

Introduction

- Traditionally, the tool to address the appraiser/operator consistency is a gage repeatability and reproducibility (R&R) study, which is the evaluation of measuring instruments to determine capability to yield a precise response.
- Gage repeatability is the variation in measurements considering one part and one operator.
- Gage reproducibility is the variation between operators measuring one part.
- Nondestructive <> Destructive (nonreplicable) testing

12.2 Variability Sources in a 30,000-ft-level Metric

 $\sigma_T{}^2 = \sigma_p{}^2 + \sigma_m{}^2$

Total Variance = Process Variance + Measurement Variance

- MSA involves the understanding and quantification of measurement variance.
- Accuracy is the degree of agreement of individual or average measurements with an accepted reference value or level.
- Precision is the degree of mutual agreement among individual measurements made under prescribed like conditions (ASTM 1977).

12.3 S⁴/IEE Application Examples: MSA

- Satellite-level metric: Focus was to be given to creating S4/IEE projects that improved a company's ROI. As part of a MSA assessment the team decided effort was to be given initially to how the satellite-level metric was calculated. It was thought that there might be some month-to-month inconsistencies in how this metric was being calculated and reported.
- Satellite-level metric: S⁴/IEE projects were to be created that improve the company's customer satisfaction. Focus was given to ensure that the process for measuring customer satisfaction gave an accurate response.

12.3 S⁴/IEE Application Examples: MSA

- Transactional and manufacturing 30,000-foot-level cycle time metric (a lean metric): An S⁴/IEE project was to improve the time from order entry to fulfillment was measured. Focus was given to ensure that the cycle time entries accurately represented what happened within the process.
- Transactional and manufacturing 30,000-foot-level inventory metric or satellite-level TOC metric (a lean metric): An S⁴/IEE project was to reduce inventory. Focus was given to ensure that entries accurately represented what happened within the process.

12.3 S⁴/IEE Application Examples: MSA

COLLEGE OF ENGINEERING

 Product DFSS: An S⁴/IEE product DFSS project was to reduce the 30,000-foot-level MTBF (mean time between failures) of a product by its vintage (e. g., laptop computer MTBF rate by vintage of the computer). As part of an MSA the development test process was assessed. It was discovered that much of the test process activities was not aligned with the types of problems typically experienced by customers.

12.4 Terminology

- Bias is the difference between the observed average of measurements (trials under repeatability conditions) and a reference value; historically referred to as accuracy. Bias is evaluated and expressed at a single point with the operating range of the measurement system.
- Repeatability is the variability resulting from successive trials under defined conditions of measurement. It is often referred to as equipment variation (EV), which can be a misleading term. The best term for repeatability is withinsystem variation, when the conditions of measurement are fixed and defined (i.e., fixed part, instrument, standard, method, operator, environment, and assumptions).

COLLEGE OF ENGINEERING

12.4 Terminology

- Appraiser variation (AV) is the average measurements of the same part between different appraisers using the same measuring instrument and method in a stable environment. AV is one of the common sources of measurement system variation that results from difference in operator skill or technique using the same measurement system.
- Stability refers to both statistical stability of measurement process and measurement stability over time. Both are vital for a measurement system to be adequate for its intended purpose. Statistical stability implies a predictable, underlying measurement process operating within common cause variation. Measurement drift addresses the necessary conformance to the measurement standard or reference over the operating life (time) of the measurement system.

COLLEGE OF ENGINEERING

12.4 Terminology

Minitab definition:

- Repeatability is the variation due to the measuring device. It is the variation observed when the same operator measures the same part repeatedly with the same device.
- Reproducibility is the variation due to the measurement system. It is the variation observed when different operators measure the same parts using the same device.

12.5 Gage R&R Considerations

- Measurement must be in statistical control (statistical stability).
- Variability of the measurement system must be small compared with both the manufacturing process and specification limits.
- Increment of measurement must be small relative to both process variability and specification limits. (A common rule of thumb is that the increments should be no greater than 1/10 of the smaller of the process variability and specification limits.)

12.5 Gage R&R Considerations

Bias assessments need an accepted reference value for a part, which can be done with tool room or layout inspection equipment.

- Measure one part in a tool room.
- Instruct one appraiser to measure the same part 10 times, using the gage being evaluated.
- The difference between the reference and the observed average is the measurement system bias.
- Express percent of process variation for bias.
- Express percent of tolerance for bias.

12.5 Gage R&R Considerations

Expressions of measurement system spread:

- Standard deviation from gage R&R study multiplied by 5.15 (99% of normal distribution)
- Percent of tolerance
- · Percent of process variation
- Number of distinct data categories (Discrimination or resolution)
 - Recommended discrimination is at most 1/10 of process capability (6σ)
 - Unacceptable discrimination symptoms can appear in a range chart (less than 4 possible values, or ¼ of the ranges are zero.)

12.6 Gage R&R Relationships

• The number of distinct categories (ndc) is

$$\frac{\sigma_p}{\sigma_m} \times 1.41 = 1.41 \sqrt{\frac{PV}{GRR}}$$

- The number of distinct categories must be at least 5 for the measurement system to be acceptable.
- One generally recognized industry practice suggests a short method of evaluation using 5 samples, 2 operators, and no replication. A gage is considered acceptable if the gage error is ≤ 20% of the specification tolerance.

