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Linear Graph Modeling: State Equation Formulation1

1 State Variable System Representation

Linear graph system models provide a graphical representation of a system model and the inter-
connection of its elements. A set of differential and algebraic equations which completely define
the system may be derived directly from the linear graph model. In this handout we develop a
procedure for deriving a specific set of differential equations, known as the state equations, from the
system linear graph. These equations are expressed in terms of a set of state variables and provide
a basis for determining the system response to external inputs.

1.1 State Equation Based Modeling Procedure

The complete system model for a linear time-invariant system consists of (i) a set of n state
equations, defined in terms of the matrices A and B, and (ii) a set of output equations that relate
any output variables of interest to the state variables and inputs, and expressed in terms of the C
and D matrices. The task of modeling the system is to derive the elements of the matrices, and to
write the system model in the form:

ẋ = Ax + Bu (1)
y = Cx + Du. (2)

The matrices A and B are properties of the system and are determined by the system structure
and elements. The output equation matrices C and D are determined by the particular choice of
output variables.

The overall modeling procedure developed in this chapter is based on the following steps:

1. Determination of the system order n and selection of a set of state variables from the linear
graph system representation.

2. Generation of a set of state equations and the system A and B matrices using a well defined
methodology. This step is also based on the linear graph system description.

3. Determination of a suitable set of output equations and derivation of the appropriate C and
D matrices.

2 Linear Graphs and System Structural Properties

2.1 Linear Graph Properties

The derivation of the state equations in this chapter is based on the use of the system linear graph
model. A linear graph with B branches represents B system elements, each with a known elemental
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Figure 1: Examples of (a) a connected system graph, and (b) an unconnected system graph.

equation or source function. The graph also represents the structure of the element interconnections,
in terms of the continuity and compatibility constraint equations. In the following sections we use
the properties of linear graphs to (i) derive the system structural constraints, (ii) define the set
of state variables, and (iii) provide a systematic technique for deriving the system state equations
[4–8]. The following definitions are introduced:

System Graph: The oriented linear graph model of a system.

Connected Graph A system graph in which a path exists between all pairs of nodes. A path is
said to exist if the node pair is joined by a series of branches.

Figure 1 shows a connected graph along with a system graph which is not connected. System
graphs for systems consisting of one-port elements are usually connected graphs, while systems
that the include two-port elements introduced in a separate handout may not generate connected
graphs. In this chapter we assume that all system graphs are connected graphs.

Consider a system represented by a connected linear graph with B branches of which S are
active source elements and the remaining B − S branches represent passive one-port elements.
Each branch has an across-variable and a through-variable, giving a total of 2B variables within
the system. Of these S are prescribed source variables, so that there are 2B − S unknowns in the
system; we therefore require a total of 2B − S independent equations in these unknowns in order
determine all system variables.

There are B − S elemental equations relating the across and through-variables for the passive
branches. In addition the system structure, defined by the compatibility and continuity conditions,
may be used to generate an additional B linearly independent constraint equations. The total set
of 2B − S elemental and structural equations may be algebraically manipulated to produce the
state and output equations. The following example illustrates these relationships for an electrical
system model:

Example

The electrical system shown in Fig. 2 consists of a capacitor C, inductor L, and a resistor
R connected as shown and driven by a voltage source Vs(t). Its linear graph contains
four branches each of which has an across-variable and a through-variable, giving a total
of eight system variables of which seven (iC , vC , iL, vL, iR, vR, and is) are unknown.
Each of the three passive elements is described by an elemental equation:

dvC

dt
=

1
C

iC (3)
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Figure 2: An electrical system and its linear graph

diL
dt

=
1
L

vL (4)

iR =
1
R

vR (5)

giving three equations in six unknowns. The system structure defined by the linear
graph imposes additional constraints; the three variables on the right-hand side may be
eliminated by using (i) a continuity equation

iC = iR − iL (6)

to define iC , and (ii) two compatibility equations

vL = vC (7)
vR = Vs − vC (8)

to define vL and vR. Substitution of Eqs. (iv) through (vi) into Eqns. (i) through (iii)
and some algebraic manipulation, produces a pair of coupled differential equations:

dvC

dt
= − 1

RC
vC +

1
C

iL +
1

RC
Vs (9)

diL
dt

=
1
L

vC (10)

which are a pair of coupled first-order differential equations in the form of Eqs. (??).
These are a set of two state equations for this system in terms of state variables vC and
iL. Eqs. (vii) and (viii) allow the system A and B matrices to be written:

A =

[
−1/RC −1/C

1/L 0

]
, B =

[
1/RC

0

]
. (11)

Equations (i) through (vi) may be used to generate output equations in the form of
Eqs. (??). For example, if the variables iR, vR, vL, and iC are of interest:

iR = − 1
R

vC +
1
R

Vs (12)

vR = −vC + Vs (13)
vL = vC (14)

iC = − 1
R

vC − iL +
1
R

Vs (15)
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Figure 3: A system graph with four nodes and five branches, and several trees derived from the
graph.

so that if the output vector is defined to be y = [iR, vR, vL, iC ]T , the C and D matrices
are:

C =




−1/R 0
−1 0
1 0

−1/R −1


 , D =




1/R
1
0

1/R


 . (16)

2.2 Graph Trees

The procedure for generating the system equations is based on relationships defined by a graph
tree. A tree is defined to be a subgraph of the system graph which contains:

(1) all of the graph nodes, and

(2) the maximum number of branches of the system graph that be included without creating any
closed loops.

Branches of the system graph that are not included in a tree are known as links. In general several
different graph trees may be formed from any linear graph, as shown in Fig. 3. The number of
branches in a tree BT , and the number of tree links BL, depends on the number of nodes N and
the number of branches B in the graph. For a connected graph, the first branch entered into a
tree connects two nodes, while all of the subsequent branches connect one additional node until the
maximum number (N − 1) of branches is entered without forming any closed loops. The number
of tree links is simply the total number of branches less those in the graph tree:

BT = N − 1 (17)
BL = B −BT = B −N + 1 (18)

Each tree link is a system graph branch that forms a closed loop when added to a graph tree.

4



1

2

3

4

5

6

Contours used to
generate continuity
equations

Figure 4: A system graph tree, with the links shown as dotted lines, and a set of contours used to
generate continuity equations.

2.3 System Graph Structural Constraints

A graph tree may be used to generate a set of B linearly independent compatibility and continuity
equations that are particularly useful in system equation development. We define the following
classes of variables based on a given tree:

Primary variables: The system primary variables are the across-variables on tree branches, and
the through-variables on the tree links.

Secondary variables: Conversely, the secondary variables are the through-variables on the tree
branches, and the across-variables on tree links.

The compatibility constraint equations relate across-variables around any closed loop in the system
graph. Consider the tree of a linear graph with N = 5 and B = 6 shown in Fig. 4. There are
N − 1 = 4 branches and B −N + 1 = 2 links in any tree of this graph. Each time a link is placed
in the tree a closed loop is formed, and a compatibility equation may be written for the loop. For
the tree shown in Fig. 4 the two compatibility equations generated by replacing the links are:

v2 = v1 − v3

v4 = v3 − v5 − v6.

