
Peripheral-Conscious Scheduling on Energy Minimization for Weakly Hard
Real-time Systems

Abstract
In this paper, we present a dynamic scheduling algorithm

to minimize the energy consumption by both the DVS pro-
cessor and peripheral devices in a weakly hard real-time
system. In our approach, we first use a static approach to
partition real-time jobs into mandatory and optional part
to meet the weakly hard real-time constraints. We then
adopt an on-line approach that can effectively exploit the
run-time variations and reduce the preemption impacts to
leverage the energy saving performance. Extensive simula-
tion studies demonstrate that our approach can effectively
reduce the system-wide energy consumption while guaran-
teeing the weakly hard constraints at the same time.

1 Introduction

Power aware scheduling has proven to be an effective
way to reduce the energy consumption which is critical to
increase the mobility for today’s pervasive computing sys-
tems. Two main types of techniques are reported in the lit-
erature. The first one is commonly known as thedynamic
power down(DPD), i.e., to shut down a processing unit and
save power when it is idle. The second one is calleddy-
namic voltage scaling(DVS) which updates the processor’s
supply voltages and working frequencies dynamically.

Extensive power aware scheduling techniques have been
published for energy reduction, but most of them (e.g. [12,
18]) have been focused solely on reducing the processor en-
ergy consumption. While the processor is one of the major
power hungry units in the system, other peripherals such
as network interface card, memory banks, disks also con-
sume significant amount of power. The empirical study by
Viredaz and Wallach reveals that the processor core con-
sumes around 28.8% of total power when playing a video
file on a hardware testbed [16] for handheld devices, while
the DRAM consumes about 28.4% of the total power. Note
that this testbed [16] lacks disk storage and wireless net-
working capability, which may contribute as much power
consumption as the processor core if not more [19, 3]. This
implies that the techniques that attack the processor energy
alone may not be overall energy efficient.

Recently, several techniques (e.g. [6]) have been pro-

posed to reduce the energy consumption forhard real-time
systems consisting of both core processors and peripheral
devices. However, few real-time applications are trulyhard
real-time,i.e., many practical real-time applications can tol-
erate some deadline misses provided that user’s perceived
quality of service (QoS) constraints can be satisfied. The
weakly hard real-time modelis more accurate for practi-
cal applications. In the weakly-hard real-time model, tasks
have both firm deadlines (i.e., deadline missing is useless)
and a throughput requirement (i.e.,sufficienttask instances
must meet deadlines to provide required quality levels).

Many weakly hard real-time models have been proposed
(e.g. [14, 17]). Specifically, Ramanathanet. al. [14] pro-
posed a so-called(m,k)−model, with a periodic task be-
ing associated with a pair of integers, i.e.,(m,k), such that
among anyk consecutive instances of the task, at leastmof
the instances must finish by their deadlines for the system
behavior to be acceptable. Adynamic failureoccurs, which
implies that the temporal QoS constraint is violated and the
scheduler is thus considered failed, if within any consecu-
tive k jobs more than(k−m) job instances miss their dead-
lines.

In this paper, we study the problem of reducing the
system-wide energy consumption for the weakly hard real-
time system modeled with the(m,k)−model. The prob-
lem becomes more challenging since we need to deal with
not only the tradeoffs between DVS and DPD (as most pe-
ripheral devices support only DPD mechanism), but also
the mandatory/optional partitioning problems, i.e., to deter-
mine which jobs are mandatory (whose deadlines have to
be met to guarantee no dynamic failure occur) and which
jobs can be optional, which is known to be NP-hard [13].
In this paper, we propose a novel mandatory/optional parti-
tioning strategy and a sufficient condition for checking the
feasibility. Based on which, we present a dynamic schedul-
ing scheme that extends previous approaches on preemp-
tion control [5] and mandatory job pattern adjustment [10]
to achieve higher efficiency in energy savings. The novelty
and effectiveness of this approach are demonstrated with
extensive simulation studies.

The rest of the paper is organized as follows. Section 2

presents the system model, related work, and motivations.
Section 3.1 describes a feasibility condition to guaranteethe
(m,k)-firm deadlines. Section 3 presents our new approach
in determining the mandaory/optional job partitioning. Sec-
tion 4 presents our overall algorithm to reduce the system
energy. In section 5, we presents our experimental results.
Section 6 draws the conclusions.

