
Leakage Aware Feasibility Analysis for Temperature-Constrained Hard Real-Time
Periodic Tasks

Gang Quan Yan Zhang

Department of Computer Science and Engineering
University of South Carolina

Columbia, SC 29063
Email: gquan,zhangy@cse.sc.edu

Abstract

As semiconductor technology continues to evolve, the
chip temperature increases rapidly due to the exponentially
growing power consumption. In the meantime, the high chip
temperature increases the leakage power, which is becoming
the dominate part in the overall power consumption for
sub-micron IC circuits. A power/thermal-aware computing
technique becomes ineffective if this temperature/leakage
relation is not properly addressed in the sub-micron domain.

In this paper, we study the feasibility problem for schedul-
ing a hard real-time periodic task set under the peak temper-
ature constraint, with the interaction between temperature
and leakage being taken into consideration. Three analysis
techniques are developed to guarantee the schedulability of
periodic real-time task sets under the maximal temperature
constraint. Our experiments, based on technical parameters
from a processor using the 65nm technology, show that the
feasibility analysis without considering the interactions be-
tween temperature and leakage can be significantly overop-
timistic.

1. Introduction

According to Borkar et al. [1] from Intel, there are more

than 10 billion transistors integrated into single 300mm2 die

today, and the number is growing rapidly toward 100B by

the middle of the next decade. The power consumed by these

transistors is also tremendous, reaching 300W in early next

decade. The exponentially increased power consumption has

posted significant challenges not only on how to provide

sufficient power source to an electronic system but also on

how to dissipate the heat generated by the system.

The thermal issues have become increasingly prominent

as power consumption continues to grow. The high chip

temperature not only increases package/cooling cost (esti-

mated at 1-3 dollar per watt [2]) but also adversely affects

the reliability and performance of the computing systems,

and can even cause a system to fail catastrophically. Even

if a processor is not totally failed at the high temperature,

a small increase in the temperature (e.g.10oC) can result

in significant reduction (50%) in its life span [3]. From the

perspective of real-time systems, when the chip temperature

exceeds certain limit, the self-protection controls in some

new generation processors may be invoked automatically

by reducing the performance and thus cause tasks to miss

deadlines.

The leakage plays an essential role in power- and thermal-

aware design in the sub-micron domain, where the leakage

power consumption is becoming more and more significant

in the overall power consumption. Liao et al. [4] have

shown that the leakage power consumption can be 2-3 times

higher than the dynamic power consumption for processors

using the 65nm technology. In addition, there is a strong

relationship between the leakage and temperature [4], [5]

in sub-micron circuits. High power consumption leads to

high chip temperature, and high chip temperature in turn

increases power consumption dramatically. When changing

the temperature from 65oC to 110oC, Liao et al. [4] have

shown that the leakage power can increase as much as

38%. Evidently, it becomes a critical issue to address the

temperature/leakage dependence in developing power and

thermal aware techniques for next generations of electronic

systems.

Since higher power consumptions lead to higher tempera-

tures, one intuitive way is to applying existing power-aware

scheduling techniques to solve this problem. However, it has

been shown that an optimal schedule that can minimize the

energy consumption is not necessarily the optimal solution

in a thermal constrained environment [6]. New techniques

explicitly addressing the thermal issues need to be devel-

oped.

Recently, the real-time scheduling problem under thermal

constraints has attracted many research interests(e.g. [6]–

[10]). Bansal et al. [6] and Chen et al. [7] studied the

temperature-aware EDF scheduling problem and identified

an upper bound for the temperature. These techniques cannot

guarantee that real-time tasks can still meet deadlines when

the maximal temperature is given. For a given maximal

temperature, Bansal et al. [6] introduced an off-line tech-

nique to minimize the energy consumption for a job set.
Chantem et al. [11] also proposed an MILP-based solution to

2009 21st Euromicro Conference on Real-Time Systems

978-0-7695-3724-5/09 $25.00 © 2009 IEEE

DOI 10.1109/ECRTS.2009.28

207

minimize the peak temperature when executing a task graph

on MPSoCs. However, as shown by Quan et al. [12], if the

job set or the task graph needs to be periodically or repet-

itively executed, the schedules developed in [6], [11] can

no longer guarantee the maximal temperature constraints.

Several scheduling algorithms for periodic tasks under the

maximal temperature constraint were also developed [12].

Zhang et al. [10] proposed to guarantee the maximal tem-

perature constraints for a periodic task set by forcing the

temperature at the end of its first hyperperiod to be no more

than that at the starting point. As implied by the results

in [12], this approach overly constrains the feasible region

and can lead to very pessimistic scheduling results. To ease

the analysis of thermal analysis, Wang et al. [8], [9] proposed

a two-speed processor model, i.e. a processor runs at the

maximal processor speed before it reaches the limit, and then

runs with the ”equilibrium speed” at which the processor

enters the equilibrium state with its temperature unchanged.

The maximal delay analysis presented in papers [8], [9]

for periodic task sets under the fixed priority as well as

the first-in-first-out policy can be used for the purpose of

scheduability analysis. These approaches do not take the

advantage of the fact that many processors support more

than two running speeds. In addition, none of the above

work has taken the leakage/temperature relationship into

consideration.

