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Abstract—As IC technology continues to evolve and more
transistors are integrated into a single chip, high chip temperature
due to high power density not only increases packaging/cooling
cost, but also severely degrades reliability and the performance
of computing systems. In the meantime, as transistor feature size
continues to shrink, it becomes difficult to precisely control the
manufacturing process. The manufacturing variations can cause
significant differences from core to core and chip to chip. We
believe that the heterogeneity due to manufacturing variations,
if handled properly, can in fact improve the design objectives of
real-time applications. In this paper, we study the problem on
how to reduce the peak temperature of a real-time application by
judiciously mirroring the physical architecture of an individual
device to the logical architecture where the application was
initially designed upon. We develop three computationally efficient
algorithms for deploying applications to individual devices. Our
simulation study has clearly shown that, by taking advantage
of the uniqueness of each individual physical chip, the proposed
approaches significantly reduce the peak temperature. The exper-
iments also show that these approaches are efficient and have low
operational cost.

Keywords—peak temperature; manufacturing variations; topol-
ogy virtualization; nominal design; multi-core

I. INTRODUCTION

With billions of transistors integrated on a single chip to
further drive the pace of multi-core design, high peak tem-
perature has increasingly become a critical issue in computer
system design. High chip temperature not only increases pack-
aging/cooling cost (estimated at 1-3 dollar per watt [1]) but
also significantly degrades system performance and reliability.
A 10◦C to 15◦C increase of operation temperature can reduce
the lifetime of a chip by half [2], [3]. Moreover, high chip
temperature dramatically increases leakage power dissipation.
The leakage power dissipation of a chip can be tripled when
temperature increases from 45◦C to 110◦C according to [4],
which in turn will further elevate temperature. Temperature
constraint is becoming the first-class design concern for digital
CMOS ICs.

In the meantime, as transistors become increasingly smaller,
manufacturing variations become more and more substantial. As
the chip’s feature size continues to shrink, to the level below the
wavelength of light used to print them, it becomes very difficult
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to precisely control the manufacturing process [5], [6]. ITRS [7]
in 2008 predicted that circuit variability will increase from 48%
to 66% in the next ten years. When temperature changes from
20◦C to 60◦C, as much as 10% variation in dynamic power
and 14x variation in leakage power are measured for an ARM
Cortex M3 processor [8]. As such, designers can no longer
assume their systems designed based on the nominal design
parameters can always yield the expected performance. For real-
time systems, the design based on the worst case scenarios
become unacceptable, as the worst cases can be orders of
magnitude different from the nominal values [9].

Many approaches have been proposed to deal with manufac-
turing variation problems. Significant achievements have been
made on layout techniques and other device technologies by
adding built-in sensors or redundant devices [6], [10], [11].
However, it becomes increasingly challenging as transistor size
scales towards dimensions close to or below 10 nm [12]. Besides
extensive work on layout and device level, there are increasing
research efforts to address the manufacturing variation problem
from architecture and system level. For example, performance
binning technique is proposed to cluster chips with similar
performance [13], [14]. However, this approach cannot deal with
manufacturing variations of different cores within the same chip.
Another popular approach is to adopt the statistical approach
in the design optimization process. As an example, Wang et
al. [15] proposed a task mapping and scheduling algorithm
to maximize the performance yield rate (i.e., the probability
that a processor can meet the desired performance of a given
application) by statistically taking both variations of cores and
physical links into account. These statistical approaches try to
optimize results in a probabilistic manner. When deploying the
design to each individual processor, the designs can be either
too optimistic or too pessimistic due to different performance
variations. One recent work [16] exploited process variations in
Dark-Silicon homogeneous chip multi-processors, however they
only considered the frequency variations and ignored leakage
variations between cores.

There is another interesting approach proposed to address
the manufacturing variation problem. This approach, so called
topology virtualization [17], calls for judiciously mirroring
the physical architecture of an individual device to the logic
architecture of an application when the application is deployed
(installed/initiated) to the device. Figure 1 illustrates this ap-
proach.
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Fig. 1. The topology virtualization framework. (a) Target application designed
based on the nominal parameters of a 3× 3 logical topology; (b) Configure
the practical topology of an individual processor differently to mirror the
logical topology and optimize the performance of the target application; (3)
The physical topology, a 3×4 mesh, for the processor.