2 Preliminary
In this section, we first introduce the system and archi-

tecture model. We then survey the related work, followed
by a motivation example.

2.1 System Models

The real-time system considered in this paper containsn
independent periodic tasks,T = {τ0,τ1, · · · ,τn−1}, sched-
uled according to the earliest deadline first (EDF) policy.
Each task contains an infinite sequence of periodically ar-
riving instances calledjobs. Taskτi is characterized using
five parameters,i.e., τi = (Ti ,Di ,Ci ,mi ,ki). Ti , Di (Di ≤ Ti),
andCi represent the period, the deadline and the worst case
execution time forτi , respectively. A pair of integers, i.e.,
(mi ,ki) (0 < mi ≤ ki), represent the QoS requirement forτi ,
requiring that, among anyki consecutive jobs ofτi , at least
mi jobs meet their deadlines.

The system architecture consists of a DVS processor and
n devices,M0,M1, ...,Mn−1, each of which is dedicated to
one different task. The DVS processor used in our system
can operate at a finite set of discrete supply voltage levels
V = {V1, ...,Vmax}, each with an associated speedSi , which
is normalized to the speed corresponding toVmax. We de-
note the processor power asPcact when running a task at
its maximal speed andPcsleep when it is shut down. We
use three parameters to characterize a peripheral device, i.e.,
Mi = (Pi

dact,P
i
dsleep,L

i
min), wherePi

dact represents the active

mode power consumption,Pi
dsleeprepresents the sleep mode

power consumption, andLi
min represents the minimal time

interval that the device can be feasibly shut down with pos-
itive energy-saving gain. Similarly, we useTmin to represent
the minimal time interval for the processor when it works at
the highest speed.

2.2 Related work

Most DVS real-time scheduling approaches are focused
on saving energy consumed by the processor only. Re-
cently, a number of researches (e.g. [4, 6, 5, 20]) are re-
ported to reduce the energy consumption for systems con-
sisting of DVS processors and peripheral devices. Kim and
Ha [6] proposed a time slot-based scheduling technique for
hard real-time system. Jejurikar and Gupta [4] introduced a
heuristic search method to find the so calledcritical speed
to balance the energy consumption between the processor
and peripheral devices. Kimet al. [5] and Zhuoet al. [20]

Task 1

(b)

0

Task 2

16
 32

4

Task 1

(a)

0

Task 2

12
8
 16

16
 32

Task 1

(c)

0

Task 2

16
 32

20
 24
 28
 32

4
 12
8
 16
 20
 24
 28
 32

4
 12
8
 16
 20
 24
 28
 32

8

8

8

24

24

24

Figure 1. (a) Executing the mandatory jobs
of task set (τ1 = (4,4,2,2,4); τ2 = (8,8,4,2,4);)
according to their E-patterns; (b) Executing
the mandatory jobs of the same task set ac-
cording to their R-patterns; (c) Executing the
mandatory jobs of the same task set accord-
ing to their hyb-patterns.

considered controlling the preemption between tasks in or-
der to reduce the active period of the devices and therefore
their energy consumption. There are also a number of re-
searches investigating the scheduling problem for systems
with non-DVS processor and I/O devices [2]. All these ap-
proaches target hard real-time systems.

We are more interested in developing scheduling tech-
niques for real-time systems with (m,k)-constraints. The re-
lated mandatory/optional partitioning and scheduling prob-
lem, due to its NP-hard nature [13], add another de-
gree of complexity in conserving the system wide energy.
For minimizing energy consumption for weakly hard real-
time systems modeled by(m,k)-model, Alenawy and Ay-
din [1] introduced a scheduling technique to maximize
(instead of guarantee) the quality level under energy con-
straints for real-time systems with (m,k)-constraints. Niu
and Quan [10] presented a combined static/dynamic DVS
scheduling method to reduce processor energy with (m,k)-
guarantee. Both techniques focus only on the minimiza-
tion of the processor energy consumption. Recently, Niu
and Quan [11] proposed a scheduling method to reduce
the system-wide energy consumption for real-time systems
with (m,k)-constraints. The systems in their approach con-
sist of only a non-DVS processor and peripheral devices.

