SPECT Imaging

Single-Photon Emission Computed Tomography

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

Christopher Emerson

≻Caterina Pette

Douglas Wright

Biomedical Engineering Florida International University

Advantages / Disadvantages

Medical / Non-Medical Applications

History

Modern Systems

Pricing

U.S. SPECT Statistics

Biomedical Engineering Florida International University

Advantages

Provides Physiological Information though Functional Imaging

- Metabolic Activity
- Blood Flow
- Intrinsic Lesion Localization though Radiopharmaceutical Use
 - Radio-labeled ligans migrate to specific imaging site
- ➤ 3-D Imaging
- Hybrid Imaging Systems provide Increased Spatial Resolution
 SPECT/CT

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

http://xa.yimg.com/kq/groups/15914941/74581872/name/EJNMMI-SPECT%25EF%2580%25A2CT-Review.pdf, 'Advantages and disadvantages of PET and SPECT in a busy clinical practice" Timothy M. Bateman, MD

Disadvantages

- Gamma Emissions Harmful due to Ionization Potential
- Non-Hybrid Devices have Poor Spatial Resolution
 - Tissue boundaries are ill-determined

Long Scan Time

- Upwards of 30-40 minutes
- Inconveniences certain patient populations

Use of Possible Allergens

Radiopharmaceuticals could induce allergic reactions

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

Intrinsic Reliance on Radiopharmaceuticals

> Severe supply shortages can halt imaging

Medical Applications

Myocardial Perfusion Imaging

Brain Perfusion

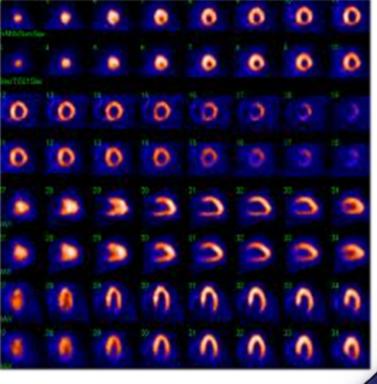
Thyroid Function

Renal Function

Bone Imaging

Myocardial Perfusion Imaging

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY


Myocardial Perfusion Imaging

- Assessment of hemodynamic consequences of Coronary Artery Disease
- Allows for risk stratification and presurgical guidance
- Determines ischemic myocardial tissue though rest and stress cardiac studies

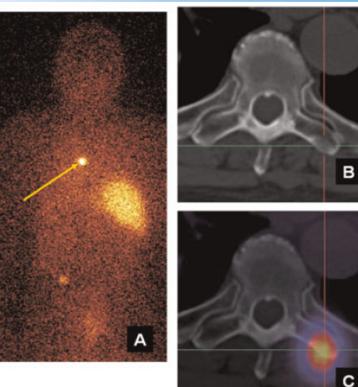
Myocardial Perfusion Scan

Stress

Rest

Biomedical Engineering

http://eradiology.bidmc.harvard.edu/LearningLab/cardio/Furie.pdf


Brain Perfusion

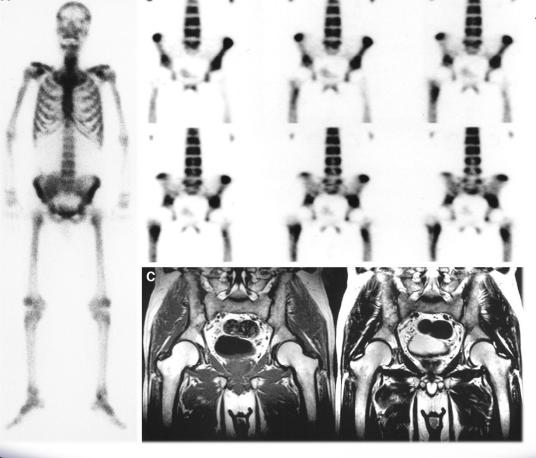
- Pre-surgical localization of epileptic seizure origin
- Technetium-99m labeled ECD or HMPAO injected at time of seizure
 - Localize to region of increased blood flow
- Images during and after seizure are compared to identify seizure origin

