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Abstract—While the dynamic thermal management problem
is closely related to the dynamic power management problem, it
has its own distinct features. In this paper, we study the feasibility
checking problem for real-time periodic task sets under the peak
temperature constraint. We show that the traditional scheduling
approach, i.e. to repeat the schedule that is feasible through the
range of one hyperperiod, does not apply any more. We then
present new necessary and sufficient conditions to check the
feasibility of real-time schedules. We further incorporate the close
relationship of leakage, temperature, and supply voltage into our
feasibility analysis, and develop more elaborated feasibility con-
ditions. Our experiments, based on technical parameters derived
from a processor using the 65 nm IC technology, demonstrate
the effectiveness of our feasibility conditions and, at the same
time, highlight the fact that a power/thermal-aware computing
technique becomes ineffective at the submicron scale if the inter
dependency of leakage, temperature, and supply voltage is not
properly addressed.

Index Terms—Feasibility analysis, leakage, power aware, real-
time systems, temperature, thermal management.

I. INTRODUCTION

C ATERING to society’s rapidly growing appetite of com-
puting power, the processor’s performance is expected

to continuously grow dramatically in the future [1]. According
to Borkar et al. [2] from Intel, there are more than 10 billion
transistors integrated into a single 300 die today, and the
number is growing rapidly toward 100 B by the middle of the
next decade. The power consumed by these transistors is also
tremendous, reaching 300 W in early next decade. The expo-
nentially increased power consumption has posted significant
challenges not only on how to provide sufficient power source
to an electronic system but also on how to dissipate the heat gen-
erated by the system.

The thermal issues have become increasingly prominent as
power consumption continues to grow. The high chip tempera-
ture not only increases package/cooling cost (estimated at 1–3
dollar per watt [3]) but also adversely affects the reliability and
performance of the computing systems, and can even cause a
system to fail catastrophically. Even if a processor is not totally
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failed at the high temperature, a small increase in the tempera-
ture (e.g., 10 C) can result in significant reduction (50%) in its
life span [4]. From the perspective of real-time systems, when
the chip temperature exceeds certain limit, the self-protection
controls in many new generation processors may be invoked au-
tomatically by reducing the performance and thus cause tasks to
miss deadlines.

As a closely related problem, power management problem
for real-time systems have been researched extensively in the
past decade [5], crossing different abstraction levels and plat-
forms. At first sight, since the higher power consumption usually
compounds with the higher energy consumption and high tem-
perature, it seems intuitive that power-aware scheduling tech-
niques can be readily applied for the purpose of thermal-aware
computing. However, the thermal management problem has its
unique characteristics which are quite different from the power
management problem [6]–[8].

In this paper, we study the problem on how to guarantee the
feasibility of periodic tasks under the maximal temperature con-
straint. Traditionally, one common strategy is to check if each
task instances of the task set can meet their deadlines within
the first hyperperiod, i.e., the least common multiple (LCM) of
the task periods. However, when we consider the maximal tem-
perature constraints, this strategy does not apply anymore. As
shown in [8] and [9], as well as later in this paper, a schedule
for a periodic task set that can satisfy both the timing and the
maximal temperature constraint within the first hyperperiod is
not necessarily feasible later in the schedule. Therefore, new
techniques need to be developed for checking the schedulability
of real-time periodic task sets under the maximal temperature
constraint.

When developing the power-aware or thermal-aware tech-
niques in the deep submicron domain, the leakage plays a
critical role, not only because the power and thermal issues
become more prominent, but also because the leakage power
consumption is becoming more and more significant. Liao et al.
[10] have shown that the leakage power consumption can be
2–3 times higher than the dynamic power consumption for
processors using the 65 nm technology. Furthermore, there
is a strong relationship among the leakage, temperature, and
supply voltage [10] in submicron circuits. When changing the
temperature from 65 C to 110 C, Liao et al. [10] have shown
that the leakage power can increase as much as 38%. High
power consumption leads to high chip temperature, and high
chip temperature, in turn, increases the leakage power, and
thus the overall power consumption dramatically. Evidently,
a power/thermal aware technique become less effective if this
temperature/leakage feedback loop is not addressed properly.

To incorporate the leakage, temperature, and supply voltage
relationship into the system-level thermal analysis and tech-
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nique development is a challenging task. First, the circuit level
analysis results [10], [11] indicate that the leakage power has
a very complex relationship with both temperatures and supply
voltages. Second, the temperature changes with the processor
power consumption in a nonlinear manner. In this paper, we de-
veloped a novel power model that can capture the interaction be-
tween the temperature and leakage with high accuracy. Yet the
model is also simple enough for ease of system level analysis.
Based on this model, we developed three conditions to check the
feasibility of real-time tasks under the peak temperature require-
ment. We conducted experiments based on technical parameters
derived from a processor using the 65 nm technology. The re-
sults clearly demonstrate that the feasibility analysis without ap-
propriately addressing the interaction of temperature, leakage,
and supply voltage can deviate far away from the actual results.