- 1. Plan the approach. For instance, determine if there is appraiser influence in calibrating or using the instrument.
- 2. Select number of appraisers, number of sample of parts, and number of repeat reading. Consider using at least 2 operators and 10 samples, each operator measuring each sample at least twice (all using the same device). Select appraisers who normally operate the instruments.
- 3. Select sample parts from the process that represent its entire operating range. Number each part.
- 4. Ensure that the instrument has a discrimination that is at least one-tenth of the expected process variation of the characteristic to be read.

12.8 Preparation for a MSA

Other considerations:

- 1. Execute measurements in random order to ensure that drift or changes that occur will be spread randomly throughout the study.
- 2. Record readings to the nearest number obtained. When possible, make readings to nearest one-half of the smallest graduation (e.g., 0.00005 for 0.0001 graduations).
- 3. Use an observer who recognizes the importance of using caution when conducting the study.
- 4. Ensure that each appraiser uses the same procedure when taking measurements.

12.9 Example 12.1 Gage R&R

Appraiser 1									
Trials	Part 1	Part 2	Part 3	Part 4	Part 5				
1	217	220	217	214	216				
2	216	216	216	212	219				
3	216	218	216	212	220				
Avg.	216.3	218.0	216.3	212.7	218.3	216.3			
Range	1.0	4.0	1.0	2.0	4.0	2.4			
		Appraiser 2							
Trials	Part 1	Part 2	Part 3	Part 4	Part 5				
1	216	216	216	216	220				
2	219	216	215	212	220				
3	220	220	216	212	220				
Avg.	218.3	217.3	215.7	213.3	220.0	216.9			
Range	4.0	4.0	1.0	4.0	0.0	2.6			
						-			
						TLORIDA INT.			

12.9 Example 12.1 Gage R&R

Gage R&R Study - ANOVA Method

Two-Way ANOVA Table With Interaction										
DF	SS	MS	F	Р						
4	129.467	32.3667	13.6761	0.013						
1	2.700	2.7000	1.1408	0.346						
4	9.467	2.3667	0.9221	0.471						
20	51.333	2.5667								
29	192.967									
	e Wi DF 4 1 4 20 29	e With Intera DF SS 4 129.467 1 2.700 4 9.467 20 51.333 29 192.967	e With Interaction DF SS MS 4 129.467 32.3667 1 2.700 2.7000 4 9.467 2.3667 20 51.333 2.5667 29 192.967	e With Interaction DF SS MS F 4 129.467 32.3667 13.6761 1 2.700 2.7000 1.1408 4 9.467 2.3667 0.9221 20 51.333 2.5667 29 192.967	e With Interaction DF SS MS F P 4 129.467 32.3667 13.6761 0.013 1 2.700 2.7000 1.1408 0.346 4 9.467 2.3667 0.9221 0.471 20 51.333 2.5667 29 192.967					

Two-Way ANOVA Table Without Interaction

Source DF SS MS F P Parts 4129.467 32.3667 12.7763 0.000 Operators 1 2.700 2.7000 1.0658 0.312 Repeatability 24 60.800 2.5333 Total 29192.967

COLLEGE OF ENGINEERING

12	.9 Exa Gag	ample 12.1 e R&R
Gage R&R		
Source Total Gage R&R Repeatability Reproducibility Operators Part-To-Part Total Variation	VarComp 2.54444 2.53333 0.01111 0.01111 4.97222 7.51667	<pre>%Contribution (of VarComp)</pre>
$\frac{{\sigma_m}^2}{{\sigma_T}^2} = \frac{GRR}{TV} = \frac{2.5444}{7.5160}$	44 67	$\frac{\sigma_p^2}{\sigma_T^2} = \frac{PV}{TV} = \frac{4.97222}{7.51667}$
		COLLEGE OF ENGINEERING

17

12	.11 E	xamp	le 12	.2: Lir	nearity	
Part	1	2	3	4	5	
Ref.	2.00	4.00	6.00	8.00	10.00	
1	2.70	5.10	5.80	7.60	9.10	
2	2.50	3.90	5.70	7.70	9.30	
3	2.40	4.20	5.90	7.80	9.50	
4	2.50	5.00	5.90	7.70	9.30	
5	2.70	3.80	6.00	7.80	9.40	
6	2.30	3.90	6.10	7.80	9.50	
7	2.50	3.90	6.00	7.80	9.50	
8	2.50	3.90	6.10	7.70	9.50	
9	2.40	3.90	6.40	7.80	9.60	
10	2.40	4.00	6.30	7.50	9.20	
11	2.60	4.10	6.00	7.60	9.30	
12	2.40	3.80	6.10	7.70	9.40	
Avg.	2.492	4.125	6.025	7.708	9.383	
Range	0.40	1.30	0.70	0.30	0.50	
Bias	0.492	0.125	0.025	-0.292	-0.617	
					TLORIDA INTERNATIONAL UNIVERS	

12.12 Attribute Gage Study

- An attribute gage either accepts or rejects a part after comparison to a set of limits.
- Select 20 parts (some parts are slightly below and some above specification limits).
- Use 2 appraisers and conduct the study in a manner to prevent appraiser bias. Appraisers inspect each part twice, deciding whether the part is acceptable or not.
- If all measurements agree, the gage is accepted.
- Gage needs improvement or reevaluation if measurement decisions do not agree.

