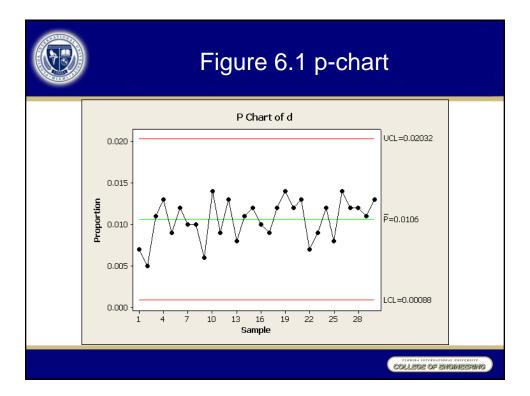
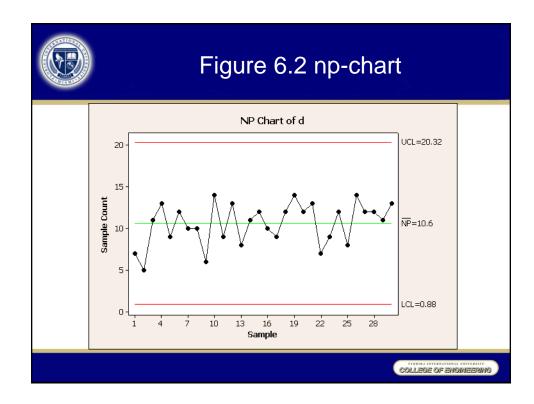
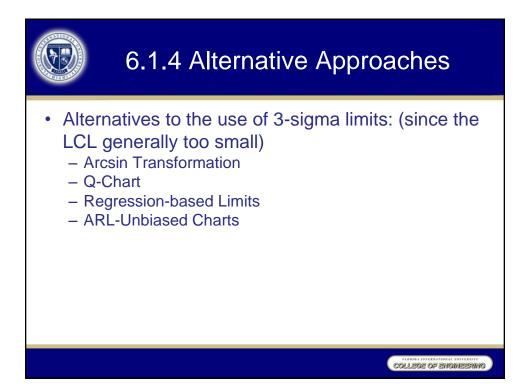


Table 6.1 No. of Non-conforming Transistors out of 1000 Inspected

Day	No. of non-conf.	Day	No. of non-conf.	Day	No. of non-conf.
1	7	11	9	21	13
2	5	12	13	22	7
3	11	13	8	23	9
4	13	14	11	24	12
5	9	15	12	25	8
6	12	16	10	26	14
7	10	17	9	27	12
8	10	18	12	28	12
9	6	19	14	29	11
10	14	20	12	30	13







6.1.4.1 Arcsin Transformation

$$y = \sin^{-1} \sqrt{\frac{x + 3/8}{n + 3/4}}$$
(6.5)

Will be approximately normal with mean $sin^{-1}\sqrt{p}$ and variance $\frac{1}{4n}$

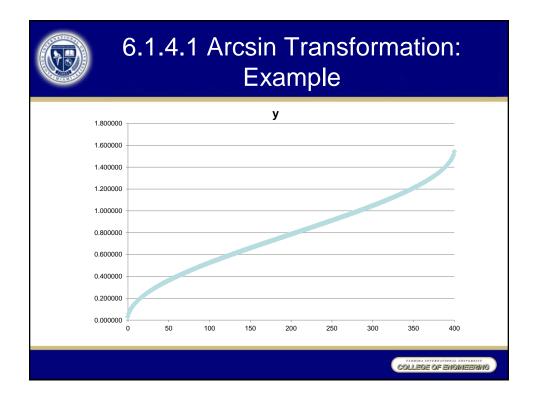
For each sample of size n, one would plot the value of y on a control chart with the midline at $sin^{-1}\sqrt{p}$ and the control limits:

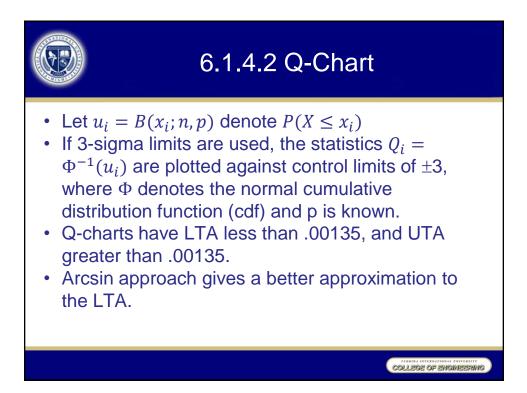
$$\sin^{-1}\sqrt{p} \pm 3\sqrt{\frac{1}{4n}} = \sin^{-1}\sqrt{p} \pm \frac{3}{2\sqrt{n}}$$
 (6.6)