The rest of this paper is organized as follows. We introduce
the related work in Section II. Section III discusses the system
models and formulates our problem formally. In Section IV, we
study the unique characteristics of feasibility analysis problem
for periodic tasks under maximal temperature constraints. In
Section V, we incorporate the leakage/temperature dependency
into our feasibility analysis and introduce several feasibility
checking methods. We present our experimental results in
Section VI and draws conclusions in Section VII.

II. RELATED WORK

There have been increasing number of research results
published on thermal aware real-time scheduling, crossing
both single and multiple processor platforms (e.g., [6], [8], and
[12]–[14]). In this paper, we focus on the feasibility checking
problem for real-time tasks running on a single processor.

Several researches (e.g., [6] and [12]) try to identify the upper
bound of the maximal temperature when executing real-time
tasks on a single processor. These techniques cannot guarantee
that real-time tasks can still meet deadlines when the maximal
temperature is given. Some others (e.g., [6] and [15]–[18]) in-
tend to minimize the peak temperature or guarantee the given
maximal temperature constraints when scheduling a job set or a
single copy of a task graph. For example, Bansal et al. [6] intro-
duced an offline technique to minimize the energy consumption
for a job set, and Chantem et al. [16] proposed an MILP-based
solution to minimize the peak temperature when executing a
task graph. While it is a common practice to repeat a real time
schedule developed for jobs within the first hyperperiod of a pe-
riodic task set, as noted by Quan et al. [8] and Chen et al. [9],
this approach is not applicable anymore if the temperature con-
straint is taken into consideration.

For periodic task sets, Wang et al. [19], [20] considered
the problem of using two processor speeds to schedule a hard
real-time task set. A processor runs at the highest possible speed
until the temperature reaches the temperature threshold. Then
the processor is set to run with the “equilibrium speed” at which
the processor enters the equilibrium state with its temperature
unchanged. This approach does not take the advantages that
many modern processors support more than two levels of
running speeds. In addition, it is not always possible that the
“equilibrium speed” is exactly one of the available processor

speeds. Zhang et al. [13] proposed to guarantee the temperature
feasibility of a periodic system by forcing the temperature at
the end of its first hyperperiod to be equal or less than the
starting temperature. However, as shown later in this paper, this
constraint can be overly pessimistic. In addition, none of these
researches has taken the temperature/leakage dependency into
consideration.

Researchers have already studied in depth the complex rela-
tionship between the leakage and temperature at the circuit and
micro architecture level [10], [11], where the leakage current
can be formulated as

(1)

where is the leakage current at certain reference temperature
and supply voltage, is the operating temperature, is the
supply voltage, , , , , , are empirically determined
technology constants. A temperature modeling tool called
“HotSpot” [21] was developed base on this model, which can
be effectively used to simulate and study the processor thermal
phenomena at the architecture level. However, due to the non-
linear and high-order magnitude terms in (1), such a model or
tool is too complex to be used for our feasibility analysis and
scheduling technique development.

A few recent papers incorporate the temperature/leakage
dependency into the energy- or thermal-aware scheduling.
He et al. [22] and Yuan et al. [23] studied how to reduce the
leakage power at the system level. Yuan et al. [24] introduced
an offline and an online scheduling algorithm that take into
account the leakage/temperature interactions when scheduling
a set of soft real-time jobs. This approach cannot guarantee
that real-time periodic tasks can meet deadlines under the given
maximal temperature. A number of other approaches formulate
the temperature-constrained problem as a convex optimization
problem (e.g., [7] and [25]). The leakage/temperature rela-
tionship can thus be formulated as one of the constraints. The
problem is that the computational complexity for the convex
optimization problem is very high. Therefore, these approaches
can only work at system level when the design solution space
is small.

Liu et al. showed that using linear models is an effective way
for accurate leakage estimation over the operating temperature
ranges in real ICs [26]. A number of researches (such as [9] and
[27]–[29]) simplify the leakage/temperature relationship based
on this idea. Specifically, Chen et al. [9] and Chantem et al.
[29] adopted a simple temperature/leakage dependency model
that assumes the leakage power changes linearly only with tem-
perature. As can be seen from (1), leakage varies not only with
temperature but also supply voltage as well. In Section VI, we
use experiments to study the accuracy of this model and its im-
pacts to the schedulability analysis results.

