X-Ray Imaging

Bryant Thompson Daniel Guyton Rad Akhter

Advantages

- \blacksquare Easy diagnosis \rightarrow bone, teeth, joint etc.
- Fast diagnosis → emergency treatments with immediate diagnosis in least invasive manner
- Inexpensive → equipments, compared to CT and MRI
- Availability > majority of the facilities: hospitals, nursing homes, family physician clinics, etc.
- Minimum radiation exposure → radiation does not remain in patient's body, precaution and care is taken
- No side effects → risk of getting cancer is very small

Disadvantages

- High voltage → voltage breakdown can jump inches from power supply, heat
- Radiation exposure → additional radiation will increase cancer risk by 0.6-1.8% (age 75)
- Soft-tissue imaging → dense tissues appear lighter than surrounding soft tissue
- □ 2D imaging → limit detection ability, not enough details for diagnosis

Medical Application

- Radiography → 2D image, find orthopedic damage, tumors, pneumonias, foreign objects, etc.
- Mammography → capture images as mamograms of internal structures of breasts
 - Types: screen-film and full field digital

Radiography - diagnosis of Orthopedic damage http://is.sdsmt.edu/AreasofSpecialization/PreprofessionalHealthSciences/MedicalRadiographyRequirements/

- □ CT → computed tomography, x rays pass through different parts of body creating cross-sectional images, later put together
- Radiation Therapy → ionizing radiation for cancer treatment
- □ Fluoroscopy → displaying movement of body part or instrument or dye through body
 - Examinations: view GI track, angioplasty or angiography, blood flow studies, orthopedic surgery, etc.

Fluoroscopy – pacemaker leads right atrium ventricle, Pace maker implant procedure

Non-Medical Application

- Astronomy → the telescopes bounce X-ray photons off curved mirrors into and from space, sun pot images
- Industrial Imaging → NDI examines industrial materials for defects (quality control)
- □ Transportation Security → uses back scatter X-ray for airport screening, scanned moving energy rapidly over form, the signal strength detected and allows for highly realistic image
- □ Crystallography → diffraction of X-rays through crystals causes distinct atomic patterns to emerge, determine molecular structure, distance between atoms

Early Pioneers

- Wilhelm Conrad Roentgen (1845 1923)
- On November 8th, 1895, while using Crookes Tubes noted a fluorescent effect on barium platinocyanide screens.
- Labeled the mysterious rays, X-Rays.
- Dec 22, 1895. Takes a medical x-ray image of his wife, Anna Bertha. First X-ray Image.
- Wins Nobel Prize in Physics in 1901. The first recipient of the Nobel Prize in Physics

Krohmner J.S. 1989. *Radiography and Fluoroscopy, 1920 to present*. Radiographics. Vol. 9 no.6. pp. 1129-53

- January 1896→ Frank Austin of Dartmouth College found a discharge tube, designed by Ivan Pulyui, that produced the "x-rays".
- February 3rd, 1896 → Frost brothers take image of broken wrist bone on gelatin photographic plates.

Frost, E. B. (1930, April). The First X-Ray Experiments in America. *Dartmouth Alumni Magazine*.

Coolidge Tube

- William D. Coolidge (1873 1975)
- In 1913 invents the *Coolidge Tube*, an improvement over the Crookes Tube.
- Cathode filament made of Tungsten
- Became commercially available by 1917

http://youtu.be/RueXmL-Dz3w?t=3m36s

http://www.orau.org/ptp/collection/xraytubescoolidge/coolidgeinformation.htm

Early in the decade

- 1896→ Thomas Edison invents a modified fluoroscope with a calcium tungstate screen.
- 1912→ the tilting table is made by Eugene W. Caldwell

■ 1913 → Gustave Bucky creates the anti-scatter grid.
Still the most effective device for reducing scattered

radiation

SNIO, 146.1

5 to cused grid placed between patient and film with itestrips focused towards the X-ray tube focus

- 1926→ Engeln Electric Co. in Cleveland Ohio introduces the *Duplex*.
- 1929→ First rotating anode x-ray tube by Phillips was manufactured. Named the *Rotalix*.