COLLEGE OF ENGINEERING

6.1.4.1 Arcsin Transformation: Example

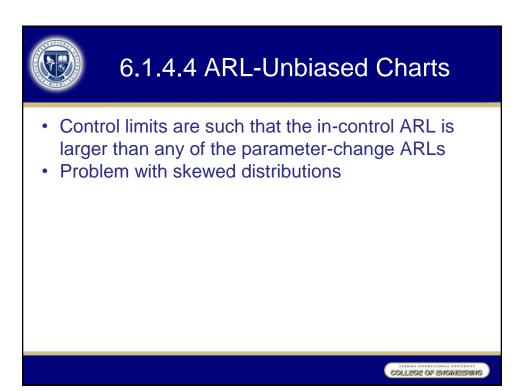
When n=400 and p=.10, the control limits would be: $sin^{-1}\sqrt{.10} \pm \frac{3}{2\sqrt{400}} = .32175 \pm .075$ UCL=.39675 (X=59.29), LCL=.24675 (X=23.53) Bino(X≥60)=0.001052825; Bino(X≤23)=0.00167994 3-sigma limits: UCL=58, LCL=22 Bino(X≥59)=0.001714566; Bino(X≤21)=0.000438333 Table 6.2, Table 6.3 Comparison of np-chart based on 3sigma and arcsin transformation Table 6.4 Minimum sample size necessary for LCL to exist

