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Abstract. In this paper, approximate Linear Minimum Variance (LMV) filters for continuous-discrete state space
models are introduced. The filters are obtained by means of a recursive approximation to the predictions for the first
two moments of the state equation. It is shown that the approximate filters converge to the exact LMV filter when the
error between the predictions and their approximations decreases. As particular instance, the order-β Local Linearization
filters are presented and expounded in detail. Practical algorithms are also provided and their performance in simulation is
illustrated with various examples. The proposed filters are intended for the recurrent practical situation where a nonlinear
stochastic system should be identified from a reduced number of partial and noisy observations distant in time.
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1. Introduction. The estimation of unobserved states of a continuous stochastic dynamical system
from noisy discrete observations is of central importance to solve diverse scientific and technological
problems. The major contribution to the solution of this estimation problem is due to Kalman and Bucy
[30, 31], who provided a sequential and computationally efficient solution to the optimal filtering and
prediction problem for linear state space models with additive noise. However, the optimal estimation
of nonlinear state space models is still a subject of active researches. Typically, the solution of optimal
filtering problems involves the resolution of evolution equations for conditional probabilistic densities,
moments or modes, which in general have explicit solutions in few particular cases. Therefore, a variety
approximations have been developed. Examples of such approximate nonlinear filters are the classical
ones as the Extended Kalman, the Iterated Extended Kalman, the Gaussian and the Modified Gaussian
filters [20]; and other relatively recents as the Local Linearization [43, 28], the Projection [3] and the
Particle filters [12] methods.

In a variety of practical situations, the solution of the general optimal filtering problem is dispensable
since the solution provided by a suboptimal filter is satisfactory. This is the case of the signal filtering and
detection problems, the system stabilization, and the parameter estimation of nonlinear systems, among
others. Prominent examples of suboptimal filters are the linear, the quadratic and the polynomial one,
which have been widely used for the estimation of the state of both, continuous-continuous [34, 38, 47] and
discrete-discrete [10, 46, 47, 11, 7] models. In the case of continuous-discrete models, exact expressions
for Linear Minimum Variance filter (LMV) have also been derived [27], but they are restricted to linear
models. For nonlinear models, this kind of suboptimal filter has in general no exact solution since
the first two conditional moments of the state equation has no explicit solution. Therefore, adequate
approximations are required in this situation as well.

In this paper, approximate LMV filters for nonlinear continuous-discrete state space models are
introduced. The filters are obtained by means of a recursive approximation to the predictions for the first
two moments of the state equation. It is shown that the approximate filters converge to the exact LMV
filter when the error between the predictions and their approximations decreases. Based on the well-known
Local Linear approximations for the state equation, the order-β Local Linearization filters are presented
as a particular instance. Their convergence, practical algorithms and performance in simulations are also
considered in detail. The simulations show that these Local Linearization filters provide accurate and
computationally efficient estimation of the unobserved states of the stochastic systems given a reduced
number of partial and noisy observations, which is a typical situation in practical control engineering.

The paper is organized as follows. In section 2, basic notations and results on LMV filters, Local
Linear approximations and Local Linearization filters are presented. The general class of approximate
LMV filters is introduced in section 3 and its convergence is stated. In section 4, the order-β Local
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2 Approximate linear minimum variance filters

Linearization filters are presented and their convergence analyzed. In the last two sections, practical
algorithms for these filters and their performance in simulations are considered.

2. Notations and Preliminaries. Let (Ω,F , P ) be a complete probability space, and {Ft, t ≥ t0}
be an increasing right continuous family of complete sub σ-algebras of F . Consider the state space model
defined by the continuous state equation

dx(t) = f(t,x(t))dt+

m∑
i=1

gi(t,x(t))dwi(t), (2.1)

for all t ∈ [t0, T ], and the discrete observation equation

ztk = Cx(tk) + etk , (2.2)

for all k = 0, 1, ..,M − 1, where f , gi : [t0, T ] × Rd → Rd are functions, w = (w
1
, . . . ,wm) is an m-

dimensional Ft-adapted standard Wiener process, {etk : etk ∼ N (0,Σtk), k = 0, ..,M − 1} is a sequence
of r-dimensional i.i.d. Gaussian random vectors independent of w, Σtk an r × r positive semi-definite
matrix, and C an r × d matrix. Here, it is assumed that the M time instants tk define an increasing
sequence {t}M = {tk : tk < tk+1, tM−1 = T , k = 0, 1, ..,M − 1}. Conditions for the existence and
uniqueness of a strong solution of (2.1) with bounded moments are assumed.

Let xt/ρ = E(x(t)/Zρ) and Qt/ρ = E(x(t)xᵀ(t)/Zρ) be the first two conditional moments of x with
ρ ≤ t, where E(.) denotes the mathematical expectation value, and Zρ = {ztk : tk ≤ ρ, tk ∈ {t}M} is a
time series with observations from (2.2). Further, let us denote by

Ut/ρ = E((x(t)− xt/ρ)(x(t)− xt/ρ)
ᵀ/Zρ)

= Qt/ρ − xt/ρx
ᵀ
t/ρ

the conditional variance of x.
Denote by ClP (Rd,R) the space of l time continuously differentiable functions g : Rd → R for which

g and all its partial derivatives up to order l have polynomial growth.

2.1. Linear minimum variance filtering problem. According to [2, 51, 56, 20] the linear mini-
mum variance filter xtk+1/tk+1

for a state space model with discrete observation equation (2.2) is defined
as

xtk+1/tk+1
= xtk+1/tk + Gtk+1

(ztk+1
−Cxtk+1/tk),

where the filter gain Gtk+1
is to be determined so as to minimize the error variance

E((x(tk+1)− xtk+1/tk+1
)(x(tk+1)− xtk+1/tk+1

)ᵀ).

This yields to the following definition.
Definition 2.1. The Linear Minimum Variance filter for the state space model (2.1)-(2.2) is defined,

between observations, by

dxt/t

dt
= E(f(t,x)/Zt) (2.3)

dUt/t

dt
= E(xfᵀ(t,x)/Zt)− xt/tE(fᵀ(t,x)/Zt) + E(f(t,x)xᵀ/Zt)

− E(f(t,x)/Zt)x
ᵀ
t/t −

m∑
i=1

E(gi(t,x)gᵀ
i (t,x)/Zt) (2.4)

for all t ∈ (tk, tk+1), and by

xtk+1/tk+1
= xtk+1/tk + Gtk+1

(ztk+1
−Cxtk+1/tk) (2.5)
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Utk+1/tk+1
= Utk+1/tk −Gtk+1

CUtk+1/tk (2.6)

for each observation at tk+1, with filter gain

Gtk+1
= Utk+1/tkC

ᵀ(CUtk+1/tkC
ᵀ + Σtk+1

)−1 (2.7)

for all tk, tk+1 ∈ {t}M . The predictions xt/tk , Ut/tk are accomplished, respectively, via expressions (2.3)-
(2.4) with initial conditions xtk/tk and Utk/tk for all t ∈ (tk, tk+1] and tk, tk+1 ∈ {t}M .

Note that, in continuous-discrete filtering problem, the filters E(x(t)/Zt) and E(x(t)xᵀ(t)/Zt) reduce
to the predictions E(x(t)/Ztk) and E(x(t)xᵀ(t)/Ztk) for all t between two consecutive observations tk
and tk+1, that is for all t ∈ (tk, tk+1). This is because there is not more observations between tk and tk+1.
This implies that, in the above definition, xtk+1−ε/tk+1−ε≡ xtk+1−ε/tk for all ε > 0 and so xtk+1−ε/tk+1−ε

tends to xtk+1/tk when ε goes to zero.
Clearly, for linear state equation with additive noise, the LMV filter (2.3)-(2.7) reduces to the classical

continuous-discrete Kalman filter. For linear state equation with multiplicative noise, explicit formulas for
the LMV filter can be found in [27]. In general, since the integro-differential equations (2.3)-(2.4) of the
LMV filter have explicit solution for a few simple state equations, approximations to them are needed. In
principle, for this type of suboptimal filter, the same conventional approximations to the general optimal
minimum variance filter may be used as well. For instance, those for the solution of (2.3)-(2.4) provided by
the conventional Extended Kalman, the Iterated Extended Kalman, the Gaussian, the Modified Gaussian
and the Local Linearization filters. However, in all these approximations, once the data ZtM are given
on a time partition {t}M the error between the exact and the approximate predictions for the mean
and variance of (2.1) at tk is completely settled by tk − tk−1 and can not be reduced. Therefore, small
enough time distance between consecutive observations would be typically necessary to obtain an adequate
approximation to the LMV filter. Undoubtedly, this imposes undesirable restrictions to the time distance
between observations that can not be accomplished in many practical situations. This drawback can be
overcome by means of the particle filter introduced in [12], but at expense of a very high computation cost.
Note that this filter performs, by means of intensive simulations, an estimation of the whole probabilistic
distribution of the processes x solution of (2.1) from which the first two conditional moments of x can then
be computed. Obviously, this general solution to the filtering problem is not practical when an expedited
computation of the LMV filter (2.3)-(2.7) is required, which is typically demanded in many applications.
For example, the LMV filter and its approximations are a key component of the innovation method
for the parameter estimation of diffusion processes from a time series of partial and noisy observations
[44, 54, 40, 41, 42, 55, 29]. For this purpose, accurate and computationally efficient approximations to
the LMV filter will be certainly usefull.

2.2. Local Linearization filters. A key component for constructing the Local Linearization (LL)
filters is the concept of Weak Local Linear (WLL) approximation for Stochastic Differential Equations
(SDEs) [23, 28].

Let us consider the SDE (2.1) on the time interval [a, b] ⊂ [t0, T ], and the time discretization (τ)h =
{τn : n = 0, 1, . . . , N} of [a, b] with maximum stepsize h defined as a sequence of times that satisfy the
conditions a = τ0 < τ1 < · · · < τN = b, and max

n
(τn+1 − τn) ≤ h < 1 for n = 0, . . . , N − 1. Further, let

nt = max{n = 0, 1, . . . , N : τn ≤ t and τn ∈ (τ)h}

for all t ∈ [a, b].
Definition 2.2. For a given time discretization (τ)h of [a, b], the stochastic process y = {y(t),

t ∈ [a, b]} is called order-β (= 1, 2) Weak Local Linear approximation of the solution of (2.1) on [a, b] if
it is the weak solution of the piecewise linear equation

dy(t) = (A(τnt)y(t) + aβ(t; τnt))dt+

m∑
i=1

(Bi(τnt)y(t) + bβi (t; τnt))dw
i(t) (2.8)

for all t ∈ (τn, τn+1] and initial value y(a) = y0, where the matrices functions A,Bi are defined as

A(s) =
∂f(s,y(s))

∂y
and Bi(s) =

∂gi(s,y(s))

∂y
,
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and the vectors functions aβ, bβi as

aβ(t; s) =


f(s,y(s))− ∂f(s,y(s))

∂y y(s) + ∂f(s,y(s))
∂s (t− s) for β = 1

a1(t; s) + 1
2

d∑
j,l=1

[G(s,y(s))Gᵀ(s,y(s))]j,l ∂
2f(s,y(s))
∂yj∂yl

(t− s) for β = 2

and

bβi (t; s) =


gi(s,y(s))− ∂gi(s,y(s))

∂y y(s) + ∂gi(s,y(s))
∂s (t− s) for β = 1

b1
i (t; s) + 1

2

d∑
j,l=1

[G(s,y(s))Gᵀ(s,y(s))]j,l ∂
2gi(s,y(s))
∂yj∂yl

(t− s) for β = 2

for all s ≤ t. Here, G = [g1, . . . ,gm] is an d×m matrix function.
The drift and diffusion coefficients of the equation (2.8) are, respectively, weak approximations of

order β to the drift and diffusion coefficients of the equation (2.1) obtained from the Ito-Taylor expansion
of order β. That is [33],

sup
s≤t≤s+h

∣∣E(g(f(t,y(t)))− E(g(A(s)y(t) + aβ(t; s)))
∣∣ ≤ Chβ

and

sup
s≤t≤s+h

∣∣∣E(g(gi(t,y(t)))− E(g(Bi(s)y(t) + bβi (t; s)))
∣∣∣ ≤ Chβ

for all h > 0 and s ∈ [a, b− h], where g ∈ C2(β+1)
P (Rd,R) and C is a positive constant.

