
On Harmonic Fixed-Priority Scheduling of Periodic
Real-Time Tasks with Constrained Deadlines∗

Tianyi Wang+ Qiushi Han+ Shi Sha+ Wujie Wen+ Gang Quan+ Meikang Qiu†
+Florida International University, Miami, FL

† Pace University, New York, NY
+{tiawang,qhan001,ssha001,wwen,gaquan}@fiu.edu, †mqiu@pace.edu

ABSTRACT
It is well known that a harmonic task set, i.e., task peri-
ods are integer multiples of each other, can better utilize
a processor to achieve high system utilization. However,
the current definition of harmonic task set is limited only
to tasks with deadlines equal to their periods. In this pa-
per, we extend the concept of “harmonic task set” to tasks
with constrained deadlines, i.e., deadlines less than or equal
to their periods. We show that a harmonic task set with
constrained deadlines has a better schedulability than the
non-harmonic one with the same task utilization. We em-
ploy this characteristic for task partitioning on multi-core
platform, and our extensive experimental results show that,
by taking the task harmonic relationship into consideration,
our partitioning approach can greatly improve the schedu-
lability of real-time tasks on multi-core platforms.

1. INTRODUCTION
Multi-core platforms have been mainstream for comput-

ing systems and more and more real-time computing systems
will be built on multi-core platforms. Multi-core real-time
scheduling can be generally categorized into three classes:
the partitioned approach, the semi-partitioned approach,
and the global approach. While different task partition-
ing approaches have different advantages/disadvantages and
none of them really dominate the other in terms of schedula-
bility [6], the partitioned approach—allocating each task to
a dedicated processor—is usually adopted for real-time sys-
tem design in practice for its better predicability and ease
of design [1, 2].

When partitioning real-time tasks on multiple cores, one
critical problem is how to partition real-time tasks such that
processing cores can be most effectively utilized. This prob-
lem is a well known NP-hard problem [8] and designers usu-
ally have to resort to different heuristics with low compu-
tational cost. One such heuristic, for example, is simply to
transform the problem into a bin-packing problem [7] and
apply different bin-packing heuristics, such as first-fit (FF),

∗This work is supported in part by NSF under projects CNS-
1423137 and CNS-1457506.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2898055

worst-fit (WF) or best-fit (BF). In the general case, Anders-
son et al [1] proved that the utilization bound for multi-core
partitioned approach with fixed-priority scheduling is only
50% per core.

It is a well-known fact that harmonic tasks [10], i.e., tasks
with periods being integer multiples of each other, can achieve
high utilization, i.e. as high as one, on a single processor ac-
cording to the rate monotonic scheduling (RMS) policy. Kuo
et al. [11] proposed to adjust loads on a single core processor
by allocating harmonic tasks together. Han et al. [10] pro-
posed a polynomial time method to determine the feasibility
of a task set by verifying the feasibility of the correspond-
ing harmonic task set transformed from the original task
set. Bonifaci et al. presented exact feasibility checking algo-
rithms with polynomial-time complexity for harmonic tasks
under both fixed priority scheduling and dynamic priority
scheduling [5]. Nasri et al. introduced a method to select
harmonic periods for system utilization improvement [13].
Liu et al. [12] studied the problem of scheduling harmonic
tasks with suspensions on both uniprocessor and multiple
processors. Fan et al. proposed a multi-core partitioned
scheduling algorithm that can take advantage of harmonic
relationship among tasks to improve the system schedulabil-
ity [9]. Wang et al. [14] explored the harmonic relationship
among tasks with statistical execution times on multi-core
platforms. All these works indicate that the system schedu-
lability can be significantly improved if harmonic relation-
ship among tasks can be exploited properly.