Arranged for Fluoroscopy

Westinghouse Electric Co.

- 1945→ Westinghouse Electric Co. markets the first *phototimer*.
- 1948 → J.W. Coltman from Westinghouse Electric Co. develops the first X-ray Image Intensifier.
- 1953→ the Fluorex is introduced. First commercial image intensifier unit.
 - Less scattered radiation
 - Less exposure
 - Less examination time

X-Ray Image Intensifier

- Converts x-rays to visible light
- Requires lower doses of X-ray due to more efficient conversion of x-ray to visible light.
- CCTV in late 1950s and XRII allowed for real-time imaging through television screen viewing.

Classic papers in modern diagnostic radiology By Adrian Thomas, Arpan K. Banerjee, Uwe Busch

- 1952 the *Imperial* unit by General Electric.
- Used as both a radiographic & fluoroscopic unit.
 - Provided 360° table rotation
 - Power assisted table movement

New Age: Digital Radiography

- In 1983, H.Kato et al. pave way for new techniques in digital radiograph at Fuji Film Co. of Japan.
- The basic principle of the system is the conversion of the x-ray energy pattern into digital signals utilizing scanning laser stimulated luminescence (SLSL).
- Eliminated the drawbacks of screen film radiography
 - Digital image processing
 - Digitization of the x-ray energy pattern by SLSL

21st Century

- 2005 → Scientists at UNC at Chapel Hill and Xintek, Inc. Invent new x-ray tube using carbon nanotube cathode.
- Advantages:
 - Programmable electron and x-ray intensity
 - Ultra-fine focal spot
 - Longer lifetime

Average Cost per X-Ray Scan

"X-Ray Cost | New Choice Health. Com." New Choice Health. New Choice Health, Inc. Web. 30 Jan. 2012. http://newchoicehealth.com/X-Ray-Cost.

Average Cost for Specific Procedures

X-ray Procedure	Cost (\$)
Finger	100
Skull	290
Eye	650
Body	1,100
Salivary Duct	1,250
Brain	1,450
Vein in Liver	6,200
Vein in Neck	18,100
Artery in Pelvis	20,300
Artery in Abdomen	30,800

Kinds of X-rays taken in 2010

"X-Ray Cost | NewChoiceHealth.com." New Choice Health. New Choice Health, Inc. Web. 30 Jan. 2012. http://newchoicehealth.com/X-Ray-Cost.

Prochaska, Gail. "IMV Reports General X-ray Procedures Growing at 5.5% per Year, as Number of Installed X-ray Units Declines." *PRWeb.* 11 Feb. 2011. Web. 30 Jan. 2012.

http://www.prweb.com/releases/2011/2/prweb8127064.htm.

Cost of the X-Ray Machine

- The cost varies greatly depending on the part of the body the design is meant for.
- Small devices, such as oral X-rays can range from \$3000-\$8000
- Larger devices can cost anywhere from \$12,000-\$25,000 if they are film based. The cost to operate this machine and develop the film is around \$400 per month.
- □ Digital radiology machines are \$50,000-\$150,000, the maintenance costs that come with digital X-ray machines can reach \$10,000.

"Animal Insides - Digital Radiography Costs for the Veterinary Technician." *Animal Insides - Welcome to Animal Insides*. Animal Insides. Web. 30 Jan. 2012. http://www.animalinsides.com/learn/the-digital-practice-integration/271-coststech.html.

"Dexis Delivers a Return on Your Investment." *DEXIS: Digital X-ray for Dental Practitioners*. Dexis Digital Diagnostic Imaging. Web. 30 Jan. 2012. http://www.dexis.com/index.php?option=content.

X-Rays in the USA

- In 2010, it was estimated that 182.9 million X-rays were taken in US hospitals, and 67.6 million procedures were performed in other locations which perform radiology.
- That is a constant growth rate of 5.5% since 2005.