2.3 The motivations

Our goal is to employ DVS and DPD judiciously to
save energy and guarantee the (m,k)-constraints in the mean
time. The mandatory/optional partitioning plays a critical
role in our problem since different mandatory/optional par-
titions can lead to dramatically different feasibility condi-
tions and therefor have tremendous impacts on the proces-

sor/device power consumption.
There are two known mandatory/optional partitioning

techniques proposed in the literature, i.e., R-pattern and
E-pattern [10]. The R-pattern, first proposed by Korenet
al. [7], always the firstmi jobs in aki job window as manda-
tory. It congregates the optional jobs and can lead to large
idle intervals. The E-pattern, proposed by Ramanathanet
al. [15] distributedmi mandatory jobs evenly among every
ki jobs. The task set is easier to be schedulable with E-
patterns since the interference between the mandatory jobs
are reduced. As long as the mandatory jobs can meet their
deadlines, the (m,k)-constraints are satisfied.

Niu et al. [10] showed that E-patterns can lead to signifi-
cant dynamic energy reduction for the processor. However,
it is not necessary always energy efficient when consider-
ing the energy consumed by other peripheral devices. Con-
sider a task set of two tasks,i.e., τ1 = (4,4,2,2,4) andτ2 =
(8,8,4,2,4).. Suppose the device shut down intervals
L1

min = 6 and L2
min = 16 and the power consumption for

the devicesP1
dact = 0.2 and P2

dact = 0.5. Figure 1(a) shows
the EDF schedule based on E-pattern. Since E-patterns dis-
tribute the mandatory jobs evenly, we can see that from Fig-
ure 1(a) that the speed of taskτ1 can be reduced quite ef-
fectively. However, since the mandatory jobs are allocated
evenly, the idle intervals becomes very short and thus de-
vices cannot be shut down. R-pattern, on the other hand,
seems to be a better choice in increasing the length of idle
intervals. However, due to the poor schedulability of R-
pattern, the processor speed cannot be effectively scaled
down. As shown in Figure 1(b),τ1 has to be executed at
a much higher processor speed (represented by the height
of the rectangles) than that in Figure 1(a).

It is desirable to devise a new mandatory/optional par-
titioning strategy based on different characteristics of tasks
and peripheral devices. However, to ensure the schedula-
bility and its effectiveness of overall energy savings can be
extremely difficult since the partitioning problem as well as
the feasibility problem has shown to be NP-hard. We could,
however, incorporate the advantages of both R-pattern and
E-pattern to achieve better energy saving performance. For
example, Figure 1(c) presents a schedule that can serve the
purposes of scaling down the processor speed and shutting
down the peripheral device simultaneously. By partitioning
τ1 with E-pattern andτ2 with R-pattern, we can effectively
scale down the processor speed while maintaining long idle
interval to shut down devices with high power consumption
(i.e. device 2). A number of immediate problems follows:
(i) how to ensure the mandatory jobs according to the mixed
E-pattern and R-pattern can meet their deadlines and thus
the (m,k)-constraints, (ii) how to assign the appropriate E-
pattern or R-pattern to each task to maximize the energy
savings, and (iii) how to employ dynamic scheduling tech-
niques based on the assigned hybrid patterns to deal with
the run-time variations.

3 The hybrid partitioning strategy
In this section, we first derive a sufficient and neces-

sary condition to check the schedulability for a task set
with mixed E-patterns and R-patterns. We then develop
a heuristic to assign E-pattern and R-pattern for different
tasks based on characteristics of tasks and peripheral de-
vices.

3.1 The feasibility condition

A key problem in our approach is the capability to pred-
icate the schedulabilty of a task set with designated manda-
tory/optional pattern assignment. The following theorem
provides us a practical way to predict the schedulability for
the resultant mandatory job set.

Theorem 1 Let T = R
S

E , where R and E represent
the mandatory job sets according to the R-pattern and E-
pattern, respectively. Also, let WR(0,t) and WE(0,t) repre-
sent the total workload fromR andE that arrive at or after
time 0 have to be finished before t. Then all mandatory jobs
can meet their deadlinesiff

WR(0,t)+WE(0,t) ≤ t (1)

for all t ≤ L where L is either the ending point of the
first busy period or theleast common multipleof Ti , i =
0, ...,(n−1), whichever is smaller, and

t =

{

pTi +Di p∈ Z, p mod ki ≤ mi ,∀τi ∈ R

⌊q ki
mi
⌋Ti +Di, p∈ Z,∀τi ∈ E .