A few recent papers incorporate the temperature/leakage

dependency into the energy- or thermal-aware scheduling.

He et al. [13] and Yuan et al. [14] studied how to reduce

the leakage power at the system level. Yuan et al. [15] in-

troduced an offline and an on-line scheduling algorithm that

take into account the leakage/temperature interactions when

scheduling a set of soft real-time jobs. This approach cannot

guarantee that real-time periodic tasks can meet deadlines

under the given maximal temperature. A number of other

approaches formulate the temperature-constrained problem

as a convex optimization problem (e.g. [16], [17]). The

leakage/temperature relationship can thus be formulated as

one of the constraints. The problem is that the computational

complexity for convex optimization problems is very high.

Therefore these approaches can only work at system level

when the design solution space is small.

In this paper, we study the problem on how to guar-

antee the feasibility of periodic tasks under the maximal

temperature constraint, with the interplay of temperature

and leakage taken into consideration. We developed a novel

power model that can capture the interaction between the

temperature and leakage with high accuracy. Yet the model is

also simple enough for ease of system level analysis. Based

on this model, we then developed three conditions to check

the feasibility of real-time tasks under the peak temperature

requirement. We conducted experiments based on technical

parameters derived from a processor using the 65nm tech-

nology. The results clearly demonstrate that the feasibility

analysis without considering the interaction between tem-

perature and leakage can be significantly overoptimistic.

The rest of the paper is organized as follows. Section 2

discusses the system models and formulates our problem

formally. Section 3 presents three theorems to determine the

schedulability of a schedule under temperature constraints.

In Section 4, we presents our experimental results. Section 5

draws the conclusions.

2. System models

The real-time system considered in this paper contains

n independent periodic tasks, T = {τ0, τ1, · · · , τn−1},

scheduled according to the earliest deadline first (EDF)

policy. Task τi is characterized using three parameters, i.e.,
τi = (pi, di, ci). pi, di (di ≤ pi), and ci represent the

period, the deadline and the worst case execution time for

τi, respectively. We assume all tasks start at the same time,

and each task contains an infinite sequence of periodically

arriving instances called jobs.

2.1. Thermal model

We use the lumped RC model similar to Shadorn et

al. [18] to capture the thermal phenomena of the processor.

Specifically, assuming a fixed ambient temperature (Tamb),

let T (t) denote the temperature at time t. Then we have

RC
dT (t)

dt
+ T (t) − RP (t) = Tamb, (1)

where P (t) denotes the power consumption (in Watt) at

time t, and R, C denote the thermal resistance (in J/oC)

and thermal capacitance (in Watt/oC). We can then scale

T such that Tamb is zero and get

dT (t)
dt

= aP (t) − bT (t), (2)

where a = 1/C and b = 1/RC. For the rest of the paper, we

assume that the initial temperature of the processor equals

the ambient temperature, i.e. T0 = 0.

2.2. Processor and power model

We assume the processor can run in different modes,

with each mode being characterized by a pair of parameters

(vi, fi), where vi is the supply voltage and fi is the working

frequency in mode i. Even though the circuit delay changes

with the temperature dynamically, as shown in equation

(3) [4],

fmax =
1
td

∝ (Vdd − vt)μ

VddT η
, (3)

where td is the circuit delay, and μ and η are technology-

related constants, we assume that the processor working

frequency in each mode is fixed, and is the one that can

208

accommodate the peak temperature (i.e. by assigning the

peak temperature in equation 3) across the chip. Let fmax

be the largest fi among different modes. We can normalize

the processor working frequency with fmax and get the

normalized processor speed for each mode. In what follows,

unless otherwise specified, we use the term processor speed

or working frequency interchangeably.

The power consumption (P) of the processor consists of

two parts: the dynamic power(Pdyn) and the leakage power

(Pleak).

P = Pdyn + Pleak. (4)

The dynamic power is independent of the temperature, but

the leak power is sensitive to the temperature. Recently, sev-

eral researches have disclosed the leakage and temperature

relationship at the microarchitecture and device level [4],

[5], [19]. According to Liao et al. [4], the leakage power

can be estimated using the following formulas,

Pleak = Ngate · Ileak · Vdd (5)

where Ngate is the total number of gates, Vdd is the supply

voltage and

Ileak = Is · (A · T 2 · e((α·Vdd+β)/T) + B · e(γ·Vdd+δ)) (6)

where Is is the leakage current at certain reference tempera-

ture and supply voltage, T is the temperature, A,B, α, β, γ, δ
are empirically determined constants.

As reported in Liao et al. [4], using equation (6) can

accurately estimate the leakage current under different tem-

peratures, with relative error less than 1%. While equation

(6) captures the complex relationship between leakage the

temperature, it is too complicated to be used for real-time

analysis. Liu et al. [19] found that using linear approxima-

tion method to model the leakage/temperature dependence

can maintain reasonable accuracy, i.e. with error within 1%

using the piece-wise linear function or less than 5.5% using

single linear function, but the leakage model is significantly

simplified. Based on this idea, we define the leakage power

for the processor running in mode k as

Pleak(k) = (C0(k) + C1(k)T) · vk, (7)

where C0(k) and C1(k) are constants that depend on the

running mode, i.e. k. In what follows, we omit variable k
for sake of conciseness.