One great limitation of existing researches on harmonic
real-time tasks is that they target solely on periodic tasks
with implicit deadlines scheduled according to RMS scheme.
Such an approach is not applicable for many practical real-
time applications [5], which can be better modeled as peri-
odic real-time tasks with constrained deadlines. In this pa-
per, we extend the concept of“harmonic”from periodic tasks
with implicit deadlines to the ones with constrained dead-
lines, scheduled according to deadline monotonic scheduling
(DMS) policy. We formally define what it means for tasks
with constrained deadlines to be harmonic. We show that,
similar to a traditional harmonic task set, a general har-
monic task set has a better schedulability than non-harmonic
ones. Specifically, we formulate two theorems to demon-
strate the high schedulability of a harmonic task set over a
normal one. To our best knowledge, this is the first research
effort that defines the “harmonic task set” for periodic tasks
with constrained deadlines.

We then take task harmonic relationship into considera-
tion to tackle the problem of partitioned fixed-priority schedul-
ing of real-time tasks on homogenous multi-core platforms
based on DMS scheme. Since not all tasks are perfectly
harmonic, we develop a novel metric to quantify the degree

of harmonicity between two tasks. Based on this metric,
we then develop two partitioning algorithms that can take
harmonic relationship of tasks into consideration. Extensive
simulations results show that the proposed task partition-
ing approaches can significantly improve the schedulability
of real-time tasks when compared with existing work.

2. PRELIMINARY
We consider a real-time system consisting of N indepen-

dent periodic tasks, denoted as Γ = {τ1, τ2, . . . , τN}, ordered
by their priorities based on deadline monotonic scheduling
(DMS) policy. Assume Γ is to be scheduled on a homoge-
neous multi-core platform, denoted as P = {p1, p2, ...pM},
according to DMS. Each task τi ∈ Γ is characterized by a tu-
ple (Ci, Di, Ti), representing the worst case execution time,
the relative deadline and the inter-arrival time (period), re-
spectively. We assume Di ≤ Ti.

For each task τi = (Ci, Di, Ti), we define its density (de-
noted by Ii) as Ii = Ci

Di
and utilization (denoted by Ui)

as Ui = Ci
Ti

. Accordingly, the utilization of a task set Γ,

denoted by UΓ, is defined as UΓ =
∑N
i=1 Ui. When task

set Γ is scheduled on a multi-core system with K cores, we
define the system utilization (denoted by Us) as Us = UΓ

K
.

The problem of fixed-priority scheduling of periodic tasks
with constrained deadlines on multi-core platforms can be
formulated as follows:

Problem 1. Given (i) task set Γ = {τ1, τ2, . . . , τN} and
(ii) multi-core platform P = {p1, p2, ...pM}, partition Γ on
P such that all tasks can meet their deadlines and the num-
ber of cores used is minimized.

A key to solve problem stated above is to partition real-
time tasks in a way that can best utilize the processors.
Consider the task set with six tasks shown in Table 1.

Table 1: A task set with six tasks
τi Ci Di Ti Ui

τ1 1 2 4 0.25
τ2 1 3 4 0.25
τ3 1 4 6 0.17
τ4 1 5 6 0.17
τ5 7 12 29 0.24
τ6 7 12 38 0.18

One simple approach to partition the tasks above is to
transform it into a traditional bin packing problem. Then
we can apply heuristics such as FF, WF or BF to partition
these tasks to different cores. Use FF as an example. First,
we order these tasks according to the decreasing order of
their utilizations, i.e., {τ1, τ2, τ5, τ6, τ3, τ4}. Then we allocate
the tasks one by one to the first core that can accommodate
the task. For the above example, we have τ1, τ2, τ3 and τ4
allocated to core 1, τ5 and τ6 allocated alone to core 2 and
core 3, respectively. As such, to schedule tasks in Table 1
based on FF approach, at least three processing cores are
needed.

Since harmonic tasks can better utilize a processor, an
intuitive approach is therefore to allocate tasks with same
periods (or tasks with periods being integer multiples of each
other) to the same core. Specifically, for the six tasks above,

we assign tasks τ1 and τ2 together to one processor and task
τ3, τ4 and τ5 to another processor. Again, since task τ6
cannot be assigned to either of the two processors, we still
have to allocate one more processor to schedule task τ6. It is
not difficult to verify that, if we assign task τ1,τ3 and τ5 to
one core and τ2, τ4 and τ6 to another core, we can feasibly
schedule all six tasks in two cores.