(2)

Given the regularity of E-patterns and R-patterns,WR(0,t)
andWE(0,t) can be well formulated [9]. Theorem 1 indi-
cates that the schedulability of the mandatory jobs can be
guaranteed if the mandatory jobs within the first busy in-
terval or the LCM of the periods can meet their deadlines.
The proof of Theorem 1 can be done by exploiting the gen-
eral sufficient and necessary condition for tasks scheduled
according to EDF as well as the fact that for both R-pattern
and E-patternWR(0,t) andWE(0,t) are the largest, com-
pared with any mandatory workload within the same length.
Due to the page limit, we omit the details for the proofs.

3.2 The pattern assignment

With the schedulability condition estabilished, the prob-
lem then becomes how to assign R-patterns and E-patterns
appropriately to balance the processor and device power in
order to save the overall energy. The following observations
help us develop our heuristic (see Algorithm 1) for assign-
ing different patters for different tasks.

Considering a job with workloadw and power function
for core processor asPcact(s) and the power function for
the peripheral device asPdact, the total energy(Etotal(s))

Algorithm 1 The hybrid pattern assignment. (Algorithm
PAHYB)

1: Input: T , scrit andLi
min for τi ;

2: E = T ,R = /0, Update = TRUE;
3: while Updatedo
4: Update = FALSE;
5: E ′ = {τi |scrit (τi) ≥ 1,τi ∈ E};
6: if E ′ 6= /0 then
7: Let τ′ ∈ E ′ such thatscrit (τ′) is the largest;
8: if E − τ′ schedulablethen
9: E = E − τ′,R = R + τ′;

10: Update = TRUE;
11: end if
12: else
13: for τi ∈ E do
14: Let Er(τi) (Ee(τi)) represent the energy con-

sumption onτi within oneki window according
to R-pattern (E-pattern) assignment;

15: if Er > Ee AND E − τi is schedulablethen
16: E = E − τi ,R = R + τi ;
17: Update = TRUE;
18: end if
19: end for
20: end if
21: end while

consumed to finish this job with speeds can be represented
as

Etotal(s) = (Pcact(s)+Pdact)×
w
s
. (3)

Then, the speed (scrit) that can minimizeEtotal(s) in equa-
tion 3 (so calledthe critical speed[4, 20]) can be computed
by solving the following equation:

dEtotal(s)
ds

|s=scrit = 0 (4)

Since different tasks need different devices, the critical
speeds for different tasks can be different. Note that a crit-
ical speed higher than 1 implies that the processor speed
should never be scaled down for the purpose of saving the
overall energy. Assigning R-pattern to such a task helps to
extend the idle interval to shut down the corresponding de-
vice. On the other hand, if the processor speed is scaled
down to lower than the critical speed itself, it will consume
more energy to complete a job. Therefore, the processor
speed should not be scaled down below its critical speed
even it can be done so.

When the processor speed can be scaled down to a level
higher than the critical speed but lower than the maximal
speed, it becomes more difficult to determine which pattern
should be adopted. This is due to the following reasons: (1)
setting the processor speed too low will shorten the idle in-
tervals which is not in favor of peripheral device shut down;

(2) setting processor speed too high will increase the dy-
namic energy consumption of the processor; (3) setting pro-
cessor speed at different levels also affect the pattern assign-
ments for other tasks. In our approach, we solve this prob-
lem by comparing the energy consumption for executing the
task (e.g.τi) within oneki window. Specifically, we scale
down processor speeds forτi under R-pattern and E-pattern
separately based on feasibility condition (Theorem 1). We
then compute the total energy consumption to finish the
mandatory jobs ofτi within one ki window. Finally, we
assign a task with R-pattern if the result energy consump-
tion with R-pattern is lower than that with E-pattern. The
algorithm terminates if no pattern assignment is updated.

4 The dynamic scheduling algorithm
Algorithm 1 helps to statically determine the manda-

tory/optional job partitions and also set up the appropri-
ate scaling factor for each task to guarantee the (m,k)-
constraints. Considering the large run-time variations in
embedded systems, it would be extremely profitable to em-
ploy a scheduling technique that can exploit the irregular-
ities and variations on-line. We are therefore interested in
developing a dynamic scheduling technique to achieve bet-
ter energy-saving performance.