Explicit formulas for the conditional mean yt/ρ and variance Vt/ρ of y were initially given in [27, 28]
and simplified later in [21].

The conventional Local Linearization filters for the model (2.1)-(2.2) are obtained in two steps [28]:
1) by approximating the solution of the nonlinear state equation on each time subinterval [tk, tk+1]
by the Local Linear approximation (2.8) on [tk, tk+1] with time discretization (τ)h ≡ {tk, tk+1} for all
tk, tk+1 ∈ {t}M ; and 2) by the recursive application of the linear minimum variance filter [27] to the
resulting piecewise linear continuous-discrete model. This yields to the following.

Definition 2.3. Given a time discretization (τ)h ≡ {t}M , the Local Linearization filter for the state
space model (2.1)-(2.2) is defined, between observations, by the linear equations

dyt/t

dt
= A(tnt)yt/t + aβ(t; tnt) (2.9)

dVt/t

dt
= A(tnt)Vt/t + Vt/tA

ᵀ(tnt) +

m∑
i=1

Bi(tnt)Vt/tB
ᵀ
i (tnt) + B(t; tnt) (2.10)

for all t ∈ (tk, tk+1), and by

ytk+1/tk+1
= ytk+1/tk + Ktk+1

(ztk+1
−Cytk+1/tk

) (2.11)

Vtk+1/tk+1
= Vtk+1/tk −Ktk+1

CVtk+1/tk (2.12)

for each observation at tk+1, with filter gain

Ktk+1
= Vtk+1/tkC

ᵀ(CVtk+1/tkC
ᵀ + Σtk+1

)−1 (2.13)

for all tk, tk+1 ∈ {t}M . The predictions yt/tk and Vt/tk are accomplished, respectively, via expressions
(2.9)-(2.10) with initial conditions ytk/tk and Vtk/tk for t ∈ (tk, tk+1]. Here,

B(t; s) =

m∑
i=1

Bi(s)yt/ty
ᵀ
t/tB

ᵀ
i (s) + Bi(s)yt/t(b

β
i (t; s))ᵀ + bβi (t; s)yᵀ

t/tB
ᵀ
i (t) + bi(t; s)(b

β
i (t; s))ᵀ,



Approximate linear minimum variance filters 5

and the matrices A,Bi and the vectors a,bβi are defined as in the WLL approximation (2.8) but, replacing
y(s) by ys/s.

Both, the Local Linear approximations and the Local Linearization filters have had a number of
important applications. The first ones, in addition to the filtering problems, have been used for the
derivation of effective integration [23, 6, 5, 26] and inference [52, 53, 13, 55, 19] methods for SDEs, in the
estimation of distribution functions in Monte Carlo Markov Chain methods [57, 50, 15] and the simulation
of likelihood functions [39]. The second ones have played a crucial role in the practical implementation
of innovation estimators for the identification of continuous-discrete state space models [44, 54, 45, 29].
In a variety of applications, these approximate innovation methods have shown high effectiveness and
efficiency for the estimation of unobserved components and unknown parameters of SDEs given a set of
discrete observations. Remarkable is the identification, from actual data, of neurophysiological, financial
and molecular models, among others (see, e.g., [4, 32, 8, 9, 25, 48, 49]).

3. Approximate Linear Minimum Variance filters. Let (τ)h be a time discretization of [t0, T ]
such that (τ)h ⊃ {t}M , and yn the approximate value of x(τn) obtained from a discretization of the
equation (2.1) for all τn ∈ (τ)h. Let us consider the continuous time approximation y = {y(t), t ∈
[t0, T ] : y(τn) = yn for all τn ∈ (τ)h} of x with initial conditions

E

(
y(t0)|Ft0

)
= E

(
x(t0)|Ft0

)
and E

(
y(t0)yᵀ(t0)|Ft0

)
= E

(
x(t0)xᵀ(t0)|Ft0

)
;

satisfying the bound condition

E

(
|y(t)|2q |Ftk

)
≤ L (3.1)

for all t ∈ [tk, tk+1]; and the weak convergence criteria

sup
tk≤t≤tk+1

∣∣∣∣E (g(x(t))|Ftk
)
− E

(
g(y(t))|Ftk

)∣∣∣∣ ≤ Lkhβ (3.2)

for all tk, tk+1 ∈ {t}M , where g ∈ C2(β+1)
P (Rd,R), L and Lk are positive constants, β ∈ N+, and q = 1, 2....

The process y defined in this way is typically called order-β approximation to x in weak sense [33].
When an order-β approximation to the solution of the state equation (2.1) is chosen, the following

approximate filter can be naturally defined.
Definition 3.1. Given a time discretization (τ)h ⊃ {t}M , the order-β Linear Minimum Variance

filter for the state space model (2.1)-(2.2) is defined, between observations, by

yt/t = E(y(t)/Zt) and Vt/t = E(y(t)yᵀ(t)/Zt)− yt/ty
ᵀ
t/t (3.3)

for all t ∈ (tk, tk+1), and by

ytk+1/tk+1
= ytk+1/tk + Ktk+1

(ztk+1
−Cytk+1/tk

), (3.4)

Vtk+1/tk+1
= Vtk+1/tk −Ktk+1

CVtk+1/tk , (3.5)

for each observation at tk+1, with filter gain

Ktk+1
= Vtk+1/tkC

ᵀ(CVtk+1/tkC
ᵀ + Σtk+1

)−1 (3.6)

for all tk, tk+1 ∈ {t}M , where y is an order-β approximation to the solution of (2.1) in weak sense. The
predictions yt/tk = E(y(t)/Ztk) and Vt/tk = E(y(t)yᵀ(t)/Ztk)− yt/tky

ᵀ
t/tk

, with initial conditions ytk/tk
and Vtk/tk , are defined for all t ∈ (tk, tk+1] and tk, tk+1 ∈ {t}M .

Note that the goodness of the approximation y to x is measured (in weak sense) by the left hand
side of (3.2). Thus, the inequality (3.2) gives a bound for the errors of the approximation y to x, for all
t ∈ [tk, tk+1] and all pair of consecutive observations tk, tk+1 ∈ {t}M . Moreover, this inequality states the
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convergence (in weak sense and with rate β) of the approximation y to x as the maximum stepsize h of
the time discretization (τ)h ⊃ {t}M goes to zero. Clearly this includes, as particular case, the convergence
of the first two conditional moments of y to those of x. Since the approximate filter in Definition 3.1 is
designed in terms of the first two conditional moments of the approximation y, the weak convergence of
y to x should imply the convergence of the approximate filter to the exact one. Next result deals with
this matter.

Theorem 3.2. Let xt/ρ and Ut/ρ be the conditional mean and variance corresponding to the LMV
filter (2.3)-(2.7) for the model (2.1)-(2.2), and yt/ρ and Vt/ρ their respective approximations given by
the order-β LMV filter (3.3)-(3.6). Then, between observations, the filters satisfy∣∣xt/t − yt/t

∣∣ ≤ K1h
β and

∣∣Ut/t −Vt/t

∣∣ ≤ K1h
β (3.7)

for all t ∈ (tk, tk+1) and, at each observation tk+1,∣∣xtk+1/tk+1
− ytk+1/tk+1

∣∣ ≤ K1h
β and

∣∣Utk+1/tk+1
−Vtk+1/tk+1

∣∣ ≤ K1h
β (3.8)

for all tk, tk+1 ∈ {t}M , where K1 is a positive constant. For the predictions,∣∣xt/tk − yt/tk
∣∣ ≤ K2h

β and
∣∣Ut/tk −Vt/tk

∣∣ ≤ K2h
β (3.9)

hold for all t ∈ (tk, tk+1] and tk, tk+1 ∈ {t}M , where K2 is a positive constant.
Proof. Let us start proving inequalities (3.9) and (3.7). For the functions g(x(t)) = xi(t) and

g(x(t)) = xi(t)xj(t) belonging to the function space C2(β+1)
P (Rd,R), for all i, j = 1..d, condition (3.2)

directly implies that ∣∣xt/tk − yt/tk
∣∣ ≤ √dLkhβ (3.10)

and ∣∣Qt/tk −Pt/tk

∣∣ ≤ dLkhβ
for all t ∈ (tk, tk+1], where Pt/tk = E(y(t)yᵀ(t)/Ztk). Since the solution of (2.1) has bounded moments,

there exists a positive contant Λ such that of
∣∣xt/tk ∣∣ ≤ Λ for all t ∈ [tk, tk+1]. Condition (3.1) implies

that
∣∣yt/tk ∣∣ ≤ L for all t ∈ [tk, tk+1]. From the formula of the variance in terms of the first two moments,

it follows that ∣∣Ut/tk −Vt/tk

∣∣ ≤ ∣∣Qt/tk −Pt/tk

∣∣+
∣∣∣xt/tkxᵀ

t/tk
− yt/tky

ᵀ
t/tk

∣∣∣ .
Since ∣∣∣xt/tkxᵀ

t/tk
− yt/tky

ᵀ
t/tk

∣∣∣ =
∣∣∣xt/tkxᵀ

t/tk
− xt/tky

ᵀ
t/tk

+ xt/tky
ᵀ
t/tk
− yt/tky

ᵀ
t/tk

∣∣∣
≤
∣∣∣xt/tk(xᵀ

t/tk
− yᵀ

t/tk
)
∣∣∣+
∣∣∣(xt/tk − yt/tk)yᵀ

t/tk

∣∣∣
≤ (
∣∣xt/tk ∣∣+

∣∣yt/tk ∣∣) ∣∣xt/tk − yt/tk
∣∣ ,

∣∣Ut/tk −Vt/tk

∣∣ ≤ αkhβ (3.11)

for all t ∈ (tk, tk+1], where αk = (
√
d + L + Λ)

√
dLk. Hence, inequalities (3.9) are obtained from (3.10)

and (3.11) with K1 = max
k
{αk}. Inequalities (3.7) can be derived in the same way.

For the remainder inequalities follow this. From (2.5) and (3.4), it is obtained∣∣xtk+1/tk+1
− ytk+1/tk+1

∣∣ ≤ ∣∣xtk+1/tk − ytk+1/tk

∣∣
+
∣∣∣Gtk+1

(ztk+1
−Cxtk+1/tk)−Ktk+1

(ztk+1
−Cytk+1/tk

)
∣∣∣

≤ (1 +
∣∣Gtk+1

C
∣∣) ∣∣xtk+1/tk − ytk+1/tk

∣∣
+ (
∣∣ztk+1

∣∣+
∣∣∣Cytk+1/tk

∣∣∣) ∣∣Gtk+1
−Ktk+1

∣∣ .
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From (2.6) and (3.5),∣∣Utk+1/tk+1
−Vtk+1/tk+1

∣∣ ≤ ∣∣Utk+1/tk −Vtk+1/tk

∣∣+
∣∣Gtk+1

CUtk+1/tk −Ktk+1
CVtk+1/tk

∣∣
≤ (1 +

∣∣Gtk+1
C
∣∣) ∣∣Utk+1/tk −Vtk+1/tk

∣∣+
∣∣CVtk+1/tk

∣∣ ∣∣Gtk+1
−Ktk+1

∣∣ .
By rewriting (3.6) and (2.7) as

Ktk+1
(CVtk+1/tkC

ᵀ + Σtk+1
) = Vtk+1/tkC

ᵀ

and

Gtk+1
(CUtk+1/tkC

ᵀ+Σtk+1
)−Gtk+1

(CVtk+1/tkC
ᵀ+Σtk+1

)+Gtk+1
(CVtk+1/tkC

ᵀ+Σtk+1
) = Utk+1/tkC

ᵀ,

and subtracting the first expression to the second one, it follows that

(Gtk+1
−Ktk+1

)(CVtk+1/tkC
ᵀ + Σtk+1

) = Gtk+1
C(Vtk+1/tk

−Utk+1/tk)C
ᵀ

+ (Utk+1/tk
−Vtk+1/tk)C

ᵀ
.