Thyroid Function

- Thyroid tumor causes increased metabolic activity
- Localization achieved through the use of lodine-123 and lodine-131
 - Iodine-123: Routine testing for hyperthyroidism and nodules
 - Iodine-131: Whole-body imaging for detection of metastasis
- SPECT-CT shows metastasis is localized in tip of transverse process of the sixth thoracic vertebra

- A. Whole-body SPECT
- B. Diagnostic CT
- C. Fusion Image

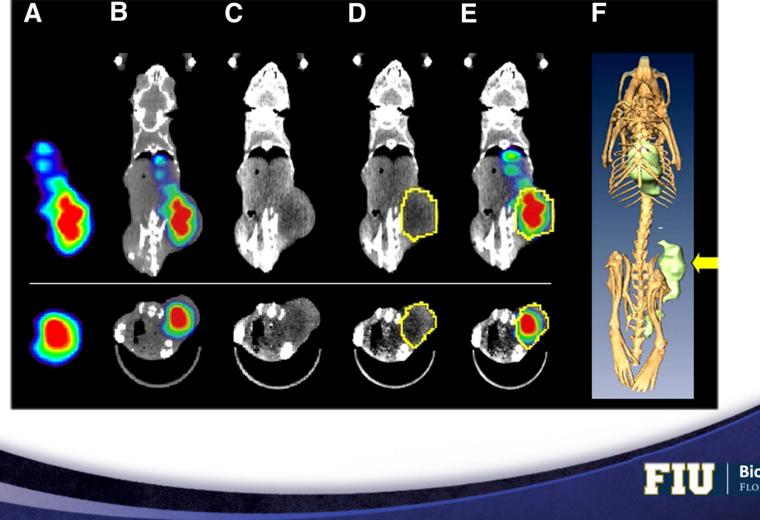
Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY


Renal Function

- Renal lesions can result in elevated \triangleright levels of norepinehprine, epinephrine, dopamine, cathecholamines, and VMA
- Localization achieved through the use of Indium-111 Pentetreotide
- SPECT scans revealed large right suprarenal lesion

Bone Imaging

Early Detection of Osteonecrosis of the Femoral Head


- A. Whole-body scintigraphy
- B. Bone SPECT
- C. MRI Scan
 - A & B show "cold" areas in both femoral heads while C shows normal findings

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

Small Animal SPECT & SPECT/CT Imaging

Used to determine drug efficacy in pre-clinical trials

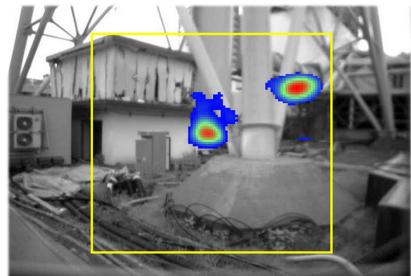
Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

http://jnm.snmjournals.org/content/49/10/1651/F5.expansion.html

Non-Medical Applications

Detection of nuclear waste

- Gamma cameras used to study the environmental behavior of nuclear waste
- Helps scientists monitor and control the spread of radioactivity
- > Fe(III)-reducing bacteria immobilizes technetium in sediment