III. PRELIMINARY

The real-time system considered in this paper contains in-
dependent periodic tasks, . Task is
characterized using three parameters, i.e., . ,

, and represent the period, the deadline and the
worst case execution time for , respectively.
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We use the lumped RC model similar to Shadorn et al. [30]
to capture the thermal phenomena of the processor. Specifically,
assuming a fixed ambient temperature ,1 let denote
the temperature at time . Then, we have

(2)

where denotes the power consumption (in Watt) at time ,
and , denote the thermal resistance (in C) and thermal
capacitance (in C). If we replace with
in (2), which is equivalent to scale such that is zero, then
we have

(3)

where and . For the rest of this paper, we
assume that the initial temperature of the processor equals the
ambient temperature.

We assume the processor can run in different modes, with
each mode being characterized by a pair of parameters ,
where is the supply voltage and is the working frequency
in mode . Even though the circuit delay (i.e., ) changes with
the temperature dynamically, as shown in (4) [10],

(4)

where is the threshold voltage, and and are technology-
related constants, we assume that the processor working fre-
quency in each mode is unique, and is the one that can accom-
modate circuit delay caused by the peak temperature (i.e., by
assigning the peak temperature in (4)) across the chip. Let
be the largest among different modes. We can normalize the
processor working frequency with and get the normalized
processor speed for each mode. In what follows, unless other-
wise specified, we use the term processor speed or working fre-
quency interchangeably.

The power consumption of the processor consists of two
parts: the dynamic power and the leakage power .

(5)

The dynamic power consumption is independent of the temper-
ature and can be formulated as with [31].
For simplicity, we choose . The leakage power is sensi-
tive to the temperature and can be estimated using the following
formula:

(6)

where is the total number of gates, is the supply
voltage and can be determined by (1).

Varying processor supply voltage and working frequency is
one of the most effective ways to manage the power consump-
tion dynamically. We call a schedule that dictates how to vary

1The highest possible temperature can be used here for the safe design if the
ambient temperature is variable.

the processor supply voltage and working frequency as the
speed schedule, which is formally defined as follows.

Definition 1: Given periodic task set , let be the LCM
of the periods, i.e., . The speed schedule is
defined as a sequence of , where:

• is an interval in which the processor runs in
;

• ;
• if .
With the thermal and processor models introduced as above,

our problem can be formulated as follows.
Problem 1: Given
• a hard real-time task set ;
• a variable voltage processor that can run in different

modes, i.e., , ;
• the maximal allowable temperature ;
• and a speed schedule with intervals, i.e.,

, ;
determine if can meet the required deadlines using with
the temperature stays below all the time.

IV. THE LEAKAGE OBLIVIOUS FEASIBILITY ANALYSIS

In this, we study Problem 1 assuming that the leakage power
is negligible. Under this assumption, the overall power con-
sumption is therefore independent of temperature. Through this
study, we intend to gain some valuable insights on how to deal
with the maximal temperature constraints in the feasibility anal-
ysis for periodic task systems. We then incorporate the leakage/
temperature dependency and develop several more elaborated
feasibility conditions.

One common practice to ensure the feasibility of a periodic
real-time task set is to construct a feasible schedule with interval

, where represents the hyperperiod, i.e., the LCM of task
periods. As long as the tasks are feasible in , by replicating
the schedule, the timing feasibility of the real-time system is
guaranteed. However, when the execution of the real-time tasks
are further constrained by a maximal temperature, is this ap-
proach still feasible?

We first introduce Theorem 1 which helps to answer this
question.

Theorem 1: Given periodic task set , let:
• be the LCM of the periods, i.e., ;
• be the speed schedule within interval that can

guarantee the deadlines of under the maximal tempera-
ture constraints with the initial temperature .

Then, when repeating later in the schedule, all task
deadlines can be guaranteed under initial temperature if

.
Proof: For interval , let the temperature at

be . Assuming there is no leakage power, based on (5),
we can simplify the overall power consumption formulation as

, where is the supply voltage when the processor is
running in mode . By solving (3), we have

(7)
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So, we have

(8)

If we repeat for interval , we have

(9)

(10)

Note that . Thus, we have

(11)

So, for the th LCM interval, we have

(12)

Therefore, when , the temperatures at
will be monotonically decreasing. This

ensures that if the maximal temperature constraint is not
violated within , it will not be violated within interval

. Therefore, under this scenario, must
be globally schedulable.