Note that both approaches above have their limitations.
The first approach depends on the order of tasks to make
partitioning decisions while the latter only takes harmonic-
ity of task periods into consideration. Both approaches ig-
nore the effects of deadline constraints for task partitioning.
Also note that for a harmonic task set with implicit dead-
lines, the utilization can be as high as one. However, for
task set with constrained deadlines, this is no longer always
true any more, and partitioning tasks based on their peri-
ods becomes ineffective. We believe that, same as tasks with
implicit deadlines, there must exist some harmonic relation-
ship among tasks with constrained deadlines, and if this re-
lationship is explored properly, we can greatly improve the
processor utilization. The challenge is how to identify and
quantify this relationship for periodic tasks with constrained
deadlines. We discuss our approach for this problem in the
sections that follow.

3. HARMONICTASKSWITHCONSTRAINED
DEADLINES

As indicated in the example above, for tasks with con-
strained deadlines, task sets with harmonic periods do not
necessarily have better processor utilizations. The question
is then what type of task sets may have a better utilization.
The following example can shed some light on this question.

Table 2: A task set with three tasks.
τi Ci Di Ti

τ1 1 2 3
τ2 1 3 4
τ3 C3 D3 24

Consider the task set shown in Table 2. Note that when
we change τ3’s deadline D3, its largest schedulable execu-
tion time max(C3) and the corresponding task density I3
also change. Table 3 lists different values of D3 and corre-
sponding max(C3), I3. For example, when we set task τ3’s
deadline D3 = 8, the corresponding largest execution time
that can still make task τ3 feasible is max(C3) = 3 and the
density I3 = C3

D3
= 3
8

= 0.375.
As shown in Table 3 and also illustrated in Figure 1, the

density of task τ3 changes non-monotonically with its dead-
line. It is interesting to note that task τ3’s density reaches
its maximum when task τ3’s deadline equals to 12 and 24,
or the integer multiples of task periods from τ1 and τ2. This
seems to imply that when a lower priority task’s deadline is
an integer multiples of all higher priority tasks’ periods, the
lower priority task may achieve its maximum density with-
out compromising its deadline. The higher the maximum
density a task has, the more workload a processing core can
accommodate. The task set therefore has a better schedu-
lability. Based on this observation, we define the concept of
harmonic tasks for periodic tasks with constrained deadlines
as follows.

Table 3: Density changes for task τ3.
D3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

max(C3) 1 2 2 3 3 3 4 5 5 5 6 6 6 7 7 8 8 8 9 10

I3 0.2 0.33 0.29 0.375 0.33 0.3 0.36 0.42 0.38 0.36 0.4 0.375 0.35 0.39 0.37 0.4 0.38 0.36 0.39 0.42

Figure 1: Density varies with different deadlines.

Definition 1. Let τi and τj be two tasks with constrained
deadline Di ≤ Dj . Then τi and τj are harmonic if

• Ti ≤ Dj and Ti | Dj (i.e., Ti divides Dj), or

• Ti > Dj .
In Definition 1, if the deadline of the low priority task is the
integer multiple of the period of the high priority task then
these two tasks are harmonic. This comes directly from the
observation introduced above. On the other hand, if the
high priority task’s period is larger than the deadline of the
low priority task, we also define two tasks being harmonic.
This is because that, once the execution time of the high
priority task is given, the density of the low priority task
varies monotonically with its deadline, exhibiting the same
behavior when the period of the high priority task equals
to the deadline of the low priority task. Accordingly the
harmonic task set with constrained deadlines is defined as
follows.

Definition 2. A task set is called a general harmonic
task set, or simply harmonic task set if any two tasks in the
task set are harmonic.