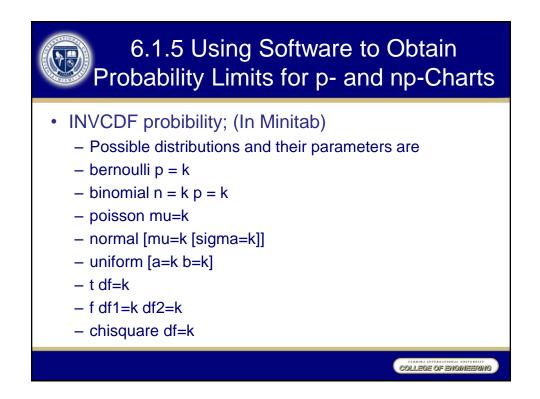


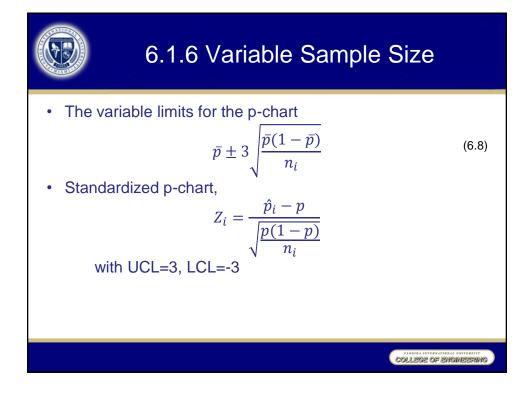


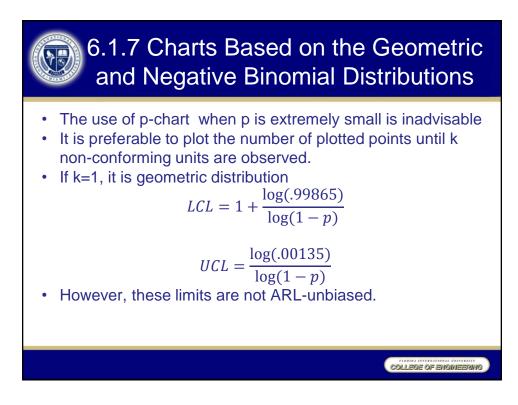
6.1.4.3 Regression-based Limits

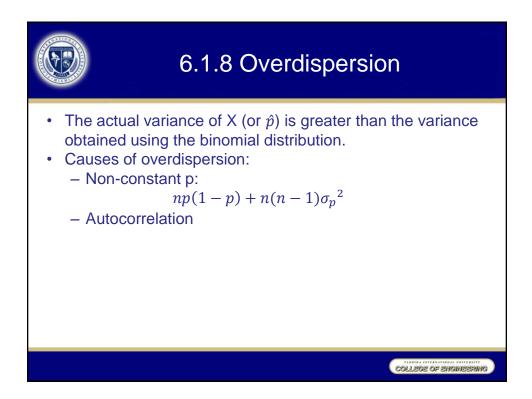
• Regression-based Limits for an np-chart $UCL = 0.6195 + 1.00523np + 2.983\sqrt{np}$ $LCL = 2.9529 + 1.01956np - 3.2729\sqrt{np}$ • The objective is to minimize $\left|\frac{1}{LTA} - \frac{1}{.00135}\right| + \left|\frac{1}{UTA} - \frac{1}{.00135}\right|$ • Will produce the optimal limits when p~.01











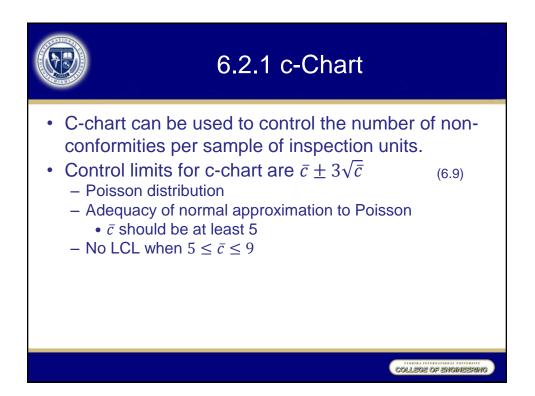
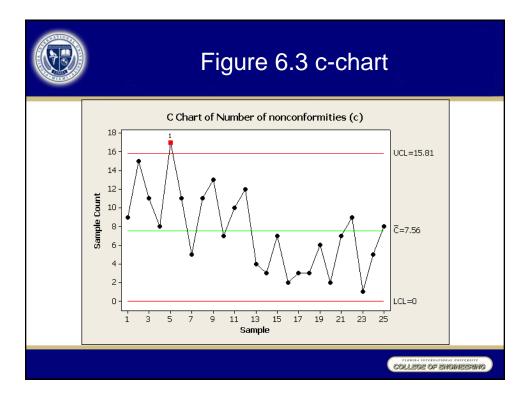


Table 6.5 Non-conformity Data

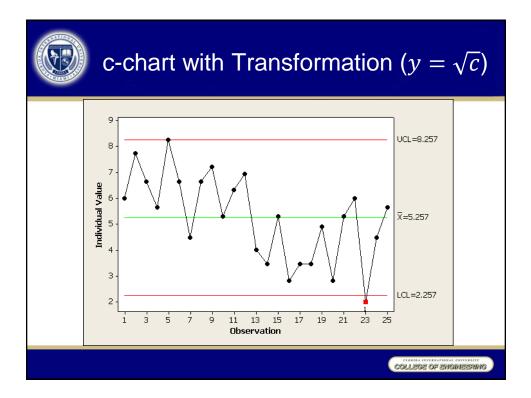
Bolt No.	No. of non-conf.	Bolt No.	No. of non-conf.	Bolt No.	No. of non-conf.
1	9	3	10	4	7
2	15	4	12	5	9
3	11	5	4	1	1
4	8	1	3	2	5
5	17	2	7	3	8
1	11	3	2		
2	5	4	3		
3	11	1	3		
1	13	2	6		
2	7	3	2		

