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Abstract—As transistor’s feature size continues to scale down
into the deep sub-micron domain, IC chip performance variation
caused by manufacturing process becomes un-negligible and
can cause significant discrepancies between an application’s
nominal design and its actual realization on individual many-
core platforms. In this paper, we study the problem on how to
reduce the total schedule length of a task graph when realizing
its nominal design on individual Network-on-Chip(NoC) based
many-core platform with faulty cores. Different from traditional
approaches to re-define the mapping/scheduling decisions in the
nominal design, our methods judiciously mirror the physical
architecture of each individual platform to the logical platform,
based on which the nominal design is conducted. To facilitate
the phyical/logic architecture virtualization, we develop a perfor-
mance metric based on the opportunity cost, a concept borrowed
from the economics field. Three virtualization heuristics are
presented in this paper. Our experimental results show that the
proposed approach can achieve up to 30% with an average
15% performance improvement by taking advantage of the
heterogeneity of each individual platform.

Keywords-process variations; multi-core/many-core; virtualiza-
tion; nominal design; performance yield

I. INTRODUCTION

With the continuous scaling down of the transistor feature

size, billions of transistors are integrated on a single chip [1].

Multi-core/many-core architecture is becoming mainstream.

Most of desktop computers and server computers nowadays

use high performance processors with multiple processing

cores. Intel has announced more advanced many-core plat-

forms consisting of 48 and 80 general purpose processing

cores [2], [3], [4].

In the meantime, however, as transistor feature size con-

tinues to shrink to the degree below the wavelength of light

used to print them, it becomes difficult to precisely control the

manufacturing process. This can lead to significant variations

in key transistor parameters, such as transistor channel length,

channel width, oxide thickness, and threshold voltage, which

can further result in the maximal working frequency and power

consumption of processing core varying from core to core

and chip to chip [5], [6], even if all of them use the same,
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identical design. The 2008 International Technology Roadmap

for Semiconductor (ITRS) [1] predicts that circuit variability

will increase from 48% to 66% in the next ten years.

One major problem caused by manufacturing variations is

the fabrication yield. Reduced feature size and increased chip

area have increased the number and density of transistors on

a single die, leading to a significantly decreased fabrication

yield. According to [7], without considering defect tolerance

during the architecture design phase, even under the best

case, the yield of cell processors can be as low as only

10% to 20%. Therefore, micro-architecture level and core-

level redundancies are employed to improve the fabrication

yield. According to [8], incorporating core-level redundancy,

at or below 100 nm technology, will achieve better yield

performance than micro-architecture level redundancy.

Another serious problem caused by manufacturing vari-

ations is performance variations, such as maximum clock

frequency, power dissipation, etc. It has been shown that the

frequency variation can be as much as 30% and up to 20x

variations in chip leakage power for a processor designed in

180nm technology [9]. Based on a test structure fabricated in

IBM’s 65 nm Silicon-On-Insulator (SOI) technology, Aarestad

et al. [10] showed that worst case delay variations caused

by chip-to-chip process variations can be as large as 21%.

As design parameters of processing cores deviate from their

nominal values, the system design objectives can be severely

compromised, or even worse, a computing system can mal-

function or even fail.

Significant achievements have been made in recent re-

search [6], [11] by employing new materials. However, lay-

out techniques and other device technologies on mitigating

performance variations, which are induced by manufacturing

variations will become increasingly challenging as transistor

size continues to scale towards dimensions close to or below

10 nm [12]. Besides extensive research on device and layout

level techniques (e.g [6], [11]) to address manufacturing-

variation problems, there are increasing interests to address

this problem from architecture and system levels. For example,

performance binning techniques are proposed (e.g. [13]) to

cluster chips with similar performance. As a result, even in the

presence of large manufacturing variations, processors of the
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Fig. 1. A framework to take advantage of performance heterogeneity to optimize system performance. An advanced built-in-self-test module is associated
with each chip to collect the performance characteristics of the chip. The collected information is then used to map the physical hardware architecture to the
logical architecture based on which the nominal design is conducted, with the goal to maximize the performance of the nominal design on this particular chip.

same grade have less performance variations. One drawback of

this approach, though, is that it cannot deal with performance

variations among different cores within the same chip.

In the presence of performance variations, it becomes too

pessimistic to design a system based on worst-case scenarios.

Therefore, instead of adopting the traditional design method-

ology which is based on deterministic parameters, several

researchers incorporate statistical analysis into system-level

design. Wang et al. [14] presented a task allocation and

scheduling algorithm to map a task graph to a multi-core

platform with the goal to maximize the performance yield

rate, i.e. the probability that a processor can meet the desired

performance of a given application. They further extended

their work to considered not only performance differences of

multiple cores, but also physical link differences in NoC as

well. Momtazpour et al. [15] considered a similar task graph

mapping problem on a multi-core NoC architecture, with the

goal to maximize the percentage of manufactured chips that

can meet power constraints for a given application. These

statistical approaches try to optimize results in a probabilistic

manner. However, from the perspective of an individual pro-

cessor, the designs can be too optimistic or too pessimistic due

to different performance variations.

We believe that the core heterogeneity due to performance

variations, if handled properly, can in fact improve the perfor-

mance of a nominal design. As a result, in this paper, we are

interested in developing appropriate virtualization techniques

that can judiciously mirror physical architecture to logical ar-

chitecture and at the same time improve the throughput of the

nominal design on each individual hardware platform. Figure 1

illustrates the virtualization framework of our approach. We

assume that each chip is equipped with an advanced built-
in-self-test(BIST) module, that can detect faulty cores and

capture performance variances when a device starts. Note that

simple modules such as those introduced in [16], [6] can be

easily incorporated into a multi-core platform for detecting

purpose. The performance characteristics captured by the BIST

module will be used to mirror the logical architecture to the

underlying physical architecture with the goal of maximizing

the application performance.

A few researches [17], [18], [19], [20], [21] have been

conducted which are closely related to our work. Zhang et

al. [19], [20] proposed several heuristics to replace faulty

cores with redundant cores to improve the fabrication yield.

They further extended their work to deal with performance

variations by constructing sub-meshes using cores with similar

performance [21]. These approaches do not take applica-

tion characteristics into consideration. A more recent work

proposed by Yue at el. [17], [18] improved upon Zhang’s

work [19], [20] by taking application characteristics into

consideration, and intended to maintain the similar real-time

performance after replacing faulty cores with redundant cores.

These approaches only deal with faulty cores and do not take

performance variations into consideration.

In this paper, our goal is to minimize the execution latency

of an application by properly mirroring a physical multi-

core architecture, which may have faulty cores and significant

core-level performance variations, to the logical architecture.

Three virtualization heuristics are presented in this paper.

Specifically, we introduce a novel performance metric devel-

oped based on the opportunity cost [22], i.e. a concept origi-
nated from the economics domain, to guide our virtualization

process. We have conducted extensive experimental studies

to investigate the benefits of the proposed framework and

heuristics. Our experimental results show that the heuristics

can achieve up to 30% (with 15% in average) performance

improvement (i.e. schedule length) over the existing methods.

The rest of the paper is organized as follows. In Section II,
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we first use an example to motivate the research in this paper

and then formulate the problem. We discuss the virtualization

heuristics we developed in Section III. Experimental results

are discussed in Section IV. We draw the conclusions in

Section V.

II. PRELIMINARY

In this section, we first use a simple example to motivate

our research. We then introduce the system models used in

this paper and define the research problem formally.

A. Motivating example

Consider an application where task graph is as shown in

Figure 2(a). The application is designed for a multi-core ar-

chitecture with standard 3×3 mesh. Assume that the nominal

design, i.e. the design based on the nominal performance of

the chip, has been given and shown on the logical mesh in

Figure 2(a): tasks with same colors and shades are assigned

to the same core. For example, tasks 0,3,7, and 12 are mapped

to core (0,0); tasks 2,6, and 10 to core (0,1); tasks 4,8, and 9

to core (1,0); and tasks 1,5, and 11 core (1,1).

Now consider when realizing this design on a practical

platform. To improve the yield rate, manufacturers usually add

redundant cores on the same chip. In our case, we assume the

physical mesh size of the chip is 3×4 with 3 redundant cores

shown in Figure 2(b). Assume that core (1,1) happens to be

a faulty core. One approach is to replace the faulty core with

a redundant core using the Row Rippling Column Stealing

(RRCS) algorithm presented in [19] or similar approaches

detailed in [17], [18]. However, these approaches do not

take core-to-core performance variations into consideration.

As shown in Figure 2(c), instead of replacing the faulty

core only, we can re-map the physical architecture to the

logical architecture to optimize the performance of the nominal

design.

Since programmers make the nominal design solely based

on the logical topology without being aware of what the

physical topology really looks like, opportunities exist to

mirror the logical topology based on the actual performance

and other characteristics of the physical topology to optimize

the system performance. For instance, in Figure 2(b), the

logical mesh is 3× 3. When running application programs

according to the nominal design, the operating system (OS)

only cares about a logical mesh of 3×3, without knowing how
this logical mesh is mapped to the underlying physical mesh.

As a result, we can judiciously choose the physical topology

to the logical topology mapping (such as Figure 2(c)) such that

nominal design performance is maximized for each individual

hardware platform.

Since we assume that we know the specifications of real-

time applications, and with BIST module, we are able to

know the exact performance for each core. Theoretically,

we can then re-map and re-schedule task nodes accordingly.

However, this essentially implies that we have to re-design

the entire application for each individual platform, which can

be expensive if not infeasible at all. Note that, by virtualizing
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Fig. 2. A motivation example.

each individual physical hardware architecture properly to the

logical architecture, we have the potential to take advantage

of the uniqueness of each chip to optimize the system perfor-

mance without the need to change its software.

B. System models

In this section, we formally define our system models,

including both application model and architecture model.

The application in the paper is modeled as a directed acyclic
task graph G= {V,E}. V = {v1,v2, ...,vk} and each task node
vi represents a task in the application. We use |vi| to represent
the execution time of task node vi under the nominal frequency.
E = {e(i, j) = (vi,v j)| if task node vi communicates with

task node v j }. Each arc, i.e. e(i, j) ∈ E also indicates the

dependency between two task nodes vi and v j with direction

from task node vi to task node v j. A weight w(e(i, j)) is
associated with each arch e(i, j) to represent the data volume
to be transferred from task vi to v j.

For the logical architecture (denoted as Al
r×c), we assume

it consists of r× c homogeneous cores that form a standard

r× c mesh architecture, i.e.

Al
r×c = {Cl

i, j, i= 0, ...,r−1; j = 0, ...,c−1}. (1)

where Cl
i, j represents the core located at position (i, j) in

the logical mesh architecture. We assume that each core has

the same nominal frequency of 1. We also assume that the

communication at any link has a nominal speed of 1. In our

system model we focus on the process variations on each

individual core, and we assume there is no process variations

on the links.

The nominal design of application G based on the logical

architecture Al
r×c (denoted as N (G,Al)) is defined by the
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mapping between the task nodes in G and processor cores

in Al
r×c. That is

N (G,Al) = {(vi,Cl
x,y)|vi is assigned to core Cl

x,y}, (2)
i = 1, ...,k; (3)

0 ≤ x ≤ r−1;

0 ≤ y ≤ c−1.

We assume the traditional NoC mesh network architecture and

the deterministic X-Y routing algorithm [23] is used.

We define the physical architecture (denoted as Ap
m×n) as a

m×n mesh architecture, i.e.

Ap
m×n = {Cp

i, j, i= 0, ...,m−1; j = 0, ...,n−1}. (4)

where Cp
i, j represents the core located at position (i, j) in

the physical mesh architecture. We use fi j to represent the

maximum clock frequency of core Cp
i, j, which is normalized

to the nominal frequency of the logical core. fi j = 0 indicates

that core Cp
i, j is a faulty core.

C. Problem formulation

With the system model defined above, we are now ready to

define our research problem.

Problem 1: Given
• an application G;
• a logical architecture Al

r×c;

• the nominal design of G on Al
r×c, i.e. N (G,Al);

• the physical architecture Ap
m×n and its performance vari-

ations, i.e. fi j, i= 0, ...m−1; j = 0, ...,n−1,

Find the mapping of M = {Cl
i, j → Cp

x,y|i = 0, ...,r− 1; j =
0, ...,c− 1;0 ≤ x ≤ m− 1;0 ≤ y ≤ n− 1} such that the maxi-

mum latency to execute G based on N (G,Al) is minimized.

III. OUR APPROACH

In this section, we present three approaches to solve Prob-

lem 1 as defined above. The first approach is a simple heuristic

that tries to match the logic node with the largest workload

to the highest performance core in the physical architecture.

The second and the third approaches are developed based

on the opportunity cost, a concept originated from the eco-

nomics discipline. The second approach considers only the

core performance. The third approach considers not only the

core performance but also the communication cost.

A. A simple workload/performance matching heuristic

Our goal is to map the logical topology to the physical

topology such that an existing nominal design can achieve

the best performance in the presence of faulty cores and per-

formance variations on the physical topology. Since different

cores may have different performances or processing speeds,

an intuitive approach is therefore to match the logical core

with the largest workload assignment to the physical core

with the highest processing speed. The rationale behind this

approach is that, the larger the workload is assigned to highest

performance core, the more workload can be benefited from

the highest processing speed. The algorithm, which we called

simple workload/performance matching (SWPM) heuristic, is

presented in Algorithm 1.

Algorithm 1 A simple heuristic to match high workload

logical core to high performance physical core.

1: M = /0;
2: LC = The sorted list of Cl

i, j ∈ Al
r×c, i = 0, ...,r− 1; j =

0, ...,c− 1 by their workload based on nominal design

N (G,Al) in decreasing order;
3: LP = The sorted list of Cp

i, j ∈ Ap
m×n by fi j, i = 0, ...,m−

1; j = 0, ...,n−1 in decreasing order;

4: for i= 0 to sizeo f (LC)−1 // for each logical core in the

sorted list do
5: if The total workload assigned to LC(i)> 0 then
6: M =M +{LC(i)→ LP(i)};
7: end if
8: end for

Algorithm 1 sorts the logic cores based on the assigned

workloads and the physical cores based on their performances.

Then, a logic core is mapped one by one to a physical core

accordingly from the two lists. The complexity mainly comes

from sorting of the two lists. we assume the physical mesh

is larger than the logical mesh. Therefore, the complexity of

Algorithm 1 is O((m×n)log(m×n)).
While Algorithm 1 is fast and intuitive, it has several issues.

First, even though those high performance cores are used to

speedup executions of larger workloads, these workloads do

not necessarily locate on the critical path, i.e. the longest

execution path of a task graph. In that case, the latency im-

provement when executing the task graph is limited. Second,

Algorithm 1 considers only performance differences of differ-

ent cores and do not take their locations into consideration.

When two neighboring logical cores are separated far away

in the physical mesh, the increased communication overhead

can offset the performance improvement or even degrade the

overall performance, or the latency when executing tasks. In

what follows, we develop two new approaches to address these

problems.

B. Opportunity cost based workload/performance mapping

It is desirable to optimize the latency of the critical path to

improve the performance when realizing the logical topology

to the physical topology. In the meantime, however, optimizing

the critical path too aggressively may cause other execution

paths to become critical and thus degrade the optimization

performance. The problem is then how to develop effective

algorithms for logical/physical topology mapping that can

optimize the maximum latency when executing a task graph.

In what follows, we discuss a heuristic developed for this goal.

For the sake of simplicity, we first assume the communication

cost is negligible.

When designing a highly effective logical to physical topol-

ogy mapping, one critical problem is how to evaluate the

impact or performance of a decision when mapping a logical
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Fig. 3. An illustrative example for opportunity cost and performance metric. The colors and shades of task nodes in (a) imply the corresponding assignment
to the logical topology: v0 →Cl

0,0, v1 →Cl
1,0, v2 →Cl

0,1, v3 →Cl
1,1.

node to a physical node. Note that it is not difficult to prove

that Problem 1 is in fact NP-hard. In our approach, we resort

to adopting the opportunity cost as the metric to make our

decisions. The opportunity cost is the cost of any activity

measured in terms of the value of the next best alternative

forgone (that is not chosen). It is the sacrifice related to the

second best choice available to someone, or group, who has

picked among several mutually exclusive choices. For more

details about the opportunity cost, readers can refer to [22] or

other related references.
We use a simple illustrative example to explain the con-

cept of the opportunity cost and its use in designing our

performance metric. Figure 3(a) shows a task graph with four

nodes. The colors and shades represent their assignments to

the logical topology as shown in Figure 3(b). To calculate the

latency when executing a task graph, we assume that, if a

logical core has not been mapped, all the task nodes assigned

to this logical core take their nominal execution time; if a

logical core has already been mapped, then new execution

times on the practical cores will be used.

Algorithm 2Workload/performance mapping based on oppor-
tunity cost.

1: M = /0;
2: LC = The list of Cl

i, j ∈ Al
r×c, i= 0, ...,r−1; j = 0, ...,c−1

with workload assignments larger than 0;

3: LP = The list of Cp
i, j ∈ Ap

m×n, excluding faulty cores;

4: while LC �= /0 do
5: Find Cl

i, j ∈ LC and Cp
x,y ∈ LC such that P (Cl

i, j →Cp
x,y)

is maximized;

6: M =M +{Cl
i, j →Cp

x,y};
7: Remove Cl

i, j and Cp
x,y;

8: end while

Now consider the decision of mapping logical core Cl
0,0 to

physical core Cp
0,0. The task graph latency of this mapping is

51.67. Since the latency in the nominal design is 55, we define

that the profit of this decision is 55 - 51.67 = 3.33. For the rest
of the alternatives to map logical coreCl

0,0, the best choice is to

map it to Cp
0,1 with latency of 53.18. The corresponding profit

is 55 - 53.18 = 1.82, which is the opportunity cost to map Cl
0,0

to Cp
0,0. We thus define the performance of the decision as the

difference of its profit and opportunity cost, or 3.33 - 1.82

= 1.51. In what follows, we formally define the performance

metric used in our approach.

Definition 1: Given a decision to map logical core Cl
i, j to

physical core Cp
x,y, i.e. Cl

i, j → Cp
x,y, let its profit be denoted

as Pro f (Cl
i, j → Cp

x,y), and let its opportunity cost (i.e. the

performance associated with the best choice to map Cl
i, j

other than Cp
x,y) be denoted as OC(Cl

i, j → Cp
x,y). Then the

performance of the decision, denoted as P (Cl
i, j → Cp

x,y), is
defined as

P (Cl
i, j →Cp

x,y) = Pro f (Cl
i, j →Cp

x,y)−OC(Cl
i, j →Cp

x,y). (5)

Specifically, for the example in Figure 3, we have P (Cl
0,0 →

Cp
0,0) = 1.51, P (Cl

0,1 → Cp
0,0) = 0, P (Cl

1,0 → Cp
0,0) = 1.9, and

P (Cl
1,1 →Cp

0,0) = 0.76. It is interesting to note that, according
to Definition 1, mapping the logical core with the largest

workload assignment (i.e. Cl
0,1) to the fastest core (i.e.Cp

0,0)

does not reduce the critical path latency and thus has the lowest

performance.

After establishing the metric to evaluate a mapping decision,

we are ready to introduce our heuristic algorithm, which is

given in Algorithm 2. The most critical section of Algorithm 2

is the while loop, which selects the mapping with the largest

performance according to equation (5). In the worst case, the

complexity of the while loop is O(kmn) since m×n different
mappings need to be checked, and the complexity to obtain

the latency for a task graph is k, where k is the number of task
nodes. In the worst case, the while loop will be executed for

r× c times. Therefore, the overall complexity of Algorithm 2

is O(krcmn).

C. Logical/physical topology mapping with communication
awareness

Neither Algorithm 1 nor Algorithm 2 takes the commu-

nication cost into consideration. They work fine when the

412412412



communication cost is really small and negligible. When

the communication cost becomes significant, especially for

many-core platforms, the qualities of the mapping results by

Algorithm 1 and Algorithm 2 can be severely compromised.

In what follows, we propose an iterative algorithm (shown in

Algorithm 3) to improve the performance of existing mapping

results with taking the communication into consideration.

Algorithm 3 Logical/Physical mapping with communication
cost awareness.

1: Initialize M0; // by Algorithm 1 or 2

2: Lorig = latency of executing G based on M0;

3: Improvement = 0;

4: while Improvement < ε // user defined threshold do
5: LC = The list ofCl

i, j ∈Al
r×c, i= 0, ...,r−1; j= 0, ...,c−1

with work assignment larger than 0;

6: LP = The list of Cp
i, j ∈ Ap

m×n, excluding faulty cores;

7: M = /0;
8: while LC �= /0 do
9: Find Cl

i, j ∈ LC and Cp
x,y ∈ LC such that P (Cl

i, j →Cp
x,y)

is maximized;

10: M =M +{Cl
i, j →Cp

x,y};
11: Remove Cl

i, j and Cp
x,y;

12: end while
13: Lnew = latency of executing G based on M0;

14: Improvement = Lorig−Lnew
Lorig

;

15: Lorig = Lnew;

16: end while

In principle, Algorithm 3 uses similar performance metric

based on opportunity cost to evaluate a mapping decision.

When calculating the latency for the task graph, the commu-

nication cost based on XY-routing can be incorporated into

the calculation of performance of a mapping decision. Another

major difference between Algorithm 3 and Algorithm 2 is that

Algorithm 3 can iteratively improve the mapping solution, un-

til the improvement threshold defined by user can be satisfied.

The complexity of the while loop from line 8 to 12 is similar

to that in Algorithm 2. The overall complexity of Algorithm 3

depends on the exact value of ε.

IV. EXPERIMENTAL RESULTS

In this section, we perform three experiments to study

the performance of three approaches we presented in the

previous section. For ease of presentation, we use SWPM
to denote Algorithm 1, P Only OC for Algorithm 2, and

P&C OC for Algorithm 3. We also compare our algorithms

with two previous work, i.e. the RRCS algorithm [20] and

the Hungarian algorithm [18]. The RRCS algorithm intends

to replace the faulty cores and reshape the mesh to mirror

the logical mesh while the Hungarian algorithm tries to

re-map the physical mesh to logical mesh to minimize the

communication changes. We investigated the performance of

these five different approaches under different mesh sizes,

numbers of task nodes, communication/execution ratios, as

well as their computational costs.

(a) 5×6 mesh

(b) 10×11 mesh

Fig. 4. Performance vs. different mesh sizes and different group numbers

A. Experimental setup

In our simulation study, we used TGFF [24] to randomly

generate task graphs (60 nodes) and also randomly cluster task

nodes into groups and map to different logical cores, from a

5×6 and a 10×11 mesh. The reason we used n×(n+1) mesh
is because the RRCS and the Hugarian algorithms assume

such topology. The communication of each edge and execution

time of each task are randomly generated. The frequency

of each processor is also randomly generated using normal

distribution with mean value μ= 1, i.e. the nominal frequency,

and variance value σ = 0.1, based on [9]. Unless specified

otherwise, we assume the P&C OC algorithm stops after

200 iterations. All experiments were running on a Window

XP/SP3 platform powered by Intel(R) Core(TM)2 Duo CPU

@ 2.93GHz with 3.21 GB of RAM.

B. Performance vs. mesh sizes and group numbers

In this experiment, we compared the performance of differ-

ent algorithms under different size meshes: 5×6 and 10×11.

The execution time of a task node was randomly generated

from interval [10:50]. The communication cost of an edge

was randomly chosen from interval [1:10]. The average result

among all test cases were collected and plotted in Figure 4.

From Figure 4, we can see that P Only OC consistently

outperformed SWPM under different mesh sizes and different

group numbers. For example, for mesh size of 5× 6 and
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(a) 5×6 mesh

(b) 10×11 mesh

Fig. 5. Performance vs. different communication/execution ratios

task group number of 5, we can see that P Only OC out-

performed SWPM as much as 10% in latency reduction. This

is because SWPM optimizes aggressively on the logical cores

with large workload assignments. Unfortunately, as indicated

in our previous illustrative example (Figure 3), the overall

performance can be severely limited if the workloads are

not located on the critical path. P Only OC, on the other

hand, judiciously chooses logical/physical mapping based on

application characteristics and thus can outperform SWPM.
When comparing P Only OC and RRCS, it is interesting

to see that P Only OC performs better than RRCS for small

meshes but becomes worse than RRCS when the mesh size is
large or the task group number is small. For example, for mesh

size of 5×6 and group size of 10, P Only OC outperformed

RRCS by approximately 4%. For large mesh size of 10×11,

RRCS can outperform P Only OC by as much as 12.5%. This

is because P Only OC can take the application information

into consideration and outperform RRCS. However, our ex-
perimental results also indicate that P Only OC works only

in small mesh size. For large mesh sizes, the P Only OC
algorithm can potentially distribute tasks far away from each

other and therefore degrade the overall performance. And the

Hungarian algorithm is the worst one as we have discussed

previously, it is good for small mesh size, i.e. 5×5 and small

number of faulty cores, i.e. no more than 4 faulty cores.

However, in our setup, we assume 5 and 10 faulty cores for

5× 6 mesh and 10× 11 mesh, respectively. The Hungarian

Fig. 6. Computational Time comparisons for different algorithms on 10×11
mesh

algorithm always tries to re-map the faulty cores using the

redundant cores which are aligned to the right most column

of the mesh, therefore, results in poor performance.

Finally, we can see that P&C OC consistently outperforms

other algorithms for different mesh sizes and groups, and the

results improved with the growth of mesh size and number

of task groups. From Figure 4, on average P&C OC can

outperform RRCS by 13% and 16% for mesh size of 5× 6

and 10× 11, respectively. The experimental results greatly

highlight the excellent performance of P&C OC.

C. Performance vs. different communication/execution ratios

Next, we study how communication cost can affect the

performance of different approaches. Let communication cost

be generated within interval [a,b] and execution time of task

node be generated within interval [c,d], the C/E ratio can be

defined in Equation 6.

ratio=
b+a
d+ c

, (6)

We randomly generated different test cases with different

C/E ratio and tested the four algorithms mentioned above. The

C/E ratios were set to be 1:1, 1:2, 1:5, 1:10. The results for

different test cases were collected and plotted in Figure 5.

From Figure 5(b), the improvement of P&C OC over

P Only OC increases as communication cost increases. When

communication cost is much less than the execution cost (C/E

ratio = 1:10), P&C OC improves upon P Only OC about

30%. When the communication cost is almost comparable

to the execution cost (C/E ratio = 1:1), the average latency

by P Only OC is more than double that by P&C OC and

SWPM, i.e. approaches that do not take the communication

into consideration.

D. Computational cost

We next studied the computational cost for each algorithm

on mesh size of 10× 11. Figure 6 shows the computation times

with different numbers of task groups for the five algorithms.
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Fig. 7. Computational Time and Improvement comparisons for different
iterations on 10×11 mesh

For the P&C OC algorithm, we set the threshold to 16%. It is

not surprising to see that SWPM and RRCS have computational
cost nearly linear to the task group, while P Only OC ,

Hungarian and P&C OC are increasing very fast, as discussed

before.

To further understand the computational complexity of

P&C OC, we conducted another set of experiments with 20
task groups and kept track of the solution quality for each

iteration. As shown in Figure 7, we can see that from the first

iteration all the way to 50th iteration, the CPU time increases

rapidly. The improvement also grows rapidly during the first

several iterations until it reaches around 22% in improvement

and becomes saturated. How to speedup the P&C OC without

compromising its solution quality is an interesting problem

worthy of future study.

V. CONCLUSIONS

Performance variations can reduce the fabrication yield

and degrade the quality of the nominal design. Different

from previous research at the device level, during the post-

fabrication, or the statistical approach at the system level, we

propose to deal with the process variations when deploying

the nominal design to a dedicated device. We introduce a

framework to judiciously reconfigure the underlying physical

architecture to mirror the logical architecture and maximize

the performance of the nominal design. Heuristics based on

the concept of opportunity cost are introduced in the paper.

From our experimental studies, the proposed approach can

achieve up to 30% and with an average 15% of performance

improvement (i.e. schedule length) by taking advantage of the

heterogeneity of each individual platform.
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