From Definition 1 and Definition 2 we can see that the
traditional harmonic tasks with implicit deadlines are just
special cases of general harmonic tasks. While it is well
known that for harmonic tasks with implicit deadlines the
utilization bound is 1, this is not true any more for a general
harmonic task set. To study the schedulability of a general
harmonic task set, we have the following theorem (Proofs in
this paper are omitted due to page limit.)

Theorem 1. Let task set Γ = {τ1, τ2, . . . τi, . . . , τN} be a
harmonic task set with constrained deadlines. For τi ∈ Γ,
τi is schedulable if and only if the work demand of τi at the
scheduling point t = Di, i.e Wi(Di), is no more than Di,
where

Wi(t) = Ci +

i−1∑

j=1

� t
Tj

�Cj . (1)

The sufficiency of this statement is readily true. To prove
the necessity of this statement, we only need to note that

there must be a scheduling point t = kTs ∈ (0, Di], k ∈ Z
such that Wi(t) ≤ t. Since Ts | Di and let Di = mTs where
m ∈ Z, we have m > k and Di = m

k
t.

Wi(Di) = Ci +
∑

∀j<i
�Di
Tj

� · Cj

≤ m

k
Ci +

m

k

∑

∀j<i
� t
Tj

� · Cj

≤ m

k
t = Di.

From Theorem 1, we can see that, similar to traditional
harmonic tasks, to check the schedulability of a task in a
harmonic task set takes only linear time. More importantly,
harmonic task sets defined by Definition 1 and 2 have better
schedulability than that of non-harmonic ones. This conclu-
sion is formulated in the following theorem.

Theorem 2. Let Γ = {τ1, τ2, . . . τi, . . . , τN} and Γ′ =
{τ ′1, τ ′2, . . . τ ′i , . . . , τ ′N} be two schedulable task sets with equal
utilization, i.e., UΓ = UΓ′ . Assume that Γ is a harmonic task
set and Γ′ is a regular task set. Let task τZ = (CZ , DZ , TZ)
be a task with priority lower than any task in Γ and Γ′.
Then if {Γ′ + {τZ}} is schedulable, then {Γ+ {τZ}} must be
schedulable.

Theorem 2 indicates that for the same task τZ , if it is schedu-
lable with a non-harmonic task set, it must be schedulable
with a harmonic task set of the same utilization. Also, for a
harmonic task set and a non-harmonic task set, if the cor-
responding tasks have the same utilizations and densities,
then if the non-harmonic task set is schedulable, the har-
monic task set must be schedulable, as formally formulated
in the following theorem.

Theorem 3. Let Γ = {τ1, τ2, . . . τi, . . . , τN} and Γ′ =
{τ ′1, τ ′2, . . . τ ′i , . . . , τ ′N} be two task sets, and let Ui = U ′

i and
Ii = I ′i for any τi ∈ Γ and τi ∈ Γ′. Assume Γ is harmonic.
Then if Γ′ is schedulable, Γ must be schedulable.

It is not difficult to see that Theorem 3 can be applicable
for traditional harmonic tasks with implicit deadlines. That
is, if a task set is schedulable, then a harmonic task set
with the same utilization must be schedulable. If tasks have
constrained deadlines, however, we have to take the deadline
constraints into consideration and require their densities are
equal.

Now let us revisit the motivation example. As mentioned
before, the task sets can be scheduled using two processors:
{τ1, τ3, τ5} and {τ2, τ4, τ6}. If we pay a close attention to the
first subset {τ1, τ3, τ5}, we can see that τ3’s deadline is an
integer multiple of τ1’s period, and task τ5’s deadline is in-
teger multiples of periods for both τ1 and τ3. Therefore this
partition helps to reduce the number of processors. Similar
observation can be made from the other subset. Note that
τ4’s deadline is very close to an integer multiple of τ2’s pe-
riod, and task τ6’s deadline is integer multiples of periods
for both τ2 and τ4.