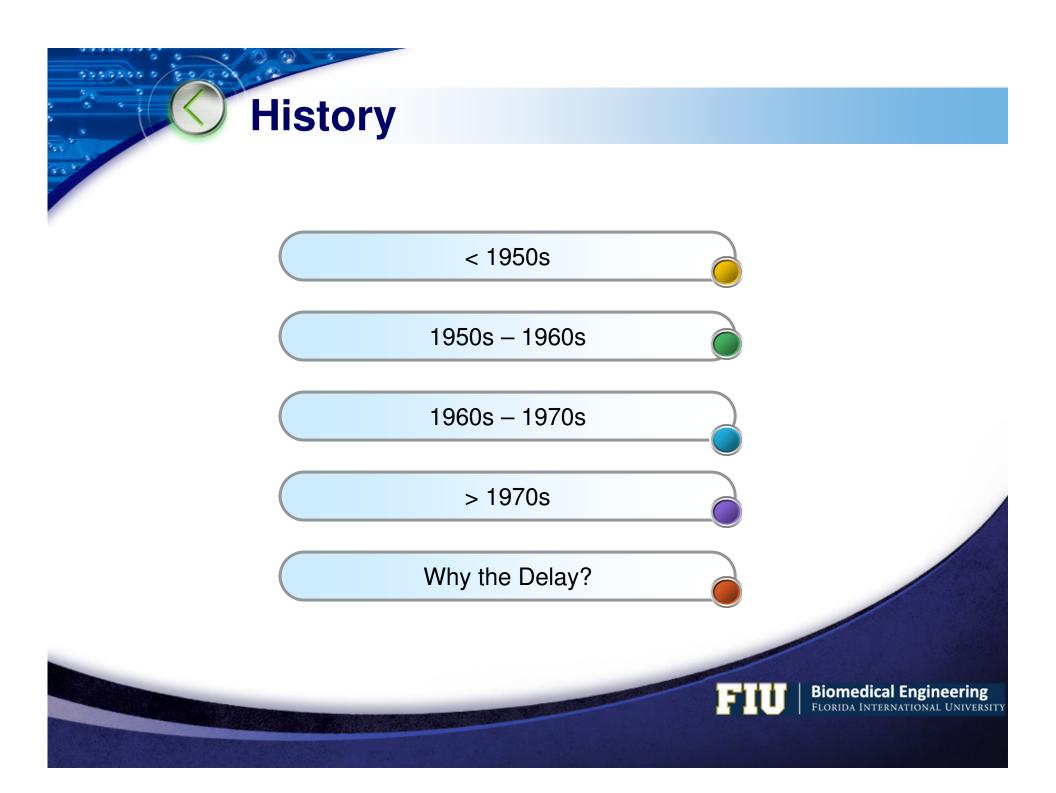


http://www.bloomberg.com/news/2011-08-02/tepco-reports-second-deadly-radiation-reading-at-fukushima-plant.html

Non-Medical Applications (cont.)

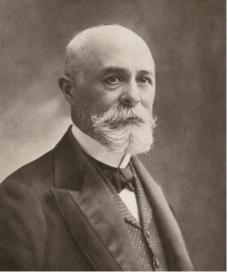
Detection of nuclear emission

- Fukushima Nuclear Power Plant
- Gamma cameras can be used to image radiation readings of wrecked nuclear power plant
- A photograph shows a gamma camera image of an area around the main exhaust of Tokyo's nuclear power plant detecting 5 Svt/hr.


Tokyo Electric Power Co.'s (Tepco) Fukushima Dai-Ichi nuclear power station in Fukushima, Japan, on Monday, Aug. 1, 2011.

Soil Sampling

Biomedical Engineering Florida International University


http://www.bloomberg.com/news/2011-08-02/tepco-reports-second-deadly-radiation-reading-at-fukushima-plant.html

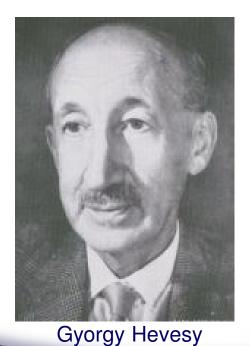
< 1950s

> 1896 – Antoine-Henri Becquerel discovers Radioactivity

- Discovered that radiation from Uranium did not need any excitation from an external energy source to emit radiation.
- 1934 Frederic and Irene Joliot-Curie produce first artificial radionuclide
 - Positron-emitting radionuclide of phosphorous

Antoine-Henri Becquerel

Irene Curie and Frederic Joliot


Biomedical Engineering Florida International University

http://www.rtstudents.com/radiology/history-of-radiology.htm http://www.brainmattersinc.com/forphysicians/historyofspect.html