In this tree structure v2 and v4 are secondary variables; each of the above compatibility equation
specifies one of these secondary variables in terms of the primary across-variables. In general, each
time a loop is formed by placing a link in a tree, the across-variable on that link may be written
in terms of the across-variables on the tree branches; in other words the resulting compatibility
equation contains only one secondary variable.

The continuity equations represent a set of constraints on through-variables passing through
any closed contour on the graph. If a closed contour is drawn on a tree such that it cuts only one
tree branch, then the through-variable on that branch (a secondary variable), may be expressed
in terms of the through-variables on tree links, which are primary variables. In Fig. 4 a set of
four contours has been drawn so that each cuts a single tree branch. For the contours shown the
following continuity equations may be written:

f1 = −f2

f3 = f2 − f4

f5 = f4

f6 = f4.
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System Linear Graph:
      B     branches
      N     nodes

     N-1  tree
   BRANCHES

    B-N-1   tree
        LINKS

  N-1  primary
across-variables

 N-1 secondary
through-variables

 B-N+1  primary
through-variables

B-N+1 secondary
across-variables

Totals:   B   primary variables
              B  secondary variables 

Figure 5: System graph variables.

The secondary through-variables on the tree branches f1, f3, f5, and f6 are expressed directly in
terms of the through-variables on the links (f2 and f4). This particular set of contours has generated
a set of continuity equations that express the secondary through-variables in terms of the primary
through-variables.

In summary, each of the B−N+1 tree links generates a compatibility equation involving a single
secondary across-variable, and each of the N −1 tree branches generates a continuity equation that
expresses its secondary through-variable in terms of the link primary through-variables. The tree
therefore generates a set of B constraint equations that can be used in the equation formulation
method to eliminate secondary variables from elemental equations. Figure 5 shows the division of
the system variables into primary and secondary variables using a graph tree.

2.4 The System Normal Tree

We may form a special graph tree, known as a normal tree, and use it to define (i) the system
primary and secondary variables, (ii) the system order n, (iii) the state variables, and (iv) a set of
independent compatibility and continuity equations. A normal tree for a connected system graph
is formed by the following steps:

Step 1: Draw the system graph nodes.

Step 2: Include all across-variable sources as tree branches. (If all across-variable sources can-
not be included in the normal tree, then the across-variable sources must form a loop and
compatibility is violated.)

Step 3: Include as many as possible of the A-type energy storage elements as tree branches. (Any
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A-type element which cannot be included in the normal tree is a dependent energy storage
element as described below.)

Step 4: Attempt to complete the tree, which must contain N − 1 branches, by including as many
as possible D-type dissipative elements in the tree. It may not be possible to include all
D-type elements.

Step 5: If the tree is not complete after the addition of D-type elements, add the minimum num-
ber of T-type energy storage elements required to complete the tree. (Any T-type element
included in the tree at this point is a dependent energy storage element.)

Step 6: Examine the tree to determine if any through-variable sources are required to complete
the tree. If any through-variable source can be inserted into the normal tree, then that source
cannot be independently specified and continuity is violated.

The normal tree effectively defines a set of independent energy storage elements, that is the set
of elements whose stored energy may be independently set and controlled. If in step (3) above,
an A-type element cannot be included in a normal tree it implies that a loop has been formed
from a combination of across-variable sources and A-type elements. The compatibility equation
for that loop specifies that the across-variable on the A-type element link is dependent on that
of across-variables on other A-type elements and sources. This is illustrated in Fig. 6a, where an
electrical system and a normal tree are shown. It is not possible to include both capacitors in the
normal tree; if capacitor C2 is placed in the tree the resulting compatibility equation is:

vC2 = Vs − vC1 .

The energy storage variables (voltage) on the two capacitors are therefore linearly dependent. In
this case either C1 or C2, but not both can be included in the normal tree.

Similarly, in step (5) any T-type element that is a branch of a normal tree is a dependent
energy storage element. When the tree is complete the resulting continuity equation generated by
a contour cutting this branch expresses its through-variable in terms of link primary variables. The
continuity equation for that branch therefore specifies a linear dependence between its through-
variable and other T-type or source through-variables. This is illustrated for a mechanical system
in Fig. 6b where a spring K is used to transmit energy between a force source Fs(t) and a mass m.
The spring can be inserted into the normal tree. Continuity applied to the spring element requires
that:

fk = Fs(t),

or in other words the energy stored in the spring is defined entirely by the force source Fs(t). The
spring K is a dependent energy storage element.

Dependent energy storage elements do not generate independent state equations. From the
normal tree we make the following definitions:

(a) The system primary variables are the across-variables on the normal tree branches and the
through-variables on its links.

(b) The system secondary variables are the through-variables on the normal tree branches and the
across-variables on its links.

(c) The system order is the number of independent energy storage elements in the system, that
is the sum of the number of A-type elements in the normal tree branches and the number of
T-type elements among the links.
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Figure 6: Two systems with dependent energy storage elements and their normal trees; (a) an
electrical system with dependent capacitors, and (b) a mechanical system with a dependent spring.

(d) The n state variables are selected as the energy storage variables among the primary variables,
that is the across-variables on A-type elements in the normal tree branches, and the through-
variables on T-type elements in the links.

Figure 7 shows two systems along with their system graphs and normal trees. The mechanical
system in Fig. 7a has four energy storage elements, the normal tree indicates that they are all
independent, and the system order is four. The normal tree defines the state variables to be the
velocities (vm1 and vm2) of the two mass elements, and the forces (fK1 and fK2) on the two springs.
The electrical system in Fig. 7b contains five energy storage elements, but the normal tree indicates
that capacitors C2 and C3 are dependent. The order of this system is four, and the state variables
for the normal tree shown are vC1 , vC2 , iL1 , and iL2 .

2.4.1 Special Cases in which the Procedure Results in “Excess” State Variables

Two special cases in which the procedure outlined above 2 results in a formulation in which the
number of state variables exceeds the number of independent energy storage elements are:

(1) Systems which contain two or more A-type elements in direct series connection.

(2) Systems which contain two or more T-type elements in direct parallel connection.

Illustration of these two special cases is provided in Fig. 8. In the two cases the number of state
2In these special cases, the procedure results in a state variable formulation which is uncontrollable, that is the

across-variables on each of the direct series A-type elements and the through-variable on each of the direct parallel
T-type elements may not be independently specified and controlled [2,3].
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variables identified by forming a normal tree exceeds the number of independent energy storage
elements. The difficulty represented by the two special cases described may be avoided by combining
all A-type energy storage elements directly in series into a single equivalent A-type element, and all
T-type elements directly in parallel into a single equivalent element. The general expressions for the
equivalent elements are indicated in Fig. 9. When the elements are combined and the equivalent
system linear graph is used to generate the normal tree, the number of state variables in the
combined system is equal to the number of independent energy storage elements in the combined
system. Since controllable representations of systems are desired, all A-type elements directly in
series and all T-type elements directly in parallel should be combined before determining the system
normal tree.