Assume an application is developed based on a 3×3 logical
homogeneous multi-core mesh architecture. The physical chip,
on the other hand, is not necessarily the same 3×3 architecture.
To fight for manufacture variation problem, it has been a
common practice in industry to add redundant resources (e.g.
processing cores) so that the entire chip can still work even if
some cores are faulty [10], [6]. Assume the physical architecture
of a chip is a mesh of 3× 4 as shown in Figure 1. Note that,
due to the manufacturing variation problem, the performance
of all these cores are not necessarily homogeneous. Moreover,
the design based on the logical architecture does not necessarily
utilize each processor in exactly the same way. Opportunity is
thus presented to optimize the performance of original nominal
design by mirroring the physical architecture of each individual
chip to the logical architecture differently as shown in Figure 1.
There are a number of distinct advantages to this approach.
First, compared with the statistical approach, this approach can
exploit the unique characteristic of each individual device and
better optimize the system performance. Second, the architecture
changes can be managed by the operating system or lower
level software such as BIOS, which is totally transparent to
the application software.

We believe that heterogeneity due to manufacturing vari-
ations, if explored properly, can in fact improve the design
objective of a real-time application. In this paper, we study
the problem of how to reduce the peak temperature by ex-
ploiting the architecture heterogeneity due to manufacturing
variations. A few works is closely related to our approach
proposed in this paper. When a processor has faulty cores
and more redundant cores, Zhang et al. [18], [19] proposed
several heuristics to replace faulty cores with redundant cores
to improve the fabrication yield. They further extended their
work to deal with performance variations by constructing sub-
meshes using cores with similar performance [20]. Yue at

el. [21], [22] improved upon Zhang’s work [18], [19] by taking
application characteristics into consideration, and intended to
maintain the similar real-time performance after replacing faulty
cores with redundant cores. A more recent work by Wang et
al. [17] considered manufacturing variations on homogeneous
multi-core platforms, proposed three re-mapping heuristics to
maximize the throughput of task graph.

It is not difficult to see that the problem to optimize the
performance of an application by mirroring the physical topol-
ogy to the logical topology is an NP-hard problem [23]. While
it is a common practice to use certain time-consuming tech-
niques such as Genetic Algorithm (GA) [24], [25], Simulated
Annealing Algorithm (SAA) [18], [19] to solve this problem,
this is not viable for the topology virtualization approach. Since
the physical to logical topology mapping is performed when
deploying (installing or initiating) the application software on
an individual device, the key to the success of this approach
is to develop computationally efficient mapping methods that
can effectively optimize the performance metrics for application
software. To this end, we developed three physical to logical
topology mapping heuristics to reduce the peak temperature
of a processor. Our simulation study shows that the topology
virtualization approach is very effective in reducing the peak
temperature for a processor.

In what follows, we introduce the system, power and thermal
models the research is based upon, and formulate the problem
we are to address in Section II. In Section III, We discuss how to
rapidly calculate the peak temperature for a periodic application
. We then present three computationally efficient heuristics to
minimize peak temperature in Section IV. Experimental results
are discussed in Section V, and we conclude in Section VI.

II. PRELIMINARY

In this section, we first introduce the system model, power
and thermal models and then formulate the research problem
we are to address in the paper.

A. System models

The multi-core platform considered in this paper consists
of identical cores with traditional 2-D mesh architecture. Each
core can run in one of r different operating modes. Each running
mode is characterized by a tuple (vk, fk) (1 ≤ k ≤ r), where vk is
the supply voltage and fk is the working frequency for mode k,
respectively. Note that due to manufacture variations, cores may
have different maximum frequencies deviated from its nominal
value. Therefore, cores that are running with the same supply
voltage mode, their frequencies also can behave differently. In
Figure 2 shows an example of two cores with their voltage-
frequency modes compared to the nominal values (parameters
are generated based on [6]).

Specifically, we assume the physical architecture (denoted
as Ap

m×n) is an m×n mesh, i.e.

Ap
m×n = {A p

i, j, i = 0, ...,m−1; j = 0, ...,n−1}. (1)

where A p
i, j represents the core located at position (i, j) in the

physical topology.

The target application is periodic with period of L. We
assume the original nominal design of the application is based



Nominal Value (V, F) Core 0 Core 1
(0.8, 0.8) (0.8, 0.76) (0.8, 0.82)
(0.9, 0.9) (0.9, 0.87) (0.9, 0.93)
(1.0, 1.0) (1.0, 0.95) (1.0, 1.04)
(1.1, 1.1) (1.1, 1.03) (1.1, 1.13)
(1.2, 1.2) (1.2, 1.18) (1.2, 1.25)

Fig. 2. Voltage-Frequency variation example between cores.

on a logical architecture (denoted as Al
x×y), which forms a

standard x× y homogeneous mesh architecture, i.e.