< 1950s

1943 – Gyorgy Hevesy develops radioactive tracers

- > Used to study the metabolic processes in plants and animals
- 1946 Oak Ridge National Laboratory began production of radionuclides for medical use

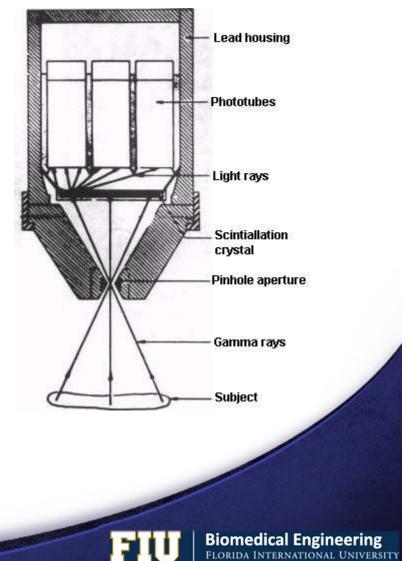
Oak Ridge National Laboratory

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

http://www.rtstudents.com/radiology/history-of-radiology.htm http://www.brainmattersinc.com/forphysicians/historyofspect.html

1950s – 1960s

- 1950 Benedict Cassen assembled the first automated scanning system
 - Motor-driven scintillation detector coupled to a printer
- 1957 Hal Oscar Anger develops Anger Camera
 - Sodium-Iodine scintillation crystal
 - Vacuum tube photomultipliers



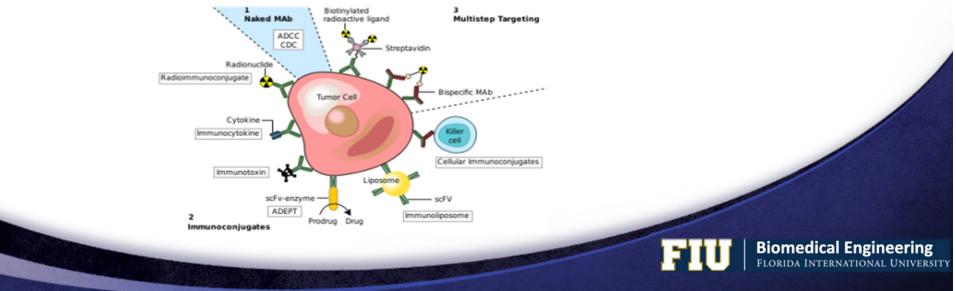
Benedict Cassen

Hal Oscar Anger

http://jnm.snmjournals.org/content/12/8/573.full.pdf http://www.ncbi.nlm.nih.gov/pubmed/11155815

1960s – 1970s

- Development of generator system to produce Technetium-99m
 - Most utilized element in Nuclear Medicine
 - Employed in a wide variety of Nuclear Medicine studies
- Late 1963 David E. Kuhl and Roy Q. Edwards introduce emission and transmission tomography
 - Later developed into Single Photon Emission Computed Tomography (SPECT)
 - Used 32 photon detectors
 - Images were frequently distorted and not of diagnostic quality


Biomedical Engineering Florida International University

http://www.uclimaging.be/ecampus/etu_med/option_2011/opt_2011_3120_mn.pdf http://www.news-medical.net/health/History-of-Nuclear-Medicine.aspx

> 1970s

000000000

- Late 1970s Most organs of the body could be visualized with nuclear medicine procedures
 - > Liver, spleen, brain tumor localization, and gastrointestinal tract
- 1980s Radiopharmaceuticals were designed for diagnosing heart disease and cancer
- > 1980s Development of Monoclonal Antibodies
 - Act as cell-specific ligans that, when tagged with a radioisotope, localize to a specific region of the body
 - > Can detect cancerous cells before anatomical changes occur

http://interactive.snm.org/index.cfm?PageID=1107 http://www.news-medical.net/health/History-of-Nuclear-Medicine.aspx