3 State Equation Formulation

The system normal tree may be used to generate a set of state equations in terms of the energy
storage variables on the n independent energy storage elements. In a system graph with B branches,
of which S represent ideal source elements, there are 2(B − S) system variables associated with
the passive branches; one across and one through-variable on each branch. On each branch one of
these variables is a primary variable while the other is a secondary variable. The desired n state
variables are a subset of the B − S primary variables. There are (B − S) elemental equations
relating these primary and secondary variables for the passive branches; the normal tree is used to
generate B−S continuity and compatibility equations that can be used to eliminate the secondary
variables associated with the passive elements.

The state equations are formulated in two steps:

(1) Derivation of a set of B − S differential and algebraic equations in terms of primary variables
only by starting with the passive elemental equations, and using B − S compatibility and
continuity equations to eliminate all secondary variables.

(2) Algebraic manipulation of this set of B − S equations to produce n differential equations in
the n state variables and the S specified source variables.

Since sources have one variable independently specified, only B − S elemental equations for the
passive elements need to be written. It is convenient to divide the number of sources S into across-
variable sources SA and through-variable sources ST , so that S = SA+ST . The secondary variables
may be eliminated from these equations by using a total of B − S independent compatibility and
continuity equations formed from (i) N − 1 − SA continuity equations, and (ii) B − N + 1 − ST

compatibility equations. (The secondary variables associated with sources do not enter directly
into the state equation formulation, therefore SA continuity and ST compatibility equations do not
need to be considered.)

A systematic procedure for deriving the n state equations is given below:

Step 1: Generate a normal tree from the connected system graph.

Step 2: From the branches and links of the normal tree identify the primary and secondary vari-
ables. Define the system order n as the number of independent energy storage elements.
Select the state variables as across-variables on A-type energy storage elements in the normal
tree branches, and through-variables on T-type energy storage elements in the links.

Step 3: Write the B − S elemental equations for the passive (non-source) elements explicitly in
terms of their primary variables, that is with the primary variable on the left-hand side of the
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equations. Note that the derivatives of the n state variables should appear on the left-hand
side of the elemental equations for all independent energy storage elements.

Step 4: Write N−1−SA independent continuity equations involving only one secondary through-
variable (a tree branch through-variable) by applying the continuity condition to a set of
N − 1 − SA contours that each “cut” only one passive branch of the normal tree. Express
each equation explicitly in terms of the secondary through-variable.

Step 5: Write B −N + 1− ST independent compatibility equations involving only one secondary
across-variable (a tree link across-variable) by placing each of the passive links back in the
tree to form a loop and writing the resulting compatibility equation. Express each equation
explicitly in terms of the secondary across variable.

Step 6: Use the N − 1− SA continuity and the B −N + 1− ST compatibility equations (a total
of B − S equations) to eliminate all secondary variables from the B − S elemental equations
by direct substitution.

Step 7: Reduce the resulting B−S equations in the primary variables to n state equations in the
n state variables and the S source variables.

Step 8: Write the resulting state equations in the standard form.

The application of this procedure is illustrated in the examples that follow, which show that after
the normal tree is formed the subsequent steps in the procedure may be completed in a straight
forward manner.

Example

A set of state equations describing the mechanical system shown in Fig. 10 may be
derived directly from the system graph. The system graph has three branches (B = 3),
two nodes (N = 2), and a single force source (S = 1). The normal tree therefore
contains N − 1 = 1 branch. The rules for constructing the tree specify that the branch
should contain the mass element m. The spring element K and the source element F
therefore form the tree links. From the normal tree in Fig. 10c:

Primary variables: Fs(t), vm, FK

Secondary variables: vs, Fm, vK

System order: 2
State variables: vm, FK

1. The B−S = 2 elemental equations may be written in terms of the primary variables
as:

primary variables





dvm

dt
=

1
m

Fm

dFK

dt
= KvK





secondary variables (19)

2. The single continuity equation (N − 1− SA = 2− 1− 0 = 1) required to eliminate
Fm may be written using the closed contour shown on Fig. 10c:

Fm = Fs − FK . (20)
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3. The single compatibility equation (B−N +1−ST = 3−2+1−1 = 1) required to
eliminate the secondary variable vK may be found by placing the spring element
in the normal tree, Fig. 10c, and writing the loop equation:

vK = vm. (21)

4. The secondary variables Fm and vK may be eliminated by substituting Eqs. (ii)
and (iii) into the the elemental equations to yield:

dvm

dt
=

1
m

(Fs − FK)

dFK

dt
= kvm (22)

Equations (iv) express the derivatives of the state variables directly in terms of the
state variables and the input. They are the desired pair of state equations.

5. The pair of state equations may be written in the standard matrix notation as:
[

˙vm
˙FK

]
=

[
0 −1/m
K 0

] [
vm

FK

]
+

[
1/m

0

]
Fs. (23)

If the output variable of interest is the velocity of the mass, then an output equation
may be written in matrix form:

y =
[

1 0
] [

vm

FK

]
+ [0]Fs (24)

Example

A mechanical system and its oriented linear graph are shown in Fig. 11. In the graph two
T-type energy storage elements are connected directly in parallel; therefore to eliminate
the generation of an excess state variable, the two spring elements are combined into one
equivalent spring with an effective spring constant K = K1 +K2. The equivalent linear
graph is shown in Fig. 11b, with the system normal tree in Fig. 11c with N − 1 = 1
branch containing the mass m. From the normal tree:

Primary variables: Fs(t), vm, FK , FB

Secondary variables: vs, Fm, vK , vB

System order: 2
State variables: vm, FK

1. The B−S = 3 elemental equations written in terms of the primary variables are:

primary variables





dvm

dt
=

1
m

Fm

dFK

dt
= KvK

FB = BvB





secondary variables (25)
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2. The single (N−1−SA = 1) continuity equation required to eliminate the secondary
through variable, Fm, is found by drawing a closed contour that cuts the mass tree
branch as shown in Fig. 11:

Fm = Fs − FB − FK (26)

3. The B−N+1−ST = 2 compatibility equations required to eliminate the secondary
variables vK and vB are written by considering the loops formed by adding the
two links back into the tree shown in Fig. 11c:

vK = vm (27)
vB = vm (28)

4. All secondary variables may be eliminated from the elemental equations by direct
substitution of the three continuity and compatibility equations to yield:

dvm

dt
=

1
m

(Fs − FB − FK) (29)

dFK

dt
= Kvm (30)

FB = Bvm (31)

5. These B−S = 3 equations in terms of primary variables may be combined to give
the two desired state equations:

dvm

dt
=

1
m

(−Bvm − FK + Fs) (32)

dFK

dt
= Kvm (33)

(34)

6. Finally the pair of state equations may be written in the standard matrix form:
[

˙vm
˙FK

]
=

[
−B/m −1/m

K 0

] [
vm

FK

]
+

[
1/m

0

]
Fs(t) (35)

Example

A mechanical rotational system has the linear graph shown in Fig. 12b. The linear
graph contains four elements (B = 4) and three nodes (N = 3). The normal tree,
shown in Fig. 12c, contains the angular velocity source and the rotary inertia. From
the normal tree:

Primary variables: Ωs(t), ΩJ , TB1 , TB2

Secondary variables: Ts, TJ , ΩB1 , ΩB2

System order: 1
State variable: ΩJ
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1. The B − S = 4 − 1 = 3 elemental equations written in terms of the primary
variables are:

primary variables





dΩJ

dt
=

1
J

TJ

TB1 = B1ΩB1

TB2 = B2ΩB2





secondary variables (36)

2. The secondary variable TJ may be eliminated by the single (N − 1 − SA = 1)
continuity equation found from the closed contour shown in Fig. 12c:

TJ = TB2 − TB1 . (37)

3. The two secondary variables ΩB1 and ΩB2 may be eliminated from the B − N +
1− ST = 2 compatibility equations formed by placing the two links in the normal
tree:

ΩB1 = Ωs − ΩJ

ΩB2 = ΩJ . (38)

4. The secondary variables may be eliminated from the elemental equations (i) using
(ii) and (iii):

dΩJ

dt
=

1
J

(TB2 − TB1)

TB1 = B1ΩJ .

TB2 = B2 (Ωs − ΩJ) (39)

5. By combining the elemental equations in (iv) to eliminate TB1 and TB2 , the single
state equation may be written:

dΩJ

dt
=

1
J

[− (B1 + B2)ΩJ + B2Ωs] (40)

6. The state equation may be expressed in matrix form as:

[
Ω̇J

]
=

[
−(B1 + B2)

J

]
[ΩJ ] +

[
B2

J

]
[ΩS ] . (41)

7. If the flywheel angular velocity ΩJ is selected as the output variable, the output
equation in matrix form is:

ΩJ = [1] [ΩJ ] + [0] [ΩS ] . (42)
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Example

An electrical circuit is shown in Fig. 13a together with its oriented linear graph model
in Fig. 13b. For the model the number of nodes and branches are N = 4 and B = 4.
The normal tree, shown in Fig. 13c, has N − 1 = 3 branches which include, the voltage
source Vs, the capacitor C and the resistor R. The inductor branch L remains in the
tree links.

From the normal tree:

Primary variables: Vs(t), vC , vR, iL
Secondary variables: is, iC , iR, vL

System order: 2
State variables: vC , iL

The state equations may be derived in the following steps:

1. The B − S = 3 elemental equations written in terms of the primary variables:

primary variables





dvC

dt
=

1
C

iC

diL
dt

=
1
L

vL

vR = RiR





secondary variables (43)

2. The N − 1− SA = 2 continuity equations required to eliminate the two secondary
through variables, iC , and iR, are found by drawing a pair of closed contours that
cut only one normal tree branch, giving:

iC = iL (44)
iR = iL (45)

3. The B−N +1−ST = 1 compatibility equation to eliminate the secondary variable
vL is written by adding the inductor back into the tree and writing the equation:

vL = Vs − vR − vC (46)

4. The secondary variables may be eliminated from the right hand side of the el-
emental equations by direct substitution from the continuity and compatibility
equations to generate three equations in the primary variables:

dvC

dt
=

1
C

iL (47)

diL
dt

=
1
L

(Vs − vR − vC) (48)

vR = RiL (49)

5. The B − S = 3 equations in the primary variables may be combined to yield two
first-order differential equations in terms of the state and source variables:

dvC

dt
=

1
C

iL (50)

diL
dt

=
1
L

(−vC −RiL + Vs) (51)
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6. The pair of state equations may be written in the standard matrix form:
[

˙vC
˙iL

]
=

[
0 1/C

−1/L −R/L

] [
vC

iL

]
+

[
0

1/L

]
Vs(t) (52)

If the system variables vL, iC , and vc are defined to be output variables for this example,
a set of algebraic output equations may be formed in the state and input variables by
using the elemental, compatibility, and continuity equations. In particular:

vL = Vs − vR − vC

= Vs −RiL − vC (53)
iC = iL (54)
vC = vC (55)

The output equations y = Cx + Du become:



vL

iC
vC


 =



−1 −R
0 1
1 0




[
vC

iL

]
+




1
0
0


 Vs(t) (56)

Example

A fluid system is shown in Fig. 14 together with its linear graph.

The linear graph contains five elements (B = 5) with two energy storage elements and
one source (SA = 1). The graph contains four nodes (N = 4), thus N − 1 = 3 elements
must be placed in the normal tree. The order of placement of elements into the tree
is (i) the pressure source (an across variable source), (ii) the fluid capacitance C (an
A-type element), and (iii) the resistive element Rp. At this point the tree is complete,
and is as shown in Fig. 14c. The independent energy storage elements are then the fluid
capacitance C and the fluid inertance of the pipe Ip:

Primary variables: Ps(t), PC , PRp , QIp , QRf

Secondary variables: Qs, QC , iRp , PIp , PRf

System order: 2
State variables: PC , QIp

1. The B − S = 4 elemental equations are:

primary variables





dPC

dt
=

1
C

QC

dQIp

dt
=

1
Ip

PIp

PRp = RpQRp

QRf
=

1
Rf

PRf





secondary variables (57)
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2. The two secondary flow variables, QC and QRp may be expressed in terms of
primary variables using the N − 1 − SA = 2 continuity equations. Using the
contours shown in Fig. 14c:

QC = QIp −QRf

QRp = QIp (58)

3. The two secondary pressure variables PIp and PRp may be expressed in terms of
primary variables from the B−N +1−ST = 2 compatibility equations formed by
placing the links back into the tree:

PIp = Ps − PRp − PC

PRf
= PC (59)

4. The secondary variables in the elemental equations (i) may be eliminated by direct
substitution from the continuity and compatibility equations:

dPC

dt
=

1
C

(
QIp −QRf

)
(60)

dQIp

dt
=

1
Ip

(
Ps − PRp − PC

)
(61)

PRp = RpQIp (62)

QRf
=

1
Rf

PC (63)

5. Equations (vi) and (vii) may be used to eliminate PRp and QRf
from Eqs. (iv) and

(v) to yield two state equations:

dPC

dt
=

1
C

(
QIp −

1
Rf

Pc

)
(64)

dQIp

dt
=

1
Ip

(
Ps − PC −RpQIp

)
(65)

6. The pair of state equations may be written in the standard matrix form:
[

ṖC

Q̇Ip

]
=

[
−1/RfC 1/C
−1/Ip −Rp/Ip

] [
PC

QIp

]
+

[
0

1/Ip

]
Ps(t) (66)

Example

A thermal system model and its linear graph shown in Fig. 15. the graph consists of
four elements (B = 4) with one energy storage element (a thermal capacitance) and a
through-variable source (ST = 1), and three nodes N = 3.

The order of entry of elements into the normal tree is (i) the capacitance C, and (ii)
one of the two thermal resistances R1 or R2. It is arbitrary which one is chosen; in this
example we select R2 as a normal tree branch.