As the motivation example implies, if we take the har-
monic relationship into consideration, we may significantly
improve the processor utilization. The problem, however,
is that not all tasks in a task set are perfectly harmonic.
How can we quantify which tasks are more harmonic than
others? In what follows, we first introduce a metric to quan-
tify the degree of harmonicity between two tasks. Based on
this metric, we then propose two algorithms to guide our
partition procedure on multi-core platforms.

4. THE HARMONIC INDEX
In this section, we introduce the metric that we have de-

veloped to quantify the degree of harmonicity between two
tasks. Specifically, the harmonicity of two tasks is measured
by the “distance” of a task to the harmonic task. Before we
introduce the metric in details, we first introduce the follow-
ing definitions.

Definition 3. Given two tasks τi = (Ci, Di, Ti) and τj =
(Cj , Dj , Tj) with Di ≤ Ti ≤ Dj , the harmonic sub-task of
τj with respect to τi is task τ ′j = (Cj , D

′
j , Tj), such that D′

j

is the largest value with D′
j ≤ Dj and Ti | D′

j . On the
other hand, the harmonic sub-task of τi with respect to τj is
task τ ′i = (Ci, Di, T

′
i), such that T ′

i is the largest value with
T ′
i ≤ Ti and T ′

i | Dj .

In other word, for the low priority task, its harmonic sub-
task is the task with the exactly the same execution time and
period, but the largest possible deadline (not larger than the
original one) that is harmonic with the high priority task.
On the other hand, for the high priority task, its harmonic
sub-task is the task with exactly the same execution time
and deadline, but the largest possible period (not larger than
the original one) harmonic to the low priority task. In this
way, when replacing the original task with its harmonic sub-
task and the result task set is schedulable, the original task
set must be schedulable. We formulate this conclusion in
the following theorem.

Theorem 4. Let Γ = {τ1, τ2, . . . τi, . . . , τN} and let τ ′i be
a harmonic sub set with respect to any task τj ∈ Γ. Then if
task set {τ1, τ2, . . . τ ′i , . . . , τN} is feasible, Γ must be feasible.

Now we are ready to formally define harmonic index to
evaluate how a task is harmonic to the other.

Definition 4. Given two tasks τi and τj with Di ≤ Ti ≤
Dj , let τ

′
j (τ

′
i , resp) be the harmonic sub task of τj (τj , resp)

with respect of τi (τj , resp). Then the harmonic index of τj
(τi, resp) with respect of τi (τj , resp), denoted as H(τj → τi)
(H(τi → τj), resp), is defined as

H(τj → τi) = I ′j − Ij , (2)

H(τi → τj) = U ′
i − Ui. (3)

where I ′j and Ij are densities of τ ′j and τj , respectively, and
U ′
i and Ui are utilizations of τ ′i and τi, respectively. The

harmonic index of these two tasks, denoted as H(τj , τi) is
defined as

H(τi, τj) = min{H(τj → τi),H(τi → τj)}. (4)

The metrics of H(τj → τi) and H(τi → τj) define how close
a task is to its corresponding harmonic sub task in terms of
density/utilization change. The larger the change is, the less

harmonic the task is to the reference task. Therefore a high
harmonic index value indicates a low harmonic relationship.

So far, we discuss the case when the high priority task’s
period is no larger than low priority task’s deadline, i.e.,
Di ≤ Ti ≤ Dj . If the high priority task’s period is greater
than the low priority task’s deadline, we consider the two
tasks are harmonic. That is,

H(τj → τi) = H(τi → τj) = H(τi, τj) = 0. (5)

The rationale behind this definition is that, when high pri-
ority task has a period longer than the deadline of the low
priority task, the high priority task preempts the low prior-
ity task only one time, which is the exactly the same when
the high priority task has the period equal to the deadline
of the low priority task.

With the definition of harmonic index for two tasks, we
can also extend it to the entire task set as follows.