The dynamic power consumption is independent to the

temperature and can be formulated as Pdyn = C2v
3
k [20].

The overall power consumption in mode k is thus given by

the following formula.

P (k) = (C0 + C1T) · vk + C2v
3
k. (8)

C0, C1 and C2 can be determined in practice once the

practical power consumptions at different temperatures are

profiled. In Section 4, we show an example and study the

accuracy of this model using technical parameters drawn

from a processor using the 65nm technology.

When the processor runs in mode k, by combining equa-

tion (2) and (8), we have temperature variations as follows:

dT (t)
dt

= A(k) − B(k)T (t), (9)

where

A(k) = a(C0vk + C2v
3
k) (10)

B(k) = (b − aC1vk) (11)

If we run processor in mode k during interval [t1, t2], with

temperature at t = t1 be T (t1), by solving equation (9), we

can get the temperature at t = t2 as

T (t2) =
A(k)
B(k)

+ (T (t1) −
A(k)
B(k)

)e−B(k)(t2−t1). (12)

2.3. Problem formulation

Varying processor supply voltage and working frequency

is one of the most effective ways to manage the power con-

sumption dynamically. We call a schedule that dictates how

to vary the processor supply voltage and working frequency

as the speed schedule. We are interested in studying if a

processor speed schedule that can guarantee the deadlines

of all tasks can still do so under the maximal temperature

constraint. Since the processor can only run in a number

of modes, the speed schedule is thus formally defined as

follows.

Definition 1: Given periodic task set T , let L be the least

common multiple (LCM) of the periods, i.e.,p0, p1, ..., pn−1.

The speed schedule Ŝ(t) is defined as a sequence of <
[sti, edi], modei >, where

• [sti, edi] is an interval in which the processor runs in

modei,

•
⋃

i[sti, edi] = [0, L], and

• [sti, edi]
⋂

[stj , edj] = ∅ if i �= j.

With the thermal and processor models introduced as

above, our problem can be formulated as follows:

Problem 1: Given

• a hard real-time task set T = {τ0, τ1, · · · , τn−1},

• a variable voltage processor that can run in m different

modes, i.e. (vi, fi), i = 0, ...,m − 1,

• the maximal allowable temperature Tmax,

• and a speed schedule Ŝ(t) with l intervals, i.e. <
[ti, ti+1], modei >, l = 0, 1, ..., l − 1,

determine if T can meet the required deadlines using Ŝ(t)
with the temperature stays below Tmax all the time.

3. Feasibility analysis

One common approach to analyze the schedulability of a

periodic real-time task set is to determine if all jobs located

209

within the first hyperperiod—the interval [0, L] where L
is the least common multiple of task periods—can meet

their deadlines. As long as all jobs are feasible in [0, L],
by replicating the schedule, all other jobs will meet their

deadlines as well. Interestingly, as shown by Quan et al. [12],

when temperature impacts are taken into consideration, this

approach does not apply any more. In this section, we

introduce three feasibility conditions to predict if a periodic

real-time task set can meet deadlines under the maximal

temperature constraint.

3.1. Checking the temperature at the end of first
hyperperiod

The reason that a periodic task set feasible within the first

hyperperiod is not necessarily feasible later in its life time

is that the temperature at the end of a hyperperiod may be

higher than that at the beginning of the hyperperiod. If this

is case, starting at a new hyperperiod, the processor will run

at a higher initial temperature and continue to reach an even

higher temperature at the end of this hyperperiod. As this

process continues, the temperature may eventually exceed

the peak temperature. Conversely, if the ending temperature

of the first hyperperiod is lower than the initial temperature,

a feasible schedule that can satisfy the maximal temperature

constraint will still be feasible during its life time. We

summary this conclusion in the following theorem.

Theorem 1: Assume that Ŝ(t) can guarantee the deadlines

of T under the maximal temperature constraint Tmax. Then,

when repeating Ŝ(t), all task deadlines can be guaranteed

with temperature below Tmax if T (L) ≤ T (0).
Theorem 1 can be proved by simply noting that, since

T (L) ≤ T (0), the second hyperperiod always starts at

the same or a more favorable situation. Therefore, the

temperature constraints will not be violated.

From Theorem 1, as long as we can ensure that the

temperature within the first hyperperiod is not higher than

Tmax, and as long as the ending temperature is not higher

than the initial temperature, we can determine whether the

schedule is feasible or not under the given maximal temper-

ature constraint. However, assuming the initial temperature

be the ambient temperature, unless some aggressive cooling

strategies are applied, the temperature of a processor will

always increase when executing tasks. Therefore, the appli-

cability of Theorem 1 is very limited. Next, we introduce

two other theorems that can effectively deal with the case

when T (L) > T (0).

3.2. Checking the temperature safe modes

Recall that, in Section 2.2, the processor can work in

different modes, each of which is associated with a distinct

pair of supply voltage and working frequency. For some

of the modes, no matter how long the processor runs in

that mode, the final temperature will never exceed the given

Tmax. We call these processor modes as the safe modes.