Thus,

(Gtk+1
−Ktk+1

) = (I−Gtk+1
C)(Utk+1/tk

−Vtk+1/tk)C
ᵀ
(CVtk+1/tkC

ᵀ + Σtk+1
)−1

and ∣∣Gtk+1
−Ktk+1

∣∣ ≤ ∣∣(I−Gtk+1
C)
∣∣ ∣∣Cᵀ(CVtk+1/tkC

ᵀ + Σtk+1
)−1
∣∣ ∣∣Utk+1/tk −Vtk+1/tk

∣∣ .
From the above inequalities, and taking into account that

∣∣Vtk+1/tk

∣∣, ∣∣Gtk+1

∣∣, ∣∣Σtk+1

∣∣ and |C| are also
bound, it is obtained that∣∣xtk+1/tk+1

− ytk+1/tk+1

∣∣ ≤ βkhβ and
∣∣Utk+1/tk+1

−Vtk+1/tk+1

∣∣ ≤ βkhβ ,
where βk is a positive constant. This implies (3.8) with K2 = max

k
{βk}.

Theorem 3.2 states that, given a set of M partial and noisy observations of the states x on {t}M ,
the approximate LMV filter of Definition 3.1 converges with rate β to the exact LMV filter of Definition
2.1 as h goes to zero, where h is the maximum stepsize of the time discretization (τ)h ⊃ {t}M on which
the approximation y to x is defined. This means that the approximate filter inherits the convergence
rate of the approximation employed for its design. Note that, the convergence results of Theorem 3.2 can
be easily extended for noisy observations of any realization of x just by taking expectation value in the
inequalities (3.7)-(3.9). Further note that in both, Definition 3.1 and Theorem 3.2, no restriction on the
time partition {t}M for the data has been assumed. Thus, there are not specific constraints about the time
distance between two consecutive observations, which allows the application of the approximate filter in
a variety of practical problems (see, e.g., [49, 17, 18]) with a reduced number of not close observations in
time, with sequential random measurements, or with multiple missing data. Neither there are restrictions
on the time discretization (τ)h ⊃ {t}M on which the approximate filter is defined. Thus, (τ)h can be
set by the user by taking into account some specifications or previous knowledge on the filtering problem
under consideration, or automatically designed by an adaptive strategy as it will be shown in the section
concerning the numerical simulations.

The order-β LMV filter of Definition 3.1 has been proposed for models with linear observation equa-
tion. However, by following the procedure proposed in [29], it can be easily applied as well to models
with nonlinear observation equation.

To illustrate this, let us consider the state space model defined by the continuous state equation (2.1)
and the discrete observation equation

ztk = h(tk,x(tk)) + etk , for k = 0, 1, ..,M − 1, (3.12)

where etk is defined as in (2.2) and h : R× Rd → Rr is a twice differentiable function. By using the Ito
formula,

dhj = {∂hj

∂t
+

d∑
k=1

fk
∂hj

∂xk
+

1

2

m∑
s=1

d∑
k,l=1

glsg
k
s

∂2hj

∂xl∂xk
}dt+

m∑
s=1

d∑
l=1

gls
∂hj

∂xl
dws

= ρjdt+

m∑
s=1

σjsdw
s
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with j = 1, .., r. Hence, the state space model (2.1) and (3.12) is transformed to the following higher-
dimensional state space model with linear observation

dv(t) = a(t,v(t))dt+

m∑
i=1

bi(t,v(t))dwi(t),

ztk = Cv(tk) + etk , for k = 0, 1, ..,M − 1,

where

v =

[
x
h

]
, a =

[
f
ρ

]
, bi =

[
gi
σi

]
and the matrix C is such that h(tk,x(tk)) = Cv(tk).

In this way, the state space model (2.1) and (3.12) is transformed to the form of the state space
model (2.1)-(2.2), and so the order-β LMV filter of Definition 3.1 and the convergence result of Theorem
3.2 can be applied.

4. Order-β Local Linearization filters. In principle, according to Theorem 3.2, any kind of
approximation y converging to x in a weak sense can be used to construct approximate LMV filters (e.g.,
those in [33]). Therefore, additional selection criterions could be taking into account for this purpose. For
instance, high order of convergence, efficient algorithm for the computation of the moments, and so on.
In this paper, we elected the Local Linear approximation (2.8) for the following reasons: 1) its first two
conditional moments have simple explicit formulas that can be computed by means of efficient algorithm
(including high dimensional state equations) [27, 28, 21]; 2) its first two conditional moments are exact for
linear state equations in all the possible variants (with additive and/or multiplicative noise, autonomous
or not) [27]; 3) it has an adequate order of weak convergence for state equations with additive noise [6];
and 4) the high effectiveness of the conventional LL filters for the identification of complex nonlinear
models in a variety of applications (see, e.g., [4, 8, 25, 48, 49]).

Once the order-β Local Linear approximation (2.8) is chosen for approximating the state equation
(2.1), the well know ordinary differential equations for the first two moments of linear SDEs [1] can be
directly used to define the following filter.

Definition 4.1. Given a time discretization (τ)h ⊃ {t}M , the order-β Local Linearization filter for
the state space model (2.1)-(2.2) is defined, between observations, by the piecewise linear equations

dyt/t

dt
= A(τnt)yt/t + aβ(t; τnt) (4.1)

dPt/t

dt
= A(τnt)Pt/t + Pt/tA

ᵀ(τnt) +

m∑
i=1

Bi(τnt)Pt/tB
ᵀ
i (τnt) + B(t; τnt) (4.2)

Vt/t = Pt/t − yt/ty
ᵀ
t/t (4.3)

for all t ∈ (tk, tk+1), and by

ytk+1/tk+1
= ytk+1/tk + Ktk+1

(ztk+1
−Cytk+1/tk

) (4.4)

Vtk+1/tk+1
= Vtk+1/tk −Ktk+1

CVtk+1/tk (4.5)

for each observation at tk+1, with filter gain

Ktk+1
= Vtk+1/tkC

ᵀ(CVtk+1/tkC
ᵀ + Σtk+1

)−1 (4.6)
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for all tk, tk+1 ∈ {t}M . Here,

B(t; s) = aβ(t; s)yᵀ
t/t + yt/t(a

β(t; s))ᵀ

+

m∑
i=1

Bi(s)yt/t(b
β
i (t; s))ᵀ + bβi (t; s)yᵀ

t/tB
ᵀ
i (s) + bβi (t; s)(bβi (t; s))ᵀ (4.7)

with matrix functions A,Bi and vector functions aβ ,bβi defined as in the WLL approximation (2.8)
but, replacing y(s) by ys/s. The predictions yt/tk , Pt/tk and Vt/tk are accomplished, respectively, via
expressions (4.1)-(4.3) with initial conditions ytk/tk and Ptk/tk for t ∈ (tk, tk+1] and tk, tk+1 ∈ {t}M ,

and with A,Bi,a
β ,bβi also defined as in (2.8) but, replacing y(s) by ys/tk .

The approximate LL filter (4.1)-(4.6) reduces to the conventional LL filter (2.9)-(2.13) when (τ)h
≡ {t}M . For linear state equations with multiplicative noise, the LL filter (4.1)-(4.6) reduces to the LMV
filter proposed in [27], whereas for linear state equations with additive noise, the LL filter (4.1)-(4.6)
reduces to the classical Kalman filter.

According with Theorem 3.2, the approximate LL filter (4.1)-(4.6) will inherit the order of conver-
gence of the WLL approximation (2.8). As it was mention before, the weak convergence rate of that
approximation was early stated in [6] for SDEs with additive noise. For equations with multiplicative
noise, this subject will be considered in what follows.

Lemma 4.2. Suppose that the drift and diffusion coefficients of the SDE (2.1) satisfy the following
conditions

fk,gki ∈ C
2(β+1)
P ([a, b]× Rd,R) (4.8)

|f(s,u)|+
m∑
i=1

(|gi(s,u)|+
d∑

k,l=1

∣∣gki (s,u)gli(s,u)
∣∣ δ2
β) ≤ K(1 + |u|), (4.9)

∣∣∣∣∂f(s,u)

∂t

∣∣∣∣+

∣∣∣∣∂f(s,u)

∂x

∣∣∣∣+

∣∣∣∣∂2f(s,u)

∂x2

∣∣∣∣ δ2
β ≤ K (4.10)

and ∣∣∣∣∂gi(s,u)

∂t

∣∣∣∣+

∣∣∣∣∂gi(s,u)

∂x

∣∣∣∣+

∣∣∣∣∂2gi(s,u)

∂x2

∣∣∣∣ δ2
β ≤ K (4.11)

for all s ∈ [a, b], u ∈ Rd, and i = 1, ..,m, where K is a positive constant. Then the order-β WLL
approximation (2.8) satisfies

E

(
sup
a≤t≤b

|y(t)|2q |Fa
)
≤ C(1 + |y(a)|2q) (4.12)

for each q = 1, 2, . . . , where C is positive constant.

Proof. Let us denote the drift and diffusion coefficients of the SDE (2.8) by

p(t,y(t);τnt) = A(τnt)y(t) + aβ(t; τnt)

and

qi(t,y(t);τnt) = Bi(τnt)y(t) + bβi (t; τnt),

respectively.
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For each q, the Ito formula applied to |y(t)|2q implies that

|y(t)|2q = |y(τnt)|
2q

+

t∫
τnt

2q |y(s)|2q−2
yᵀ(s)p(s,y(s); τnt)ds

+

m∑
i=1

t∫
τnt

2q |y(s)|2q−2
yᵀ(s)qi(s,y(s);τnt)dw

i(s)

+

m∑
i=1

t∫
τnt

q |y(s)|2q−2 |qi(s,y(s);τnt)|
2
ds

+

m∑
i=1

t∫
τnt

2q(q − 1) |y(s)|2q−4 |yᵀ(s)qi(s,y(s);τnt)|
2
ds

for all t ∈ [τnt , τnt+1].
By recursive application of the expression above it is obtained that

|y(t)|2q = |y(a)|2q +

t∫
a

2q |y(s)|2q−2
yᵀ(s)p(s,y(s); τns)ds

+

m∑
i=1

t∫
a

2q |y(s)|2q−2
yᵀ(s)qi(s,y(s);τns)dw

i(s)

+

m∑
i=1

t∫
a

q |y(s)|2q−2 |qi(s,y(s);τns)|
2
ds

+

m∑
i=1

t∫
a

2q(q − 1) |y(s)|2q−4 |yᵀ(s)qi(s,y(s);τns)|
2
ds

for all t ∈ [a, b].