Theorem 1 states that as long as the temperature at the ending
point of a schedule is no more than the initial temperature at

, repeating the schedule that is feasible during the first
LCM interval is safe to guarantee the temperature and timing
constraint. The question is then what if . We
present another theorem for this case. We use the same nota-
tion as that in Theorem 1.

Theorem 2: If , when repeating , all task
deadlines can be guaranteed with initial temperature if and
only if

(13)

for all .
Proof: From (12), when , the temperatures

at will be monotonically increasing. Also,

forms a geometric series and we have

(14)

As , we have

(15)

Let and , where .
Based on (7), we have

(16)

and

(17)

Since , we have

(18)

Since

(19)

so, if and only if

(20)

Theorems 1 and 2 provide the necessary and sufficient con-
dition to predict if a schedule feasible within the first LCM is
globally feasible. On the other hand, Theorem 2 also implies that
not all schedules are feasible under the maximal temperature
constraint even if they can guarantee the deadlines and main-
tain the maximal temperature below during the first LCM,
i.e., . This is another example that the temperature-con-
strained real-time scheduling problem has its unique charac-
teristics, compared with the corresponding power-aware sched-
uling problems.

V. THE LEAKAGE CONSCIOUS FEASIBILITY ANALYSIS

The results in previous section reveal some interesting and
important characteristics in feasibility analysis for periodic
tasks under the maximal temperature constraint, with the
leakage power consumption ignored. However, the leakage
power consumption is too significant to be ignored in the deep
submicron domain, as stated before. In this section, we take the
leakage power consumption into account and conduct a more
sophisticated study on feasibility analysis.

A. Simplifying the Leakage/Temperature Dependency

When taking the leakage into account, one of the biggest chal-
lenges is to deal with the complex behavior of the leakage cur-
rent, as formulated in (1). While (1) can capture accurately the
characteristics of leakage current, the high-order and nonlinear
terms make it prohibitive for our real-time feasibility analysis.
Liu et al. [26] found that using linear approximation method to
model the leakage/temperature dependence can maintain rea-
sonable accuracy, i.e., with error within 1% using the piecewise
linear function or less than 5.5% using single linear function,
but the leakage model is significantly simplified. Based on this
idea, we define the leakage power for the processor running in
mode as

(21)

where and are constants that depend on the run-
ning mode, i.e., . In what follows, we omit variable for sake
of conciseness.
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The overall power consumption in mode is thus given by
the following formula:

(22)

, , and can be determined in practice once the practical
power consumptions at different temperatures are profiled. In
Section VI, we show an example and study the accuracy of this
model using technical parameters drawn from a processor using
the 65 nm technology.

With the simplified leakage power formulation, we are now
able to formulate the temperature dynamics in a closed form.
Note that, when the processor runs in mode , by combining (3)
and (22), we have temperature variations as follows:

(23)

where

(24)

(25)

If we run processor in mode during interval , with tem-
perature at be , by solving (23), we can thus get the
temperature at as

(26)

Equations (21)to (26) form the basis of feasibility analysis
with leakage/temperature interplay taken into account. In what
follows, we introduce several feasibility conditions developed
based on this leakage power consumption model.

B. Checking the Temperature at the End of First Hyperperiod

The reason that a periodic task set feasible within the first hy-
perperiod is not necessarily feasible later in its life time is that
the temperature at the end of a hyperperiod may be higher than
that at the beginning of the hyperperiod. If this is case, starting at
a new hyperperiod, the processor will run at a higher initial tem-
perature and continue to reach an even higher temperature at the
end of this hyperperiod. As this process continues, the temper-
ature may eventually exceed the peak temperature. Conversely,
from Theorem 1, as long as we can ensure that the temperature
within the first hyperperiod is not higher than , and as long
as the ending temperature is not higher than the initial temper-
ature, we can determine that a schedule must be feasible under
the given maximal temperature constraint. However, assuming
the initial temperature be the ambient temperature, unless some
aggressive cooling strategies are applied, the temperature of a
processor will always increase when executing tasks. Therefore,
the applicability of Theorem 1 is very limited. Next, we intro-
duce two other theorems that can effectively deal with the case
when .

C. Checking the Temperature Safe Modes

Recall that, in Section III, the processor can work in dif-
ferent modes, each of which is associated with a distinct pair of
supply voltage and working frequency. For some of the modes,
no matter how long the processor runs in that mode, the maximal
temperature will never exceed the given . We call these pro-
cessor modes as the safe modes.