To determine if a processor mode, i.e. mode k, is safe,

we can set
dT (t)

dt
|T (t)=Tmax

= 0, (13)

Based on equation (2) and (8), we have

a((C0 + C1Tmax) · v + C2v
3) − bTmax = 0. (14)

Note that equation (14) is the classic depressed cubic equa-
tion [21]. In addition, if we transform equation (14) slightly,

we have

C2v
3 = −a((C0 + C1Tmax)) · v + bTmax. (15)

From Section 2, we can see that C2 > 0, and a((C0 +
C1Tmax)) > 0. Therefore, as illustrated in Figure 1,

equation (14) has only one single real root for v, which

can be solved analytically [22]. We call the solution to

equation (14) as the equilibrium voltage. Note that different

processor running modes may have different equilibrium

supply voltages since C0 and C1 in equation (15) are

different in different modes.

Formally, we have the following lemma to determine

whether or not a processor running mode is a safe mode.

Lemma 1: Let ve be the equilibrium voltage (i.e. the

solution to equation (14)) for processor’s mode k (i.e.

(vk, fk)). Then this mode is a safe mode if ve ≥ vk.

Proof: We prove it by contradiction. Assume that at

time t ≤ t0 we have T (t) = Tmax but at t0 + �t, we have

T (t0 + �t) > Tmax. So we must have

dT (t)
dt

|t=t0=
dT (t)

dt
|T (t)=Tmax

> 0. (16)

On the other hand, since ve ≥ vk, from equation (14), we

have

dT (t)
dt

|t=t0 = a((C0 + C1Tmax) · vk + C2v
3
k) − bTmax

≤ a((C0 + C1Tmax) · ve + C2v
3
e) − bTmax

= 0, (17)

which contradicts equation (16).

Based on Lemma 1, we can formulate our second feasi-

bility checking method in the following theorem.

Theorem 2: Let Ŝ(t) be the speed schedule within inter-

val [0, L] that can guarantee the deadlines of T under the

maximal temperature constraint Tmax, and let smax be the

maximal speed in Ŝ(t). Also let smf be the highest speed

among the processor safe modes. Then if smax ≤ smf , when

repeating Ŝ(t) later in the schedule, the temperature will

never exceed Tmax.

Theorem 2 can be easily proved following the similar proof

as that for Lemma 1. Note that, as long as the maximal tem-

perature Tmax and the processor is given, the highest speed

(smf) among the processor safe modes is well determined.

210

Figure 1. Since the slope for the linear function y =
−a((C0 +C1Tmax)) ·v + bTmax is less than zero, there is
only one cross point for function y = −a((C0+C1Tmax))·
V +bTmax and function y = C2V

3. So equation (14) has
only one real root.

Also, it is much less costly to get the maximal speed (smax)

in a schedule (such as those generated by the approach

in [23]) rather than to get the entire speed schedule for a

periodic task set. Therefore this approach can be effectively

used for the purpose of design space exploration.

Even though the feasibility condition formulated in Theo-

rem 2 can be used for cases when the ending temperature of

the first hyperperiod is higher than the initial temperature,

this feasibility condition is still only a sufficient condition.

In other word, when the maximal processor speed is higher

than the maximal safe speed of the processor, the schedule

may still be feasible under the maximal temperature. In what

follows, we introduce the third feasibility condition, which

is also a stronger condition and can be used to check the

schedulability for these cases.

3.3. The necessary and sufficient condition

To guarantee the maximal temperature constraint, we need

to make sure that this constraint is not violated at the

end point of each hyperperiod and anywhere inside the

hyperperiod. It helps then to identify the possible locations

within the hyperperiod that this constraint may be violated.

In what follows, we borrow the term of the island interval
from Quan et al. [12] but change its definition slightly.

Definition 2: An interval [ti, tj] in Ŝ(t) is called an island
interval if the processor needs to run in a non-safe processor

mode within this interval, or a non-island interval otherwise.

For an island interval, we have the following observation.

Lemma 2: Let [t1, t2] be an island interval. If for any t ∈
[t1, t2], we have T (t) ≤ Tmax, then we have T (t) ≤ T (t2).

Lemma 2 can be proved by noticing that the temperature

in an island interval monotonically increases and follow-

ing the similar proof as that for Lemma 1. According to

Lemma 2, the highest temperature for an island interval

always occurs at its end, given that the maximal temperature

constraint is not violated. Therefore, to verify if the temper-

ature constraint is violated within a given hyperperiod, we

only need to check temperatures at at the ends of all island

intervals, plus the one at the end of the hyperperiod.

Our goal is to make sure that the temperature constraint is

not violated during the entire life cycle when executing a pe-

riodic task set. Exhaustively checking temperature constraint

for all hyperperiods is apparently impossible. In addition,

it is not adequate to draw a conclusion that a schedule is

feasible under the maximal temperature constraint simply

because the temperature constraint is not violated within

the first hyperperiod. So, if we want to check temperatures

only at the first hyperperiod, additional constraints must be

imposed. The following theorem provides such ”additional”

constraints.