EXAMPLE RADIONUCLIDES

000000

90/0

Isotope	Half-life	Typical radiation	Typical target organs
Phosphorus 32	14.3 days	Beta (1.71 MeV)	Liver
Chromium 51	27.8 days	Gamma (320 KeV)	Red blood cells, urinary
Barium 131	11.6 days	Gamma (54 - 1000 KeV)	Intestinal
lodine 131	8.1 days	Gamma (80 - 723 KeV)	Thyroid; blood
Technetium 99m	6.0 hr	Gamma (142.7 KeV)	Brain
Xenon 127	36.4 days	Gamma (57 - 375 KeV)	Lung

Why the Delay?

- The development of SPECT was slow due to a number of factors:
 - Image analysis algorithms were not advanced enough
 - Limited number of radionuclides available as tracers
 - > Device size limited SPECT use outside of hospitals
 - > Physicians were inexperienced reading SPECT images

Better late than never!

Advances in mathematics, innovations in radionuclide and ligand development, and the advent of multi-modality imaging systems laid the foundation for modern SPECT and SPECT/CT devices

http://www.imagingeconomics.com/issues/articles/MI_2004-06_02.asp

Modern Systems

Leading Device Manufacturers

Brivo NM 615

Discovery NM 630


Discovery NM/CT 670

Ventri

Discovery NM 750b

Biomedical Engineering Florida International University

Brivo NM 615

- Single-Headed System
- Thin, Pivoting Gantry
 - 5.12 m x 3.74 m x 2.30 m
 - 500 lb Patient Limit
 - Increases patient population
 - Upright, chair, or stretcher imaging
 Increases patient comfort
- Elite NXT Detectors
 - Exceptionally High Count Rate
 ¥ 460k counts-per-second
 - > SPECT-Optimized Collimators
 - Dose management
 - ➤ Reduce time or dose by 50%
- Acquisition time rivals dual-headed systems
- Auto-Body Contouring
 - Infra-red detectors minimize the distance between the patient and the detectors
- Xeleris 3 Workstation

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

http://www3.gehealthcare.com/en/Products/Categories/Nuclear_Medicine/General_Purpose_Cameras/Brivo_NM615 http://www.gehealthcare.com/euru/clinical-education/images/december_newsletter/xeleris_3_460x260.jpg

Brivo NM 615

Single Head 30 min*, Ant then Post Standard Single Head 15 min*, Ant then Post With DHP

OSEM 2.0 Mc EfC TRESS IRRORATION AF STRESS IRRORATION AF

Single Head w/DHP, 10 min*,

Single Head 20

min*, 4.2 Mc

*Net scan time

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

http://www3.gehealthcare.com/~/media/Downloads/Product/Product-Categories/Nuclear-Medicine/General-Purpose-Scanners/Brivo-NM615/GEHealthcare-Brochure_Brivo-NM-615.pdf?Parent={83A02FFC-6F7B-48B3-AB0F-AC550678E0B0}

Dual Head Performance Package (DHP) enables you to cut acquisition time to rival a dual-head system in many common procedures

0000000

Discovery NM 630

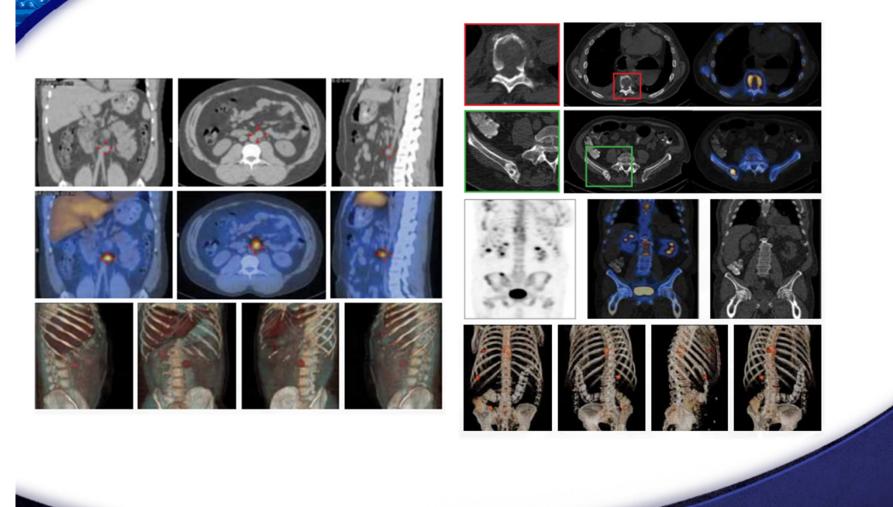
- Upgrade from Brivo NM 615
- Dual-Headed System
 - > Cut imaging time or dose in half, again.
 - > 180° or 90° Orientations