18



Primary variables: Qs(t), TC , qR1 , TR2

Secondary variables: Ts, qC , TR1 , qR2

System order: 1
State variable: TC

1. The B − S = 3 elemental equations are:

primary variables





dTC

dt
=

1
C

qC

TR2 = R2qR2

qR1 =
1

R1
TR1





secondary variables (67)

2. The secondary heat flow variables, qC and qR2 may be expressed in terms of primary
variables using the N − 1−SA = 2 continuity equations derived from the contours
shown in Fig. 15c:

qC = qR1

qR2 = qs − qR1 (68)

3. The secondary temperature variable TR1 may be expressed in terms of primary
variables from the B −N + 1− ST = 1 compatibility equations formed by placing
the link back into the tree:

TRI
= TR2 − TC (69)

4. Using the continuity (ii) and compatibility (iii) equations the secondary variables
may be eliminated from the elemental equations (i):

dTC

dt
=

1
C

qR1 (70)

TR2 = R2 (Qs − qR1) (71)

qR1 =
1

R1
(TR2 − TC) (72)

5. Equations (v) and (vi) may be used to eliminate all but state and source variables
from (iv). Combining (v) and (vi):

qR1 =
1

R1 + R2
(R2Qs − TC) (73)

and substituting into Eq. (iv):

dTC

dt
=

1
C (R1 + R2)

(R2Qs − TC) (74)

6. If temperature is selected as the output variable, the matrix form of the state and
output equations are:

[
ṪC

]
=

[ −1
C (R1 + R2)

]
TC +

[
R2

C (R1 + R2)

]
Qs(t) (75)

TC = [1]TC + [0]Qs(t) (76)
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4 Systems with Non-standard State Equations

4.1 Input Derivative Form

Occasionally system models generate a set of state and output equations that contain terms in
the derivative of the system inputs. In such cases, which generally result from models containing
dependent energy storage elements, the standard form of the state equations must be extended to
include these derivative terms:

ẋ = Ax + Bu + Eu̇ (77)
y = Cx + Du + Fu̇. (78)

The n× r matrix E and the m× r matrix F are introduced to include the input derivative terms
u̇(t).

Assume, for example, that a system contains a dependent T-type element L. The element is a
branch in the normal tree and its primary variable is the across-variable v. The elemental equation
is written with the derivative of the through-variable f on the right hand side:

v = L
df

dt
. (79)

If the continuity equation used to eliminate the secondary variable f contains any through-variable
source terms Fs(t), substitution into Eq. (79) generates a term involving the derivative of the input:

v = L
d

dt
(. . . + Fs + . . .) . (80)

This input derivative term remains throughout the subsequent algebraic manipulations that gen-
erate the state and output equations.

The most common situations that generate the extended form of the state equations are:

1. When a compatibility equation includes the across-variable on a dependent A-type element,
and an across-variable source term, or

2. When a continuity equation includes the through-variable on a dependent T-type element and
a through-variable source term.

Example

A “lead-lag” electrical circuit, used in control systems, is shown in Fig. 16 together with
its system graph and normal tree. Find a state equation describing the system and an
output equation for the current in the capacitor C1.

Solution: The system is first-order, and contains a dependent capacitor. Two normal
trees are possible; with the choice of the normal tree as shown:

Primary variables: Vs(t), vC2 , iR1 , iR2 , iC1

Secondary variables: is, iC2 , vR1 , vR2 , vC1

System order: 1
State variable: vC2
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The elemental equations are:

primary variables





dvC2

dt
=

1
C2

iC2

iR1 =
1

R1
vR1

iR2 =
1

R2
vR2

iC1 = C1
dvC1

dt
.





secondary variables. (81)

The normal tree generates one continuity equation:

iC2 = iR1 + iC1 − iR2 (82)

and three compatibility equations:

vR2 = vC2 (83)
vR1 = Vs(t)− vC2 (84)
vC1 = Vs(t)− vC2 . (85)

When Eq. (v) is substituted into Eqs. (i) to eliminate the secondary variable vC1 , the
elemental equation becomes:

iC1 = C1

[
dVs(t)

dt
− dvC2

dt

]
. (86)

The derivative propagates through the subsequent algebraic steps and the state equation
is:

v̇C2 = − R1 + R2

R1R2 (C1 + C2)
vC2 +

1
R1 (C1 + C2)

Vs(t) +
C1

C1 + C2
V̇s(t). (87)

The output equation for iC1 may be found from Eqs. (i) and (v):

iC1 = C1
d

dt
(Vs(t)− vC2) (88)

and substituting Eq. (vii)

iC1 =
(R1 + R2) C1

R1R2 (C1 + C2)
vC2 −

C1

R1 (C1 + C2)
Vs(t) +

C1C2

C1 + C2
V̇s(t). (89)

Both the state and output equations include the derivative of the input Vs(t).

4.2 Transformation to the Standard Form

If the modeling procedure generates state equations in the form of Eq. (77) an algebraic transfor-
mation may be used to generate a new set of state variables and state equations that are in the
standard form of Eq. (??). For a system with state equations:

ẋ = Ax + Bu + Eu̇ (90)
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a new set of state variables x′ may be defined:

x′ = x−Eu. (91)

Differentiation of Eq. (91) gives:

ẋ′ = ẋ−Eu̇ = (Ax + Bu + Eu̇)−Eu̇

= A
(
x′ + Eu

)
+ Bu

= Ax′ + B′u (92)

where B′ = AE + B. Although the elements of the new state vector x′ are no longer the physical
variables that were used to generate the original equations, the complete vector x′ satisfies all of the
requirements of a state vector. Any physical variable in the system may be found from a modified
set of output equations written in terms of the transformed state vector:

y = Cx + Du + Fu̇

= C
(
x′ + Eu

)
+ Du + Fu̇

= Cx′ + D′u + Fu̇ (93)

where D′ = CE + D.

Example

Figure 17 illustrates a mechanical translational system. The system graph and normal
tree demonstrate that although there are three energy storage elements, the two springs
are dependent and the system order is two. Find a set of state equations that does not
involve the derivative of the input vector and an accompanying output equation for the
velocity of the dashpot B1.

Solution: With the choice of normal tree as shown, the state variables are vm and FK1

and the elemental equations are:

dvm

dt
=

1
m

Fm (94)

dFK1

dt
= K1vK1 (95)

FB2 = B2vB2 (96)

vB1 =
1

B1
FB1 (97)

vK2 =
1

K2

dFK2

dt
. (98)

There are two compatibility equations:

vK1 = vK2 − vB1 (99)
vB2 = vm, (100)

and three continuity equations:

FK2 = Fs(t)− FK1 (101)
FB1 = FK1 (102)
Fm = Fs(t)− FB2 . (103)

22



Equation (viii) relates the through variable FK2 on a dependent T-type element K2

to the input Fs(t). When the secondary variables are eliminated and the two state
equations are written in matrix form, the result is:

[
v̇m

ḟK1

]
=

[
−B2/m 0

0 −K1K2/ (B1 (K1 + K2))

] [
vm

FK1

]
+

[
1/m

0

]
Fs(t)

+

[
0

K1/ (K1 + K2)