Theorem 4.5.4 in [33] implies that E
(
|y(t)|2q

)
<∞ for a ≤ t ≤ b. Hence, the function r defined as

r(t) = 0 for 0 ≤ t < a and as r(t) = |y(t)|2q−2
yᵀ(t)qi(t,y(t);τnt) for a ≤ t ≤ b belongs to the class L2

b of
function L × F− measurable. Then, Lemma 3.2.2 in [33] implies that

E

 t∫
a

|y(s)|2q−2
yᵀ(s)qi(s,y(s);τns)dw

i(s)

 = 0

for all i = 1, ..,m. From this and the previous expression for |y(t)|2q follows that

E

(
sup
a≤u≤t

|y(u)|2q |Fa
)
≤ |y(a)|2q + 2q

t∫
a

E

(
|y(s)|2q−2 |yᵀ(s)p(s,y(s); τns)| |Fa

)
ds

+ q

m∑
i=1

t∫
a

E

(
|y(s)|2q−2 |qi(s,y(s);τns)|

2 |Fa
)
ds

+ 2q(q − 1)

m∑
i=1

t∫
a

E

(
|y(s)|2q−4 |yᵀ(s)qi(s,y(s);τns)|

2 |Fa
)
ds.
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From conditions (4.9)-(4.11) follows that

|p(s,y(s);τns)| ≤ K(|y(s)|+ |y(τns)|) +Kβ(1 + |y(s)|) +K

and

|qi(s,y(s);τns)| ≤ K(|y(s)|+ |y(τns)|) +Kβ(1 + |y(s)|) +K,

where

Kβ =

{
K for β = 1

K(1 + 1
2K) for β = 2

.

Thus, there exists a positive constant C such that

|yᵀ(s)p(s,y(s);τns)| ≤ C(1 + |y(s)|2) + C(1 + |y(τns)|2),

|qi(s,y(s); τns)|
2 ≤ C(1 + |y(s)|2) + C(1 + |y(τns)|2),

|yᵀ(s)qi(s,y(s); τns)|
2 ≤ C|y(s)|2(1 + |y(s)|2) + C|y(s)|2(1 + |y(τns)|2),

and so

E

(
sup
a≤u≤t

|y(u)|2q |Fa
)
≤ |y0|2q + L

t∫
a

E

(
sup
a≤u≤s

(1 + |y(u)|2) |y(u)|2q−2 |Fa
)
ds,

where L = 2qC(2 + 2qm−m). From the inequality (1 + z2)z2q−2 ≤ 1 + 2z2q,

E

(
sup
a≤u≤t

|y(u)|2q |Fa
)
≤ |y0|2q + L(t− a) + 2L

t∫
a

E

(
sup
a≤u≤s

|y(u)|2q |Fa
)
ds.

From this and the Gronwall Lemma, the assertion of the Theorem is obtained.
In what follows, additional notations and results of [33] will be used. Briefly recall us thatM denotes

the set of all the multi-indexes α = (j1, . . . , jl(α)) with ji ∈ {0, 1, . . . ,m} and i = 1, . . . , l(α), where m
is the dimension of w in (2.1). l(α) denotes the length of the multi-index α and n(α) the number of its
zero components. −α and α− are the multi-indexes in M obtained by deleting the first and the last
component of α, respectively. The multi-index of length zero will be denoted by v. Further,

L0 =
∂

∂t
+

d∑
k=1

fk
∂

∂xk
+

1

2

d∑
k,l=1

m∑
j=1

gkj g
l
j

∂2

∂xk∂xl

denotes the diffusion operator for the SDE (2.1), and

Lj =

d∑
k=1

gkj
∂

∂xk
,

for j = 1, . . . ,m.
Let us consider the hierarchical set

Γβ = {α ∈M : l(α) ≤ β}

with β = 1, 2; and B(Γβ) = {α ∈M\Γβ : −α ∈ Γβ} the remainder set of Γβ .
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Lemma 4.3. Let y be the order-β WLL approximation (2.8), and z = {z(t), t ∈ [a, b]} be the
stochastic process defined by

z(t) = ynt +
∑

α∈Γβ/{ν}

Iα[Λα(τnt ,ynt ; τnt)]τnt ,t +
∑

α∈B(Γβ)

Iα[Λα(.,y.; τnt)]τnt ,t, (4.13)

where Iα[.]τnt ,t denotes the multiple Ito integral and, for any given (τnt ,ynt),

Λα(s,v; τnt) =

{
Lj1 . . . Ljl(α)−1pβ(s,v; τnt) if jl(α) = 0

Lj1 . . . Ljl(α)−1qβjl(α)
(s,v; τnt) if jl(α) 6= 0

is a function of s and v, with

pβ(s,v;τnt) = A(τnt)v + aβ(s; τnt) and qβi (s,v;τnt) = Bi(τnt)v + bβi (s; τnt),

for all s ∈ [a, b] and v ∈ Rd, and matrix functions A,Bi and vector functions aβ ,bβi defined as in the
WLL approximation (2.8). Then

E (g(y(t))) = E (g(z(t))) , (4.14)

E (g(y(t)− y(τnt))) = E (g(z(t)− z(τnt))) (4.15)

for all t ∈ [a, b] and g ∈ C2(β+1)
P (Rd,R); and

Iα[Λα(τnt ,ynt ; τnt)]τnt ,t = Iα[λα(τnt ,ynt)]τnt ,t, (4.16)

for all α ∈ Γβ/{ν} and t ∈ [a, b], where λα denotes the Ito coefficient function corresponding to the SDE
(2.1).

Proof. The identities (4.14)-(4.15) trivially hold, since (4.13) is the order-β weak Ito-Taylor expansion
of the solution of the piecewise linear equation (2.8) with initial value y(a) = y0.

By simple calculations it is obtained that Ito coefficient functions λα corresponding to the SDE (2.1)
are

λk(0) = fk,

λk(j) = gkj ,

λk(0,j) =
∂gkj
∂t

+

d∑
i=1

f i
∂gkj
∂xi

+
1

2

d∑
i,l=1

m∑
j=1

gijg
l
j

∂2gkj
∂xi∂xl

,

λk(j,0) =

d∑
i=1

gij
∂fk

∂xi
,

λk(0,0) =
∂fk

∂t
+

d∑
i=1

f i
∂fk

∂xi
+

1

2

d∑
i,l=1

m∑
j=1

gijg
l
j

∂2fk

∂xi∂xl
,

λk(i,j) =

d∑
l=1

gli
∂gkj
∂xl

for α ∈ Γ2. By taking into account that pβ(s,v; τn) and qβi (s,v; τn) are linear functions of s and v, it is
not difficult to obtain that Λα(τns ,yns ; τns) = λα(τns ,yns)tns ,s for all α ∈ Γ2, which implies (4.16).

Note that, the stochastic process z defined in the previous lemma is solution of the piecewise linear
SDE (2.8) and Λα denotes the Ito coefficient functions corresponding to that equation. Therefore, (4.13)
is the Ito-Taylor expansion of the Local Linear approximation (2.8).

The main convergence result for the WLL approximations is them stated in the following theorem.
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Theorem 4.4. Let x be the solution of the SDE (2.1) on [a, b], and y the order-β weak Local
Linear approximation of x defined by (2.8). Suppose that the drift and diffusion coefficients of the SDE
(2.1) satisfy the conditions (4.8)-(4.11). Further, suppose that the initial values of x and y satisfy the
conditions

E(|x(a)|q) <∞

and

|E (g(x(a)))− E (g(y(a)))| ≤ C0h
β

for q = 1, 2, . . . , some constant C0 > 0 and all g ∈ C2(β+1)
P (Rd,R). Then there exits a positive constant

C such that ∣∣∣∣E (g(x(b))|Fa
)
− E

(
g(y(b))|Fa

)∣∣∣∣ ≤ C(b− a)hβ . (4.17)

Proof. For l = 1, 2, . . . , let Pl = {p ∈ {1, . . . , d}l}, and let Fp : Rd → R be the function defined as

Fp(x) =

l∏
i=1

xpi ,

where p = (p1, . . . , pl) ∈ Pl.
By applying Lemma 5.11.7 in [33] to (2.8) and taking into account that (4.13) is the order-β weak

Ito-Taylor expansion of the solution of (2.8), it is obtained∣∣∣∣∣∣E
Fp(yn+1 − yn)− Fp(

∑
α∈Γβ/{ν}

Iα[Λα(τn,yn; τn)]τn,τn+1
)|Fτn

∣∣∣∣∣∣ ≤ K(1 + |yn|2r)

· (τn+1 − τn)hβn,

for all p ∈ Pl and l = 1, . . . , 2β + 1, some K > 0 and r ∈ {1, 2, . . .}, where Λα denotes the Ito coefficient
function corresponding to (2.8), and hn = τn+1 − τn. Further, Lemma 4.3 implies that

E

Fp(
∑

α∈Γβ/{ν}

Iα[λα(τn,yn)]τn,τn+1
)|Fτn)

 = E

Fp(
∑

α∈Γβ/{ν}

Iα[Λα(τn,yn; τn)]τn,τn+1
)|Fτn

 ,

where λα denotes the Ito coefficient function corresponding to (2.1). Hence,∣∣∣∣∣∣E
Fp(yn+1 − yn)− Fp(

∑
α∈Γβ/{ν}

Iα[λα(τn,yn)]τn,τn+1
)|Fτn

∣∣∣∣∣∣ ≤ K(1 + |yn|2r)(τn+1 − τn)hβn

≤ K(1 + max
0≤k≤n

|yk|2r)

· (τn+1 − τn)hβn.

On the other hand, Theorem 4.5.4 in [33] applied to (2.8) and Lemma 4.2 imply

E

(
|yn+1 − yn|2q |Fτn

)
≤ L(1 + max

0≤k≤n
|yk|2q)(τn+1 − τn)q

for all 0 ≤ n ≤ N − 1, and

E

(
max

0≤k≤nb
|yk|2q |Fa

)
≤ C(1 + |y0|2q),
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respectively, where C and L are positive constants. The proof concludes by using Theorem 14.5.2 in [33]
with the last three inequalities.

For state equations with additive noise, the order of weak convergence of the WLL approximations
provided by this Theorem matches with that early obtained in [6].

Theorem 4.4 provides the global order of weak convergence for the WLL approximations at the time
t = b. Notice further that inequality (4.17) implies that the uniform bound

sup
t∈[a,b]

∣∣∣∣E (g(x(t))|Fa
)
− E

(
g(y(t))|Fa

)∣∣∣∣ ≤ C(b− a)hβ (4.18)

holds as well for the order-β WLL approximation y since, in general, the global order of weak convergence
of a numerical integrator implies the uniform one (see Theorem 14.5.1 and Exercise 14.5.3 in [33] for
details).

Convergence in Theorem 4.4 has been proved under the assumption of continuity for f and gi. If
that is not the case, the consistency of the WLL discretization has been proved in [58]. In other practical
situations, it is important to integrate SDEs with nonglobal Lipschitz coefficients on Rd [35]. Typically,
for such type of equations, the conventional weak integrators display explosive values for some realizations.
In such a case, if each numerical realization of an order-β scheme leaving a sufficient large sphere R ⊂ Rd
is rejected, then Theorem 2.3 in [35] ensures that the accuracy of the scheme is ε + O(hβ), where ε can
be made arbitrary small with increasing the sphere radius. This Theorem could be applied to the WLL
approximations as well.

Finally, the rate of convergence of the approximate Local Linearization filter is states as follows.

Theorem 4.5. Given a set of M partial and noisy observations of the state equation (2.1) on {t}M ,
and under the assumption that conditions (4.8)-(4.11) hold on [t0, T ], the approximate order-β LL filter
(4.1)-(4.6) defined on (τ)h ⊃ {t}M converges with order β to the exact LMV filter (2.3)-(2.7) as h goes
to zero.