Discovery NM 630

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

Discovery NM/CT 670

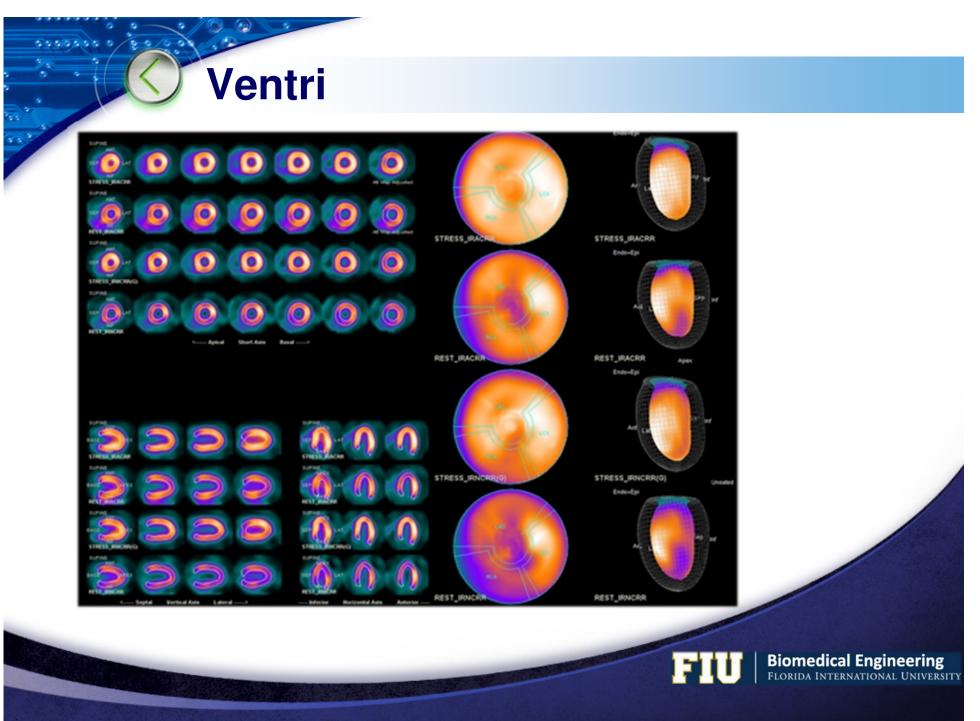
- Upgrade from Discovery NM 630
- IQ Enhance
 - Faster pitch helical scanning
 - Coverage equivalent to 50 slice CT scans with same imaging speed
 - > 16-minute bone protocol
- BrightSpeed Elite CT Technology
 - Lower dose but maintained quality



Biomedical Engineering Florida International University

http://www3.gehealthcare.com/en/Products/Categories/Nuclear_Medicine/SPECT-CT_Cameras/Discovery_NM-CT_670

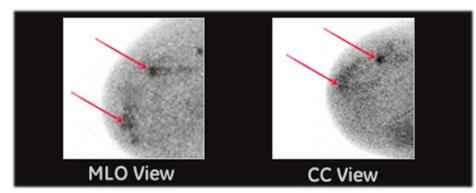
00000


http://www3.gehealthcare.com/~/media/Downloads/Product/Product-Categories/Nuclear-Medicine/SPECT-CT%20Scanners/GEHC-Brochure %20Discovery NM-CT-670.pdf?Parent={B5FEFEC2-711D-444A-AB1E-87EA682FB27C}