Definition 5. Given a task set Γ = {τ1, τ2, ..., τi, ..., τN},
the harmonic index of task τi in task set Γ, denoted as
HΓ(τi), is defined as:

HΓ(τi) =
∑

τj∈Γ
H(τi, τj) (6)

5. TASK PARTITIONING ALGORITHMS
With the harmonic indexes we have defined in the previous

section, we are now ready to introduce our task partitioning
algorithms. The goal of our task partitioning algorithms is
to identify tasks that have high harmonicity and group them
into one processor to better utilize resources. To this end, we
propose two algorithms. The first algorithm, called greedy
density maximization algorithm (GIM), allocates one task at
a time to the core with task set that is most harmonic to the
task. The second algorithm, called harmonic-aware clique
maximization algorithm (HCM), addresses the task partition
problem from a higher perspective. It first identifies tasks
that are harmonic or close to harmonic and then assign them
to a processing core together.

5.1 Greedy density maximization algorithm
The greedy density maximization algorithm (GIM) is based

on the harmonic index which we have proposed earlier. The
details of the algorithm is shown in Algorithm 1. Given a
task set and a multi-core platform, the algorithm first sorts
tasks in non-increasing order of their utilizations (line 4).
Then it goes through each task and allocates each task to
the best candidate processor that is schedulable and most
harmonic to this task.

Algorithm 1 is a simple yet effective approach and the
timing complexity is only O(N2(M + max(D))), where N
is the total number of tasks, M is the number of cores, and
max(D) is the pseudo polynomial complexity for response
time analysis of harmonic task sets. Since Algorithm 1 allo-
cates one task at a time, the order of the tasks can signifi-
cantly affect the partitioning choice and a task can only be
grouped with existing tasks that have assigned to a core.

5.2 Harmonic-aware clique maximization al-
gorithm

The second algorithm, harmonic-aware clique maximiza-
tion algorithm (HCM), intends to identify tasks that have
high harmonicity first and then allocate them to a core. Dif-
ferent from GIM, tasks assigned to a core may potentially

Algorithm 1 Greedy density maximization algorithm.

1: Input:Γ = {τ1, τ2, . . . , τN} and P = {p1, p2, . . . , pM};
2: Output: Task partitions: = {Γp1 ,Γp2 , . . . ,ΓpM }.
3:
4: Sort tasks in Γ by the non-increasing order of their uti-

lizations;
5: for each task τi ∈ Γ do
6: for each processor pj ∈ P do
7: Calculate HΓpj (τi) if allocating τi to pj ;

8: Check the feasibility of Γpj if allocating τi to pj ;
9: end for

10: Allocate τi to pj such that Γpj is feasible and HΓpj (τi)
is the minimum;

11: end for

have a higher harmonicity and therefore can achieve better
performance.

To identify tasks with high harmonicity, one intuitive ap-
proach (similar to [9]) is to rank the harmonic indexes for all
tasks based on each candidate task and then pick the ones
with smaller harmonic indexes. However, different from the
harmonic tasks with implicit deadlines, the general harmonic
relationship is not transitive. That is: if task A and B are
harmonic and task B and C are harmonic, it does not nec-
essary mean that task A and C are harmonic. To search
for sub task sets allocated to a processor, HCM transforms
this problem to the classic maximum clique problem [4],
which intends to find the largest fully connected subgraph
in a graph. When different edges have different weights,
the maximum clique problem becomes the one to identify
the sub-graph with maximized/minimized total weights. In
HCM, we let each task be a node in the graph and the har-
monic index be the weight for edge connecting two nodes.
Then the clique with the minimum total weight corresponds
to the task set with the minimum harmonic index.

The maximum clique problem is a NP-hard problem in
nature and many heuristics have been proposed, such as
greedy algorithm, simulated annealing, neural network and
etc [4] where the timing complexity is a serious concern. In
HCM, we apply a greedy heuristic to address this problem
with a timing complexity of O(N4), where N is the total
number of tasks. The details of the algorithm is shown in
Algorithm 2.