Proof. Lemma 4.2 and Theorem 4.4 imply that the order-β LL approximation y of x defined by (2.8)
satisfies the inequalities (4.12) and (4.18) for any integration interval [a, b] ⊂ [t0, T ]. Thus, by applying
that lemma and theorem in each interval [tk, tk+1] with y(tk) ≡ ytk/tk (and yt0/t0 ≡ xt0/t0), for all
tk, tk+1 ∈ {t}M , the bound and convergence conditions (3.1) and (3.2) required by Theorem 3.2 for the
convergence of the filter designed from y are satisfied. Therefore, the inequalities (3.7)-(3.9) hold for the
approximate LL filter of the Definition 4.1, and so it has rate of convergence β when h goes to zero.

5. Practical Algorithms. This section deals with practical implementation of the order-β LL filter
(4.1)-(4.6). Explicit formulas for the predictions yt/tk and Pt/tk , an adaptive strategy for the construction
of an adequate time discretization (τ)h, and the resulting adaptive LL filter algorithm are given.

5.1. Formulas for the predictions. Let us define the vectors a0(τ), a1(τ), bi,0(τ) and bi,1(τ)
satisfying the expressions

aβ(t; τnt) = a0(τnt) + a1(τnt)(t− τnt) and bβi (t; τnt) = bi,0(τnt) + bi,1(τnt)(t− τnt)

for all t ∈ [tk, tk+1], where the vector functions aβ and bβi are defined as in the WLL approximation (2.8)
but, replacing y(s) by ys/tk . By simplicity, the supraindex β is omitted in the right hand side of the
above expressions.

According Theorem 3.1 in [21], the solution of the piecewise linear differential equations (4.1)-(4.2)
for the predictions can be computed as

yt/tk = ytk/tk +

nt−1∑
n=ntk

L2e
M(τn)(τn+1−τn)uτn,tk + L2e

M(τnt )(t−τnt )uτnt ,tk (5.1)

and

vec(Pt/tk) = L1e
M(τnt )(t−τnt )uτnt ,tk (5.2)
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for all t ∈ (tk, tk+1] and tk, tk+1 ∈ {t}M , where the vector uτ,tk and the matrices M(τ), L1, L2 are defined
as

M(τ) =


A(τ) B5(τ) B4(τ) B3(τ) B2(τ) B1(τ)

0 C(τ) Id+2 0 0 0
0 0 C(τ) 0 0 0
0 0 0 0 2 0
0 0 0 0 0 1
0 0 0 0 0 0

 , uτ,tk =


vec(Pτ/tk)

0
r
0
0
1

 ∈ R(d2+2d+7)

and

L1 =
[

Id2 0d2×(2d+7)

]
, L2 =

[
0d×(d2+d+2) Id 0d×5

]
in terms of the matrices and vectors

A(τ) = A(τ)⊕A(τ) +

m∑
i=1

Bi(τ)⊗Bᵀ
i (τ),

C(τ) =

 A(τ) a1(τ) A(τ)yτ/tk + a0(τ)
0 0 1
0 0 0

 ∈ R(d+2)×(d+2),

rᵀ =
[

01×(d+1) 1
]

B1(τ) = vec(β1(τ)) +β4(τ)yτ/tk , B2(τ) = vec(β2(τ)) +β5(τ)yτ/tk , B3(τ) = vec(β3(τ)), B4(τ) = β4(τ)L
and B5(τ) = β5(τ)L with

β1(τ) =

m∑
i=1

bi,0(τ)bᵀ
i,0(τ)

β2(τ) =

m∑
i=1

bi,0(τ)bᵀ
i,1(τ) + bi,1(τ)bᵀ

i,0(τ)

β3(τ) =

m∑
i=1

bi,1(τ)bᵀ
i,1(τ)

β4(τ) = a0(τ)⊕ a0(τ) +

m∑
i=1

bi,0(τ)⊗Bi(τ) + Bi(τ)⊗ bi,0(τ)

β5(τ) = a1(τ)⊕ a1(τ) +

m∑
i=1

bi,1(τ)⊗Bi(τ) + Bi(τ)⊗ bi,1(τ),

L =
[

Id 0d×2

]
, and the d-dimensional identity matrix Id. The matrix functions A,Bi are defined as

in the WLL approximation (2.8) but, replacing y(s) by ys/tk . The symbols vec, ⊕ and ⊗ denote the
vectorization operator, the Kronecker sum and product, respectively.

Alternatively, see Theorems 3.2 and 3.3 in [21] for simplified formulas in the case autonomous state
equations or with additive noise.

5.2. Adaptive selection of a time discretization. In order to write a code that automatically
determines a suitable time discretization (τ)h for achieving a prescribed accuracy in the computation of
the predictions ytk+1/tk and Ptk+1/tk , an adequate adaptive strategy is necessary. Since the equations
(4.1)-(4.2) for the first two conditional moments of y are ordinary differential equations, conventional
adaptive strategies for numerical integrators of such class of equations are useful. In what follows, the
adaptive strategy described in [16] is adapted to the LL filter requirements.
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Once the values for the relative and absolute tolerances rtoly, rtolP and atoly, atolP for the local
errors of the first two conditional moments, for the maximum and minimum stepsizes hmax and hmin, and
for the floating point precision prs are set, an initial stepsize h1 needs to be estimated. Specifically,

h1 = max{hmin,min{δ(y), δ(vec(P)), t1 − t0}}

where

δ(v) = min{100δ1(v), δ2(v)}

with

δ1(v) =

{
atolv if d0(v) < 10 · atolv or d1(v) < 10 · atolv

0.01d0(v)
d1(v) otherwise

and

δ2(v) =

 max{atolv, δ1 · rtolv}. if max{d1(v), d2(v)} ≤ prs
(

0.01

max{d1(v), d2(v)}
)

1
β+1 otherwise

.

Here, d0(v) =
∥∥vt0/t0∥∥, d1(v) =

∥∥F(t0,vt0/t0)
∥∥ and d2(v) =

∥∥∥∥∂F(t0,vt0/t0)

∂t
+
∂F(t0,vt0/t0)

∂v
F(t0,vt0/t0)

∥∥∥∥
are the norms of the filters and of their first two derivatives with respect to t at t0, where F is the vector

field of the equation for v (i.e., (4.1) for y, and (4.2) for P), and ‖v‖ =

√
1

dim(v)

∑dim(v)
i=1 (

vi

sci(v)
)2 with

sci(v) = atolv + rtolv ·
∣∣∣vit0/t0 ∣∣∣.

Starting with the filter estimates ytk/tk and Ptk/tk , the basic steps of the adaptive algorithm for de-
termining (τ)h and computing the predictions ytk+1/tk and Ptk+1/tk between two consecutive observations
tk and tk+1 are the following:

1. Computation of yτn/tk and vec(Pτn/tk) at τn = τn−1 + 2hn by the recursive evaluation of the
expressions (5.1)-(5.2) at the two consecutive times τn−1 + hn and (τn−1 + hn) + hn. That is,

yτn/tk = yτn−1/tk + L2e
hnM(τn−1)uτn−1,tk + L2e

hnM(τn−1+hn)uτn−1+hn,tk

and

vec(Pτn/tk) = L1e
hnM(τn−1+hn)uτn−1+hn,tk .

2. Computation of an alternative estimate for the predictions at τn = τn−1 + 2hn by means of the
expressions

ŷτn/tk = yτn−1/tk + L2e
2hnM(τn−1)uτn−1,tk

and

vec(P̂τn/tk) = L1e
2hnM(τn−1)uτn−1,tk ,

which follow from the straightforward evaluation of (5.1)-(5.2) at τn−1 + 2hn.
3. Evaluation of the error formulas

E1 =

√√√√1

d

d∑
i=1

(
yiτn/tk − ŷiτn/tk

sci(y)
)2 and E2 =

√√√√ 1

d2

d2∑
i=1

(
piτn/tk − p̂iτn/tk

sci(p)
)2,

where pτn/tk = vec(Pτn/tk) and sci(v) = atolv + rtolv ·max{
∣∣∣viτn−1/tk

∣∣∣ , ∣∣∣viτn/tk ∣∣∣}.
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4. Estimation of a new stepsize

hnew = max{hmin,min{δnew(E1), δnew(E2)}}

where

δnew(E) =


hn ·min{5,max{0.25, 0.8 · ( 1

E
)

1
β+1 }} E ≤ 1

hn ·min{1,max{0.1, 0.2 · ( 1

E
)

1
β+1 }} E > 1

5. Validation of yτn/tk and vec(Pτn/tk): if max{E1, E2} ≤ 1 or hn = hmin, then accept yτn/tk and
vec(Pτn/tk) as approximations to the first two conditional moments of x at τn = τn−1 + 2hn.
Otherwise, return to step 1 with hn = hnew.

6. Control of the final stepsize: if τn + 2hn = tk+1, stop. If τn + 2hn + hnew > tk+1, then redefine
hnew = tk+1 − (τn + 2hn).

7. Return to step 1 with n = n+ 1 and hn = hnew.
Clearly, in this adaptive strategy, the selected values for the relative and absolute tolerances will have

a direct impact in the filtering performance expressed in terms of the filtering error and the computational
time cost. Note that, under the assumed smoothness conditions for the first two conditional moments
of the state equation, the adaptive algorithm provides an adequate estimation of the local errors of
the approximate moments at each τn ∈ (τ)h, and ensures that the relative and absolute errors of the
approximate moments at τn are lower than the prearranged relative and absolute tolerance. This is done
with a computational time cost that typically increases as the values of the tolerances decreases. Thus, for
each filtering problem, adequate tolerance values should be carefully set in advance. In practical control
engineering, these tolerances can be chosen by taking into account the level of accuracy required by the
particular problem under consideration and the specific range of values of its state variables.

Remarks: It is worth to emphasize that the initial stepsize h1 is computed just one time for computing
the value of τ1 ∈ [t0, t1]. For other τn ∈ [tk, tk+1] with n = ntk + 1 and k > 0, the initial value for the
corresponding hn is set as hn = hnew, where the value hnew was estimated when the previous stepsize
hn−1 was accepted. Further note that, because the flow property of the exponential operator, only two
exponential matrices need to be evaluated in steps 1 and 2, instead of three. These two exponential
matrices can the efficiently computed through the well known Padé method for exponential matrices [37]
or, alternatively, by means of the Krylov subspace method [37] in the case of high dimensional state
equation. Even more, low order Padé and Krylov methods as suggested in [26] can be used as well for
reducing the computation cost, but preserving the order-β of the LL filters. In step 4, the constant
values in the formula for the new stepsize δnew(E) were set according to the standard integration criteria
oriented to reach an adequate balance of accuracy and computational cost with the adaptive strategy
(see, e.g., [16]). These values might be adjusted for improving the filtering performance in some specific
types of state equations.

5.3. Adaptive LL filter algorithm. Starting with the initial filter values yt0/t0 = xt0/t0 and
Pt0/t0 = Qt0/t0 , the adaptive LL filter algorithm performs the recursive computation of:

1. the predictions yτn/tk and Pτn/tk for all τn ∈ {(τ)h ∩ (tk, tk+1]} by means of the recursive
formulas and the adaptive strategy of the last two subsections, and the prediction variance by

Vtk+1/tk = Ptk+1/tk − ytk+1/tky
ᵀ
tk+1/tk

;

2. the filters

ytk+1/tk+1
= ytk+1/tk + Ktk+1

(ztk+1
−Cytk+1/tk

),

Vtk+1/tk+1
= Vtk+1/tk −Ktk+1

CVtk+1/tk ,

Ptk+1/tk+1
= Vtk+1/tk+1

+ ytk+1/tk+1
yᵀ
tk+1/tk+1

,

with filter gain

Ktk+1
= Vtk+1/tkC

ᵀ(CVtk+1/tkC
ᵀ + Σtk+1

)−1;

for each k, with k = 0, 1, . . . ,M − 2.
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6. Numerical Simulations. In this section, the performance of the approximate LMV filters in-
troduced in this paper is illustrated, by means of simulations, with four examples of state space models.
To do so, the prediction and filter values are computed in four different ways by means of: 1) the exact
LMV filter formulas, when it is possible; 2) the conventional LL filter; when the exact filter formulas are
available; 3) the order-1 LL filter with various uniform time discretizations; and 4) the adaptive order-1
LL filter. For each example, the error analysis for the estimated moments and the estimation of the weak
convergence rate are carried out through the standard procedures (see, e.g., [33, 6]).