Theorem 3: Let the ith interval in Ŝ(t) be [ti, ti+1] and

let its processor mode be k. Define Ai, Bi such that

Ai = A(k) = a(C0vk + C2v
3
k), (18)

Bi = B(k) = (b − aC1vk). (19)

Let [t(j−1), tj] be an arbitrary island interval in Ŝ(t), and

let

Kj = exp(−B0(t1 − t0) − ... − Bj(tj − t(j−1)))(20)

K = exp(−B0(t1 − t0) − ... − Bl(tl − t(l−1)))(21)

where tl = L. Then repeating Ŝ(t) later in the schedule,

the temperature will never exceed Tmax iff the following

conditions hold:

• 0 ≤ K < 1;

• T (L) ≤ Tmax(1 − K);
• T (tj) ≤ Tmax − T (L)

1−K Kj .

Proof: See Figure 2. Let starting points for intervals in

Ŝ(t) be t0, t1, ..., t(l−1), respectively. After repeating Ŝ(t),
let the corresponding points during the second hyperperiod

be t′0, t
′
1, ..., t

′
(l−1), correspondingly. Note that t0 = 0, t′0 =

tl = L and t′l = 2L.

According to equation (12), we have

T (t1) =
A0

B0
+ (T (t0) −

A0

B0
)e−B0(t1−t0)

and

T (t′1) =
A0

B0
+ (T (t′0) −

A0

B0
)e−B0(t

′
1−t′0).

Since (t′1 − t′0) = (t1 − t0), we have

T (t′1) − T (t1) = (T (t′0) − T (t0))e−B0(t1−t0). (22)

Similarly, we have

T (t′2) − T (t2) = (T (t′1) − T (t1))e−B0(t1−t0)−B1(t2−t1),

...

211

Figure 2. A speed schedule within 2 hyperperiods.

Therefore, we have

T (2L) − T (L)
= T (t′l) − T (tl)
= (T (L) − T (0))e−B0(t1−t0)−...−Bl−1(tl−t(l−1))

= (T (L) − T (0))K. (23)

In the same way, we can see that

T (3L) − T (2L) = (T (2L) − T (L))K (24)

T (4L) − T (3L) = (T (3L) − T (2L))K (25)

...

Therefore, T (L) − T (0), T (2L) − T (L), T (3L) −
T (2L), ..., T (qL) − T ((q − 1)L) form a geometric series

and we have

T (qL) = T (0) +
(T (L) − T (0))(1 − Kq)

1 − K
. (26)

Since 0 ≤ K < 1, as q → ∞, we have

lim
q→∞T (qL) = T (0) +

(T (L) − T (0))
1 − K

. (27)

After T0 is calibrated to 0, T (qL) ≤ Tmax if and only if

T (L) ≤ Tmax(1 − K). (28)

We now need to make sure that the maximal temperature

constraint is not violated in any island interval. Let [tj−1, tj]
be an arbitrary island interval in Ŝ(t). Follow the same

procedure as stated above, we have

T (L + tj) − T (tj)

= (T (L) − T (0))e−B0(t1−t0)−...−Bj−1(tj−tj−1)

= (T (L) − T (0))Kj .

Similarly, we have

T (2L + tj) − T (L + tj) = (T (2L) − T (L))Kj ,

T (3L + tj) − T (2L + tj) = (T (3L) − T (2L))Kj ,

...

T (qL + tj) − T ((q − 1)L + tj) = (T (qL) −
T ((q − 1)L))Kj ,

Add all above questions together, we have

T (qL + tj) − T (tj) = (T (qL) − T (0))Kj . (29)

Similarly, since 0 ≤ K < 1, as q → ∞, with equation (26),

we can get

T (qL + tj) = T (tj) +
(T (L) − T (0))

1 − K
Kj . (30)

So, after T0 is calibrated to 0, T (qL + tj) ≤ Tmax if and

only if

T (tj) ≤ Tmax − T (L)
1 − K

Kj . (31)

Note that, after the speed schedule Ŝ(t) is defined, K and

Kj are well defined. We then can check temperatures at the

end of first hyperperiod as well as those at the end of island

intervals. Ŝ(t) is a feasible schedule if the three conditions

in Theorem 3 hold.

Further discussions
From Theorem 3 and its proof, we have a number of

interesting observations. Corollary 1, for example, is a

straightforward conclusion from proof of Theorem 3.

Corollary 1: If K > 1 and T (L) > T (0), the processor

temperature will run away and reach infinity.

Corollary 1 can be easily proved from equation (26). When

K > 1,

lim
q→∞T (qL) = lim

q→∞(T (0) +
(T (L) − T (0))(1 − Kq)

1 − K
)

= ∞.

212

This implies that the heat generated by the processor exceeds

its cooling capability, and the temperature continues to rise

until the system breaks down.

On the other hand, when 0 ≤ K < 1, the processor

temperature will eventually enter a stable status if the

system does not break down before that. The stable status
is formally defined as follows.

Definition 3: Assume a processor is running a periodic

schedule Ŝ(t) with period L, the processor temperature is

called to be in a stable status if for a given threshold, i.e.