Fig. 1. Since the slope for the linear function � � ����� � � � �� �
� � �� is less than zero, there is only one cross point for function � �
����� � � � �� � � � �� and function � � �� � . So equation
(28) has only one real root. [28]

To determine if a processor mode, i.e., mode , is safe, we
can set

(27)

Based on (3) and (22), we have

(28)

Note that (28) is the classic depressed cubic equation [32]. In
addition, if we transform (28) slightly, we have

(29)

From Section V-A, it is not difficult to see that , and
. Therefore, as illustrated in Fig. 1,

(28) has only one single real root for , which can be solved
analytically [33]. We call the solution to (28) as the equilibrium
voltage. Note that different processor running modes may have
different equilibrium supply voltages since and in (29)
are different in different modes.

Formally, we have the following lemma to determine whether
or not a processor running mode is a safe mode.

Lemma 1: Let be the equilibrium voltage (i.e., the solution
to (28)) for processor’s mode (i.e., ). Then, this mode
is a safe mode if .

Proof: We prove it by contradiction. Assume that at time
, we have but at , we have

. So, we must have

(30)

On the other hand, since , from (28), we have

(31)

which contradicts (30).
Based on Lemma 1, we can formulate our second feasibility

checking method in the following theorem.
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Fig. 2. A speed schedule within 2 hyperperiods.

Theorem 3: Let be the speed schedule within interval
that can guarantee the deadlines of under the maximal

temperature constraint , and let be the maximal speed
in . Also, let be the highest speed among the processor
safe modes. Then, if , when repeating later in
the schedule, the temperature will never exceed .

Theorem 3 can be easily proved following the similar proof as
that for Lemma 1. Note that, as long as the maximal temperature

and the processor is given, the highest speed among
the processor safe modes is well determined. Also, it is much
less costly to get the maximal speed in a schedule (such
as those generated by the approach in [34]) rather than to get
the entire speed schedule for a periodic task set. Therefore, this
approach can be effectively used for the purpose of design space
exploration.

Even though the feasibility condition formulated in Theorem
3 can be used for cases when the ending temperature of the first
hyperperiod is higher than the initial temperature, this feasibility
condition is still only a sufficient condition. In other words,
when the maximal processor speed is higher than the maximal
safe speed of the processor, the schedule may still be feasible
under the maximal temperature. In what follows, we introduce
the third feasibility condition, which is also a stronger condition
and can be used to check the schedulability for these cases.

D. The Necessary and Sufficient Condition

To guarantee the maximal temperature constraint, we need to
make sure that this constraint is not violated at the end point of
each hyperperiod and anywhere inside the hyperperiod. It helps
then to identify the possible locations within the hyperperiod
that this constraint may be violated. In what follows, we first
introduce the term, island interval.

Definition 2: An interval in is called an island
interval if the processor needs to run in a nonsafe processor
mode within this interval, or a non-island interval otherwise.

For an island interval, we have the following observation.
Lemma 2: Let be an island interval. If for any

, we have , then we have .
Proof: For any , since the processor must be

running at a nonsafe mode at and , we have

(32)

Therefore, monotonically increases with . So must
be the highest within the interval.

According to Lemma 2, the highest temperature for an island
interval always occurs at its end, given that the maximal temper-
ature constraint is not violated. Therefore, to verify if the tem-
perature constraint is violated within a given hyperperiod, we
only need to check temperatures at the ends of all island inter-
vals, plus the one at the end of the hyperperiod.

Our goal is to make sure that the temperature constraint is
not violated during the entire life cycle when executing a peri-
odic task set. Exhaustively checking temperature constraint for
all hyperperiods is apparently impossible. In addition, it is not
adequate to draw a conclusion that a schedule is feasible under
the maximal temperature constraint simply because the temper-
ature constraint is not violated within the first hyperperiod. So,
if we want to check temperatures only at the first hyperperiod,
additional constraints must be imposed. The following theorem
provides such “additional” constraints.

Theorem 4: Let the th interval in be and let its
processor mode be . Define such that

(33)

(34)

Let be an arbitrary island interval in , and let

(35)

(36)

where . Then repeating later in the schedule, the
temperature will never exceed iff the following conditions
hold:

• ;
• ;
• .

Proof: See Fig. 2. Let starting points for intervals in
be , respectively. After repeating ,

let the corresponding points during the second hyperperiod
be , correspondingly. Note that ,

and .
According to (26), we have

and



QUAN AND CHATURVEDI: FEASIBILITY ANALYSIS FOR TEMPERATURE-CONSTRAINT HARD REAL-TIME PERIODIC TASKS 335

Since , we have

(37)

Similarly, we have

Therefore, we have

(38)

In the same way, we can see that

(39)

(40)

Therefore,
form a geometric series,

and we have

(41)

Since , as , we have

(42)

After is calibrated to 0, if and only if

(43)

We now need to make sure that the maximal temperature con-
straint is not violated in any island interval. Let be an
arbitrary island interval in . Follow the same procedure as
stated above, we have

Similarly, we have

Add all above questions together, we have

(44)

Similarly, since , as , with (41), we can get

(45)

So, after is calibrated to 0, if and only if

(46)

Note that, after the speed schedule is defined, and
are well defined. We then can check temperatures at the end of
first hyperperiod as well as those at the end of island intervals.

is a feasible schedule if the three conditions in Theorem 4
hold.