Niu et al. [10] proposed a strategy to change the manda-
tory/optional jobs dynamically. We can prove that this strat-
egy is still valid in our case when different tasks may be
assigned different patterns. With the consideration of pe-
ripheral devices, the only difference is to run the optional
jobs when the associated device cannot be shut down and
run it with the critical speed rather than the lowest possi-
ble speed. Kim et al. [5] proposed another method, i.e.,
to control the preemptions dynamically, to save the energy.
Their approach needs to increase the processing speeds of
the jobs, which would increase the processor energy con-
sumption and therefore might not necessarily energy effi-
cient. In what follows, we adopt another strategy to delay
the executions of higher priority jobs. Different from the
delay approach from that in [5], we do not need to increase
the processing speed and therefore have a better energy ef-
ficiency.

Before we introduce our strategy, we first introduce the
following definition.

Definition 1 [11] Let Tm be the mandatory job set, deter-
mined based on either R-patterns or E-patterns, scheduled
according to EDF. Let Ri be the worst case response time of
τi ∈ Tm. Thedelay factorfor τi (denoted as Yi) is defined as
Yi = (Di −Ri).

The worst case response time for a task set scheduled with
EDF can be computed off-line in a similar way to that in [8].
With the definition of delay factorYi , we have the following
theorem.

Algorithm 2 The peripheral conscious scheduling algo-
rithm. (AlgorithmMKPC)

1: Input: The current jobJcur and the current timetcur ;
2: Let Jcur be coming mandatory jobs with priorities

higher thanJcur;
3: Computetnp based on equation (5);
4: ExecuteJcur non-preemptively within[tcur, tnp];
5: Updatetcur;
6: if Jcur is completedthen
7: if Ji is optional jobthen
8: Shift the pattern based on the approach in [10];
9: end if

10: Let tn be the arrival time of the next coming manda-
tory from the same task;

11: if tn− tcur > Li
min then

12: Shut down the deviceLcur and set up the wake up
timer to betn− tcur;

13: end if
14: end if

Theorem 2 Let Tm be the mandatory job set, determined
based on either R-patterns or E-patterns, scheduled accord-
ing to EDF. Also let hp(Ji) be the set of each job Jp with
arrival time rp > r i and priority higher than Ji . All jobs in
Tm can meet their deadlines if the starting execution time of
hp(Ji) is delayed to tnp, where

tnp = min
Jp∈hp(τi)

(rp +Yp). (5)

Theorem 2 allows us to delay the higher priority jobs safely
without increasing the processor speed. Delaying the execu-
tion of higher priority jobs helps to reduce their preemptions
on lower priority ones. As a result, the devices associated
for the lower priority jobs can be shut down earlier instead
of being kept active during the preemption period.

With Theorem 2, we are now ready to formulate our
dynamic scheduling algorithm, which is shown in Algo-
rithm 2. Algorithm 2 combines both the dynamic manda-
tory job pattern adjustment and dynamic preemption con-
trol and therefore can achieve much better performance as
demonstrated in the next section. To ensure the effective-
ness and efficiency of this algorithm, we have the following
theorem.

Theorem 3 Algorithm 2, with complexity of O(n), can en-
sure the(m,k)-requirements forT if T is schedulable under
the hybrid patterns assigned according to Algorithm 1.

5 Experimental Results
In this section, we evaluate the performance of our ap-

proach through simulations. We implemented four different
approaches. In the first approach, the task sets are stati-
cally partitioned withR-patterns, and the mandatory jobs

are executed with the statically determined speed. We re-
fer this approach as (PCR) and use its results as the ref-
erence results. The second approach (PCE) partitions the
mandatory/optional jobs based onE-patterns. PCE is es-
sentially the approach in [10] with the extra considerations
of critical speed. The third approach (PCHYB) adopts the
static hybrid pattern proposed in Section 3.2. The fourth
approach (PCHYB−dyn) is our new approach adopting the dy-
namic preemption control and pattern adjustment proposed
in Section 4.