0 < ε << 1,

|T ((i + 1)L) − T (iL)| < ε, (32)

where i ≥ 0, i ∈ Z.

When the processor temperature enters the stable status,

the temperature profile does not change much from one

hyperperiod to another hyperperiod. Also, from the proof

of Theorem 3, the temperature when the processor is in its

stable status can be analytically formulated as follows.

Lemma 3: Assume a processor is running a periodic

speed schedule Ŝ(t) with period L. Let T (0) and T (L) be

temperatures at t = 0 and L, respectively. Then when the

processor temperature reaches its stable status, the temper-

ature at the starting (or ending) point of a period, denoted

as T (L′), can be formulated as

T (L′) = T (0) +
(T (L) − T (0))

1 − K
. (33)

Note that similar lemmas can also be developed to calculate

the temperature at each specific scheduling point, based on

equation (30) in the proof of Theorem 3.

4. Experimental results

In the previous section, we present three feasibility testing

methods (Theorem 1, 2, and 3) to verify if a feasible sched-

ule developed within the first hyperperiod is globally feasible

or not under the given maximal temperature constraint. The

first two, i.e. Theorem 1 and 2, are sufficient conditions,

and the third one, i.e. Theorem 3, is a more elaborated

necessary and sufficient condition. All three methods take

the leakage/tempearture dependency into account based on

the processor and power model described in Section 2.

In this section, we use experiments to test our proposed

processor and power model, and study the effectiveness of

these three schedulability analysis techniques.

We built our processor model based on the work by

Liao et al. [4] for a processor using 65nm technology.

Liao et al. developed an analytical formula (equation (6))

that can estimate the leakage current with less than 1%

error. We used the same formula to compute the leakage

currents for temperature from 40oC to 110oC with step

size of 10oC, which were used to determine curve fitting

constants C0 and C1 in equation (7). To compare with the

Table 1. Processor parameters

Vdd(V) C0 C1 C2 Frequency
0.00 0.0 0.0 0.0 0.0
0.85 3.0973 0.1621 15.9 0.8513
1.05 9.6375 0.1988 15.9 1.0

results presented in [4], we picked only two active modes

(with supply voltages being 0.85V and 1.05V) and one

shutdown mode for the processor. Figure 3a compares our

linear approximation results (equation(7)) and the results via

the accurate leakage estimation method (equation (6)). The

relative errors are shown in Figure 3b. As we can see from

Figure 3a and Figure 3b, the leakage current calculated using

the linear approximation method is very close to that by a

much more complex method (equation(6)), with error less

than 5% for 0.85V and less than 3% for 1.05V.

As indicated in [4], the circuit delay varies with both

temperature and supply voltage. We set the frequency of the

processor such that it can accommodate the longest delay

at the highest temperature (110oC) based on the related

formula given in [4]. To obtain the leakage power consump-

tion, the total number of gates, i.e. Ngate in equation (5),

was set to be 106. The dynamic power consumption (and

thus constant C2) was determined based on the experimental

results reported in [4].

Table 1 lists the processor supply voltages, curve-fitting

constants, and frequencies, which are normalized to the max-

imal one. For comparison purpose, we also consider another

processor model in our experiments. The only difference of

this model is that it assumes a constant leakage (i.e. the one

under the ambient temperature). For the thermal constants,

we selected Rth = 0.8K/W , Cth = 340J/K [2], and the

ambient temperature was set to 25oC.

We next used the processor models developed above to

study the feasibility analysis methods proposed in this paper.

Four feasibility checking methods were studied. The first

one (namely EndCheck), based on Theorem 1 checks if the

temperature at the end of the hyperperiod is no more than

the initial temperature. The second one (namely SafeCheck)

applies Theorem 2 and uses the processor safe speed to

check the feasibility. The third one (namely IslandCheck)

employs Theorem 3, checking temperatures at the ending

points of the first hyperperiod and all island intervals in the

first hyperperiod. The fourth one (namely ConstLeak) is

proposed in [12] that does not take the leakage temperature

dependency into consideration.

The real time tasks were randomly generated with periods

distributed evenly in range [1000, 5000] seconds. Deadlines

were determined by multiplying periods with a constant,

called the deadline-period ratio. The execution time for

each task was also randomly generated, which is evenly

distributed between 1 and its deadline. The feasible speed

schedules, generated based on the optimal method to mini-

213

(a) The linear approximation. (b) The relative errors.

Figure 3. The linear approximation of the leakage current and the relative error for 65nm technology.

mize the dynamic energy [23], were used as our test cases.

Since the approach in [23] assumes a processor model

with continuously variable speed, we always rounded up

a processor speed to the next higher available one in our

experiments.

In our first set of experiments, we fixed the deadline-

period ratio at 0.3 (i.e. DPratio=0.3) and varied the peak

temperature constraint from 40oC to 110oC, with step size

of 1oC. For each peak temperature, we generated 100 test

cases that can satisfy deadlines if the temperature factor is

not taken into consideration. All these test cases were then

tested using the four methods stated above and the numbers

of schedulable task sets are shown in Figure 4.