E. Further Discussions

From Theorem 4 and its proof, we have a number of inter-
esting observations. Corollary 1, for example, is a straightfor-
ward conclusion from proof of Theorem 4.

Corollary 1: If and , the processor
temperature will run away and reach infinity.

Corollary 1 can be easily proved from (41). When

This implies that the heat generated by the processor exceeds its
cooling capability, and the temperature continues to rise until the
system breaks down.

On the other hand, when , the processor temper-
ature will eventually enter a stable status if the system does not
break down before that. The stable status is formally defined as
follows.

Definition 3: Assume a processor is running a periodic
schedule with period , the processor temperature is
called to be in a stable status if for a given threshold, i.e.,

(47)

where , .
When the processor temperature enters the stable status, the

temperature profile does not change much from one hyperperiod
to another hyperperiod. Also, from the proof of Theorem 4, the
temperature when the processor is in its stable status can be
analytically formulated as follows.

Lemma 3: Assume a processor is running a periodic speed
schedule with period . Let and be tempera-
tures at and , respectively. Then, when the processor
temperature reaches its stable status, the temperature at the
starting (or ending) point of a period, denoted as , can be
formulated as

(48)

Note that similar lemmas can also be developed to calculate the
temperature at each specific scheduling point, based on (45) in
the proof of Theorem 4.

In summary, we introduce three feasibility testing methods
(Sections V-B, –Section V-D) to verify if a feasible schedule
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developed within the first hyperperiod is globally feasible or
not under the given maximal temperature constraint. The first
two, which are based on Theorems 1 and 3, are sufficient condi-
tions. The third one, based on Theorem 4, is a more elaborated
necessary and sufficient condition. All three methods take the
leakage/temperature dependency into account based on the pro-
cessor power model formulated in (22). In what follows, we use
experiments to further study their effectiveness.

VI. EXPERIMENT

The feasibility conditions introduced in the previous section
are established based on the leakage power model proposed
in Section III, or more specifically, formulated by (22). There-
fore, to study the performance of the feasibility conditions, we
need to first validate the leakage model. It is difficult to analyze
the accuracy of the leakage model analytically, since the con-
stants and are obtained through polynomial approxima-
tion methods rather than from some analytical formulas. In this
section, we validate the leakage model through experiments. We
then examine the performance of different schedulability condi-
tions presented before. We also studied what impacts different
leakage models may have in schedulability analysis.

A. Leakage Model Validation

We constructed our processor model based on the work by
Liao et al. [10] for a processor using 65 nm technology. We
assumed that the processor can run in six different active modes,
with the corresponding supply voltages as 0.85 V, 0.9 V, 0.95 V,
1.0 V, 1.05 V, and 1.1 V. The processor can also be shut down
and consumes no energy. For each mode, we set the frequency
of the processor in each mode such that it can accommodate the
longest delay at the highest temperature (110 C) based on (4),
with , , and [10]. For the thermal
constants, we selected , [3],
and the ambient temperature was set to 25 C.

We studied four different leakage models shown below:
• The leakage power is a constant that is indepen-

dent of both temperature and supply voltage. This is the
leakage power model used by many previous researches
(such as [8]). The constant is determined by the average
leakage power consumption at the ambient temperature.

• The leakage power is also a constant. But the con-
stant is determined by the average leakage power consump-
tion at the highest temperature.

• The leakage power changes only with the tempera-
ture but not the supply voltage. This model is adopted in
previous work such as [9], [27], and [29].

• The leakage power varies with both the temper-
ature and supply voltage. This is the model proposed in
Section III.

We used the analytical formula, i.e., (1), to compute the actual
leakage power for temperature from 40 C to 110 C with step
size of 10 C. The total number of gate, i.e., in (6), was
set to be . The dynamic power consumption was determined
based on the experimental results reported in [10] on benchmark
gcc. The corresponding power consumption results were then
used to determine the constants in the leakage models.

TABLE I
PROCESSOR PARAMETERS AND CONSTANTS FOR MODEL ��

Fig. 3. The leakage power consumptions based on different leakage models.