Three groups of experiments were conducted. In the
first group of experiments, we study the energy-saving per-
formance by different approaches corresponding to differ-
ent workloads. We randomly generated periodic task set
with five tasks. The periods were randomly chosen in the
range of[5, 50]ms. The worst case execution time (WCET)
of a task was set to be uniformly distributed from 1ms to
its deadline, and the actual execution time of a job was
randomly picked from [0.4WCET, WCET]. Themi and
ki for the (m,k)-constraints were also randomly generated
such thatki is uniformly distributed between 4 to 10, and
2≤ mi < ki . We varied the(m,k)-utilization, i.e.,∑i

miCi
kiTi

, of
the task by step of 0.1, and generated at least 20 schedu-
lable task sets within each interval or until at least 5000
task sets have been generated. The device associated with
each task was randomly chosen from three types of de-
vices: M1(0.5,0,5), M2 = (1,0,15), andM3 = (5,0,30).
The power consumption is related to the maximal consump-
tion of the processor and the minimal interval length is in
mini-second unit. We assume that the processor minimal
shut-down interval lengthTth = 2ms. The results are shown
in Figure 2(a).

While it is shown [10] that E-pattern assignment always
dominates the R-pattern assignment in reducing the pro-
cessor energy, this is not the case any more when periph-
eral devices are taken into consideration as shown in Fig-
ure 2(a). We can see from the results that, by adopting
hybrid patterns,PCHY B can achieve much better energy ef-
ficiency than those adopting E-pattern or R-pattern alone,
i.e., up to around 18%. Moreover, the dynamic algorithm
PCHYB−dyn that adopts dynamic preemption control and dy-
namic pattern adjustment can further reduce the energy by
up to 15%.

In the second group of experiments, we investigate the
energy saving performance for devices with different min-
imal shut-down intervals. The powers of the devices re-
main the same. Three sub-groups of experiments were con-
ducted with the minimal shut-down interval sets of the de-
vices randomly selected from one of three ranges [2,20]ms,
[20,40]ms, and [40,60]ms, respectively. The results for task
sets (generated in the same way as those for the first group
) with (m,k)-utilization within [0.3, 0.4] are shown in Fig-
ure 2(b).

(a)
 (b)
 (c)

50

60

70

80

90

100

110

120

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

(m,k) Untilization

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

PC_R
 PC_E
 PC_HYB
 PC_HYB_dyn

50

60

70

80

90

100

110

120

130

140

150

[2, 20]
 [20, 40]
 [40, 60]

minimal shut-down interval

N
o

rm
a
li
ze

d
 E

n
e
rg

y
 C

o
n

s
u

m
p

ti
o

n

PC_R
 PC_E
 PC_HYB
 PC_HYB_dyn

50

60

70

80

90

100

110

[0.2, 1]
 [1, 2]
 [2, 10]

device power

N
o

rm
a
li
ze

d
 E

n
e
rg

y
 C

o
n

s
u

m
p

ti
o

n

lppc_DP
 PC_HYB_dyn

Figure 2. (a) The average total energy consumption by the different approaches; (b) The energy com-
parison for different shut-down interval length; (c) The energy comparison for different preemption
control techniques.
As shown in Figure 2(b), when the minimal shut-down

intervals are chosen from shorter interval range,i.e., [2,
20]ms, E-patter has better energy performance since E-
patterns helps to better slow down the processor. How-
ever, as the minimal shut-down interval length grows, R-
pattern becomes much better as it provides more chances
for the device to be shut down, especially when the shut-
down overhead becomes significantly large, i.e., [40,60]ms
in Figure 2(b). Note that in all three cases, using hybrid
pattern (PCHYB) can achieve the best energy performance
among the three. And the dynamic preemption control and
pattern adjustment help to further reduce the energy, i.e.,
around 15%.

The third group of experiments evaluate the effectiveness
of our technique on dynamic preemption control. We in-
corporated the preemption control scheme by Kim [5] into
our approach (represented byl ppcDP) and compared with
PCHYB−dyn. The task sets were generated in the same way
as that for the second group. For the devices, we fixed their
minimal shut-down intervals but vary their relative power
consumption. Three sub-sets of tests were also conducted,
within each we randomly selected the power consumption
for devices from one of three power ranges, [0.5,1], [1,5],
and [5,10]. The results, normalized to that byl ppcDP, are
shown in Figure 2(c).