]
Ḟs(t) (104)

showing the dependence on the derivative of the input Fs(t). The output equation for
vB1 is found from Eqs. (iv) and (ix):

vB1 =
1

B1
FK1 (105)

and in matrix form

vB1 =
[

0 1/B1

] [
vm

FK1

]
+

[
0

]
Fs(t). (106)

The state variables may be transformed using Eq. (91), that is:

ẋ′ = Ax′ + (AE + B)u

or:
[

ẋ′1
ẋ′2

]
=

[
−B2/m 0

0 −K1K2/ (B1 (K1 + K2))

] [
x′1
x′2

]

+

[
1/m

K2
1K2/

(
B1 (K1 + K2)

2
)

]
Fs(t) (107)

and the corresponding output equation in terms of the transformed state vector is found
directly from Eq. (93):

vB1 = Cx′ + (CE + D)u + Fu̇

=
[

0 1/B1

] [
x′1
x′2

]
+

[[
0 1/B1

] [
0

K1/ (K1 + K2)

]
+

[
0

]]
Fs(t)

+
[

0
]

˙Fs(t)

=
1

B1
x′2 +

K1

B1 (K1 + K2)
Fs(t). (108)

5 State Equation Generation Using Linear Algebra

For linear systems, the state equations may be found directly from the equations in the primary
variables and inputs by matrix methods. After the elemental equations have been written with
causality define by the normal tree, and the substitutions for the secondary variables made through
the continuity and compatibility equations, the primary variables may be divided into three groups,
and expressed in three vectors:
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• x - the vector of state variables (primary variables associated with independent energy storage
elements).

• d - the vector of primary variables associated with dependent energy storage elements.

• p - the vector of primary variables associated with non-energy storage elements (D-type
elements and two-port branches (Chapter 6)).

The set of equations in the primary variables and inputs can be written as three matrix equations
in x, d, and p.

ẋ = Px + Qp + Rd + Su (109)
d = Mẋ + Nu̇ (110)
p = Hx + Jp + Kd + Lu (111)

The state equations are found by solving explicitly for p and d and substitution into Eq. (109).
If there are no dependent energy storage elements in the system, that is d = 0 and M = N =

K = R = 0 , the state equations are found by solving Eq. (111) for p and substituting into Eq.
(109). In the simplest case, the matrix J = 0 and the state equations may be found by substituting
Eq. (111) directly into Eq. (109)

ẋ = [P + QH]x + [S + QL]u. (112)

Otherwise p must be found by rearranging and solving Eq. (111):

[I− J]p = Hx + Lu (113)

where I is the identity matrix, or

p = [I− J]−1 Hx + [I− J]−1 Lu (114)
= H′x + L′u (115)

where H′ = [I− J]−1 H and L′ = [I− J]−1 L. Substitution of Eq. (115) into Eq. (109) generates
the state equations

ẋ =
(
P + QH′)x +

(
S + QL′

)
u. (116)

Example

The electrical circuit shown in Fig. 18, together with its linear graph and a normal tree,
generates the following equations in the primary variables:

v̇C = − 1
C

iR1 +
1
C

Is (117)

i̇L =
1
L

vR2 (118)

vR2 = R2iR1 −R2iL (119)

iR1 =
1

R1
vC − 1

R1
vR2 (120)

Use the matrix method to find the state equations in the variables vC and iL.
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Solution: Divide the primary variables into two vectors, x = [vC iL]T and p =
[vR2 iR1 ]

T . Then the primary equations (Eqs. (i - iv)) can be written
[

v̇C

i̇L

]
=

[
0 0
0 0

] [
vC

iL

]
+

[
0 −1/C

1/L 0

] [
vR2

iR1

]
+

[
1/C
0

]
Is(t) (121)

[
vR2

iR1

]
=

[
0 −R2

1/R1 0

] [
vC

iL

]
+

[
0 R2

−1/R1 0

] [
vR2

iR1

]
(122)

Equation (vi) may be rearranged
[

1 −R2

1/R1 1

] [
vR2

iR1

]
=

[
0 −R2

1/R1 0

] [
vC

iL

]
(123)

and solved for p = [vR2 iR1 ]
T

[
vR2

iR1

]
=

[
1 −R2

1/R1 1

]−1 [
0 −R2

1/R1 0

] [
vC

iL

]
(124)

=
R1

R1 + R2

[
1 R2

−1/R1 1

] [
0 −R2

1/R1 0

] [
vC

iL

]
(125)

=

[
−R2/(R1 + R2) R1R2//(R1 + R2)
−1/(R1 + R2) −R2/(R1 + R2)

] [
vC

iL

]
(126)

When Eq. (ix) is substituted into Eq. (v) the state equations are found to be
[

v̇C

i̇L

]
=

[
1/(R1 + R2)C R2/(R1 + R2)C
−R2/(R1 + R2)L R1R2/(R1 + R2)L

] [
vC

iL

]
+

[
1/C
0

]
Is(t). (127)

In the most general case, when there are dependent energy storage elements in the system, so that
d 6= 0, the state equations are found by substituting Eqs. (115) and (110) into Eq. (109), giving

[
I− (

QK′ + R
)
M

]
ẋ =

(
P + QH′)x +

(
S + QL′

)
u +

(
R + QK′)Nu̇ (128)

which may be solved by pre-multiplying both sides by [I− (QK′ + R)M]−1 to generate the state
equations.

6 Nonlinear Systems

6.1 General Considerations

In the general case of nonlinear state-determined system models, relationships may exist in which
a single system variable is a nonlinear function of several other variables. For example the torque
output of an automobile engine may be represented as a nonlinear function of the fuel/air ratio,
spark advance and engine speed. Systematic equation formulation procedures are not generally
available for such systems. However, for nonlinear systems which can be represented by linear graph
models containing combinations of pure (nonlinear) and ideal (linear) one and two-port elements,
the equation formulation procedures described in Sections 1 to 4 provide an effective starting point
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for the formulation of a set of nonlinear state equations. For such models, the system constraints
represented by a set of compatibility and continuity equations are valid. Thus, the procedure of
forming a normal tree, and identifying the independent variables and state variables, is unchanged
from the method described for linear system models, as are the procedures for generating the
compatibility and continuity equations.

With models containing nonlinear elements the algebraic steps in the subsequent elimination
of secondary variables are not always straightforward, and may not always be accomplished with
simple analytical techniques. However, for many nonlinear systems containing pure elements, the
methods developed for linear system models may be used with some modification to derive a set of
nonlinear state equations.

The formulation of nonlinear state equations is illustrated in the following section, where a set
of nonlinear state equations is derived in the general form of Eqs. (??), that is

ẋ = f (x,u, t)

where the derivative of each state is related by a nonlinear function to the system state variables
and inputs. Some nonlinear systems models may not be written explicitly as a set of nonlinear
state equations in the standard form of Eqs. (??) because it may not be possible to directly solve
for the derivative of each state variable independently.

6.2 Examples of Nonlinear System Model Formulation

To illustrate the equation derivation procedures for systems containing nonlinear elements, state
equations are derived for three representative systems in the following examples. Each example
contains one or more nonlinear dissipative or energy storage element.