Specifically, the power consumptions obtained above were
used to determined the curve fitting constants , and
for Model , which are listed in Table I. The leakage
power consumptions for and were defined as
the average results at the ambient temperature C and
the highest temperature C , respectively. For Model

, the average leakage power consumption at each temper-
ature was used to derive the corresponding linear function.

Fig. 3 plots the leakage power consumptions based on the
complex nonlinear model [i.e., (1)] and other four models.
As we can see from Fig. 3, with linear approximation, the
leakage power consumptions based on Model match
very closely to that by a much more complex method [(1)]. As
further shown in Fig. 4, the relative error is less than 5% for
0.85 V and less than 3% for 1.1 V. The results clearly show
that Model is a leakage model with low complexity
and very good accuracy.

On the other hand, however, our experimental results also
show that if the supply voltage or temperature dependency are
not carefully addressed, the leakage model can lead to esti-
mation results deviated far away from the actual values. From
Fig. 3, when the supply voltage is not taken into consideration,
the estimation errors by Model can be as much as 2.08
times higher or 26.7% lower than the actual leakage power con-
sumptions. When also ignoring the leakage/temperature depen-
dency, the estimation errors by Model and
become even larger, i.e., as much as 3.8 times higher or 56%
lower than the actual values. We investigate how significant the
leakage power estimation errors may affect schedulability anal-
ysis in Section VI-C.



QUAN AND CHATURVEDI: FEASIBILITY ANALYSIS FOR TEMPERATURE-CONSTRAINT HARD REAL-TIME PERIODIC TASKS 337

Fig. 4. The relative estimation errors by Model �� .

B. The Performance of Feasibility Conditions

We next used the processor model developed above to study
the feasibility analysis methods proposed in this paper. Three
feasibility checking methods were implemented and investi-
gated. The first one (namely, EndCheck), based on Theorem
1 checks if the temperature at the end of the hyperperiod is
no more than the initial temperature. The second one (namely,
SafeCheck) applies Theorem 3 and uses the processor safe
speed to check the feasibility. The third one (namely, Island-
Check) employs Theorem 4, checking temperatures at the
ending points of the first hyperperiod and all island intervals in
the first hyperperiod.

The real time tasks were randomly generated with periods
distributed evenly in range [100, 500] seconds. Deadlines were
determined by multiplying periods with a constant, called the
deadline-period ratio. The execution time for each task was also
randomly generated, which is evenly distributed between 1 and
its deadline. The feasible speed schedules, generated based on
the optimal method to minimize the dynamic energy [34], were
used as our test cases. Since the approach in [34] assumes a
processor model with continuously variable speed, we always
rounded up a processor speed to the next higher available one in
our experiments.

In the first set of experiments, we fixed the deadline-period
ratio at 0.3 (i.e., ) and varied the peak temper-
ature constraint from 40 C to 110 C, with step size of 1 C.
For each peak temperature, we generated 100 test cases that can
satisfy deadlines if the temperature factor is not taken into con-
sideration. Fig. 5 shows the numbers of schedulable task sets
using the three feasibility checking methods stated above. Fig. 5
shows clearly the significant impacts of peak temperature re-
quirement to the schedule’s feasibility. Note that in Fig. 5, when
the peak temperature constraint is higher than 66 C, all 100
schedules randomly generated as above can satisfy the temper-
ature constraints based on IslandCheck and SafeCheck. When
the peak temperature constraint getting tighter, however, the fea-
sibility drops quickly. In Fig. 5, when the peak temperature is

Fig. 5. Success rates under different maximal temperatures
���������� ��	�
� 	���
 � ���.

set to 40 C, about 30% of the original feasible schedules be-
come infeasible. At the same time, we can see that SafeCheck
is pessimistic in predicting the feasibility for a schedule. This is
because a schedule occasionally using a speed higher than the
processor safe speed can still reach a temperature lower than
the required maximal temperature. In Fig. 5, when the maximal
temperature is set to be 58 C, about 38% of the feasible task
sets cannot be properly verified by SafeCheck. When the given
maximal temperature becomes very high, all processor running
modes become safe modes, and thus SafeCheck obtains the
same results as that by IslandCheck in Fig. 5.

Note that in Fig. 5, none of the task sets can be predicted as
feasible using EndCheck. This is because that, starting from the
ambient temperature, the processor temperature will never fall
below the ambient temperature after executing tasks, given the
thermal settings stated before. Conceivably, if we set the starting
temperature to be higher than the ambient temperature, using
EndCheck may be more effective. Therefore, we conducted the
second set of experiments to further compare the performance
of EndCheck and IslandCheck.