Figure 4 shows clearly the significant impacts of peak

temperature requirement to the schedule’s feasibility. Note

that Figure 4 only presents the results for peak temperature

range in [40,55]oC. This is because, in our experiments,

for a peak temperature higher than 53oC, all 100 sched-

ules randomly generated as above can satisfy the temper-

ature constraints based on IslandCheck, SafeCheck, and

ConstLeak. When the peak temperature constraint getting

tighter, however, the feasibility drops quickly. In Figure 4,

when the peak temperature is set to 45oC, more than 40%

of the original feasible schedules become infeasible.

Figure 4 also reveals the applicability and effectiveness

of each feasibility analysis method. We can see that, with-

out considering the leakage/temperature dependency, Con-
stLeak can be overoptimistic in predicting the schedulability

of a task set. Note that, when the peak temperature set

to 49oC, more than 30% of feasible schedules based on

ConstLeak are in fact infeasible based on corresponding

results by IslandCheck. In addition, it is not surprising to

see in Figure 4 that none of the task sets can be predicted as

feasible using EndCheck. This is because that, starting from

the ambient temperature, the processor temperature always

increases to one that is above the ambient temperature after

40

50

60

70

80

90

100

110

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
Maximal Temperature(0C)

Th
e

N
um

be
r o

f F
ea

si
bl

e
Ta

sk
 S

et
s

EndCheck
SafeCheck
IslandCheck
ConstLeak

Figure 4. The numbers of predicted feasible task sets
by four approaches under different maximal tempera-
ture constraints (deadline-period ratio = 0.3). The re-
sults for maximal temperature higher than 55oC are the
same as that of 55oC and thus omitted.

executing tasks, given the thermal settings stated before.

Moreover, we can see that SafeCheck is overpessimistic

in predicting the feasibility for a schedule. This is because

a schedule occasionally using a speed higher than the

processor safe speed can still reach a temperature lower than

the required maximal temperature. In Figure 4, when the

maximal temperature is set to be 52oC, about 34% of the

feasible task sets cannot be verified properly by SafeCheck.

When the given maximal temperature becomes very high,

all processor running modes become safe modes, and thus

SafeCheck obtains the same results as that by IslandCheck
in Figure 4.

In our second set of experiments, we fixed the maximal

temperature at 50oC, and varied the deadline-period ratio.

The deadline-period ratio was varied from 0.1 to 0.9 with

214

40

50

60

70

80

90

100

110

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Deadline Period Ratio

Th
e

N
um

be
r o

f F
ea

si
bl

e
Ta

sk
 S

et
s

EndCheck
SafeCheck
IslandCheck
ConstLeak

Figure 5. The numbers of predicted feasible task sets
by four approaches under different deadline-period ra-
tio. (Tmax = 50oC).

step size of 0.1. The numbers of feasible schedules deter-

mined by each method are shown in Figure 5.

While similar conclusions with regard to the feasibility

analysis effectiveness and applicability can be drawn from

Figure 5, the results further highlight the importance of

taking the leakage/temperature dependency into consider-

ation. Note that as the deadline period ratio increases,

the intervals within which the processor runs in an active

mode become longer. Therefore, the leakage impacts be-

come more significant, and the temperature grows faster.

ConstLeak considers only constant leakage but not the

intertwine between leakage and temperature, as that by

SafeCheck and IslandCheck. As a result, while we observe

no difference in terms of numbers of feasible schedules with

ConstLeak as the deadline period ratio increases, the results

based on both SafeCheck and IslandCheck are significantly

different. When the deadline period ratio is 0.9, ConstLeak
mispredicts the feasibility for 52% of the task sets, as

shown in Figure 5. These experimental results clearly show

the significant role that the leakage/temperature relationship

plays for processors using the sub-micron technology.

5. Summary and the future work

As semiconductor technology continues to evolve toward

the deep sub-micron era, the leakage in the CMOS circuit

and its interaction with temperature become a too significant

factor to be ignored.

In this paper, we make a number of contributions: (i) we

introduce a novel leakage mode with leakage/temperature

dependency taken into consideration. This model leverages

the circuit and micro-architecture level leakage model for

ease of system level analysis. (ii) Based on the proposed

power model, we present three feasibility analysis techniques

to determine if a period task set can meet deadlines under a

given maximal temperature constraint. (iii) Our experimental

results, based on technical parameters derived from a pro-

cessor using 65nm technology, show that our leakage current

model have a relative error less than 5%. In addition, our

experimental results on the feasibility analysis demonstrate

the effectiveness of our methods and clearly highlight the

importance to deal with the impacts of leakage/temperature

relationship.

The feasibility analysis techniques presented in this paper

establish a solid basis for further extensive research on

leakage-aware thermal analysis for real-time systems. With

these feasibility analysis techniques, we can determine if

a given schedule can meet both timing and maximal tem-

perature constraints. However, it is by no means a trivial

effort to develop such a schedule. In our current work, for

simplicity, we use the well-known method (i.e [23]) that

can minimize the dynamic energy. Such a schedule does not

necessarily minimize the overall energy consumption when

considering the leakage power consumption in the overall

power consumption [24], let alone the leakage/temperature

dependency. Furthermore, previous work (such as [6], [12])

has clearly shown that an energy minimization scheduling

technique is not necessarily the optimal solution in terms

of scheduling real-time tasks under thermal constraints.