Example

An automobile, with mass m, traveling on a flat, straight section of road is shown in
Fig. 19. Derive a model for the forward speed vm of the car, in response to a time
varying propulsive force Fp(t) generated by the engine. The model is restricted to the
moderate to high speed range where the two primary resistance forces (in the absence
of braking) are road resistance Fr and aerodynamic drag Fd, each approximated as:

Fr = Fo (129)
Fd = cdv

2
d. (130)

Solution: The road resistance is represented as a constant resistance force F0 and the
aerodynamic drag Fd is represented as a resistive force which increases with the square
of vehicle velocity with the constant cd dependent on the automobile drag coefficient.

A system graph model for the car is shown in Fig. 19b, in which the car mass m is
represented as an ideal element, the propulsive force is represented as an ideal force
source Fp(t), the road resistance is represented as an ideal force source Fo, and the
aerodynamic drag is represented as a nonlinear damper element. The system contains
one independent energy storage element, as shown by the normal tree. From the normal
tree (Fig. 19c):
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Primary variables: vm, Fp, Fr, Fd

Secondary variables: Fm, vp, vr, vd

System order: 1
State variable: vm.

The elemental equations for the two passive elements are:

dvm

dt
=

1
m

Fm (131)

Fd = cdV
2
d (132)

The normal tree generates one continuity equation:

Fm = FP − Fo − Fd (133)

and one compatibility equation:
vd = vm. (134)

Substitution to eliminate the secondary variables from the elemental equations yields:

dvm

dt
=

1
m

[Fp − Fo − Fd] (135)

Fd = cdv
2
m. (136)

Combining these two equations generates the system nonlinear state equation:

dvm

dt
=

1
m

[
Fp − Fo − cdv

2
m

]
(137)

Example

A part of a sensitive torque measuring instrument, shown in Fig. 20a, consists of a
pendulum of length l with proof mass m mounted in support bearings in a gravity field
g.

The input to the instrument is a time varying torque Ts(t) which acts on the shaft to
displace the pendulum by an angle θ. Under static input conditions where Ts(t) = T0,
the gravitational restoring torque is a function of the angular displacement:

T0 = mgl sin θ (138)

This is a algebraic relationship between a torque (through-variable) and a displacement
(integrated across-variable) and represents the constitutive relationship of a nonlinear
torsional spring. The elemental equation for the equivalent spring K is found by differ-
entiating Eq. (i)

dTK

dt
= (mgl cos θ)

dθ

dt
. (139)

The support bearings for the shaft have a resistive torque TB proportional to the shaft
angular velocity ΩB:

TB = BΩB. (140)
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In addition to the gravitational restoring torque, the pendulum also has a rotational
inertia with a point mass m concentrated at a radius l from the center of rotation, so
that the moment of inertia is

J = ml2. (141)

By considering the inertia, the equivalent spring, the damper and the input source, a
system graph model may be formulated, as shown in Fig. 20b, which has the normal
tree shown in Fig. 20c. From the linear graph and normal tree:

Primary variables: ΩJ , Ts, TK , TB

Secondary variable: TJ , Ωs, ΩK , ΩB

System order: 2
State variables: ΩJ , TK .

There are three elemental equations:

dΩJ

dt
=

1
J

TJ (142)

dTK

dt
= (mgl cos θ)

dθ

dt
= (mgl cos θ)ΩK (143)

TB = BΩB. (144)

The normal tree generates a single continuity equation:

TK = TJ + TB + TS (145)

and two compatibility equations:

ΩB = ΩJ (146)
ΩK = ΩJ (147)

Elimination of the secondary variables yields:

dΩJ

dt
=

1
J

(Ts −BΩJ − TK) (148)

dTK

dt
= (mgl cos θ)ΩJ (149)

The equations may be expressed directly in terms of the state variables alone by sub-
stituting directly for θ from the constitutive equation (Eq. (i)):

θ = sin−1
(

TK

mgl

)
(150)

and Eq. (xii) may be written

dTK

dt
= mgl cos

[
sin−1 (TK/mgl)

]
ΩJ . (151)

Equations (xi) and (xiv) represent a pair of state equations for the nonlinear system,
while Eq. (xiii) allows the computation of θ, the system output. The nonlinearity in
this system arises from the trigonometric relationship of the pendulum restoring torque
to its displacement. While the basic derivation method used is similar to that for linear
systems, additional manipulation is required to eliminate the secondary variables and
to form the state equations.
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Example

The fluid distribution system shown in Fig. 21 consists of a flow source Qs(t) which
feeds a storage tank with non-vertical walls. The output from the tank is distributed
into a fluid network consisting of a short pipe discharging through an orifice, and a long
pipe discharging through another orifice.

The fluid flow through an orifice obeys a quadratic relationship:

Q = C0

√
|∆P |sgn (∆P ) (152)

where Q is the flow through the orifice, ∆P is the pressure drop across the orifice, and
C0 is an orifice coefficient that is dependent upon the geometry of the orifice. The
signum function, sgn (), is used to indicate that the flow changes sign when the sign of
∆P changes.

The tank is shaped as the frustum of a cone, and therefore has a volume which is a
nonlinear function of the height of the fluid in the tank. From the tank geometry shown
in Fig. 21, the volume is

V =
∫ h

0
πr2dh =

∫ h

0
π (r1 + KCh)2 dh

=
∫ h

0
π

(
r2
1 + 2r1KCh + K2

Ch2
)

dh

= π
(
r2
1h + r1KCh2 + K2

Ch3/3
)

(153)

In an open tank in a gravity field, the pressure at the base is directly related to the
height of fluid

PC = ρgh (154)

so that the following constitutive relationship may be written

V =
πr2

1

ρg
PC +

πr1KC

(ρg)2
P 2

C +
πK2

C

3 (ρg)3
P 3

C (155)

= KT0PC +
KT1

2
P 2

C +
KT2

3
P 3

C (156)

where KT0 = πr2
1/(ρg), KT1 = 2πr1KC/(ρg)2, and KT2 = πK2

C/(ρg)3. The tank has a
constitutive relationship of a pure nonlinear fluid capacitance.

The system graph model for the system, including the nonlinear capacitance, the two
nonlinear resistances of the orifices, and a fluid inertance I of the long fluid line (assum-
ing that the pipe resistance is small compared to the orifice resistance) is shown in Fig.
21b. From this graph and the normal tree shown in Fig. 21c the system model includes
the following:

Primary variables: PC , PR2 , Qs, QI , QR1

Secondary variables: QC , QR2 , Ps, PI , PR1

System order: 2
State variables: PC , QI .
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The system has four elemental equations. For the fluid inertance

dQI

dt
=

1
I
PI . (157)

For the nonlinear fluid capacitance the elemental equation must be found by differenti-
ating the constitutive equation (v):

dV

dt
= QC =

[
KT0 + KT1PC + KT2P

2
C

] dPC

dt
(158)

or
dPC

dt
=

[
1

KT0 + KT1PC + KT2P 2
C

]
QC . (159)

For orifice R1 the elemental equation is

QR1 = K1

√
|PR1 |sgn (PR1) , (160)

while for orifice R2 which has the pressure drop PR2 as its primary variable the equation
may be written:

PR2 =
1

K2
2

QR2 |QR2 | , (161)

where QR2 |QR2 | is the absquare, or absolute square, which ensures that the pressure
drop changes sign when the flow changes direction through an orifice.