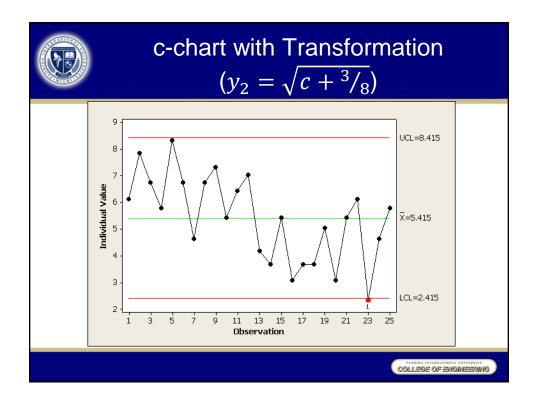


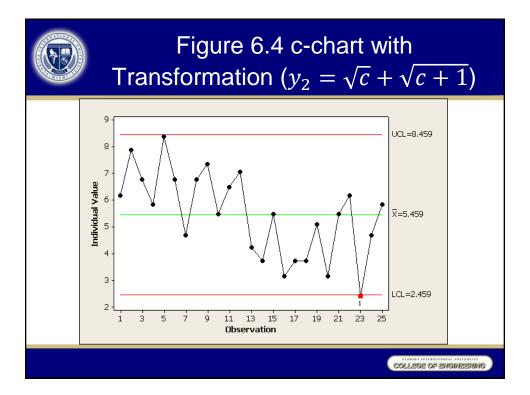
	ATLETA
A NO	

6.2.2 Transforming Poisson Data

Transformation	Mean, Variance	Control Limits
$y = 2\sqrt{c}$	$2\sqrt{\lambda}$, 1	$\bar{y} \pm 3$
$y_1 = 2\sqrt{c + 3/8}$		$\overline{y_1} \pm 3$
$y_2 = \sqrt{c} + \sqrt{c+1}$		$\overline{y_2} \pm 3$
		COLLEGE OF ENGINEERING

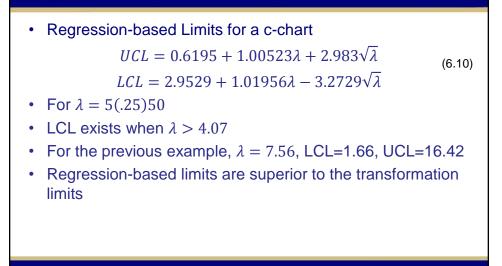




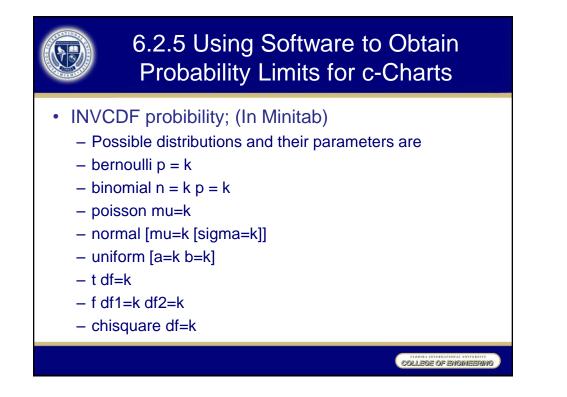


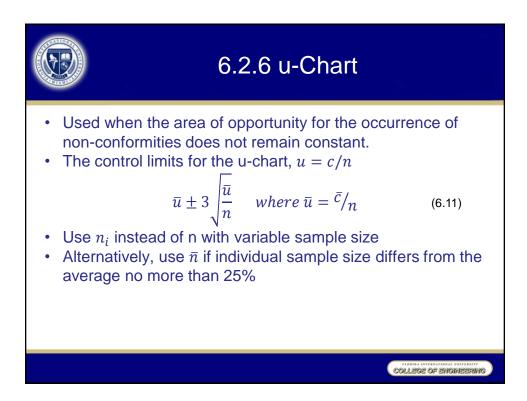
6.2.4 Optimal c-Chart Limits $\lambda = 5(1)50$				
λ				
5	12	1		
6	14	1		
7	16	1		
8	17	2		
9	19	2		
10	20	3		
11	22	3		
12	23	4		
13	24	4		
14	26	5		
15	27	6		
20	34	9		
25	41	12		
30	47	16		
			e of engineering	

6.2.4 Regression-based Limits



16





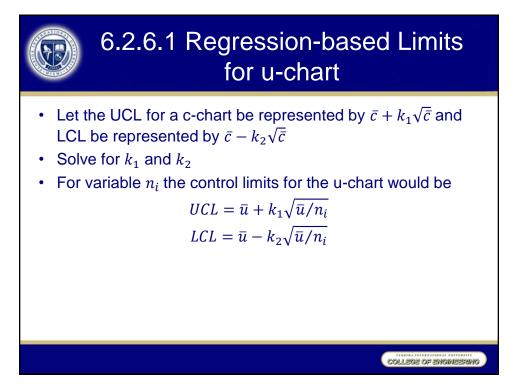
6.2.6 u-Chart with Transformation

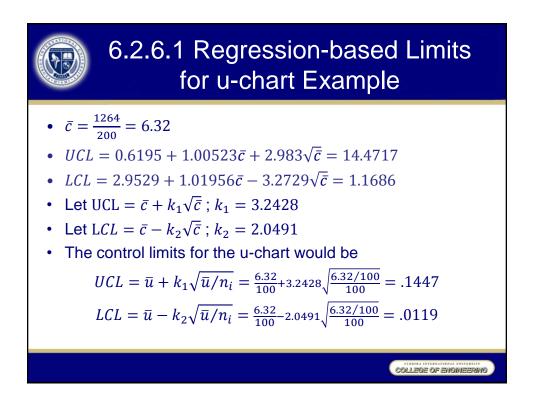
• For constant sample size, \overline{v} 3