12.13	Example	12.3:	Attribute	Gage	Study
-------	---------	-------	-----------	------	-------

Appraiser	Sample	Rating	Attribute	Appraiser	Sample	Rating	Attribute	Appraiser	Sample	Rating	Attribute
Simpson	1	2	2	Simpson	6	1	1	Simpson	11	-2	-2
Montgomory	1	2	2	Montgomory	6	1	1	Montgomory	11	-2	-2
Holmes	1	2	2	Holmes	6	1	1	Holmes	11	-2	-2
Duncan	1	1	2	Duncan	6	1	1	Duncan	11	-2	-2
Hayes	1	2	2	Hayes	6	1	1	Hayes	11	-1	-2
Simpson	2	-1	-1	Simpson	7	2	2	Simpson	12	0	0
Montgomory	2	-1	-1	Montgomory	7	2	2	Montgomory	12	0	0
Holmes	2	-1	-1	Holmes	7	2	2	Holmes	12	0	0
Duncan	2	-2	-1	Duncan	7	1	2	Duncan	12	-1	0
Hayes	2	-1	-1	Hayes	7	2	2	Hayes	12	0	0
Simpson	3	1	0	Simpson	8	0	0	Simpson	13	2	2
Montgomory	3	0	0	Montgomory	8	0	0	Montgomory	13	2	2
Holmes	3	0	0	Holmes	8	0	0	Holmes	13	2	2
Duncan	3	0	0	Duncan	8	0	0	Duncan	13	2	2
Hayes	3	0	0	Hayes	8	0	0	Hayes	13	2	2
Simpson	4	-2	-2	Simpson	9	-1	-1	Simpson	14	-1	-1
Montgomory	4	-2	-2	Montgomory	9	-1	-1	Montgomory	14	-1	-1
Holmes	4	-2	-2	Holmes	9	-1	-1	Holmes	14	-1	-1
Duncan	4	-2	-2	Duncan	9	-2	-1	Duncan	14	-1	-1
Hayes	4	-2	-2	Hayes	9	-1	-1	Hayes	14	-1	-1
Simpson	5	0	0	Simpson	10	1	1	Simpson	15	1	1
Montgomory	5	0	0	Montgomory	10	1	1	Montgomory	15	1	1
Holmes	5	0	0	Holmes	10	1	1	Holmes	15	1	1
Duncan	5	-1	0	Duncan	10	0	1	Duncan	15	1	1
Hayes	5	0	0	Hayes	10	2	1	Hayes	15	1	1

12.13 Example 12.3: Attribute Gage Study

Assessment Agreement

Appraiser # Inspected # Matched Percent 95%CI Duncan 15 8 53.33 (26.59, 78.73) Hayes 15 13 86.67 (59.54, 98.34) Holmes 15 15 100.00 (81.90, 100.00) Montgomory 15 15 100.00 (81.90, 100.00) Simpson 15 14 93.33 (68.05, 99.83)

Matched: Appraiser's assessment across trials agrees with the known standard.

12.14 Gage Study of Destructive Testing

- Destructive tests cannot test the same unit repeatedly to obtain an estimate for pure measurement error.
- An upper bound on measurement error for destructive tests is determinable using the control chart technique (Wheeler 1990).
- It is often possible to minimize the product variation between pairs of measurements through the careful selection of the material to be measured.
- Through repeated duplicate measurements on material that is thought to minimize product variation, an upper bound is obtainable for the variation due to the measurement process.

	12.15 Example 12.4: Gage Study of Destructive Testing											
Lot	1	2	3	4	5	6	7					
Sample1	20.48	19.37	20.35	19.87	20.36	19.32	20.58					
Sample2	20.43	19.23	20.39	19.93	20.34	19.30	20.68					
Average	20.46	19.30	20.37	19.90	20.35	19.31	20.63					
Range	0.05	0.14	0.04	0.06	0.02	0.02	0.10					
						COLLEGE OF EN						

12.16 A 5-step Measurement Improvement Process

- Machine Variation
- Fixture Study
- Accuracy (Linearity)
- · Repeatability and Reproducibility
- Long-term Stability
 - Source of variation
 - How to conduct the test
 - Acceptance criteria
 - Comments

COLLEGE OF ENGINEERING

Terminology

- *NPV* = Normal Process Variation
- T = Tolerance
- *P* = Precision
- S_{MS} = Std. deviation of measurement system
- S_{Total} = Std. deviation of total variability of measurements over time
- $P/T = (5.15 \times S_{MS})/\text{Tolerance}$
- $P/NPV = (5.15 \times S_{MS})/(5.15 \times S_{Total}) = S_{MS}/S_{Total}$