

1:05 pm 47.3 55.6 41.4 48.4 5.0% 5.6% 9.8% 10.7% 59 7.2

1:35 pm 45.6 55.1 44.7 51.6 8.4% 6.5% 2.6% 4.8% 0.9 3.5

1:55 pm 46.7 55.6 46.2 59.8 6.2% 5.6% 0.7% 10.3% 0.5 4.2

2:20 pm 45.7 55.2 473 54.2 8.2% 6.3% 3.1% 0.0% 1.6 1.0

2:45 pm 47.1 55.7 49.4 57.3 5.4% 5.4% 7.6% 5.7% 2.3 1.6

3:04 pm 46.2 55.4 45.0 51.9 7.2% 5.9% 2.0% 4.2% 1.2 35

3:28 pm 46.0 54.8 41.6 60.8 7.6% 7.0% 9.4% 12.2% 4.4 6.0

3:45 pm 459 55.0 46.6 542 7.8% 6.6% 1.5% 0.0% 0.7 0.8

Average 2.5 3.4

Only the Cz-F7 recordings were clinically provided for analysis.

TABLE 4. Amplitude Consistency for Subjects 17 Through 20
Corresponding to the Peak Latencies Shown in Tables 2 and 3

Subject Time of P-P P-P Amplitude
Number Recording Amplitude (nV) Error (%)
17 10:24 am 0.66 —
11:01 am 0.57 13
11:30 am 0.65
11:56 Am 0.93 41
12:22 pm 0.61 9
18 8:45 aM 0.53 —
9:49 AM 0.28 47
10:13 am 0.46 12
10:24 am 0.50 5
10:32 am 0.63 19
19 4:00 pm 0.51 —
5:00 pm 0.73 43
5:57 pm 0.52 2
20 9:43 AM 0.91 —
10:05 am 0.86 5
10:30 am 0.70 23
10:55 am 0.62 32
11:28 am 0.48 47
11:50 am 0.65 28
12:20 pm 0.85 6
12:45 pm 0.82 10
1:05 pm 1.00 10
1:35 pm 0.74 18
1:55 pm 0.51 44
2:20 pM 0.66 27
2:45 pm 0.70 23
3:04 pm 0.87 4
3:28 pm 0.92 2
3:45 pm 0.74 18

For subjects 17, 19, and 20, the amplitudes are from Cz-F; channel and for subject
18 from the C5-C4 channel.

Copyright © 2012 by the American Clinical Neurophysiology Society

It can be seen from Tables 1-4 and Figures 2 and 6 that the
algorithm output from 10 trials using the proposed algorithm closely
mimics (within a 10% time latency deviation and within 50% peak-
to-peak amplitude deviation) the average signal obtained clinically
using a multitude of trials, and the response could be clearly visu-
alized. This algorithm is simple enough to be implemented in the
recording device itself.

[F6]

Present day recording systems, such as CASCADE Intraoper- AQ : 3

ative Monitoring rely on amplitude threshold or area under the curve
schemes for the SSEP peak detection. A well-defined criterion needs
to be applied to appropriately remove the noisy trial recordings, and
a much better response can be obtained while still contending with
a limited number of trials. Another observation is that the individual
trials show a typical frequency pattern wherein the average power
density in the frequency range of 0 Hz to 50 Hz is at least 10 dB/Hz
greater than that in the frequency range of 100 to 200 Hz. This
information can be used to implement automated noisy signal elim-
ination and to enhance the performance of the system. The algorithm
implemented for all the subjects achieved very promising SSEP
detection results with an accurate detection in at least one bipolar
recording channel.

With all these results, a retrospective on the merits of the
proposed algorithm helps us to

e identify and get rid of the corrupted SSEP signal components,

e determine the time (latency) variations in different SSEP trials,
and

e justify our assumption of independent SSEP trial signals.

CONCLUSION

The eigen-decomposition process helped reduce significantly
the number of trials, a clinical outcome that is highly desirable, and
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allowed for a thorough assessment that delineated signal trend from
noise. The use of the Walsh operator proved highly effective in
detecting the evoked potential peak latencies using an optimal
number of trials (in this study, 10). The algorithm no longer depends
on the signal morphology and automates the process from selection
of a minimum number of trials based on their frequency response,
applying the algorithm on them and using the unique Walsh
transformation method to automatically indicate the SSEP response
and the peak latencies. The results from the automated detection
scheme and interpretation of the characteristic peak using the Walsh
operation coincide with the opinions of the experts.

For all of the cases, the noted average misalignment between
the clinical peak latencies and those obtained using the proposed
algorithm, including both bipolar channels, was 3.38 and 4.3
milliseconds for P37 and N45, respectively. It should be stated that
when such misalignments happen during a surgical procedure, even
when a maximum number of trials is used, clinicians select one of
the two channels that is viewed as more representative of the SSEP
morphology.

The Walsh operator proved highly effective in identifying the
SSEP occurrence even when the morphology of the signal is quite
different from that obtained at a much higher number of trials. In the
automated process, a thorough analysis yielded a better mathematical
assessment of the noise signal involved in evoked potentials.
Because there are no intensive mathematical operations involved
in the algorithm, it can be feasibly realized in hardware form and/or
integrated in the present systems, proving a very valuable tool in
intraoperative neurophysiological monitoring.
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