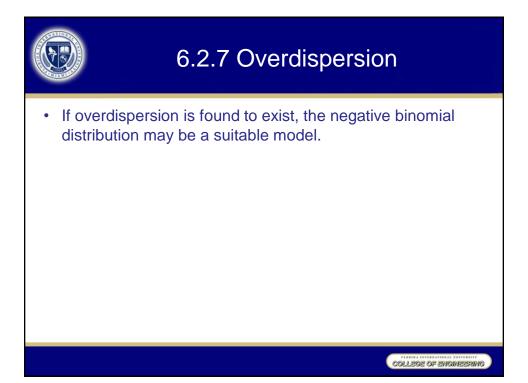
 $\frac{\bar{y}}{n} \pm \frac{3}{n}$ where $\bar{u} = \bar{y}/n$

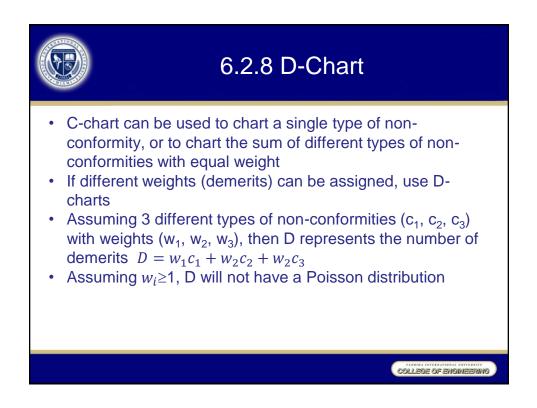
• For variable sample size,

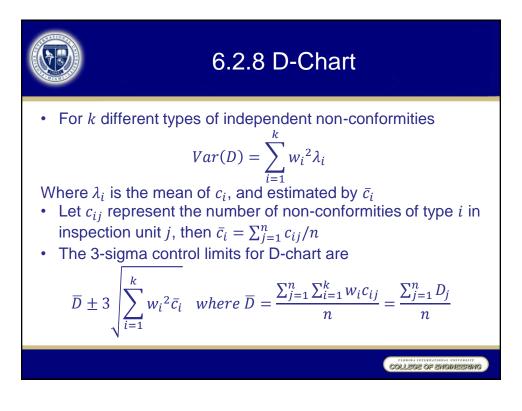
$$\frac{\sum y}{\sum n_i} \pm \frac{3}{n_i}$$











6.2.8 Du-Chart for Variable Units

 If each sample contains more than 1 inspection unit and it is desired to chart the number of demerits per inspection unit, then the counterpart of u-chart would be produced.

$$D_u = \sum_{i=1}^{\kappa} w_i u_i$$

- $u_i = c_i/n_l$ is the number of non-conformities of type *i* per inspection unit in a sample that contains n_l such units
- If *m* samples are available

$$\overline{D}_u = \sum_{i=1}^{\kappa} w_i \overline{u}_i \qquad \text{where } \overline{u}_i = \frac{\sum_{l=1}^{m} c_{il}}{\sum_{l=1}^{m} n_l}$$

COLLEGE OF ENGINEERING

6.2.8 Du-Chart for Variable Units

• For *k* different types of independent non-conformities

$$Var(D_u) = \frac{1}{n_l^2} \sum_{i=1}^n w_i^2 \lambda_i$$

Where λ_i is the mean of c_i , and estimated by \bar{c}_i

$$\bar{c}_i = \frac{\sum_{l=1}^m n_l c_{il}}{\sum_{l=1}^m n_l}$$

· The 3-sigma control limits for D-chart are

$$\overline{D}_u \pm \frac{3}{n_l} \sqrt{\sum_{i=1}^k w_i^2 \bar{c}_i}$$