HCM searches for a feasible clique in each iteration and
returns the one with maximum utilization. In each iteration
the algorithm constructs cliques with tasks that are har-
monic or close to harmonic. Tasks are added to a clique until
no further tasks can be added with all tasks being schedu-
lable (If two tasks have the same harmonic index, the one
with larger density is picked). Then HCM sorts all candi-
date cliques in non-increasing order of their utilizations and
picks the clique with the maximum utilization to allocate to
a core. The tasks in the clique are then removed from task
set Γ. This process is repeated until task set Γ is empty.

6. EXPERIMENTAL RESULTS
In this section, we use experiments to investigate the ef-

fectiveness of our proposed algorithms. Four different ap-
proaches were realized in our experiment: one traditional bin
packing approach (FF), i.e., the first fit decreasing, the har-
monic approach that does not consider deadline constraints

Algorithm 2 Harmonic-aware clique maximization algo-
rithm.
1: Input:Γ = {τ1, τ2, . . . , τN} and P = {p1, p2, . . . , pM};
2: Output: Task partitions: = {Γp1 ,Γp2 , . . . ,ΓpM }.
3: k = 1;
4: while Γ �= ∅ do
5: Calculate H(τi, τj) for each τi, τj ∈ Γ;
6: Search for the schedulable Γpk ⊆ Γ with the largest

cliques [4];
7: Γ = Γ − Γpk ;
8: k = k + 1;
9: end while

Figure 2: Performance vs. system utilizations

(DCT) [9], and two task partitioning algorithms introduced
above, i.e. GIM and HCM .

We studied the performance of different approaches with
respect to different system utilizations. We randomly gener-
ated task sets with total system utilization from 0.6 to 1 with
step size of 0.025. Task periods are evenly distributed within
interval [500, 1000] and deadline-period ratios are evenly dis-
tributed between [0.2, 1]. We modified the UUniFast ap-
proach [3] such that the maximum utilization for a task is
no more than Umax = 0.2. We set the number of cores to be
12. For each setting, we ran over 1000 experiments and cal-
culated the average acceptance ratio (i.e. schedulable task
sets vs. total number of task sets) for different approaches.
The results are shown in Figure 2.

From Figure 2, we can see that both GIM and HCM
can always achieve better performance than DCT and FF .
DCT is the worst approach among the four since DCT de-
termines if tasks are harmonic based only on periods, which
does not work well if task deadlines are much smaller than
their periods. From our results, we can see that even FF
tends to perform better than DCT . It is interesting to note
thatGIM outperforms FF with a relatively low timing com-
plexity (due to cost for feasibility checking). HCM is the
best approach due to the fact that it searches the harmonic
tasks from the entire task set for a core and therefore can
exploit the harmonic relationship more effectively. Specifi-
cally, when system utilization is 0.8, the acceptance ratio by
HCM almost doubles the ones by DCT and FF .

We next studied the performance of each approach with
respect to different numbers of tasks. We varied the max-
imum utilization for each task Umax from 0.2 to 0.4, and
then to 0.8. Note that the larger that Umax is, the smaller
number of tasks are there in a task set. Again, we ran exper-
iments for each setting 1000 times and average acceptance
ratio was calculated and shown in Figure 3.

(a) (b) (c)

Figure 3: Performance vs. number of tasks on a 12-core processor

From the experimental results shown in Figure 3, we can
see that when task’s maximum utilization increases, the
performance of each algorithm decreases. This is because
large maximum utilization implies smaller number of tasks
in the task set, and thus less flexibility for each algorithm
to choose tasks. We can also see that HCM always outper-
forms other approaches in all test cases, and the improve-
ment increases with the number of tasks, which demon-
strates that HCM can better explore the harmonic rela-
tionship among tasks to better schedule tasks on multi-core
platforms. For example, in Figure 3, for system with total
utilization of 0.8, HCM improves upon GIM , DCT and FF
over 107% when Umax = 0.8 (Figure 3(d)), and over 523%
when Umax = 0.2 (Figure 3(d)). The results clearly show
that by taking advantage of harmonic relationship among
task, our approaches can significantly improve the multi-
core scheduling performance.