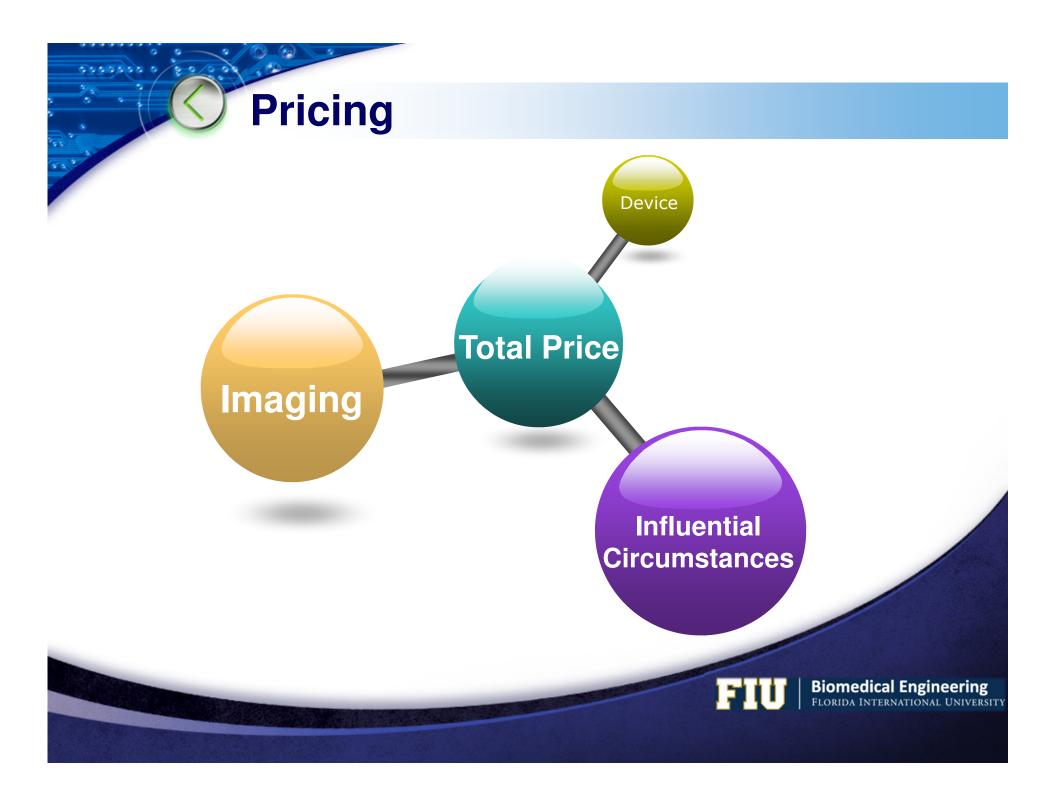
Ventri

- Originally Designed for Cardiac Imaging
 - Restricted Imaging Range
- Now offers Neurological Imaging
- Smaller Office Footprint
- Less expensive
- Similar Technology as Larger Devices

Ventri


Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

http://www3.gehealthcare.com/en/Products/Categories/Nuclear_Medicine/Xeleris_3/Evolution_for_Cardiac


Discovery NM 750b

- Dedicated Breast Imaging
- Solid-state Cadmium Zinc Telluride Detectors
 - 3 times the imaging sensitivity of conventional Nal gamma cameras
- Degradation-free Uniformity across entire Field-of-View
- Overcomes Breast Density challenges
- Single or Dual-Head Configuration