Al
x×y = {A l

i, j, i = 0, ...,x−1; j = 0, ...,y−1}. (2)

where A l
i, j represents the core located at position (i, j) in the

logical topology. The nominal design S(t) consists of a set
of static, periodic voltage schedules, each of which, i.e. Si(t),
is applied to one logical core and dictates the change of its
processing speed in each period. We assume that each schedule
consists of a set of non-overlapping intervals with total length
of L. Each interval has its own specified running modes. Let the
voltage schedule on core i, denoted as Si(t), consist of a set of
interval [t0, t1], ..., [tq−1, tq] such that

⋃s
q=1[tq−1, tq] = [0, L], and

[tq−1, tq]
⋂
[tp−1, tp] = /0, if q �= p. Also, let the running modes of

interval i be [vi, fi]. We define the utilization of core i, denoted
as Ui as

Ui =
∑i(ti − ti−1)× vi

vmax ×L
. (3)

B. Power and thermal models

The total power dissipation of each core contains two parts:
dynamic power and leakage power. We assume that the dynamic
power is independent of temperature but sensitive to variation
while the leakage power is sensitive to both. The total power
dissipation of core i, denoted as Pi, is formulated as:

Pi = Pdym
i +Pleak

i , (4)

Pdym
i = γki · v2

ki
· fki , (5)

Pleak
i = (αki +βki ·Ti(t)) · (vki +Δi

leak). (6)

where αki , βki and γki are constants that depend on the mode ki
of core i. Δi

leak is a given constant that models the leakage power
variations due to the impact of die-to-die (D2D) and within-die
(WID) process variation [26].

We use the RC network to model the thermal behavior of
a multi-core platform, same to that in [27], [28]. Let Ci and
Ri j denote the thermal capacitance (in Watt/◦C) of core i and
thermal resistance (in J/◦C) between core i and j, respectively.
The thermal behavior of the ith core can be formulated as

Ci · dTi(t)
dt

+
Ti(t)
Rii

+∑
j �=i

Ti(t)−Tj(t)
Ri j

= Pi(t) (7)

Incorporating equation (4) in the above equation, we have

Ci · dTi(t)
dt

+Gii ·Ti(t)+∑
j �=i

Gi j ·Tj(t) = Ψi (8)

where

Gi j =

{
∑m

j=1
1

Ri j
−βki · vki −βkiΔ

i
leak if i = j

−1
Ri j

otherwise
(9)

and
Ψi = αki · vki +αkiΔ

i
leak + γki · v2

ki
· fki (10)

Let Tamb denote the ambient temperature. We thus have

C
dT(t)

dt
+G

(
T(t)−Tamb

)
= Ψ (11)

where C and G are m×m matrices.

C =

⎡
⎢⎣

C1 · · · 0
...

. . .
...

0 · · · Cm

⎤
⎥⎦ G =

⎡
⎢⎣

G11 · · · G1m
...

. . .
...

Gm1 · · · Gmm

⎤
⎥⎦ (12)

and T(t) and Ψ are m×1 vectors

T(t) =

⎡
⎢⎣

T1(t)
...

Tm(t)

⎤
⎥⎦ Ψ =

⎡
⎢⎣

Ψ1
...

Ψm

⎤
⎥⎦ (13)

C. Problem formulation

With all models discussed above, our problem is to minimize
peak temperature while guaranteeing timing constraints. It is
worth pointing out that the nominal design S(t) is based on
manufacture-variation-free scenario, hence, when we apply the
nominal design to each individual chip which may be affected
by manufacture variations, we may not be able to guarantee
timing constraints if no appropriate actions are taken. We
formally define the research problem below.

Problem 1: Given

• a physical topology of a multi-core platform Ap
m×n, r

different processor modes and leakage variation Δleak
for each core;

• a logical topology Al
x×y;

• a nominal design S(t),

determine the physical to logical topology mapping such that the
chip peak temperature of the chip is minimized when running
S(t) on Ap

m×n and all timing constraints are also met.

III. TEMPERATURE DYNAMICS FORMULATION

Our goal is to minimize the peak temperature when running
the nominal design on the practical processor. To this end,
it is necessary that we can quickly identify the exact peak
temperature when running a periodic schedule. In what follows,
we introduce a method to quickly calculate the peak temperature
for a periodic voltage schedule on multi-core platforms.

Consider an interval [tq−1, tq] and assume the supply voltages
or working frequencies of all cores remain the same within the
interval. Let κq represent the specific running modes of all cores
in interval [tq−1, tq]. Then based on equation (11), we have

dT(t)
dt

∣∣∣∣
t∈[tq−1,tq]

= Aκq

(
T(t)−Tamb

)
+Bκq (14)



where Aκq =−C−1Gκq and Bκq = C−1Ψκq . Since Aκq and Bκq
are constant, equation (14) is simply a first-order constant coef-
ficient ordinary differential equations (ODEs) with the following
solution:

T(tq) = eAκq Δtq
(
T(tq−1)−Tamb

)
+A−1

κq (e
Aκq Δtq − I)Bκq +Tamb

(15)
where Δtq = tq−tq−1. Therefore, given a state interval, its ending
temperature can be determined by the starting temperature
T(tq−1) and the corresponding interval mode κq.

With equation (15), given a periodic schedule S(t) and the
initial temperature T(0), we can calculate the temperature at
any time instant by tracing temperature from one interval to
another. However, it can be computational costly to trace the
temperature until it reaches the steady state. It is also desirable
to calculate the stable temperature by setting dT(t)

dt = 0. This
works if all cores run at a constant speed schedule, but does
not work anymore for a periodic schedule with different running
modes. In what follows, we present a fast method to identify
the peak temperature for a periodic schedule S(t).

Let us first consider the temperature variation at the end of
each period, i.e. t = nL. Let the scheduling points of S(t) in
the first period be t0, t1, ..., ts−1, respectively. We assume that
the running modes for all cores remain unchanged between two
neighboring scheduling points. Similarly, let the corresponding
scheduling points in the second period be t ′0, t

′
1, ..., t

′
s−1, respec-

tively. Note that t0 = 0, t ′0 = ts = L and t ′s = 2L. According to
equation (15), at time t1 and t ′1, we have

T(t1) = eAκ1 Δt1
(
T(t0)−Tamb

)
+A−1

κ1
(eAκ1 Δt1 − I)Bκ1 +Tamb

(16)
T(t ′1) = eAκ1 Δt ′1

(
T(t ′0)−Tamb

)
+A−1

κ1
(eAκ1 Δt ′1 − I)Bκ1 +Tamb

(17)
Subtract equation (16) from (17), and simplify the result by
applying Δt ′1 = Δt1, t0 = 0 and t ′0 = L, we get

T(t ′1)−T(t1) = eAκ1 Δt1(T(L)−T(0))

Similarly, we can derive that

T(t ′2)−T(t2) = eAκ2 Δt2eAκ1 Δt1(T(L)−T(0))
...

T(t ′s)−T(ts) = eAκs Δts ...eAκ1 Δt1(T(L)−T(0)) (18)

Since ts = L, t ′s = 2L, and let K = eAκs Δts ...eAκ1 Δt1 , equation (18)
can be rewritten as

T(2L)−T(L) = K(T(L)−T(0)) (19)

Similarly, we have

T(xL)−T((x−1)L) = Kx−1(T(L)−T(0)) (20)

where x = 1,2, ...,n. Sum up these n equations, we get

T(nL) = T(0)+(
n

∑
x=1

Kx−1)(T(L)−T(0)) (21)

In the above, {Kx−1|x = 1,2, ...,n} forms a matrix geometric
series. If (I−K) is invertible, then we have

T(nL) = T(0)+(I−K)−1(I−Kn)(T(L)−T(0)) (22)

Similarly, for any time instant t = nL+ tq, we can get that

T(nL+ tq) = T(tq)+Kq(I−K)−1(I−Kn)(T(L)−T(0)) (23)

where Kq = eAκq Δtq · eAκq−1 Δtq−1 ...eAκ1 Δt1 . Equation (23) can be
used to quickly calculate the temperature at t = nL+ tq, where
n ≥ 1 and tq ∈ [0,L]. Moreover, let n → ∞ in equation (23), we
can quickly identify the steady-state temperature corresponding
to tq as

Tss(tq) = T(tq)+Kq(I−K)−1(T(L)−T(0)) (24)

From equation (24), given a periodic schedule S(t), we can
formulate the system steady-state temperature with information
of the first period directly, which is much more efficient than
to keep track of temperature variations based on equation (15).

IV. PHYSICAL TO LOGICAL MAPPING HEURISTICS

Before we introduce our mapping heuristics, we want to first
guarantee that the timing constraints are met after re-mapping.
We make one assumption that the highest frequency in S(t) can
always be no greater than the maximum frequency supported
by the core on which it is mapped. Under this assumption,
we adjust the core’s voltage-frequency mode such that the
timing constraint satisfaction can be guaranteed. Specifically,
we have two solutions for each interval if the current running
mode cannot satisfy its nominal design parameter, 1) we change
it to the next neighbor running mode or 2) we use the two
neighboring speeds alternatively until the timing constraints are
met.

Now we present three mapping approaches to solve Prob-
lem 1 as defined above. It is not difficult to prove that
Problem 1 is in fact NP-hard. As mentioned before, while
common approaches such as GA or SAA are commonly used
to guide mapping decisions during the design phases, they are
not applicable in topology virtualization approach due to their
high timing complexities. Since mapping decisions must be
made when installing or initiating the application, the key to
the success of this approach is the computation efficiency of the
mapping algorithms and their effectiveness. In what follows, we
develop three heuristics and study their effectiveness.

A. A simple utilization/leakage matching heuristic

Our goal is to map the physical topology to the logical topol-
ogy such that an existing nominal design can be improved in
terms of peak temperature in the presence of core heterogeneity.
As we discussed in Section II-B, leakage variation is one of the
key factors that affects temperature. An intuitive approach is
therefore to match the logical core with the largest utilization to
the least leaky physical core. The rationale behind this approach
is that, when the larger utilization schedule is assigned to less
leaky core, the less heat it generates. For example, consider two
cores with identical voltage schedule (i.e., same utilization). The
heat contributed by dynamic power is the same for both cores,
but the one that is more leaky will generate more heat due to
leakage power and therefore higher temperature. The algorithm
is presented in Algorithm 1.

Algorithm 1 sorts the logical cores based on the assigned
utilizations and the physical cores based on their leakage
variations. Then, a physical core is mapped one by one to a



Algorithm 1 A simple heuristic to match high utilization logical
core to low leaky physical core.

1: M = /0; // M is the mapping solution space
2: LC = The sorted list of A l

i, j ∈ Al
x×y, i = 0, ...,x − 1; j =

0, ...,y−1 by their utilizations based on nominal design in
decreasing order;

3: LP = The sorted list of A p
i, j ∈ Ap

m×n by Δi j
leak, i = 0, ...,m−

1; j = 0, ...,n−1 in increasing order;
4: for i = 0 to sizeo f (LC)− 1 // for each logical core in the

sorted list do
5: if The utilization assigned to LC(i)> 0 then
6: M = M +{LC(i)→ LP(i)};
7: end if
8: end for

logical core according to these two lists. The complexity of
the algorithm mainly comes from sorting of the two lists. We
assume the physical mesh is larger than the logical mesh. There-
fore, the complexity of Algorithm 1 is O((m×n)log(m×n)).

Algorithm 1 is fast and intuitive, but it has several issues.
First, Algorithm 1 does not take the heat transfers from neigh-
boring cores into account. In general, high utilization schedule
can result in lower peak temperature when executed on a less
leaky core. However, if several such cores are very close to
each other, allocating high utilization schedules to these cores
can result in high chip temperature. Second, utilization defined
in this paper is more related to the average power consumption.
In fact, temperature varies more closely with power density
rather than the average power consumption. In what follows,
we develop two approaches to address these problems.

B. Hot-Cold Swapping

Algorithm 2 Hot-Cold swapping.
1: Initialize M ; // by initial mapping algorithm or Algorithm 1
2: while User defined stop criteria not satisfied do
3: Calculate T = {T1,T2, ...,Tm×n}, where Ti is the steady-

state temperature of core i in M ;
4: A l

max = The logical core with maximum temperature
Tmax = max(T);

5: A l
min = The logical core with minimum temperature

Tmin = min(T);
6: //Swap the mapping between A l

max and A l
min

7: LC(A l
max)→ LP(A l

min);
8: LC(A l

min)→ LP(A l
max);

9: Denote the new mapping as M ′;
10: Calculate T’; // steady-state temperature of new mapping

M ′
11: end while

Given the nominal design, we can calculate the steady-
state temperature for each core by the method we proposed
in Section III, based on which we can easily calculate the
peak temperature when temperature reaches the stable status.
By calculating the peak temperature, this method avoids the
pitfall in the previous method to identify the peak temperature
based on the schedule utilization. Then Hot-Cold Swapping
algorithm swaps the physical to logical topology between the
hottest and coldest cores as shown in Algorithm 2. Similar to

the principle for the “heat-and-run” heuristic [29], this method
always exchanges the voltage schedules for the hottest/coldest
cores, with the expectation that the heat across the chip can be
spread and balanced in the entire chip until certain criteria (such
as a pre-set peak temperature limit or loop counts) are reached.
The complexity of Algorithm 2 is mainly from calculating
the stable status temperature according to equation (24). Note
that the dimension of matrix Aκq is (x × y)× (x × y). Since
the complexity for the straightforward implementation of the
matrix multiplication and inversion are both O(n3) for n× n
matrices, the complexity for each iteration in Algorithm 2 is
O(s× (x× y)3) where s is the number of scheduling points for
S(t).

While the Hot-Cold Swapping algorithm is simple, it does
not necessarily reduce the peak temperature when swapping the
schedules on a pair of hot/cold cores each time. The problem
for this is that this approach does not take the heat transfers
into consideration. Consider a core with light workload but
surrounded with high workload cores and thus becomes the
hottest core. When changing the schedule of it with other
cold cores of lower temperature but higher workload, the peak
temperature can become even higher.

C. Enhanced Hot-Cold Swapping

To solve the problem for Hot-Cold Swapping, we develop
an Enhanced Hot-Cold Swapping as shown in Algorithm 3.
The major difference between the two algorithms is that, in
our enhanced hot-cold swapping algorithm, we tentatively swap
the hottest and coldest cores. The swapping is accepted only
when the new peak temperature is lower than the original
one. If the peak temperature of the new mapping is higher
than the initial mapping, we search for the core with second
minimum temperature and swap it with the hottest core, until
we can find such a swapping that reduces the peak temperature
or we have exhausted all the possibilities. In the worst case,
there are (m× n)− 1 pairs of processor to be tested. There-
fore, the complexity to run one iteration of Algorithm 3 is
O(s× (m×n)× (x× y)3), where s is the number of scheduling
points for S(t), (m × n) is the matrix size for the physical
topology, and (x×y) is the matrix size for the logical topology.
By ensuring the peak temperature non-increasing, Enhanced
Hot-Cold Swapping heuristic can be more effective in guiding
the search process to identify the good physical to logical
topology mapping. In the next section, we use experiments to
evaluate the performance of these algorithms.

V. EXPERIMENTAL RESULTS

In this section, we perform three sets of experiments. First,
we compare the peak temperature differences between with
and without heterogeneity-aware approaches. Second, we study
the performances of three approaches presented in Section IV
and compare our algorithms with nominal design and the
optimal solution exhaustive search which enumerates all the
possibilities. The last experiment is to compare the computation
costs between different algorithms.

A. Experimental setup

In our simulation study, the multi-core platform consists a
2-D 3×3 mesh. We adopt the processor model from [30], each



Algorithm 3 Enhanced Hot-Cold swapping.
1: Initialize M ; // by initial mapping algorithm or Algorithm 1
2: Λ = 0;
3: Calculate T = {T1,T2, ...,TP}, where Ti is the steady-state

temperature of core i in M ;
4: T ∗ = T ;
5: while Λ < ε // user defined threshold do
6: A l

max = The logical core with maximum temperature
T ∗

max = max{T ∗};
7: A l

min = The logical core with minimum temperature
T ∗

min = min{T ∗};
8: //Swap the mapping between A l

max and A l
min

9: LC(A l
max)→ LP(A l

min);
10: LC(A l

min)→ LP(A l
max);

11: Denote the new mapping as M ′;
12: Calculate T ′; // steady-state temperature of new mapping

M ′
13: if (max{T ′} ≥ max{T ∗}) then
14: T ∗ = T ∗ −{T ∗

min};
15: else
16: if (T ∗ == {T ∗

max}) then
17: break;
18: else
19: M = M ′;
20: Λ = max{T}−max{T ′}

max{T} ;
21: end if
22: end if
23: end while

core supports 15 active modes with supply voltages ranging
from 0.6V to 1.3V with step interval of 0.05V while the
maximum frequency is generated as normal distribution and the
frequencies of each running mode is calculated accordingly [11].
For each core, we generate a static, periodic voltage schedule.
Specifically, we divide the first period into 50 state intervals
equally, for each state interval we randomly select one voltage
mode from 0.6V to 1.3V . After generating the voltage schedule
for each core within the first period, we repeat the same schedule
pattern for the rest of periods. As we discussed in Section II-B,
within each state interval the running mode of each core is
constant.

We calculate the curve fitting parameters similar to the
power model discussed in [31], [32] shown in Table I (a)
and parameters from HotSpot-5.02 [33] shown in Table I (b)
which we use for temperature calculation. Leakage variations
are randomly generated as normal distribution: Δleak ∼ N(μ,σ),
where μ = 0 and σ = 0.1× v̄ (v̄ is the average voltage speed of
Vdd(v) in Table I (a)) based on [9], [8]. The ambient temperature
is Tamb = 30◦C.

All experiments are running on a Window XP/SP3 platform
powered by Intel(R) Core(TM)2 Duo CPU @ 2.93GHz with
3.21 GB of RAM.

B. Temperature vs. leakage variation

In this experiment, we first study the need to take leakage
power consumption variations into consideration for tempera-
ture calculations. Utilization of each core Ui is calculated by
equation (3). For different utilizations, we compare temperature

(a) Power/thermal parameters

Vdd(v) � � � 
0.00 0.0 0.0 0.0 
0.60 0.2734 0.1313 16 
0.65 0.5764 0.1383 16 
0.70 0.9606 0.1457 16 
0.75 1.4508 0.1534 16 
0.80 2.0804 0.1615 16 
0.85 2.8944 0.1700 16 
0.90 3.9538 0.1789 16 
0.95 5.3415 0.1882 16 
1.00 7.1701 0.1979 16 
1.05 9.5926 0.2081 16 
1.10 12.8179 0.2188 16 
1.15 17.1306 0.2300 16 
1.20 22.9195 0.2416 16 
1.25 30.7152 0.2538 16 
1.30 41.2430 0.2665 16 

(b) HotSpot parameters

Parameter Value 
Total Cores 9 (3 3) 

Area per Core 4 mm2 

Die Thickness 0.15 
Heat Spreader Side 20 mm 

Heat Sink Side 30 mm 
Convection Resistance 0.1 K/W 

Convection Capacitance 140 J/K 
Ambient Temperature 30 C 

TABLE I. EXPERIMENT PARAMETERS
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Fig. 3. Temperature comparisons between different utilizations

differences for each core with and without leakage variations.
The leakage variations are generated according to section V-A
and each test case is running for 20 rounds.

In Figure 3, we compare temperature differences on 5 differ-
ent utilization settings Ui ∈ [0.2,0.3,0.4,0.5,0.6], i = 1,2, ...,P .
X-axis represents core IDs while Y-axis represents tempera-
ture differences between the cases with and without leakage
variations. As indicated from the figure, with the increase of
utilization, the temperature variations for each core is also
increasing. The larger the utilization is, the larger the discrep-
ancy in temperature calculation. For example, the temperature
difference is no more than 3◦C when utilization is 0.2 while the
temperature difference can be as large as more than 10◦C when
utilization is 0.6. Therefore, for a more accurate temperature
calculation and peak temperature optimization, we need to take
leakage variations into consideration.

C. Peak temperature minimization

Next, we study different approaches to op-
timize peak temperature. We randomly generate
voltage schedule for each core with utilization
Ui ∈ {[0.2,0.3], [0.3,0.4], [0.4,0.5], [0.5,0.6]}, i = 1,2, ...,P
and label as nominal design. The reason we limit core’s
utilization to Ui = 0.6 is to satisfy the peak temperature
constraint Tmax = 95◦C in steady state (Tmax = 95◦C is the
temperature threshold we choose). We assume that the logical
architecture and physical architecture are of equal size, i.e.,
x = m and y = n. When the physical topology size is larger
than the logical topology size, it is not difficult to see that
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Fig. 4. Peak temperature reductions normalized to initial mapping

our heuristics can perform better simply because of the extra
resources or optimization opportunities available. For each
utilization setting, we generate 100 test cases and calculate the
average temperature reduction.

We denote our three optimization methods as SULM (the
simple utilization/leakage matching heuristic), HCS-naive (the
Hot-Cold Swapping heuristic) and EHCS (the Enhanced Hot-
Cold Swapping heuristic). If no temperature reduction can be
made, EHCS will stop. EHCS-1 refers to our Enhanced Hot-
Cold swapping algorithm with one iteration.

In Figure 4, we compare peak temperature reductions be-
tween SULM, HCS-naive, and EHCS-1 to EHCS-5 with 4
different utilization settings ranging from [0.2,0.3] to [0.5,0.6].
From the figure, the first conclusion we can get is that with the
increase of utilization, all heuristics can get more temperature
reductions. It is because the higher utilization we have, the more
potential we may benefit from heterogeneity-aware algorithms
which try to avoid putting higher utilizations on more leaky
cores. Second, SULM performs the worst because it does not
take heat transfers between neighbors into account. HCS-naive
is better than SULM because it does consider heat transfers,
but compared to EHCS, HCS-naive would always swap the
physical to logical topology between the hottest and coldest
cores regardless and it is possible that sometimes the peak
temperature after swapping is higher than the nominal design,
therefore hampering its performance. From EHCS-1 to EHCS-
5, it indicates that the more iterations we run the better peak
temperature reduction we can get.

One thing we need to note is that with utilization setting
of [0.5,0.6], EHCS can perform much better than previous
settings. Higher utilization indicates that each core has larger
possibility to run at high voltage modes that are more sensitive
to core heterogeneity. Therefore, with heat transfers and leakage
variations into account, EHCS can benefit more than SULM and
HCS-naive from utilization increasing.

Another set of experiments is shown in Figure 5. We want
to see how good EHCS algorithm is compared to the optimal
solution exhaustive search which enumerates all the mapping
possibilities. This time we generate each core’s utilization Ui ∈
[0.2,0.6], i = 1,2, ...,P for a more general purpose. We perform
100 test cases for each algorithm and calculate the average.

From the figure, SULM can get 5.86◦C reduction, HCS-naive

 

-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0

Te
m

pe
ra

tu
re

 re
du

ct
io

n 
(o C

)

Utilization = [0.2, 0.6]

Fig. 5. Temperature reductions between EHCS and Exhaustive search

 

0.01

0.1

1

10

100

1000

10000

100000

Co
m

pu
ta

tio
n 

tim
e 

(S
)

Utilization = [0.2, 0.6]

Fig. 6. Computation time differences between different approaches

can get 8.79◦C reduction. From EHCS-1 to EHCS-10 can get
10.16◦C all the way to 14.09◦C reduction, while exhaustive
search can get 18.99◦C reduction in average. Note that after
EHCS-5 the reduction potential is not significant. Therefore,
we can choose different iterations based on the timing and
improvement we want to achieve. In general, compared with
exhaustive search, EHCS-5 algorithm only performs less than
5◦C of difference.

D. Operational cost

As mentioned earlier, the computation efficiency plays a
vital role in topology virtualization. We next study the com-
putational cost for different approaches with utilization setting
Ui ∈ [0.2,0.6], i = 1,2, ...,P . For simplicity we just compare
from EHCS-1 to EHCS-5 to give a trend of how the timing
complexity looks like. Figure 6 shows the time that each
algorithm runs only one test case while EHCS-1 to EHCS-
5 with different iterations from one to five. From the figure,
it indicates that the timing complexity is linearized and it is
what we expected since we need such a mapping heuristic that
can perform fast and produce relatively good results. EHCS-5
which is the most time consuming among the five, takes about
0.64 seconds to finish. However, exhaustive search is very time
consuming, the computation complexity is O(P !) which takes
4 to 5 hours to finish in our experiment.

VI. CONCLUSIONS

Temperature minimization problem is becoming more and
more critical in computer system design. In the meantime, the
increasing manufacturing variations for IC chips also raise the



concerns in the design of computing systems. We believe that
the heterogeneity caused by manufacturing variations, if utilized
appropriately, can in fact improve the design objectives of real-
time applications. In this paper, we develop three heuristics to
judiciously mirror the underlying physical architecture of an
individual device to the logical architecture with the objective
of peak temperature minimization. The proposed heuristics can
achieve 14.09◦C temperature reduction in average and less than
5◦C of difference compared with exhaustive search. Overall, our
proposed algorithm can be finished within 1 second (more than
104 times faster compared to exhaustive search) which is the
key to the success of optimization problems through topology
virutalization.
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