The state space models to be considered are the followings.
Example 1. State equation with multiplicative noise

dx = atxdt+ σ
√
txdw1 (6.1)

and observation equation

ztk = x(tk) + etk , for k = 0, 1, ..,M − 1 (6.2)

with a = −0.1, σ = 0.1, t0 = 0.5, Σ = 0.0001, xt0/t0 = 1 and Qt0/t0 = 1. For this state equation, the
predictions for the first two moments are

xtk+1/tk = xtk/tke
a(t2k+1−t

2
k)/2 and Qtk+1/tk = Qtk/tke

(a+σ2/2)(t2k+1−t
2
k),

where the filters xtk/tk and Qtk/tk are obtained from (2.5) and (2.6) for all k = 0, 1, ..,M − 2.
Example 2. State equation with two additive noise

dx = atxdt+ σ1t
peat

2/2dw1 + σ2

√
tdw2 (6.3)

and observation equation

ztk = x(tk) + etk , for k = 0, 1, ..,M − 1 (6.4)

with a = −0.25, p = 2, σ1 = 5, σ2 = 0.1, t0 = 0.01, Σ = 0.0001, xt0/t0 = 10 and Qt0/t0 = 100. For this
state equation, the predictions for the first two moments are

xtk+1/tk = xtk/tke
a(t2k+1−t

2
k)/2

and

Qtk+1/tk = (Qtk/tk +
σ2

2

2a
)ea(t2k+1−t

2
k) +

σ2
1

2p+ 1
(t2p+1
k+1 − t

2p+1
k )eat

2
k+1 − σ2

2

2a
,

where the filters xtk/tk and Qtk/tk are obtained from (2.5) and (2.6) for all k = 0, 1, ..,M − 2.
Example 3. Van der Pool oscillator with random input [14]

dx1 = x2dt (6.5)

dx2 = (−(x2
1 − 1)x2 − x1 + a)dt+ σdw (6.6)

and observation equation

ztk = x1(tk) + etk , for k = 0, 1, ..,M − 1, (6.7)

where a = 0.5 and σ2 = (0.75)2 are the intensity and the variance of the random input, respectively. In
addition, t0 = 0, Σ = 0.001, xᵀ

t0/t0
= [1 1] and Qt0/t0 = xt0/t0x

ᵀ
t0/t0

.

Example 4. Van der Pool oscillator with random frequency [14]

dx1 = x2dt (6.8)

dx2 = (−(x2
1 − 1)x2 −$x1)dt+ σx1dw (6.9)
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Table 6.1
Confidence limits for the errors between the exact LMV filter xtk+1/tk+1

,Utk+1/tk+1
of (6.1)-(6.2) and the

order-1 LL filter yh
tk+1/tk+1

,Vh
tk+1/tk+1

on (τ)uh with different value of h. Order β̂ of weak convergence estimated

from the errors.

yhtk+1/tk+1
h = 1/64 h = 1/128 h = 1/256 h = 1/512 β̂

t1/t1 1.36± 0.03× 10−5 6.73± 0.13× 10−6 3.35± 0.06× 10−6 1.67± 0.03× 10−6 1.00
t2/t2 5.35± 0.11× 10−6 2.66± 0.06× 10−6 1.33± 0.03× 10−6 6.64± 0.14× 10−7 1.00
t3/t3 3.65± 0.06× 10−6 1.82± 0.03× 10−6 9.09± 0.16× 10−7 4.54± 0.08× 10−7 1.00
t4/t4 3.32± 0.10× 10−6 1.66± 0.05× 10−6 8.28± 0.25× 10−7 4.14± 0.12× 10−7 1.00
t5/t4 3.54± 0.09× 10−6 1.77± 0.04× 10−6 8.82± 0.22× 10−7 4.41± 0.11× 10−7 1.00
t6/t6 3.98± 0.09× 10−6 1.98± 0.05× 10−6 9.91± 0.23× 10−7 4.95± 0.12× 10−7 1.00
t7/t7 3.42± 0.11× 10−6 1.71± 0.05× 10−6 8.52± 0.26× 10−7 4.26± 0.13× 10−7 1.00
t8/t8 2.00± 0.05× 10−6 9.96± 0.26× 10−7 4.98± 0.13× 10−7 2.49± 0.06× 10−7 1.01
t9/t9 8.34± 0.33× 10−7 4.17± 0.16× 10−7 2.09± 0.08× 10−7 1.05± 0.04× 10−7 1.01

Vh
tk+1/tk+1

h = 1/64 h = 1/128 h = 1/256 h = 1/512 β̂

t1/t1 2.47± 0.06× 10−5 1.23± 0.03× 10−5 6.12± 0.14× 10−6 3.05± 0.07× 10−6 1.01
t2/t2 8.08± 0.20× 10−6 4.03± 0.10× 10−6 2.01± 0.05× 10−6 1.00± 0.03× 10−6 1.00
t3/t3 4.06± 0.11× 10−6 2.03± 0.06× 10−6 1.01± 0.03× 10−6 5.05± 0.14× 10−7 1.00
t4/t4 2.36± 0.07× 10−6 1.18± 0.03× 10−6 5.87± 0.17× 10−7 2.93± 0.08× 10−7 1.00
t5/t4 1.52± 0.05× 10−6 7.60± 0.24× 10−7 3.78± 0.12× 10−7 1.89± 0.06× 10−7 1.00
t6/t6 9.36± 0.30× 10−7 4.66± 0.15× 10−7 2.33± 0.07× 10−7 1.16± 0.04× 10−7 1.00
t7/t7 4.49± 0.22× 10−7 2.23± 0.10× 10−7 1.11± 0.05× 10−7 5.55± 0.27× 10−8 1.00
t8/t8 1.32± 0.07× 10−7 6.55± 0.35× 10−8 3.26± 0.17× 10−8 1.63± 0.09× 10−8 1.01
t9/t9 2.42± 0.19× 10−8 1.19± 0.09× 10−8 5.94± 0.46× 10−9 2.96± 0.23× 10−9 1.01

and observation equation

ztk = x1(tk) + etk , for k = 0, 1, ..,M − 1, (6.10)

where $ = 1 and σ2 = 1 are the frequency mean value and variance, respectively. In addition, t0 = 0,
Σ = 0.001, xᵀ

t0/t0
= [1 1] and Qt0/t0 = xt0/t0x

ᵀ
t0/t0

.

For each example, 2000 realizations of the state equation solution were computed by means of the
Euler [33] or the Local Linearization scheme [26] for the equations with multiplicative or additive noise,
respectively. For each example, the realizations were computed over the thin time partition {t0 + nδ :
δ = 10−4, n = 0, .., 9 × 104} for guarantee a precise simulation of the stochastic solutions on the time
interval [t0, t0 + 9]. A subsample of each realization at the time instants {t}M=10 = {tk = t0 + k :
k = 0, ..,M − 1} was taken to evaluate the corresponding observation equation. In this way, 2000 time
series {zitk}k=0,..,M−1, with i = 1, ..2000, of 10 values each one were finally available for every state space
example.

For each time series of the first two examples, the values of the exact LMV filter, the conventional
LL filter on {t}M , the order-1 LL filter on uniform time discretization (τ)

u
h = {τn = t0 + nh : n =

0, .., (M − 1)/h} ⊃ {t}M with h = 1/64, 1/128, 1/256, 1/512, and the adaptive order-1 LL filter were
computed.

For each time series {zitk}k=0,..,M−1, four type of errors were evaluated: the errors
∣∣∣xitk+1/tk+1

−yitk+1/tk+1

∣∣∣ and
∣∣∣Ui

tk+1/tk+1
−Vi

tk+1/tk+1

∣∣∣ between each approximate filter and the exact one, and the

errors
∣∣∣xitk+1/tk

− yitk+1/tk

∣∣∣ and
∣∣∣Ui

tk+1/tk
−Vi

tk+1/tk

∣∣∣ between the predictions, for all k = 0, ..,M − 2.

The 2000 errors of each type were arranged into L = 20 batches with K = 100 values each one, which
are denoted by êl,j , l = 1, .., L; j = 1, ...,K. Then, the sample mean of the l-th batch and of all batches
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Table 6.2
Confidence limits for the errors between the exact LMV predictions xtk+1/tk ,Utk+1/tkof (6.1)-(6.2) and their

approximations yh
tk+1/tk

,Vh
tk+1/tk

obtained by the order-1 LL filter on (τ)uh with different value of h. Order β̂ of

weak convergence estimated from the errors.

yhtk+1/tk
h = 1/64 h = 1/128 h = 1/256 h = 1/512 β̂

t1/t0 7.35± 0.00× 10−7 1.84± 0.00× 10−7 4.60± 0.00× 10−8 1.15± 0.00× 10−8 2.00
t2/t1 1.11± 0.02× 10−5 5.52± 0.10× 10−6 2.74± 0.05× 10−6 1.37± 0.03× 10−6 1.01
t3/t2 4.22± 0.09× 10−6 2.02± 0.04× 10−6 9.95± 0.21× 10−7 4.94± 0.10× 10−7 1.03
t4/t3 2.75± 0.05× 10−6 1.27± 0.02× 10−6 6.20± 0.11× 10−7 3.07± 0.05× 10−7 1.05
t5/t4 2.20± 0.06× 10−6 1.03± 0.03× 10−6 5.07± 0.15× 10−7 2.52± 0.08× 10−7 1.04
t6/t5 2.06± 0.05× 10−6 9.88± 0.26× 10−7 4.88± 0.12× 10−7 2.43± 0.06× 10−7 1.03
t7/t6 2.02± 0.05× 10−6 9.93± 0.24× 10−7 4.94± 0.12× 10−7 2.46± 0.06× 10−7 1.01
t8/t7 1.57± 0.05× 10−6 7.74± 0.24× 10−7 3.84± 0.12× 10−7 1.92± 0.06× 10−7 1.01
t9/t8 8.18± 0.22× 10−7 4.06± 0.11× 10−7 2.03± 0.05× 10−7 1.01± 0.03× 10−7 1.00

Vh
tk+1/tk

h = 1/64 h = 1/128 h = 1/256 h = 1/512 β̂

t1/t0 1.22± 0.00× 10−4 6.14± 0.00× 10−5 3.08± 0.00× 10−5 1.54± 0.00× 10−5 1.01
t2/t1 7.61± 0.02× 10−5 3.85± 0.00× 10−5 1.94± 0.00× 10−5 9.71± 0.02× 10−6 1.00
t3/t2 4.05± 0.04× 10−5 2.06± 0.02× 10−5 1.04± 0.00× 10−5 5.22± 0.05× 10−6 1.00
t4/t3 1.77± 0.04× 10−5 9.06± 0.17× 10−6 4.59± 0.09× 10−6 2.31± 0.04× 10−6 1.00
t5/t4 6.10± 0.14× 10−6 3.16± 0.07× 10−6 1.61± 0.04× 10−6 8.09± 0.18× 10−7 1.00
t6/t5 1.68± 0.05× 10−6 8.81± 0.23× 10−7 4.51± 0.12× 10−7 2.28± 0.06× 10−7 1.00
t7/t6 3.79± 0.11× 10−7 1.99± 0.06× 10−7 1.02± 0.03× 10−7 5.17± 0.15× 10−8 1.00
t8/t7 8.01± 0.34× 10−8 4.14± 0.18× 10−8 2.10± 0.09× 10−8 1.06± 0.04× 10−8 1.00
t9/t8 1.58± 0.07× 10−8 7.83± 0.35× 10−9 3.90± 0.17× 10−9 1.95± 0.09× 10−9 1.00

can be computed by

êl =
1

K

K∑
j=1

êl,j , and ê =
1

L

L∑
l=1

êl,

respectively. The confidence interval for each type of error is computed as

[ê−∆, ê+ ∆],

where

∆ = t1−α/2,L−1

√
σ̂2
e

L
, σ̂2

e =
1

L− 1

L∑
i=1

|êi − ê|2 ,

and t1−α/2,L−1 denotes the 1− α/2 percentile of the Student’s t distribution with L− 1 degrees for the
significance level 0 < α < 1. The 90% confidence interval (i.e., the values ∆ for α = 0.1) was chosen.