In this set of experiments, we fixed the maximal temperature
at 50 C. The test cases were randomly generated as above with
the period-deadline ratio varied from 0.1 to 0.9 with step size
of 0.2. We also varied the starting temperature of EndCheck
from 0 (the ambient temperature of 25 C) to 25 (the maximal
temperature of 50 C). The number of feasible task sets by End-
Check is normalized using the number of feasible task sets by
IslandCheck and plotted in Fig. 6.

As shown in Fig. 6, the success rate by EndCheck initially
improves with the increase of the starting temperature. This is
because that setting the starting temperature higher makes it
more likely that the ending temperature at the first hyperperiod
can becomes lower than the starting temperature. However, it
is interesting to note that as starting temperature continues to
increase, the success rate by EndCheck starts to drop. This is
because that if the starting temperature is set to be too high,
the temperature may exceed the temperature constraint before
its hyperperiod and thus lead to pessimistic conclusion. Fig. 6
clearly shows that EndCheck is sensitive to the choice of the



338 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

Fig. 6. Success rates by EndCheck using different starting temperatures.
�� � �� C�

Fig. 7. Feasible task sets based on different leakage models under different
temperature �����	
��� ��
�� ��
� � ����

starting temperature and can be very pessimistic in predicting
the feasibility of real-time task sets.

C. The Impacts of Different Leakage Models

We further examine how different leakage power models may
affect the feasibility analysis results. We used the same test cases
generated in Section VI-B and applied IslandCheck on all four
leakage models introduced in Section VI-A. The numbers of
feasible task sets are collected and depicted in Fig. 7.

The results shown in Fig. 7 verify the large discrepancies
in terms of task set schedulability caused by the large estima-
tion errors by different leakage models. When assuming the
leakage power being a constant at the highest temperature, the
leakage model can lead to a feasibility analysis that is
extremely pessimistic. Note that in Fig. 7 none of the task sets
is predicted as schedulable according to at temperature
of 44 C. According to leakage model , however, 74%
of the task sets are in fact schedulable.

When assuming the leakage power consumption at the
ambient temperature, the feasibility analysis based on leakage

model can be both pessimistic or optimistic. Note that
we defined the constant leakage power consumption in
using the average results under different supply voltages at the
ambient temperature. This leakage power consumption can
thus be over estimated when the actual supply voltage is low
or under estimated when the actual supply voltages is high.
When the maximal temperature constraint is low, the schedules
that employ low processor speed are more likely to satisfy the
temperature constraints. As a result, the feasibility analysis
results based on tends to be pessimistic for these test
cases. In Fig. 7, at 40 C, 82% of the feasible task sets cannot
be correctly predicted based on leakage model . As
temperature increases, the feasibility analysis results become
more and more optimistic. At temperature 49 C, at least 22%
task sets that are predicted as feasible according to
are in fact infeasible according to results based on the leakage
model .

Even though the leakage/temperature dependency is consid-
ered in model , large estimation errors still exist since the
leakage power varies not only with temperature but also supply
voltage. As a result, similar to leakage model , the fea-
sibility analysis based on leakage model can be overly
pessimistic or overly optimistic. At 40 C, as many as 86% of
the feasible tasks cannot be properly predicted based on model

, and as many as 15% of the feasible task sets at 53 C
in fact cannot satisfy the temperature constraint. These results
clearly demonstrate that the feasibility analysis without appro-
priately accounting for the leakage power with temperature and
supply voltage can deviate far away from the actual results.

VII. CONCLUSION

As semiconductor technology continues to evolve, tempera-
ture-aware computing plays an increasingly critical role in com-
puting system design, and the power-aware design techniques
alone are inadequate to effectively address the temperature-re-
lated issues. Further, as the transistor size continue to shrink,
the leakage in the CMOS circuit and its interaction with tem-
perature and supply voltage become a too significant factor to
be ignored at the system level design.

In this paper, we study the feasibility checking problem for
real-time periodic task sets under the peak temperature con-
straint. We show that the traditional scheduling approach, i.e.,
to repeat the schedule that is feasible through the range of one
hyper-period, does not apply any more. We propose a novel
leakage mode with leakage/temperature dependency taken into
consideration. This model leverages the circuit and micro-ar-
chitecture level leakage model for ease of system level anal-
ysis. Based on the proposed power model, we present three
feasibility analysis techniques to determine if a period task set
can meet deadlines under a given maximal temperature con-
straint. Our experimental results, based on technical parameters
derived from a processor using 65 nm technology, show that
our leakage current model have a relative error less than 5%.
In addition, our experimental results on the feasibility analysis
demonstrate the effectiveness of our methods and clearly high-
light the importance to deal with the impacts of leakage/temper-
ature relationship.
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