It is therefore imperative that new scheduling techniques

be developed under the maximal temperature constraints.

In addition, to develop real-time scheduling methods that

can minimize the energy consumption under the maximal

temperature constraint with the consideration of the leakage

and temperature interplay is an interesting problem and calls

for further research.

Acknowledgment

The authors would also like to thank the anonymous

reviewers for their constructive remarks that helped improve

the quality of this paper. This work was supported by

the NSF under Career Award CNS-0545913 and DUE-

06333641.

References

[1] S. Borkar, “Thousand core chips: a technology perspective,”
in DAC. New York, NY, USA: ACM, 2007, pp. 746–749.

[2] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan, “Temperature-aware microarchitec-
ture,” ICSA, pp. 2–13, 2003.

[3] L.-T. Yeh and R. C. Chu, Thermal Management of Microelec-
tronic Equipment: Heat Transfer Theory, Analysis Methods,
and Design Practices. New York, NY: ASME Press, 2002.

215

[4] W. Liao, L. He, and K. Lepak, “Temperature and supply volt-
age aware performance and power modeling at microarchitec-
ture level,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 7, pp. 1042 –
1053, 2005.

[5] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron,
and M. Stan, “Hotleakage: a temperature-aware model of
subthreshold and gate leakage for architects,” University of
Virginia Dept. of Computer Science Technical Report, 2003.

[6] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed scaling to man-
age energy and temperature,” Journal of the ACM, vol. 54,
no. 1, pp. 1–39, 2007.

[7] J. Chen, C. Hung, and T. Kuo, “On the minimization fo the
instantaneous temperature for periodic real-time tasks,” RTAS,
pp. 236–248, 2007.

[8] S. Wang and R. Bettati, “Reactive speed control in
temperature-constrained real-time systems,” ECRTS, pp. 161–
170, 2006.

[9] S. Wang and R. Bettati, “Delay analysis in temperature-
constrained hard real-time systems with general task arrivals,”
RTSS, pp. 323–334, 2006.

[10] S. Zhang and K. S. Chatha, “Approximation algorithm for the
temperature-aware scheduling problem,” in ICCAD. Piscat-
away, NJ, USA: IEEE Press, 2007, pp. 281–288.

[11] T. Chantem, R. P. Dick, and X. S. Hu, “Temperature-aware
scheduling and assignment for hard real-time applications on
mpsocs,” in DATE ’08: Proceedings of the conference on
Design, automation and test in Europe. New York, NY,
USA: ACM, 2008, pp. 288–293.

[12] G. Quan, Y. Zhang, W. Wiles, and P. Pei, “Guaranteed
scheduling for repetitive hard real-time tasks under the max-
imal temperature constraint,” ISSS+CODES, 2008.

[13] L. He, W. Liao, and M. R. Stan, “System level leakage
reduction considering the interdependence of temperature and
leakage,” in DAC. New York, NY, USA: ACM, 2004, pp.
12–17.

[14] L. Yuan, S. Leventhal, and G. Qu, “Temperature-aware leak-
age minimization technique for real-time systems,” in ICCAD.
New York, NY, USA: ACM, 2006, pp. 761–764.

[15] L. Yuan and G. Qu, “Alt-dvs: Dynamic voltage scaling with
awareness of leakage and temperature for real-time systems,”
Adaptive Hardware and Systems, NASA/ESA Conference on,
vol. 0, pp. 660–670, 2007.

[16] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang,
“Thermal vs energy optimization for dvfs-enabled processors
in embedded systems,” in ISQED. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 204–209.

[17] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd,
and G. D. Micheli, “Temperature-aware processor fre-
quency assignment for mpsocs using convex optimization,”
in CODES+ISSS. New York, NY, USA: ACM, 2007, pp.
111–116.

[18] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic
techniques and thermal-rc modeling for accurate and localized
dynamic thermal management,” in HPCA ’02: Proceedings of
the 8th International Symposium on High-Performance Com-
puter Architecture. Washington, DC, USA: IEEE Computer
Society, 2002, p. 17.

[19] Y. Liu, R. P. Dick, L. Shang, and H. Yang, “Accurate
temperature-dependent integrated circuit leakage power esti-
mation is easy,” in DATE ’07: Proceedings of the conference
on Design, automation and test in Europe. San Jose, CA,
USA: EDA Consortium, 2007, pp. 1526–1531.

[20] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Inte-
grated Circuits: A Design Perspective. Prentice Hall, 2003.

[21] P. J. Nahin, The Story of
√−1. Boston: Princeton University

Press, 1998.

[22] Wikepdeia, “Cubic function,”
http://en.wikipedia.org/wiki/Cubic equation, 2008.

[23] F. Yao, A. Demers, and S. Shenker, “A scheduling model for
reduced cpu energy,” in FOCS, 1995, pp. 374–382.

[24] G. Quan and L. Niu, “Fixed priority scheduling for reducing
overall energy on variable voltage processors,” RTSS’04, Dec
2004.

216