6.1. Results for Example 1. Tables 6.1-6.3 show the estimated errors for the state space model
(6.1)-(6.2). Specifically, Table 6.1 shows the confidence limits for the errors between the exact LMV filter
xtk+1/tk+1

,Utk+1/tk+1
and the order-1 LL filter ytk+1/tk+1

,Vtk+1/tk+1
on the time discretization (τ)

u
h, with

h = 1/64, 1/128, 1/256, 1/512. Table 6.2 shows the confidence limits for the errors between the exact
LMV predictions xtk+1/tk ,Utk+1/tk and their approximations ytk+1/tk ,Vtk+1/tk obtained by the order-
1 LL filter on (τ)

u
h. Table 6.3 shows the confidence limits for the errors between the moments of the

exact LMV filter and their respective approximations obtained by the conventional LL filter and the
adaptive LL filter. The average of accepted and fail steps of the adaptive LL filter at each tk ∈ {t}M is
given in Figure 6.1. The absolute and relative tolerances for the first and second moments were set as
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Table 6.3
Confidence limits for the errors between the exact LMV filter and predictions of (6.1)-(6.2) with their corre-

sponding approximations obtained by the conventional LL filter and the adaptive LL filter, which are denoted with
superscripts 0 and A, respectively.

k y0
tk+1/tk

yAtk+1/tk
V0
tk+1/tk

VA
tk+1/tk

0 2.79± 0.00× 10−3 5.09± 0.00× 10−10 1.75± 0.00× 10−3 3.23± 0.00× 10−6

1 5.62± 0.13× 10−3 2.86± 0.05× 10−7 5.42± 0.15× 10−3 2.09± 0.00× 10−6

2 6.09± 0.05× 10−3 1.06± 0.02× 10−8 4.04± 0.07× 10−3 1.16± 0.01× 10−6

3 5.74± 0.06× 10−3 6.75± 0.12× 10−8 3.16± 0.07× 10−3 5.29± 0.10× 10−7

4 4.54± 0.05× 10−3 5.73± 0.17× 10−8 1.70± 0.04× 10−3 1.92± 0.04× 10−7

5 3.17± 0.04× 10−3 5.72± 0.15× 10−8 7.21± 0.20× 10−4 5.62± 0.15× 10−8

6 2.01± 0.03× 10−3 6.07± 0.14× 10−8 2.44± 0.07× 10−4 1.34± 0.04× 10−8

7 1.24± 0.02× 10−3 5.02± 0.15× 10−8 7.37± 0.27× 10−5 2.85± 0.12× 10−9

8 7.32± 0.14× 10−4 2.82± 0.07× 10−8 1.81± 0.09× 10−5 5.39± 0.23× 10−10

k y0
tk+1/tk+1

yAtk+1/tk+1
V0
tk+1/tk+1

VA
tk+1/tk+1

0 3.94± 0.08× 10−3 3.50± 0.07× 10−7 7.22± 0.17× 10−3 6.38± 0.14× 10−7

1 6.25± 0.13× 10−4 1.43± 0.03× 10−7 9.61± 0.25× 10−4 2.16± 0.05× 10−7

2 3.58± 0.07× 10−4 1.01± 0.02× 10−7 4.12± 0.12× 10−4 1.12± 0.03× 10−7

3 3.09± 0.09× 10−4 9.44± 0.29× 10−8 2.33± 0.07× 10−4 6.69± 0.19× 10−8

4 3.50± 0.09× 10−4 1.04± 0.03× 10−7 1.64± 0.06× 10−4 4.45± 0.14× 10−8

5 4.49± 0.12× 10−4 1.22± 0.03× 10−7 1.16± 0.04× 10−4 2.86± 0.09× 10−8

6 5.93± 0.10× 10−4 1.12± 0.03× 10−7 7.96± 0.28× 10−5 1.45± 0.07× 10−8

7 6.61± 0.12× 10−4 6.93± 0.18× 10−8 3.92± 0.17× 10−5 4.50± 0.23× 10−9

8 5.91± 0.09× 10−4 2.89± 0.11× 10−8 1.48± 0.06× 10−5 8.17± 0.63× 10−10

rtoly = rtolP = 5× 10−9 and atoly = 5× 10−9, atolP = 5× 10−12. Note as the accuracy of the LL filter
on uniform discretizations (τ)

u
h improve as h decreases, and the large difference among the accuracy of

the conventional and the adaptive LL filter.

For each approximate conditional moment, the estimated order β̂ of weak convergence were obtained
as the slope of the straight line fitted to the set of four points {log2(hj), log2(ê(hj))}j=1,..,4 taken from

their corresponding errors tables 6.1 and 6.2. The values β̂ are shown in these tables as well. The
estimates β̂ ≈ 1 corroborate the theoretical value for β given in Theorem 4.5. The estimate β̂ = 2.00
corresponding to yht1/t0 in Table 6.2 agrees with the expected estimate of β for the equation (6.1) on

[t0,t1]. In this particular situation, the exact prediction xt1/t0 given by (2.3) reduces to an ordinary
differential equation and the LL prediction formula (4.1) reduces to the classical order-2 LL integrator
for such class of equations (see, e.g., [24]). In the others subintervals [tk,tk+1] with k 6= 0, the prediction
yhtk+1/tk

depends nonlinearly of y through the initial value yhtk+1/tk+1
.

6.2. Results for Example 2. Tables 6.4-6.6 show the estimated errors for the state space model
(6.3)-(6.4). In particular, Table 6.4 shows the confidence limits for the errors between the exact LMV
filter xtk+1/tk+1

,Utk+1/tk+1
and the order-1 LL filter ytk+1/tk+1

,Vtk+1/tk+1
on the time discretization (τ)

u
h,

with h = 1/64, 1/128, 1/256, 1/512. Table 6.5 shows the confidence limits for the errors between the exact
LMV predictions xtk+1/tk , Utk+1/tk and their approximations ytk+1/tk , Vtk+1/tk obtained by the order-1
LL filter on (τ)

u
h. Table 6.6 shows the confidence limits for the errors between the moments of the exact

LMV filter and their respective approximations obtained by the conventional LL filter and the adaptive
LL filter. The average of accepted and fail steps of the adaptive LL filter at each tk ∈ {t}M is given in
Figure 6.1. The absolute and relative tolerances for the first and second moments for this filter were set
as rtoly = rtolP = 5 × 10−8 and atoly = 5 × 10−8, atolP = 5 × 10−11. Note as the accuracy of the LL
filter on uniform discretizations (τ)

u
h improve as h decreases, and the large difference among the accuracy

of the conventional and the adaptive LL filter.

For each approximate conditional moment, the estimated order β̂ of weak convergence were obtained
as the slope of the straight line fitted to the set of four points {log2(hj), log2(ê(hj))}j=1,..,4 taken
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Table 6.4
Confidence limits for the errors between the exact LMV filter xtk+1/tk+1

,Utk+1/tk+1
of (6.3)-(6.4) and the

order-1 LL filter yh
tk+1/tk+1

,Vh
tk+1/tk+1

on (τ)uh with different value of h. Order β̂ of weak convergence estimated

from the errors.

yhtk+1/tk+1
h = 1/64 h = 1/128 h = 1/256 h = 1/512 β̂

t1/t1 2.00± 0.04× 10−8 1.17± 0.02× 10−8 6.23± 0.11× 10−9 3.22± 0.06× 10−9 0.95
t2/t2 1.31± 0.03× 10−8 6.44± 0.14× 10−8 3.20± 0.07× 10−9 1.59± 0.04× 10−9 1.02
t3/t3 1.12± 0.03× 10−8 5.52± 0.14× 10−8 2.74± 0.06× 10−9 1.36± 0.03× 10−9 1.02
t4/t4 1.56± 0.03× 10−8 7.74± 0.12× 10−8 3.85± 0.06× 10−9 1.92± 0.03× 10−9 1.01
t5/t4 2.95± 0.07× 10−8 1.47± 0.03× 10−8 7.38± 0.17× 10−9 3.69± 0.08× 10−9 1.01
t6/t6 7.85± 0.19× 10−8 3.98± 0.09× 10−8 2.01± 0.05× 10−8 1.01± 0.02× 10−8 0.99
t7/t7 2.65± 0.06× 10−7 1.37± 0.03× 10−7 6.94± 0.15× 10−8 3.50± 0.07× 10−8 0.99
t8/t8 5.46± 0.16× 107 2.79± 0.08× 10−7 1.41± 0.04× 10−7 7.09± 0.21× 10−8 0.99
t9/t9 4.76± 0.13× 10−7 2.37± 0.06× 10−7 1.18± 0.03× 10−7 5.91± 0.16× 10−8 1.01

Vh
tk+1/tk+1

h = 1/64 h = 1/128 h = 1/256 h = 1/512 β̂

t1/t1 3.48± 0.09× 10−7 2.03± 0.05× 10−7 1.09± 0.03× 10−7 5.60± 0.14× 10−8 0.88
t2/t2 2.66± 0.11× 10−7 1.31± 0.05× 10−7 6.51± 0.26× 10−8 3.24± 0.13× 10−8 1.01
t3/t3 2.97± 0.12× 10−7 1.46± 0.06× 10−7 7.24± 0.30× 10−8 3.61± 0.15× 10−8 1.01
t4/t4 3.46± 0.11× 10−7 1.71± 0.05× 10−7 8.53± 0.27× 10−8 4.26± 0.13× 10−8 1.01
t5/t4 3.44± 0.16× 10−7 1.73± 0.08× 10−7 8.65± 0.41× 10−8 4.33± 0.21× 10−8 1.01
t6/t6 3.58± 0.15× 10−7 1.83± 0.07× 10−7 9.21± 0.38× 10−8 4.63± 0.19× 10−8 0.98
t7/t7 3.57± 0.14× 10−7 1.85± 0.07× 10−7 9.42± 0.38× 10−8 4.75± 0.19× 10−8 0.97
t8/t8 2.35± 0.13× 10−7 1.21± 0.07× 10−7 6.11± 0.34× 10−8 3.08± 0.17× 10−8 0.98
t9/t9 1.67± 0.09× 10−7 8.31± 0.04× 10−8 4.15± 0.22× 10−8 2.07± 0.11× 10−8 1.00

from their corresponding errors tables 6.4 and 6.5. The values β̂ are included in these tables too. The
estimates β̂ ≈ 1 corroborate the theoretical value for β given in Theorem 4.5. The estimate β̂ ≈ 2.00
corresponding to yhtk+1/tk

in Table 6.5 agrees with the expected estimate of β for the equation (6.3) on

[tk,tk+1], for all k. Similarly to the previous example, the exact prediction xtk+1/tk given by (2.3) reduces
to an ordinary differential equation and the LL prediction formula (4.1) reduces as well to the classical
order-2 LL integrator for all k. Contrary to the first example, in this one, the prediction yhtk+1/tk

with

k 6= 0 does not depend of y through the initial value yhtk+1/tk+1
and so the estimate β̂ ≈ 2.00 is preserved.