7. CONCLUSIONS
For fixed-priority multi-core scheduling problem, one key

problem is how to partition tasks in a way that can most ef-
fectively utilize the resource. While there have been exten-
sive approaches that exploit harmonic relationship among
tasks to improve system utilization, they are limited only
to real-time tasks with implicit deadlines. In this paper, we
extend the concept of “harmonic task set” to tasks with con-
strained deadlines and show that a general harmonic task
set with constrained deadlines always has a better schedu-
lability than the non-harmonic one. We employ this char-
acteristic for task partitioning on multi-core, and extensive
simulation results show that our algorithms can significantly
outperform existing approaches. As far as we know, this is
the first research that defines the “harmonic task set” for
periodic tasks with constrained deadlines. We believe that
this research can greatly benefit many existing researches
that exploit harmonic relationship of real-time tasks.

8. REFERENCES
[1] B. Andersson and J. Jonsson. The utilization bounds

of partitioned and pfair static-priority scheduling on
multiprocessors are 50%. In Euromicro Conference on
Real-Time Systems, pages 33–33. IEEE Computer
Society, 2003.

[2] E. Bini and G. C. Buttazzo. Measuring the
performance of schedulability tests. Real-Time Syst.,
30(1-2):129–154, May 2005.

[3] E. Bini and G. C. Buttazzo. Measuring the
performance of schedulability tests. Real-Time
Systems, 30(1-2):129–154, 2005.

[4] I. M. Bomze, M. Budinich, P. M. Pardalos, and
M. Pelillo. The maximum clique problem. In Handbook
of combinatorial optimization, pages 1–74. Springer,
1999.

[5] V. Bonifaci, A. Marchetti-Spaccamela, N. Megow, and
A. Wiese. Polynomial-time exact schedulability tests
for harmonic real-time tasks. In Real-Time Systems
Symposium, pages 236–245. IEEE, 2013.

[6] J. Carpenter, S. Funk, P. Holman, A. Srinivasan,
J. Anderson, and S. Baruah. A categorization of
real-time multiprocessor scheduling problems and
algorithms. Handbook on Scheduling Algorithms,
Methods, and Models, pages, pages 30–1, 2004.

[7] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson.
Approximation algorithms for bin packing: a survey.
In Approximation algorithms for NP-hard problems,
pages 46–93. PWS Publishing Co., 1996.

[8] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM
Computing Surveys (CSUR), 43(4):35, 2011.

[9] M. Fan and G. Quan. Harmonic-aware multi-core
scheduling for fixed-priority real-time systems. Parallel
and Distributed Systems, IEEE Transactions on,
25(6):1476–1488, June 2014.

[10] C.-C. Han and H. ying Tyan. A better
polynomial-time schedulability test for real-time
fixed-priority scheduling algorithms. In Real-Time
Systems Symposium, pages 36–45, Dec 1997.

[11] T.-W. Kuo and A. K. Mok. Load adjustment in
adaptive real-time systems. In Real-Time Systems
Symposium, pages 160–170. IEEE, 1991.

[12] C. Liu, J. J. Chen, L. He, and Y. Gu. Analysis
techniques for supporting harmonic real-time tasks
with suspensions. In 26th Euromicro Conference on
Real-Time Systems, pages 201–210, July 2014.

[13] M. Nasri, G. Fohler, and M. Kargahi. A framework to
construct customized harmonic periods for real-time
systems. In 26th Euromicro Conference on Real-Time
Systems (ECRTS), pages 211–220. IEEE, 2014.

[14] T. Wang, L. Niu, S. Ren, and G. Quan. Multi-core
fixed-priority scheduling of real-time tasks with
statistical deadline guarantee. In Design, Automation
& Test in Europe Conference & Exhibition, pages
1335–1340. EDA Consortium, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