The two continuity equations are:

QC = Qs −QR1 (162)
QR2 = QI (163)

and the two compatibility equations are:

PR1 = PC (164)
PI = PC − PR2 . (165)

Elimination of the secondary variables yields

dQI

dt
=

1
I

[PC − PR2 ] (166)

dPC

dt
=

[
1

KT0 + KT1PC + KT2P 2
C

]
[Qs −QR1 ] (167)

QR1 = K1

√
|PC |sgn (PC) (168)

PR2 =
1

K2
2

QI |QI | . (169)

and substituting for QR1 and PR2 results in two nonlinear state equations:

dQI

dt
=

1
I

[
PC − 1

K2
2

QI |QI |
]

(170)

dPC

dt
=

[
1

KT0 + KT1PC + KT2P 2
C

] [
Qs −K1

√
|PC |sgn (PC)

]
. (171)
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7 Linearization of State Equations

A set of nonlinear state equations for a system may be linearized directly to obtain a set of linear
state equations that approximate the system response over a limited range of operation. In the
process of linearization a new set of variables is defined that describe the response about a system
equilibrium point. The method is useful for systems containing nonlinear elements where the
excursion of the system variables about the equilibrium point is small. Because the response of a
linearized model only approximates that of the nonlinear system, care must be taken in interpreting
any analyses and judgement must be used in defining the applicable range of operation.

To illustrate the linearization process, it is convenient to initially consider a first-order nonlinear
system with a single state equation

ẋ = f(x, u). (172)

Assume that with a known constant input u0, the system ultimately reaches a steady response
x0, after which time the derivative ẋ is identically zero. Any such equilibrium value for the state
variable must therefore satisfy the algebraic equation

f(x0, u0) = 0. (173)

In general more than one, or no values of x may satisfy a nonlinear equilibrium equation, and
the solution of Eq. (173) may prove to be a difficult task. However, for many nonlinear systems
containing only ideal and pure elements an equilibrium condition can be found. The linearization
of f(x, u) may be performed by expanding the function as a Taylor series in two variables x and u
about the equilibrium condition as

f(x, u) = f(x0, u0) +
∂f(x, u)

∂x

∣∣∣∣x=x0
u=u0

(x− x0) +
∂f(x, u)

∂u

∣∣∣∣x=x0
u=u0

(u− u0) + · · · (174)

By definition, f(x0, u0) = 0. If the deviations x∗ = x − x0, and u∗ = u − u0 are small, high order
terms may be neglected and a linear approximation to the first-order state equation may be written

ẋ∗ =
∂f(x, u)

∂x

∣∣∣∣x=x0
u=u0

x∗ +
∂f(x, u)

∂u

∣∣∣∣x=x0
u=u0

u∗. (175)

Equation (175) is a linear first-order state equation with constant coefficients which may be written
as a standard state equation

ẋ∗ = ax∗ + bu∗ (176)

where
a =

∂f(x, u)
∂x

∣∣∣∣x=x0
u=u0

and b =
∂f(x, u)

∂u

∣∣∣∣x=x0
u=u0

. (177)

The procedure for linearizing a higher order system about an equilibrium point is analogous to
that described for a first-order system. The set of n state equations with r inputs

ẋ = f(x,u) (178)

is first solved for an equilibrium state x0 with the given input u0, by setting the derivative of the
state vector to zero and solving the resulting set of nonlinear algebraic equations

f(x0,u0) = 0. (179)
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Each of the n state equations
ẋi = fi(x1, . . . , xn, u1, . . . , ur) (180)

may then be linearized by generating a Taylor series expansion in the (n + r) variables about the
operating point and ignoring all but the linear terms. A set of incremental variables x∗i = xi− (x0)i

and u∗i = ui − (u0)i is defined. Because there are (n + r) such variables, (n + r) partial derivatives
are required in each equation. The result is:

ẋ∗i =
∂f1(x,u)

∂x1

∣∣∣∣x=x0
u=u0

x∗1 +
∂f1(x,u)

∂x2

∣∣∣∣x=x0
u=u0

x∗2 + · · ·+ ∂f1(x,u)
∂xn

∣∣∣∣x=x0
u=u0

x∗n

= +
∂f1(x,u)

∂u1

∣∣∣∣x=x0
u=u0

u∗1 +
∂f1(x,u)

∂u2

∣∣∣∣x=x0
u=u0

u∗2 + · · ·+ ∂f1(x,u)
∂ur

∣∣∣∣x=x0
u=u0

u∗r (181)

which is a linear state equation of the form

ẋ∗i = ai1x
∗
1 + · · ·+ ainx∗n + bi1u

∗
1 + · · ·+ biru

∗
r (182)

The collection of all such equations can be written in matrix form:

ẋ∗ = Ax∗ + Bu∗ (183)

where the elements of the matrices A and B are:

aij =
∂fi(x,u)

∂xj

∣∣∣∣∣x=x0
u=u0

, and bij =
∂fi(x,u)

∂uj

∣∣∣∣∣x=x0
u=u0

. (184)

Matrices containing partial derivatives in the form of A and B above are known as Jacobian
matrices.

Example

In Example 6.2 a nonlinear state equation was derived for a vehicle of mass m traveling
at moderate speed vm with propulsive force Fp(t). The model, including the effects of
aerodynamic drag (Fd = cdv

2
m), and constant road resistance (Fr), generated a single

nonlinear state equation

v̇m =
1
m

[
Fp − Fr − cdv

2
m

]
= F (vm, Fp, Fr) .

Derive a linearized state equation to describe the dynamics of the vehicle for small
deviations in speed from a nominal operating speed vm = v0.

Solution: First the equilibrium condition is found by solving the equation

v̇m = 0 =
1
m

[
(Fp)0 − (Fr)0 − cd (vm)20

]
(185)

and at equilibrium
(Fp)0 = (Fr)0 + cd (vm)20 . (186)
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The linearized equations may be derived in terms of incremental variables v∗m, F ∗
p , and

F ∗
r

v̇∗m =
∂F

∂vm

∣∣∣∣
0
v∗m +

∂F

∂Fp

∣∣∣∣∣
0

F ∗
p +

∂F

∂Fr

∣∣∣∣
0
F ∗

r (187)

and when each term is evaluated and the substitution (vm)0 = v0 is made

v̇∗m =
[
−2cdv0

m

]
v∗m +

[
1
m

]
F ∗

p +
[

1
m

]
F ∗

r . (188)

When it is noted that F ∗
r is zero because Fr is constant, the linearized equation may be

written
v̇∗m = −B

m
v∗m +

1
m

F ∗
p (189)

where B = 2cdv0 is the equivalent damper coefficient. In interpreting and using this
equation, it is noted that the solution v∗m is the deviation from the equilibrium speed,
and that the input F ∗

p (t) is the deviation from the equilibrium propulsive force.
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