6.3. Results for Examples 3 and 4. Since explicit formulas of the LMV filter for the state space
models (6.5)-(6.7) and (6.8)-(6.10) are not available, the error analysis of the previous examples should
be adjusted. In this situation, by taking into account the results of the previous examples, the moments
estimated by the adaptive LL filter with small tolerance can be used as a precise estimation for the
moments of the exact LMV filter. By doing this, the confidence interval for the errors can similarly
be computed as before for estimate the order β̂ of weak convergence of the order-1 LL filter. Table
6.7 shows the estimated order β̂ of weak convergence obtained, as explained above, as the slope of the
straight line fitted to the set of four points {log2(hj), log2(ê(hj))}j=1,..,4, where ê(hj) denotes the error

between the order-1 LL filter on (τ)
u
hj

, with hj = 1/25+j , and the adaptive LL filter with small tolerance.

The tolerances for the adaptive filter were set as rtoly = rtolP = 5 × 10−8 and atoly = 5 × 10−8,
atolP = 5×10−11 in the model (6.5)-(6.7), and as rtoly = rtolP = 10−7 and atoly = 10−7, atolP = 10−10

in the model (6.8)-(6.10). For each model, the average of accepted and fail steps of the adaptive LL filter

at each tk ∈ {t}M is given in Figure 6.1. Notice that, for both examples, the estimates β̂ ≈ 1 corroborate
the theoretical value for β stated in Theorem 4.5.

6.4. Supplementary simulations. As mentioned above, the approximate LMV filters play a cen-
tral role in the effective implementation of the innovation method for the parameter estimation of diffusion
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Table 6.5
Confidence limits for the errors between the exact LMV predictions xtk+1/tk ,Utk+1/tkof (6.3)-(6.4) and their

approximations yh
tk+1/tk

,Vh
tk+1/tk

obtained by the order-1 LL filter on (τ)uh with different value of h. Order β̂ of

weak convergence estimated from the errors.

yhtk+1/tk
h = 1/64 h = 1/128 h = 1/256 h = 1/512 β̂

t1/t0 2.28± 0.00× 10−5 5.70± 0.00× 10−6 1.43± 0.00× 10−6 3.57± 0.00× 10−7 2.00
t2/t1 4.63± 0.03× 10−5 1.16± 0.00× 10−5 2.89± 0.02× 10−6 7.22± 0.05× 10−7 2.00
t3/t2 5.44± 0.11× 10−5 1.36± 0.03× 10−5 3.39± 0.07× 10−6 8.47± 0.17× 10−7 2.00
t4/t3 6.91± 0.13× 10−5 1.72± 0.03× 10−5 4.30± 0.08× 10−6 1.07± 0.02× 10−6 2.00
t5/t4 5.85± 0.12× 10−5 1.46± 0.03× 10−5 3.64± 0.08× 10−6 9.09± 0.19× 10−7 2.00
t6/t5 3.10± 0.08× 10−5 7.73± 0.21× 10−6 1.93± 0.05× 10−6 4.81± 0.13× 10−7 2.00
t7/t6 1.13± 0.03× 10−5 2.82± 0.06× 10−6 7.01± 0.16× 10−7 1.74± 0.04× 10−7 2.01
t8/t7 3.07± 0.07× 10−6 7.56± 0.18× 10−7 1.84± 0.04× 10−7 4.40± 0.11× 10−8 2.04
t9/t8 7.63± 0.24× 10−7 1.75± 0.05× 10−7 3.73± 0.11× 10−8 6.97± 0.16× 10−9 2.25

Vh
tk+1/tk

h = 1/64 h = 1/128 h = 1/256 h = 1/512 β̂

t1/t0 2.43± 0.00× 10−3 1.28± 0.00× 10−3 6.56± 0.00× 10−4 3.32± 0.00× 10−4 0.88
t2/t1 7.22± 0.00× 10−2 3.54± 0.00× 10−2 1.75± 0.00× 10−2 8.73± 0.00× 10−3 1.01
t3/t2 1.69± 0.00× 10−1 8.29± 0.00× 10−2 4.11± 0.00× 10−2 2.04± 0.00× 10−2 1.01
t4/t3 1.16± 0.00× 10−1 5.73± 0.00× 10−2 2.84± 0.00× 10−2 1.42± 0.00× 10−2 1.01
t5/t4 3.38± 0.00× 10−2 1.68± 0.00× 10−2 8.36± 0.00× 10−3 4.17± 0.00× 10−3 1.00
t6/t5 4.81± 0.00× 10−3 2.41± 0.00× 10−3 1.21± 0.00× 10−3 6.05± 0.00× 10−4 0.99
t7/t6 3.77± 0.00× 10−4 1.91± 0.00× 10−4 9.62± 0.00× 10−5 4.83± 0.00× 10−5 0.97
t8/t7 3.27± 0.00× 10−5 1.65± 0.00× 10−5 8.28± 0.00× 10−6 4.15± 0.00× 10−6 0.98
t9/t8 1.70± 0.00× 10−5 8.44± 0.00× 10−6 4.21± 0.00× 10−6 2.10± 0.00× 10−6 1.00

Table 6.6
Confidence limits for the errors between the exact LMV filter and predictions of (6.3)-(6.4) with their corre-

sponding approximations obtained by the conventional LL filter and the adaptive LL filter, which are denoted with
superscripts 0 and A, respectively.

k y0
tk+1/tk

yAtk+1/tk
V0
tk+1/tk

VA
tk+1/tk

0 7.69± 0.00× 10−2 2.17± 0.00× 10−6 2.63± 0.00 3.72± 0.00× 10−4

1 2.09± 0.01× 10−1 2.14± 0.04× 10−7 8.01± 0.03 1.85± 0.00× 10−3

2 2.81± 0.06× 10−1 8.41± 0.38× 10−8 4.93± 0.13× 102 3.24± 0.02× 10−3

3 4.02± 0.07× 10−1 1.26± 0.07× 10−7 3.22± 0.17× 102 2.33± 0.02× 10−3

4 3.82± 0.08× 10−1 1.55± 0.08× 10−7 6.18± 0.10× 101 7.45± 0.06× 10−4

5 2.27± 0.06× 10−1 1.06± 0.06× 10−7 6.23± 0.25× 10−1 1.15± 0.01× 10−4

6 9.36± 0.21× 10−2 4.68± 0.22× 10−8 8.34± 0.25× 10−2 9.74± 0.11× 10−6

7 2.89± 0.07× 10−2 1.23± 0.08× 10−8 8.19± 0.28× 10−3 7.43± 0.08× 10−7

8 8.63± 0.28× 10−3 1.10± 0.06× 10−9 2.73± 0.02× 10−3 2.86± 0.00× 10−7

k y0
tk+1/tk+1

yAtk+1/tk+1
V0
tk+1/tk+1

VA
tk+1/tk+1

0 1.75± 0.03× 10−3 3.29± 0.06× 10−9 3.08± 0.08× 10−2 5.73± 0.14× 10−8

1 9.47± 0.24× 10−7 3.37± 0.07× 10−10 1.62± 0.07× 10−5 6.84± 0.26× 10−9

2 2.17± 0.06× 10−6 2.16± 0.05× 10−10 5.58± 0.23× 10−5 5.75± 0.25× 10−9

3 2.73± 0.04× 10−6 3.15± 0.05× 10−10 5.70± 0.17× 10−5 7.10± 0.26× 10−9

4 3.02± 0.05× 10−6 6.58± 0.14× 10−10 2.79± 0.11× 10−5 8.01± 0.42× 10−9

5 1.35± 0.03× 10−5 1.94± 0.06× 10−9 7.37± 0.28× 10−5 9.32± 0.44× 10−9

6 1.16± 0.14× 10−3 7.07± 0.20× 10−9 1.89± 0.09× 10−4 1.04± 0.06× 10−8

7 1.01± 0.03× 10−3 1.26± 0.05× 10−8 3.18± 0.16× 10−5 5.56± 0.36× 10−9

8 6.91± 0.18× 10−5 8.05± 0.21× 10−9 2.01± 0.12× 10−5 2.83± 0.16× 10−9
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Table 6.7
Estimate order of convergence β̂ for the moments of the order-1 LL filter applied to the state space models

(6.5)-(6.7) and (6.8)-(6.10) corresponding to the Van der Pool oscillator with additive (Add) and multiplicative
(Mul) noise, respectively.

k\Add ytk+1/tk Vtk+1/tk ytk+1/tk+1
Vtk+1/tk+1

k\Mul ytk+1/tk Vtk+1/tk ytk+1/tk+1
Vtk+1/tk+1

0 1.10 1.04 1.11 1.04 0 1.08 1.01 1.03 1.01
1 1.04 1.05 1.04 1.05 1 1.03 1.03 1.04 1.03
2 1.03 1.03 1.03 1.03 2 1.03 1.04 1.05 1.04
3 1.02 1.02 1.03 1.02 3 1.03 1.03 1.04 1.02
4 1.01 1.01 1.01 0.97 4 1.02 1.02 1.02 1.02
5 1.01 1.03 1.01 1.01 5 1.02 0.94 1.02 0.83
6 1.02 1.01 1.01 0.98 6 1.01 0.98 1.01 0.97
7 1.02 1.04 1.02 1.06 7 0.97 1.00 1.02 0.99
8 1.03 1.02 1.02 1.02 8 1.02 1.01 1.03 0.99

Fig. 6.1. Average (o) and 90% confidence limits (*) of accepted and failed steps of the adaptive LL filter at each
tk ∈ {t}M in the four examples.

processes given a set of partial and noisy observations. Recently, in [22], the performance of the innovation
method based on different approximations to the LMV filter has been evaluated by means of simulations.
In that paper, the parameters of the four state space models considered in this section were estimated.
The results show that the estimators based on the order-β LMV filters are significantly more unbiased
and efficient than the estimators based on conventional approximations to the LMV filter, which clearly
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illustrate the relevance of the approximate filters introduced here. The reader interested in this type of
identification problem is encouraged to consider these simulations.

7. Conclusions. Approximate Linear Minimum Variance filters for continuous-discrete state space
models were introduced and their order of convergence is stated. As particular instance, the order-β
Local Linearization filters were studied in detail. For them, practical algorithms were also provided and
their performance in simulation illustrated with various examples. Simulations show that: 1) with thin
time discretizations between observations, the order-1 LL filter provides accurate approximations to the
exact LMV filter; 2) the convergence of the order-1 LL filter to the exact LMV filter when the maximum
stepsize of the time discretization between observations decreases; 3) with respect to the conventional
LL filter, the order-1 LL filter significantly improves the approximation to the exact LMV filter; 4)
with an adequate tolerance, the adaptive LL filter provides an automatic, accurate and computationally
efficient approximation to the LMV filtering problem; and 5) the effectiveness of the order-1 LL filter for
the accurate identification of nonlinear stochastic systems from a reduced number of partial and noisy
observations distant in time. Finally, it is worth noting that the approximate filters introduced here
have already been used in [22] for the implementation of computational efficient parameter estimators of
diffusion processes from partial and noisy observations, which would have a positive impact in a variety
of applications. Further, they could be easily extended to deal with network-induced phenomena (i.e.,
missing measurements and communication delays as considered in [49, 17, 18]), which is currently a hot
research topic.
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