MLO = Mediolateral Oblique View
 CC = Cranio - Caudal View

Imaging

- Base Imaging Cost
- Radiopharmaceuticals Used
- Interpretation by Radiologist

Organ	Price	
Bone Imaging	Scan: \$585.20 Radiopharmaceutical: \$62.35	
Liver / Spleen Imaging	Scan: \$993.30 Radiopharmaceutical: \$77.90	
Brain Imaging	Scan: \$809.75	
Renal Imaging	Scan: \$996.08	
Joint Imaging	Scan: \$1016.00	
Myocardial Perfusion Imaging	Scan: \$2902.00	

Device Cost

Multi-Headed, New : \$400,000

Device

> Multi-Headed, Refurbished: \$100,000

Utility Costs

- Powering the Device and Control Station
- Powering the Electronics in the Imaging Suite

Wages of Employees

- Radiology Technicians
- Maintenance Personnel
- Sanitation Personnel
- Hardware Updates
- Software Updates

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

http://www.ibh.com/SPECT-ComplexCases.pdf

Influential Circumstances

Age of Imaging System

- Recently Purchased
 - Hospital may charge more till it breaks even
- Post Breaking-Even
 - Hospital may charge less since device has "paid-for-itself"

Neighboring Hospital Competition

- Rich Competition
 - May charge less to attract more customers
- Poor Competition
 - May charge more to capitalize on pseudomonopoly

Pending Lawsuits

"One minute she was eyeing her hospital bill, and the next minute..."

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

Imaging Locations and Frequency

Installed Devices and Patient Waiting Times

Projected Purchases

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

Imaging Locations and Frequency

- ~ 17 million Nuclear Medicine procedures performed at 7,230 different sites in 2010
 - Procedure frequency decreased by 0.5% each year from 2007 to 2010
 - 87% of procedures conducted in nonhospital locations are cardiovascular studies
 - 47% of procedures conducted in hospital locations are cardiovascular studies
 - More likely to be conducting other procedures including bone scans, liver, renal, respiratory, infection/abscess, and tumor localization studies.
- > 1/3 of Nuclear Imaging sites are physician office locations
 - > Includes cardiology offices, multispecialty clinics, and imaging centers
- > ~ 25% of imaging sites provide neurology applications
 - Projected to grow to 1/3 of sites by 2013
 - Driven by development of radiopharmaceuticals to address Parkinson's disease

Biomedical Engineering Florida International University

http://184.107.144.35/pressreleases/imv-nuclear-medicine-report-shows-nuclear-medicine-procedure-volume-flat-from-2007-to-2010.html http://www.auntminnie.com/index.aspx?sec=vdp&sub=def&pag=dis&itemId=96830

Installed Devices and Patient Waiting Times

- Dual-head SPECT installations comprise 64% of the gamma camera installed base
 - > Down from 70% in 2008
- SPECT/CT camera installed base increased from 2% of the installed base in 2008 to 9% in 2011
- 69% of the SPECT/CT and SPECT camera installed base are considered to be general purpose
- 31% are dedicated cardiac cameras
- Patient waiting times for nuclear imaging procedures have decreased
 - Waiting times of 1+ days for scheduled outpatient procedures decreased from 77% of the sites in 2003 to 43% of the sites in 2011

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

http://184.107.144.35/pressreleases/imv-nuclear-medicine-report-shows-nuclear-medicine-procedure-volume-flat-from-2007-to-2010.html http://www.auntminnie.com/index.aspx?sec=vdp&sub=def&pag=dis&itemId=96830

Projected Purchases

- Estimated replacement time of 12.8 years for a typical gamma camera
 - > 85% of purchases are replacements
- 1 in 6 planned camera purchases through 2013 will be from physician offices
 - > ~ 50% are Dual-head SPECT cameras
 - > 33.33% are SPECT/CT systems
 - Gaining momentum

Biomedical Engineering Florida International University

http://184.107.144.35/pressreleases/imv-nuclear-medicine-report-shows-nuclear-medicine-procedure-volume-flat-from-2007-to-2010.html http://www.auntminnie.com/index.aspx?sec=vdp&sub=def&pag=dis&itemId=96830

OThank You!

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY