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Abstract—While multi-core architectures, by exploring
the thread/process level parallelism, help to lower down
the power/thermal barrier for single core architectures,
power/thermal issues are still the primary limiting factors to
achieve high computing performance. In this paper, we study
the problem of how to maximize the computing performance of
multi-core platforms without violating their peak temperature
constraint. As different cores may exhibit different thermal
behaviors, we propose to run each core with different working
frequencies and develop a schedule based on two novel concepts,
i.e. the step-up schedule and the m-Oscillating schedule, for
multi-core platforms. We formally prove that the proposed
schedule can guarantee the peak temperature constraint for
a given multi-core platform. Compared with the traditional
exhaustive search-based approach, our approach can reduce
the computation time by orders of magnitude and improve the
throughput up to 89%, with an average improvement of 11%.

Index Terms—performance maximization, peak temperature
minimization, temperature, thermal aware, multi-core

I. INTRODUCTION

Today, the fast growth in computing demands has resulted

in rapid increases in both software complexity and underlying

hardware integration [1]. As more and more transistors are

integrated into one chip, the power consumption has increased

exponentially. High power density leads to high temperature,

and high temperature can further increase leakage power and,

thus, the overall power consumption [2]. As a result, the thermal

problem becomes increasingly serious.

High temperature can degrade system performance, reliabil-

ity, and even damage the chip permanently. For example, it

has been reported that every 10− 15◦C temperature increment
could result in 50% reduction in the device’s lifespan [1] and

triple the hardware failure rate [3]. Moreover, the emerging 3D

SoC technology has significantly exacerbated the thermal crisis.

The 3D IC technology stacks layers of cores vertically on top

of each other to take advantage of shorter wires, higher data

throughput, and larger memory bandwidth in comparison with

2D design [4]. However, the higher power density and longer

heat removal path has made the thermal problem substantially

more challenging than its 2D counterpart [5]. Even though

multi-core platforms, by exploiting the thread/process level

parallelism, help to lower down the power/thermal barrier of

single core systems [6], the thermal problem remains as one

significant bottleneck towards high-performance systems [7].

Since temperature is closely related to the power consump-

tion, it seems that we can simply employ existing power aware

strategies for temperature control, for example, strategies such

as those by Isci et al. [8] to maximize computing performance

under a given power budget. However, power consumption

and temperature, even though they are closely related, exhibit

substantially different characteristics. An optimal power min-

imization technique is not necessarily the best solution for

temperature control. As shown by Pagani et al. [9], using

traditional thermal design power (TDP) to constrain the peak

temperature can result in pessimistic overall throughputs.

To deal with the heat generated by transistors, one intuitive

method is to use the traditional cooling methods such as heat

sinks, heat spreads, cooling fans, or other advanced cooling

mechanisms (e.g. micro channel liquid cooling mechanism on

3D processor). However, designing such a heat dissipation

package is uneconomical if not infeasible [10], and it is

unsuitable for hand-held devices [11].

An alternative solution to alleviate the thermal stress is

to rely on the dynamic thermal management (DTM) tech-
niques [12] by reducing the supply voltage/frequency, powering

down cores or migrating running threads to keep the chip

temperature within a safe range. The problem is how to dy-

namically adjust the run-time schemes of multi-core platforms

appropriately to maximize the computing performance without

compromising their peak temperature constraints.

DTM techniques can be largely categorized as reactive

(online) and proactive (offline) methods [12]. The reactive

method takes actions when run-time temperature approaches

or is predicted to exceed a given threshold. The “heat-and-run”

schedule [13], “hot-and-cold” job swapping [14], the feedback

control scheme [15], and other techniques such as those in [16],

[17], [18], [19] belong to this category. These approaches make

decisions online and therefore can be flexible and adaptive.

However, they heavily depend on the accuracy of temperature

prediction and/or run-time temperature monitoring. Due to large

uncertainty of program execution, as well as other factors such

as inaccuracy of temperature sensor readings, there is no guar-

antee of avoiding peak temperature violations or maximizing
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throughputs. The proactive DTM techniques, on the other hand,

may be less flexible or adaptive than the responsive ones,

but since they are developed off-line, they can afford higher

computational cost for peak temperature constraint guarantee

and endure more aggressive design optimization. Our research

presented in this paper belongs to this category.

In this paper, we are interested in developing a proactive

DTM scheme to optimize the throughput while ensuring the

peak temperature constraint. There are a few papers pub-

lished [20], [21], [22], [23] with research closely related

to our work. Murali et al. [20] transformed the throughput

maximization problem under peak temperature constraints to

a convex optimization problem, then used a 2-phase iterative

approach to approximate the solution. However, this approach

can be applied only for processors with working frequencies

that can be instantaneously and continuously varied, which is

not realistic in practice. Moreover, this approach essentially

ignores the heat transfer among multiple cores and is therefore

inaccurate, especially for those multi-core platforms with 3D

architectures. Hanumaiah et al. [21] studied the problem of

mapping a given task set to multiple cores and also setting

the supply voltages and speeds of these cores to minimize the

task completion time. Assuming the peak temperature always

occurs at a scheduling point, i.e. the time instant when at

least one core changes its running mode, they transformed

the problem into a convex optimization problem. However,

this assumption is not always true in practice [24]. In addi-

tion, while this approach can deal with the discrete levels of

supply voltages and working frequencies, the computational

cost can be prohibitive for large problem sizes. Kadin et

al. [22] used machine learning techniques to set a working

frequency for each core to maximize its performance, but

their approach could not prevent a processor from overheating.

Wang et al. [23] proposed an integer linear programming-based

approach (ILP) to maximize the performance of a temperature-

constrained multi-core platform. It is well known that the ILP-

based approach does not scale well with the problem size.

Our approach presented in this paper is based on the

traditional RC-thermal model for multi-core platforms that

accounts for heat transfer and leakage/temperature dependency.

We also take the discrete levels of supply voltages and working

frequencies into consideration. Specifically, we have made the

following contributions:

1) To identify the peak temperature for a multi-core sched-

ule can be time consuming in design space exploration,

as shown later in this paper, the peak temperature does

not necessarily occur at scheduling points for random

schedules. To this end, we introduce a special schedule,

so called “step-up” schedule, with its peak tempera-

ture easily identified to bound the peak temperature for

other arbitrary periodic schedules;
2) We show that a constant multi-core speed schedule mini-

mizes the peak temperature among all periodic schedules

using one or more speeds on each core and complete the

same workload. If such a constant speed is not available,

the one that uses the two closest neighboring speeds

minimize the peak temperature among all periodic step-

up schedules, completing the same workload on each

core;

3) We extend the concept of the m-Oscillating scheme [25]
from single core to multi-core platforms and show that

the peak temperature of a step-up schedule monotonically

decreases as m increases;
4) Based on the above analysis, we present a frequency

oscillating method to maximize the throughput with a

guarantee of peak temperature on a multi-core platform.

Our simulation results show that, compared with the

traditional exhaustive search-based approach, the overall

performance improvements by our approach can be up

to 89% with an average improvement of 11%, and its

computation time can be reduced by several orders of

magnitude.

The rest of this paper is organized as follows. Section II in-

troduces the performance, power and thermal models, followed

by a motivation example in Section III. Section IV presents key

principles for our proposed algorithm. Our proposed frequency

assignment algorithm is discussed in Section V. Experimental

results are shown in Section VI, and Section VII concludes the

paper.

II. PRELIMINARIES

We present the models for power, thermal, performance and

pertinent assumptions for our multi-core systems. The bold
characters represent the vectors and matrices and non-bold
characters are used for ordinary variables and coefficients.

A. System Model

We consider a multi-core platform N with N cores, N =
{corei : i = 1, · · · , N}. Each core is DVFS-independent.
Also, each core has different running modes and each running

mode is characterized by a pair of parameters (v, f), where
v is the supply voltage and f is the working frequency. For
an inactive core, we assume v = f = 0. In this paper, for
ease of presentation, we use v and f interchangeably to denote
the processing speed (amount of work performed within a unit

time) when there is no confusion.

As different cores may execute in different running modes

at different times, a multi-core platform can be regarded as

running on a sequence of scheduling intervals, in each of which

each core runs only in a unique mode. We call such an interval,

e.g. [tq−1, tq], as a state interval.

B. Power/Thermal Model

The total power consumption (P ) is composed of dynamic
power and leakage power [2]. Dynamic power is proportional to

the cubic of supply voltage and leakage power depends linearly

on temperature T , i.e. Pleak = α(v) + βT (t). The total power
of the ith core is

Pi(t) = α(vi) + β · Ti(t) + γ(vi) · v3i , (1)

where α and γ are positive constants within the interval that
corei runs at supply voltage vi. β is a constant.
Due to power dissipation, the multi-core system increases

its temperature. The thermal model, similar to that in [9], [26],

[27], [28], [29], [30], is built upon the duality between heat
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transfer and electrical phenomena. Specifically, the thermal

behavior of a multi-core platform within a state interval can

be formulated as

dT(t)

dt
= AT(t) +B(v), (2)

where T(t) represents core temperatures at time t. Coefficient
matrix A is constant and depends only on the thermal capac-
itances and resistances of the multi-core platform. Coefficient

matrix B depends on not only the thermal capacitances of the
multi-core platform but also the running mode of each core as

well. Therefore, matrix B remains constant within each state
interval but may change among different state intervals.

When running a multi-core processor under a constant supply

voltage profile v long enough (i.e. t → ∞), it will eventually
reach a constant temperature T∞ = T(∞) = −A−1B(v) as
dT(∞)

dt = 0. (A is nonsingular [27] Lemma 1). For schedules
that consist of multiple state intervals, the state intervals may

not be long enough for the temperature to be constant. As

shown in [26], the transient temperature at time t within a state
interval (e.g. the qth interval [tq−1, tq]) can be formulated as

T(t) = eA(t−tq−1)T(tq−1) + (I− eA(t−tq−1))T∞q , (3)

where tq−1 ≤ t ≤ tq and T(tq−1) is the temperature vectors
at the beginning of the qth interval. T

∞
q is the constant tem-

perature when running processor using supply voltage profile

vq long enough and I is an identity matrix.
When repeating a periodic schedule with multiple state inter-

vals long enough, the temperature eventually enters the thermal
stable status [2], in which the temperature at the beginning of
the period equals to that at the ending point. Specifically, for a

periodic schedule S(t) with z state intervals and period tp, let
tq−1 be the starting time of the qth state interval, the transient
temperature in the stable status can be formulated as [26]

Tss(tq) = T(tq) +Kq(I−K)−1(T(tp) −T(0)), (4)

in which T(tq) and Tss(tq) are the temperature at time tq in
the first period and in the thermal stable status, respectively.
T(0) is the starting temperature. The θth state interval size lθ =
tθ − tθ−1, Kq = eA

∑q
θ=1 lθ and K = eA

∑z
θ=1 lθ = eAtp . K

is a symmetric matrix and all the eigenvalue of A are negative
real numbers.

Furthermore, we assume that a practical multi-core platform

exhibits the following thermal property:

Property 1. Consider a multi-core platform with an initial tem-
perature T0 ≥ 0 (with T0 normalized to ambient temperature),
the temperature of each core is monotonically non-increasing,
i.e. T(t2) ≤ T(t1) ≤ T0, ∀ t2 ≥ t1 ≥ 0, when shutting down
all cores at t0 = 0.

Essentially, we require that, when shutting down the power

simultaneously for all the cores, the temperature of each core

decreases monotonically.

C. Performance Model

We assume that a multi-core system always runs with peri-

odic schedules and thus the system’s throughput is maximized

when the performance within each period is maximized. Then,

the performance of the multi-core platform, i.e. the chip-wide

throughput (THR), is defined as

THR =

∑z
q=1 THRq

N
∑z

q=1 lq
=

∑z
q=1

∑N
i=1 fi,q · lq

N
∑z

q=1 lq
, (5)

where fi,q is the running frequency of the ith core within the
qth state interval. lq is the length of the qth state interval.

D. Problem formulation

With the models introduced above, our problem can be

formulated as follows.

Problem 1. Given a multi-core platform N and its peak
temperature threshold Tmax, set running modes and repeat the
execution periodically to maximize the chip-wide throughput
with the peak temperature below Tmax all the time.

The notations in Table I will be used in the paper.

Table I. Summary of Notations.

Symbol Meaning
S(t) A periodic multi-core schedule;

Iq The qth state interval in S(t) with time interval [tq−1, tq ];
T0 The starting temperatures;

Tss(t) The stable status temperatures at time t;

1N×1 An (N × 1) matrix with all elements being 1;

0N×1 An (N × 1) matrix with all elements being 0;

Given two matrices X and Y with the same dimensions (e.g.
N1 ×N2 ), operators > , < , ≥ and ≤ are defined as element-wise
scalar comparisons. For example, X ≤ Y means that Xi,j ≤ Yi,j ,
∀i ∈ [1, N1] and ∀j ∈ [1, N2].

III. MOTIVATIONS

Before presenting our approach, we first show a motivation

example. There are some existing works [20], [21] on multi-

core performance maximization problem that assume each core

can run at a continuously variable speed, which is not always

possible in practice. In our research, we assume that each core

can only run a set of discrete modes, each of which has one

dedicated supply voltage/frequency.

When only discrete processing modes are available, one

approach is to round down the speeds obtained from existing

work (such as [21]) to the lower available ones, namely the

lower neighboring speed (LNS) method. This approach can
be pessimistic, especially for practical processors, when the

number of available speeds is very limited. In fact, when each

core can only run at one mode (e.g. [20], [21]), the optimal

solution can be obtained by exhaustively searching all the speed

settings for the one that can maximize the performance without

exceeding the temperature threshold. We call this approach

exhaustive search (EXS), as shown in Algorithm 1.
Algorithm 1 assumes each core runs at one unique discrete

mode and thus the temperature eventually reaches the constant

value T∞ in line (7). This algorithm has two limitations.

First, the complexity increases exponentially with the number

of cores and possible running modes. In our experiments, to

exhaustively search an optimal speed profile for a platform of

9 cores with 15 speed modes, the computation time is over

24 hours. Second, each core can only run at one speed. If
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Algorithm 1 Exhaustive Search Method (EXS).
1: Input: multi-core platform N = {corei : i = 1 · · ·N} and Tmax

2: Output: THRmax; fffoptimal

3: fff = [f1, · · · , fN ] and THRmax = 0;
4: for f1 = flowest to fhighest do
5: · · ·
6: for fN = flowest to fhighest do
7: T∞ = −A−1 ·B;
8: if (max(T∞) ≤ Tmax)&&(sum(fff) ≥ THRmax) then
9: THRmax ← sum(fff);
10: fffoptimal = fff ;
11: end if
12: end for
13: · · ·
14: end for

the maximum temperature is lower than Tmax, the temperature

“headroom” cannot be filled by raising the speed of any core to

the next higher level, since it may violate Tmax. Is it possible

to use more than one speed on each core to achieve a better

performance with temperatures staying below Tmax?

Consider a 3-core processor with Tmax = 65◦C, whose
power and thermal models are further detailed in Section VI.

If we assume an ideal case when the continuously variable

speeds are available, we can set voltages of three cores as

[1.2085, 1.1748, 1.2085]V , respectively, without violating the
Tmax. The chip-wide performance can be as high as 1.1972.
Assume there are only two running modes available with low-

voltage vL = 0.6V and high-voltage vH = 1.3V . Since the
supply voltage of 1.2085V and 1.1748V are not available, LNS
sets the supply voltage for all three cores to be 0.6V with the
total performance of 0.6. With an exhaustive search, EXS sets
voltages as [0.6, 0.6, 1.3]V with an overall performance of 0.83,
which is better than LNS. Instead of using only one speed

Table II. The execution time ratio for different cores.

core1 core2 core3
ratio(vH) = 0.8693 0.8211 0.8693
ratio(vL) = 0.1307 0.1789 0.1307

* ratio(vH) + ratio(vL) = 1.

Table III. The high-speed ratio “ratio(vH)” list when utilizing
two speeds under Tmax.

original 2 divisions 5 divisions
tp = 20ms∗ tp = 10ms tp = 5ms

core1 0.1733 0.2303 0.2713
core2 0.8211 0.8211 0.8211
core3 0.1733 0.2303 0.2713

Performance 0.8725 0.8991 0.9182

* tp denote the period of the multi-core schedule.

for each core, we can use two or more speeds. For example,

we use the modes with low-voltage vL = 0.6V and high-

voltage vH = 1.3V to get exactly the same performance as
the ideal case by setting their intervals to the ratio listed in

Table II, where ratio(vH) and ratio(vL) are defined as the
high-voltage’s and low-voltage’s execution time ratio within

a given interval tp (tp = 20ms in this example). If we
run this schedule periodically, the peak temperature becomes

79.69◦C, which exceeds the temperature threshold. We can

reduce the high-voltage ratio and increase the low-voltage ratio,

(for example, according to the values listed in Column 1 of

Table III), to ensure the peak temperature is no more than

65◦C, with the average throughput performance of 0.8725,
which improves 45.42% over the LNS method. It is worth
mentioning that, at this time, we ignore the overhead due to the

voltage transitions. We discuss this problem later in this paper

(section V). It is also interesting to note that in Table III, with

different interval lengths (i.e. tp), the corresponding high/low
speed interval ratios and the average throughputs are different.

The above examples clearly show that using multiple running

speeds for each core can potentially improve the throughput

performance significantly for a multi-core platform, due to

the fact that it is more flexible to adjust the length of a

speed interval rather than the speed itself to control the peak

temperature. The problem is, however, how to develop the pe-

riodic schedule that can maximize the throughput performance

without violating the peak temperature constraint. In what

follows, we first introduce several observations and principles

related to the peak temperature identification and minimization.

We then present our algorithm for throughput maximization for

a multi-core platform.

IV. PEAK TEMPERATURE IDENTIFICATION AND

MINIMIZATION

One of the most fundamental problems for throughput max-

imization under a given peak temperature constraint is to

find out when and where the peak temperature occurs. On

a single core platform, the peak temperature always occurs

at the scheduling point [31], [25]. However, on a multi-core

platform, due to the heat interference between cores, it is

no longer always the case [28], [29]. To identify the peak

temperature on a multi-core platform, HotSpot [10] can be

used to estimate temperature, but its computational time is long.

Most recently, Pagani et al. [28] introduced a peak temperature

identification method with computation time much faster than

HotSpot. However, as the design space becomes larger and

the number of power changes increase, it is still quite time

consuming. Instead of capturing the exact peak temperature, a

peak temperature bounding method is also proposed in [29].

However, the computational complexity is still very high and

the results can be very pessimistic.

A. The Step-up Schedule

To quickly and accurately predict the peak temperature on

multi-core platforms, in this section we introduce a step-up
schedule, with its peak temperature easily identified. Also, we
use step-up schedules to bound the peak temperature for more

general periodic schedules.

Definition 1. Let multi-core voltage schedule S(t) contain z
state intervals, with vq being the voltage vector for the qth
state interval Iq . Then S(t) is called a step-up schedule if
vq ≤ vq+1, ∀q ∈ {1, · · · , z − 1}.
According to Definition 1, the voltage for each core is

monotonically non-decreasing from the first to the last state

interval in a step-up schedule. For a step-up schedule, its peak
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temperature always occurs at the end of the period, as stated in

the following theorem. The proof is omitted due to page limit.

Theorem 1. The peak temperature when repeating a step-up
schedule S(t) periodically from the ambient temperature occurs
at the end of the schedule when the temperature reaches the
stable status.

Based on (3) and (4), we can quickly identify the peak

temperature with linear complexity. Furthermore, the peak

temperature of a step-up schedule can be used to bound the

peak temperature of an arbitrary schedule. Before we introduce
this conclusion, we first introduce the following definition.

Definition 2. Given an arbitrary periodic schedule S(t),
the corresponding step-up schedule (denoted as Su(t)) is the
periodic schedule that, for each core, the schedule consists of
the same scheduling intervals as that in S(t), but these intervals
are ordered according to a non-decreasing order of their supply
voltages.

To prove that a step-up schedule can help to bound the peak

temperatures, we first introduce the following lemma.

Lemma 1. Let S(t) and S̃(t) be two periodic schedules, with
the same period tp, and all cores run with the same constant
supply voltages/frequencies, except for corei during hth and
(h + 1)th state interval. For S(t), corei uses the mode with
voltage vL (vH , resp.) for the hth ((h+1)th, resp.) state interval
and vH ≥ vL. In S̃(t), corei exchanges the hth and (h+ 1)th
state intervals of S(t). Let Tss(S(t)) (Tss(S̃(t)), resp.) denote
the temperature at t when running schedule S(t) (S̃(t)), resp.)
in the stable status. Then, we have Tss(S(tp)) ≤ Tss(S̃(tp)).

Lemma 1 indicates that, as a high-speed interval moves

toward the end of a periodic schedule, it tends to increase the

temperature at the end of the schedule during the stable status.

With the help of the lemma, we are now ready to introduce the

following theorem.

Theorem 2. Given an arbitrary periodic schedule S(t) and
its corresponding step-up schedule Su(t) with period of tp, let
Tpeak(S(t)) and Tpeak(Su(t)) be the peak temperature during
the stable status. Then, Tpeak(S(t)) ≤ Tpeak(Su(t))

From Theorem 2, the peak temperature of a periodic schedule

is no more than that for its corresponding step-up schedule. This

theorem can be proved based on the facts that both S(t) and
Su(t) are periodic and the multi-core thermal model presented
in (2) is a linear time-invariant system [29], [32], following

the superposition principle: (i) The thermal impact at one time

instant is the sum of the thermal impact by each core; (ii) The

thermal impact of each core is the sum of the impact by each

state interval in the schedule. With the assistance of Lemma 1,

Theorem 2 can therefore be proved. More detailed proof is

omitted due to page limit.

B. Choose Two Neighboring Running Modes

Theorem 2 can bound the peak temperature for an arbitrary

periodic multi-core schedule. This helps to ensure that the

peak temperature constraint is not violated. The problem now

becomes how to design the periodic schedule that can maximize

the performance without exceeding the given peak temperature.

As our motivation example indicates, using multiple modes

rather than lowering down the constant speed for each core

helps to improve the throughput. The problem is, if there are

more than two different modes available, which mode should

be chosen to form the schedule? Some existing works [33], [23]

seem to imply using more speed selections can achieve better

performance under the temperature constraint. On the other

hand, recall that it has been shown that in [31], a constant mode

schedule minimizes the dynamic energy consumption among all

other schedules accomplishing the same workload, and if such

a constant mode is not available, the schedule using the two

neighboring modes becomes optimal. Is it possible that similar

principles can be applied here? As a matter of fact, similar

principles can be established for step-up schedules to minimize

the peak temperature, as shown in the following theorem.

Theorem 3. Let Su1(t) and Su2(t) be two periodic step-up
schedules with period tp, that are exactly the same except for
corei. For Su1(t), corei uses a constant mode with voltage
ve throughout the period, but for Su2(t), corei uses the mode
with voltage vL for lL seconds followed by vH for lH seconds
(lL + lH = tp) such that

(lL + lH) · ve = lL · vL + lH · vH . (6)

Let Tpeak(Su1(t)) denote the peak temperature when running
schedule Su1(t) periodically. Then, we have Tpeak(Su1(t)) ≤
Tpeak(Su2(t)).

proof sketch. Without loss of generality, we assume all cores,
except for corei, have no power consumptions. To ease the
presentation, we let tp = 1, x = lL and 1−x = lH (0 ≤ x ≤ 1).
According to Theorem 1, we have Tpeak(Su1(tp)) =

max
(
Tss(Su1(tp))

)
and Tpeak(Su2(tp)) =

max
(
Tss(Su2(tp))

)
. In addition, from (4), we

have Tss(Su1(tp)) = (I − K)−1T(Su1(tp)) and

Tss(Su2(tp)) = (I − K)−1T(Su2(tp)), where K = eAtp .

Since Su1(t) and Su2(t) are of the same period, their K are the
same, and since (I−K)−1 is a positive matrix [34], we only

need to prove in the first period T(Su1(tp)) ≤ T(Su2(tp)).
From (3) and (4), we have⎧⎪⎨
⎪⎩
T(Su1(tp)) = (I− eA)T∞e
T(Su2(tp)) = eA(1−x)(I− eAx)T∞L + (I− eA(1−x))T∞H

= (eA(1−x) − eA)T∞L + (I− eA(1−x))T∞H ,

(7)

where T∞
e , T

∞
L and T

∞
H are the constant temperature when

corei runs in the mode with ve, vL and vH long enough

while all the other cores keep idle, respectively. To prove

T(Su1(tp)) ≤ T(Su2(tp)), based on (7) and (8), we want to
prove

T(Su2(tp))−T(Su1(tp))

=(I− eA) · [(I− eA)−1(eA(1−x) − eA)T∞L
+(I− eA)−1(I− eA(1−x))T∞H −T∞e

]
=(I− eA) · [ρρρT∞L + (I− ρρρ)T∞H −T∞e ] ≥ 0,

(8)

where ρρρ = (I − eA)−1(eA(1−x) − eA) and I − ρρρ = (I −
eA)−1(I − eA(1−x)). Note that in (8), (I − eA) is monotone
because (I−eA)−1 ≥ 0 [34]. Therefore, we only need to prove
that [ρρρT∞L + (I− ρρρ)T∞H −T∞e ] ≥ 0.

530530530



From (2), we know T∞(v) = −A−1B(v) and −A−1 is a

constant matrix which contains all positive elements, because in

practical scenarios, without changing any factor, increasing the

power (voltage) of one node cannot decrease the temperature

of other nodes. Moreover, since B(v) = C−1Ψ(v), Ψ(v) =
[ψ(vi)]N×1 and for each element ψi(vi) = α+γv3i is a convex
function (α and γ are constants for a fixed vi), T

∞(v) is a
convex function [35]. Therefore, given the condition in (6), we

have v3e ≤ x·v3L+(1−x)·v3H and T∞
e ≤ x·T∞

L +(1−x)·T∞
H .

Next we need to prove

xT∞L + (1 − x)T∞H ≤ ρρρT∞L + (I− ρρρ)T∞H =⇒ x · I ≥ ρρρ. (9)

Recall that matrix A has N negative eigenvalues [28], i.e.

{−λi : i = 1, · · · , N}, λi ≥ 0. Let matrix W = [wi,j ]N×N

be composed of A’s eigenvectors and let W−1 = [ui,j ]N×N .

We therefore can diagonalize matrix A as A = WDW−1,

where D = diag{−λi : i = 1, · · · , N}. Because eAt =∑∞
n=0

tn

n!A
n, we have eAt =

∑∞
n=0

tn

n! (WDW
−1)n =

W(
∑∞

n=0
tn

n!D
n)W−1 = WeDtW−1. So, eDt is a diagonal

matrix and eDt = diag{e−λit : i = 1, · · · , N}. Then, (9) leads
to

x · I ≥Wdiag{ e
−λi(1−x) − e−λi

1− e−λi
}W−1

=⇒W−1x ·W ≥W−1Wdiag{ e
−λi(1−x) − e−λi

1− e−λi
}W−1W

=⇒x · I ≥ diag{ e
−λi(1−x) − e−λi

1− e−λi
}

=⇒x ≥ e−λi(1−x) − e−λi

1− e−λi
=⇒ 1− e−λi(1−x)

1− e−λi
− (1 − x) ≥ 0.

(10)

Consider function Υ(	) = (1 − e−λi�)(1 − e−λi)−1 −	,
where 0 ≤ 	 ≤ 1 and λi ≥ 0. Function Υ(	) is a concave
function because Υ′′(	) ≤ 0. In addition, function Υ(	)
passes two points, i.e. (0, 0) and (1, 0) when Υ(0) = 0 and
Υ(1) = 0. Therefore, we have Υ(	) ≥ 0 when 0 ≤ 	 ≤
1.

Theorem 3 indicates that using two speeds for a step-up

schedule leads to a higher peak temperature in the stable status

than using a constant speed. Furthermore, we prove that using

two neighboring speeds benefits the peak temperature for a

step-up schedule as follows.

Theorem 4. Let Su1(t) and Su2(t) be two periodic step-up
schedules that are exactly the same except for corei dur-
ing interval [th−1, th+1]. Assume that in Su1(t), corei uses
two modes with voltages vi,h and vi,(h+1), while in Su2(t),
corei uses v′i,h and v′i,(h+1) such that (i) corei completes
the same workload in both Su1(t) and Su2(t); (ii) v′i,h ≤
vi,h ≤ vi,(h+1) ≤ v′i,(h+1). Then we have Tpeak(Su1(t)) ≤
Tpeak(Su2(t)).

Proof. As shown in Fig. 1, within interval [th−1, th+1] on corei
we define a third same throughput schedules Su3(vi,h, v

′
i,(h+1))

and let the hth interval of Su1(t), Su2(t) and Su3(t) change
their modes at th1, th2 and th3, respectively. Then we have
th1 ≤ th3 ≤ th2. Note that Su1(t) and Su3(t) are of the
same modes within interval [0, th1]; however, Su3(t) uses two
modes to complete the tasks within [th1, th+1], while Su1(t)

Su3 (vhi ,v’(h+1)i )

t0 tpth-1 th+1
� �th1

Su2(v’hi ,v’(h+1)i )

th2

Su1(vhi ,v(h+1)i)
core_i

core_j
����

����	

th3
Figure 1. Illustration for Theorem 4.

use a constant mode. From Theorem 3, we can conclude

that T(Su3(th+1)) ≥ T(Su1(th+1)). Then in the following
intervals, the temperature of Su3(t) will always be higher than
Su1(t). Thus, we can conclude Tpeak(Su3(t)) ≥ Tpeak(Su1(t)).
Similar method can also be applied to prove Tpeak(Su2(t)) ≥
Tpeak(Su3(t)). Therefore, Tpeak(Su2(t)) ≥ Tpeak(Su1(t)).

From Theorem 3 and 4, when constructing a multi-core

schedule to maximize the throughput, it is highly desirable to

use a single mode with a constant voltage if it is available.

Otherwise, we should choose the two neighboring modes,

which are most likely to achieve a better throughput than other

choices.

C. m-Oscillating Schedule on Multi-core Platforms

After the running modes are chosen, the problem now

becomes how frequently we should oscillate the modes with

high and low voltages to maximize the throughput. Recall that,

our motivation example shows that different periods leads to

different throughput performance. For single processor plat-

forms, Huang et al. [25] proposed a strategy called the m-
Osillating method for a two-voltage schedule. According to
this method, each scheduling interval is evenly divided into m
sections, and the processor interleaves the high and low-voltage

sections. They further showed that the larger the m, the lower
the peak temperature is.

To study if the m-Osillating method works for multi-core

platforms, we conducted the following example. We set up a

schedule on a two-core platform with a period of 100ms, each
core running at equal times using two processing modes, with

high-voltage vH = 1.3V and low-voltage vL = 0.6V , as shown
in Fig. 2(a). Fig. 2(b) shows the stable status temperature trace

within one period, with a peak temperature of 53.3◦C. Next,
we let core1 double its oscillating frequency and core2 keep
the same schedule, as shown in Fig. 2(c). In the stable status,

as shown in Fig. 2(d), the peak temperature becomes 54.6◦C,
which is higher than the previous one.

This example clearly shows that the frequency oscillation

scheme performed only on one core does not necessarily

reduce the peak temperature in a multi-core platform. Can

peak temperature be reduced if we simultaneously scale the

oscillating frequencies for all cores? In regard to this, we first

formally define the m-Oscillating schedule for a multi-core

platform as follows.

Definition 3. Let S(t) be a schedule on a multi-core proces-
sor. The corresponding m-Oscillating schedule, denoted as
S(m, t), is the one that scales down the length of each state
interval by m times without changing its voltage levels.
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(a) core1 runs at 1.3V and 0.6V
within (0, 50)ms and (50, 100)ms,
respectively. core2 uses 0.6V for the
first interval and 1.3V for the second.
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(c) core1 doubles its oscillating fre-
quency for schedule in Fig. 2(a).
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(d) Stable status temperature
trace for schedule in Fig. 2(c).

Figure 2. m-Oscillating for one core does not always reduce the peak
temperature.

Then, for multi-core m-Oscillating schedules, we found

oscillating all cores helps to reduce the peak temperature. The

proof is rather long and thus omitted due to page limit.

Theorem 5. Let S(t) = {Iq : q = 1 · · · z} be a periodic step-
up schedule with period of tp on multi-core processor. Then,
Tpeak(S(m, t)) ≥ Tpeak(S(m+ 1, t)).

V. THROUGHPUT MAXIMIZATION USING FREQUENCY

OSCILLATION

With the principles and observations on thermal characteris-

tics presented above, we are ready to introduce our approach

for throughput maximization on multi-core platforms. Our

approach consists of three steps: we first calculate the ideal

constant voltage/frequency for each core that can maximize

the throughput of the given multi-core platform. If such a

voltage/frequency is not available, we choose two neighboring

discrete modes to form the “step-up” schedule (Theorem 4) and

then use m-Oscillating scheme to lower the peak temperature

(Theorem 5). We further adjust the execution time ratio of

different modes when necessary for each core to meet the

temperature constraint. The detailed approach is explained

below.

As the starting point of our approach, we use a similar

method to Hanumaiah et al. [21] to find the single constant

mode (with vconst) on each core to maximize the throughput.
Specifically, we assume the stable state temperature for each

core equals to Tmax, i.e.T
∞(vconst) = [Tmax]N×1. The power

consumption therefore can be calculated by letting dT
dt = 0

and T = [Tmax]N×1 in (2), and the optimal voltage for each

core can be calculated as vi =
3
√

(Pi − α(vi)− βTmax)/γ(vi).
With the knowledge of the single constant mode of vi defined
for the ith core, the available high-voltage vi,H and low-

voltage vi,L and their execution time ratios ri,H and ri,L that
maintain the same throughput are also defined as{

vi,H · ri,H + vi,L · ri,L = vi
ri,H + ri,L = 1.

(11)

Next, we need to find the proper value of m that can make
the best tradeoff between temperature reduction and accumu-

lated transition overhead, which is unfavorable for throughput

maximization. Without considering the transition overhead, the

multi-core peak temperature monotonically decreases as m
increases. However, in practical scenario, each DVFS transition

stalls the program execution for a small time interval. Assume

that the clock will be halted for interval τ during the voltage
transition by DVFS. For each transition on corei, it causes
(vi,H + vi,L)τ performance loss. To keep the same throughput
requires extending the high-voltage mode and reducing the low-

voltage mode for δi =
(vi,H+vi,L)τ
vi,H−vi,L

seconds. However, there is

an upper bound Mi = mi,max(τ) because low-voltage interval
ti,L of corei should be large enough to cover the voltage
transitions as Mi = � ti,L

δi+τ 	. Then, the chip-wide upper bound
of M = min{Mi|corei ∈ N}. Thanks to the fact that the peak
temperature of a step-up schedule can be easily calculated, it is

affordable to search the optimal m using the linear sequential
search method.
Once the optimal m is found, the resulting m-Oscillating

schedule is likely to have a peak temperature higher than Tmax

(Theorem 3). Therefore, we need to further adjust the different

modes’ execution time ratios to meet the temperature constraint.

To do this, we first order cores by their peak temperatures.

Then, we select the core with the highest peak temperature

to lower its temperature. Note that, due to the linearity of

the system, we can reduce the high-voltage mode execution

time ratio for any core to reduce its peak temperature. To find

the core that can most effectively reduce the peak temperature

(i.e. corei) with the minimum throughput loss, we define
a metric called temperature performance tradeoff index for
corei, denoted as TPTcorei . Specifically, TPTcorei(j) =

ΔTi
|vj,H−vj,L|×tunit

is the ratio of temperature reduction at corei
to the throughput loss at corej when changing the high-voltage
interval to the low-voltage interval for one unit of time, i.e.

tunit, on corej . We modify the schedule for the core with
the highest TPTcorei , and this procedure continues until the

temperature constraint is satisfied. The overall algorithm is

illustrated in Algorithm 2, with complexity O(M +
tp

tunit
N).

Note that in our approach, we require each m-Oscillating

schedule to be a step-up schedule. This decision is really a

double-edged sword. A step-up schedule allows us to quickly

determine the highest temperature in a schedule to ensure peak

temperature constraint is guaranteed. In the meantime, however,

since temperature varies with power density, the schedules that

can interleave the intervals with high and low-voltage modes,

not only temporally but also spatially, lead to peak temperature

lower than a step-up schedule. We study the potential impacts

of this observation with experiments in the following section.

VI. EXPERIMENTAL RESULTS

In this section, we validate our theorems and study the

performance of our proposed approaches through simulations.
Since we study the system-level temperature-related prob-

lem, the processing cores consume most part of the power

consumption. We therefore simplify the floor-plan to the core-

level and adopt the parameters of thermal capacitance and resis-

tance from HotSpot-5.02 [10] at 65nm technology node. Power
parameters are abstracted from the McPAT simulator [36].
In our simulations, we used different multi-core configura-

tions, i.e. 2×1, 3×1, 3×2 and 3×3 layout, with 4×4mm2 core
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Algorithm 2 Algorithm of m-Oscillating for throughput max-
imization under peak temperature constraints (AO).
1: Input: Multi-core platform N = {corei : i = 1 · · ·N};
2: Transition overhead parameters: τ , δi;
3: Temperature threshold: Tmax;
4: Unit time: tinit
5: Output: The m-Oscillating schedule S(mopt, t) and throughput THR
(equation 5)

6: mopt = 1;M = mmax(τ) // the largest possible value of m for a given
τ

7: Set T∞(v) = [Tmax]N×1 to find the constant voltage for each core,
e.g. vi for corei;

8: for 1 ≤ m ≤M do
9: Find modes (voltages) as well as their execution time ratios for each
core, e.g. vi,H , ri,H , vi,L and ri,L for corei based on vi and τ ;

10: if (Tpeak(S(m, t)) > Tpeak(S(m+ 1, t))) then
11: mopt = m+ 1;
12: end if
13: end for
14: while (Tpeak(S(mopt, t) > Tmax) do
15: Select corei = the core with the highest peak temperature;
16: for corej ∈ N do
17: TPTcorei (j) = ΔTi

|vj,H−vj,L|×tunit
18: end for
19: Select core k = the core with the highest TPTcorei (j);
20: Reduce vk,H interval by one tunit and increase vk,L interval by one

tunit;
21: end while

core_3
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core_1

core_2

(a) A 3-core schedule with shift-
ing the high-speed mode.
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Figure 3. Peak temperatures varies when shifting its high-speed modes.

size. We assumed that the available supply voltages for each

core are in the range of [0.6V, 1.3V ] with 0.05V step size. The
ambient temperature was set to be Tamb = 35 ◦C.

A. Step-up schedule can bound the peak temperature of the
corresponding arbitrary schedules

As an experiment, we ran a large number of tests for

schedules, shown in Fig. 3(a), on a 3-core platform. We set the

period as 6 seconds and let running modes with high-voltage

1.3V and low-voltage 0.6V execute 3 seconds on each core.
Let core1’s x1 equal to the length of its low-voltage mode, then
we change x2 of core2 and x3 of core3 by a 0.1 second step
size each time. Fig. 3(b) shows the peak temperature changes

with different high-speed starting time of core2 and core3, i.e.
x2 and x3. The highest peak temperature can reach 84.13◦C,
when x2 = x3 = 3 seconds; and the lowest peak temperature
is 71.22◦C, when x2 = 0.6 and x3 = 4.2 seconds. We are able
to see that the step-up schedule bounds the peak temperature

of its corresponding arbitrary schedules.
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(a) Temperature trace for a 6 core
step-up schedule, starting from
Tamb = 35◦C.
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Figure 4. A step-up schedule temperature trace on a 6-core processor.
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Figure 5. The peak temperature of a 9-core m-Oscillating schedule monoton-
ically decreases with m.

B. Thermal Characteristics for Step-up Schedule and m-
Oscillating Schedule

We verified the thermal characteristics for the step-up sched-
ule and the m-Oscillating schedule identified in Theorem 1 and
Theorem 5.

By randomly selecting period and creating non-decrease

speed levels within one period, we generate a large set of

random step-up schedules and collected the temperature traces

using HotSpot-5.02 [10], and the results confirm that the peak

temperature of a step-up schedule always occurs at the end of

the period in the stable status. Fig. 4 shows the temperature

trace for a step-up schedule on a 6-core platform. The period

of the schedule is set to be 1 second and each core has up
to 3 different intervals. As we can see from Fig. 4(a), when

starting from the ambient temperature, the temperature of each

core monotonically increases and reaches its peak at the end

of the period, which conforms to Theorem 1.

We also verified Theorem 5 with our experiments. Fig. 5

shows the maximum temperature changes for the m-Oscillating

schedule on a 9-core platform. The original multi-core schedule

was randomly generated with a period of 9.836 seconds,

each core with up to 5 intervals. As shown in Fig. 5, the

peak temperature monotonically decreases when m increases,
exactly as predicted by Theorem 5.

C. Performance Comparison of Different Approaches

Table IV. Different numbers of modes with different voltages.

Case Voltage Level Selection
2 levels {0.6V, 1.3V }
3 levels {0.6V, 0.8V, 1.3V }
4 levels {0.6V, 0.8V, 1.0V, 1.3V }
5 levels {0.6V, 0.8V, 1.0V, 1.2V, 1.3V }

Next, we studied the performance of our proposed approach.

We generated different multi-core configurations and obtained

the corresponding thermal model from HotSpot-5.02 [10] using

the matrix modeling method presented in [23]. The voltage

533533533



�
���
�

���

� � � � � � � � � � � � � � � �

��� ��� 	
 ��


2 core 3 core 6 core 9 core
Performance

Speed levels

Figure 6. Performance comparisons with different numbers of cores and
voltage levels.

switching overhead was set to 5us. The temperature threshold
was set to be Tmax = 55 ◦C.
We compared four approaches in our study. The first

one lower neighboring speed method (LNS) uses the lower
neighboring modes when the continuous voltage/frequency

levels are not available. The second is exhaustive search
approach (EXS), as illustrated in Algorithm 1. The third
approach, aligned oscillation (AO), is our proposed approach,
depicted in Algorithm 2. As mentioned in section V, AO
approach requires each candidate schedule to be a step-up

schedule and thus may not optimize the performance. To eval-

uate the potential impacts of this factor, we developed another

schedule phase-conscious oscillation (PCO) that interleaves
the high/low-speed intervals among multiple cores spatially.

Specifically, after the optimal value of m in AO is defined,
we shift the schedule for each core individually and search the

best high-speed mode starting time to interleave the high/low-

voltage modes differently for each core, and use it in the PCO
schedule.

Fig. 6 shows the performance comparison for four ap-

proaches on multi-core platforms with 2, 3, 6, 9 cores and

different numbers of available voltage/frequency levels. The

voltage levels were defined in Table IV. From Fig. 6, we can

observe that AO and PCO always outperform EXS and LNS.
It is interesting to see from Fig. 6 that, the fewer the available

voltage levels, the greater the improvement that can be achieved

by AO and PCO over EXS and LNS. This is because LNS
and EXS allow only one constant voltage/frequency for each
core, which can be much lower than the optimal one if fewer

voltage choices are available. In addition, EXS searches all the
combinations of voltages/frequencies, which deeper explored

the design space than LNS. As shown in the figure, for 2
voltage levels, the average performance improvement by AO
and PCO over EXS is 55.2%; and the improvement becomes
24.8% when the number of available voltage levels is 5.

It is also interesting to see that the performance of AO
and PCO are very close. Even though our simulation study
in section VI-A shows large differences for schedules with

different high-speed mode starting time, this happens only when

the period of the schedule is long, e.g. 6 seconds, for the results

in section VI-A. As both AO and PCO adopt the m-Oscillating
schemes, the scheduling periods are significantly reduced and

therefore the differences become really insignificant, as shown

in Fig. 6.

The same conclusions can be drawn from our experimental

results by changing the temperature threshold, as shown in
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Figure 7. Performance comparisons with different numbers of cores and
different Tmax.

Fig. 7. Specifically, we set the temperature threshold Tmax

range from 50 ◦C to 65 ◦C, with 5 ◦C step size, and we

used only 2 levels of voltages, as shown in Table IV. From

Fig. 7, it is no surprise to see that, the higher the Tmax, the

larger the throughput by each approach. Note that for a 2-

core platform, when the temperature threshold is larger than

55◦C, all three approaches have the same performance. This is
because all of the cores can run at the highest voltage/frequency

without violating the temperature constraints. For a 6-core

platform, AO and PCO can improve over EXS by 40.4% when
Tmax = 65 ◦C.

D. Computation Time Comparison

We also compared the computational efficiency of our ap-

proach AO and PCO with EXS, since EXS has a better
performance than LNS. In this study, we set Tmax = 65 ◦C and
2, 3, 4, 5 speed levels for each core. We randomly generated

up to 100 test cases under each configuration. The average

CPU time for each approach under each case was collected,

as shown in Table V. From Table V, we can see that as the

number of cores and voltage levels increase, the computation

time for each approach increases in general. However, the

computation time for EXS increases at a much faster pace
than AO and PCO. When the number of cores and speed
levels is small, for example, for 2 or 3 cores, EXS takes less
time than AO since AO needs to adjust high/low-speed ratios.
However, as core numbers and voltages/frequencies increase,

the computation time for EXS increases dramatically. For
example, for 9 cores with 4 voltages, the EXS method takes as
long as 581.14 seconds, while the AO takes only 5.12 second.
For 9 core with 5 voltages, EXS takes over 2 hours, while
AO method takes only 14.87 seconds. In all the cases, AO
shows shorter computation time than PCO, since PCO needs
to search the best high-speed starting time to further minimize

peak temperature based on AO; then PCO adjusts high/low-
speed ratio again to fill the peak temperature “headroom”. In

summary, the experimental results clearly demonstrate that our

approach AO is both effective and computationally efficient
in maximizing the throughput under a given peak temperature

constraint.

VII. CONCLUSIONS

As IC technology continues to scale, the thermal problem is

becoming a more and more serious concern in the design of

high-performance computing systems. In this paper, we present

a novel technique to maximize the throughput of a multi-

core platform under a given peak temperature constraint. Our
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Table V. Computation time comparisons with different cores and voltage
levels (Seconds).

Scheme 2 levels 3 levels 4 levels 5 levels

2 cores
AO 0.13 0.08 0.08 0.16
PCO 0.27 0.17 0.16 0.30
EXS 0.01 0.01 0.01 0.01

3 cores
AO 8.97 7.27 5.24 3.97
PCO 16.82 16.79 15.73 16.65
EXS 0.01 0.01 0.02 0.03

6 cores
AO 10.55 8.88 5.15 5.93
PCO 19.25 18.64 15.64 19.87
EXS 0.13 1.36 8.01 28.22

9 cores
AO 19.33 15.03 5.12 14.87
PCO 110.67 104.55 90.10 106.10
EXS 1.53 43.36 581.14 >2-hours

techniques are built upon two novel concepts, i.e. the step-up
schedule and the m-Oscillating schedule, and their interesting
thermal characteristics for multi-core platforms. The signifi-

cance of this work lies in the fact that our proposed methods not

only reduce the computation time from the exhaustive search

by orders of magnitude but also improves the throughput up to

89%, with an average improvement of 11%. More importantly,

the fundamental principles established in this paper are general

enough to be readily used for other thermal related research.
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