As shown in Figure 2(c), when the device power is very
small, the improvement our approach (PCHYB−delay) over
l ppcDP is very limited as the critical speed of the task is
much smaller than the maximal speed, which provides more
space forl ppcDP to change the speed and delay the higher
priority mandatory jobs. However, as the device power in-
creases, the improvement ofPCHYB−delay becomes more
significant. This is because that as the device power be-
comes larger, the critical speed for each task becomes closer
to or higher than the maximal processor speed, which makes
little slack for delaying higher priority jobs according to
l ppcDP. When the device power is larger than two times of
the processor power, the improvement can be around 15%
as shown in the figure.

6 Summary
In this paper, we present a dynamic scheduling algo-

rithm to minimize the system wide energy consumption
with (m,k)-guarantee. The system consists of a core pro-
cessor a number of peripheral devices, which have differ-
ent power characteristics. Different from previous work
that adopted single known mandatory/optional partitioning
strategy, we propose to incorporate different partitioning
strategies based on the power characteristics of the devices
as well as the application specifications. We introduce a
feasibility condition, and based on which, we propose an
algorithm to performance the mandatory/optional job parti-
tions. We also propose a novel preemption control scheme,
which can be well incorporated into our dynamic schedul-
ing algorithm. Extensive experiments have been performed
and demonstrate the effectiveness of our approach.
References

[1] T. A. AlEnawy and H. Aydin. Energy-constrained scheduling
for weakly-hard real-time systems.RTSS, 2005.

[2] H. Cheng and S. Goddard. Online energy-aware i/o device
scheduling for hard real-time systems.DATE, 2006.

[3] L. Doherty, B. Warneke, B. Boser, and K. Pister. Energy
and performance considerations for smart dust.Interna-
tional Journal of Parallel Distributed Systems and Networks,
4(3):121–133, 2001.

[4] R. Jejurikar and R. Gupta. Dynamic voltage scaling for
system-wide energy minimization in real-time embedded
systems.ISLPED, 2004.

[5] C. Kim and K. Roy. Preemption-aware dynamic voltage scal-
ing in hard real-time systems.ISLPED, 2004.

[6] M. Kim and S. Ha. Hybrid run-time power management
technique for real-time embedded system with voltage scal-
able processor.OM’01, pages 11–19, 2001.

[7] G. Koren and D. Shasha. Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips. InRTSS,
1995.

[8] M.Spuri. Analysis of deadline scheduled real-time systems.
In Rapport de Recherche RR-2772, INRIA, France, 1996.

[9] L. Niu and G. Quan. Energy-aware scheduling for real-
time systems with (m,k)-guarantee. InTechnical Report TR-
2005-005, Department of Computer Science and Engineer-
ing, University of South Carolina, 2005.

[10] L. Niu and G. Quan. Energy minimization for real-time sys-
tems with (m,k)-guarantee.IEEE Trans. on VLSI, Special

Section on Hardware/Software Codesign and System Synthe-
sis, pages 717–729, July 2006.

[11] L. Niu and G. Quan. System-wide dynamic power manage-
ment for multimedia portable devices.accepted by IEEE In-
ternational Symposium on Multimedia (ISM’06), 2006.

[12] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. InSOSP, 2001.

[13] G. Quan and X. Hu. Enhanced fixed-priority scheduling with
(m,k)-firm guarantee. InRTSS, pages 79–88, 2000.

[14] K. Ramamritham and J. A. Stankovic. Scheduling algorithms
and operating system support for real-time systems.Pro-
ceedings of the IEEE, 82(1):55–67, January 1994.

[15] P. Ramanathan. Overload management in real-time control
applications using (m,k)-firm guarantee.IEEE Trans. on
Paral. and Dist. Sys., 10(6):549–559, Jun 1999.

[16] M. A. Viredaz and D. A. Wallach. Power evaluation of a
handheld computer.IEEE Micro, 23(1):66–74, 2003.

[17] R. West and K. Schwan. Dynamic window-constrained
scheduling for multimedia applications. InICMCS, 1999.

[18] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced cpu energy. InAFCS, pages 374–382, 1995.

[19] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy,
and R. Wang. Modeling hard-disk power consumption.FAST
’03, pages 217–230, 2003.

[20] J. Zhuo and C. Chakrabarti. Systemlevel energyefficient dy-
namic task scheduling.DAC, 2005.

