
Energy Efficient DVS Schedule For Fixed-Priority

Real-Time Systems

GANG QUAN

University of South Carolina

and

XIAOBO SHARON HU

University of Notre Dame

Energy consumption has become an increasingly important consideration in designing many real-
time embedded systems. Variable voltage processors, if used properly, can dramatically reduce
such system energy consumption. In this paper, we present a technique to determine voltage set-
tings for a variable voltage processor that utilizes a fixed priority assignment to schedule jobs. By
exploiting more efficiently the processor slack time, our approach can be more effective in reducing
the execution speed for real-time tasks when necessary. Our approach also produces the minimum
constant voltage needed to feasibly schedule the entire job set. With both randomly generated
and practical examples, our heuristic approach can achieve the dynamic energy reduction very
close to the theoretically optimal one (within 2%) with much less computation cost.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Purpose
And Application-Based Systems—Real-Time and Embedded Systems; D.4.1 [Operating Sys-
tems]: Process Management—Scheduling

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Dynamic voltage scaling, Fixed-priority scheduling, Low
power, Real-time

1. INTRODUCTION

Energy consumption is becoming one of the critical factors in designing micropro-
cessor based systems, because of not only the prevalence of battery-operated sys-
tems, such as portable personal computing and communication devices, but also the
considerations of packaging cost and reliability issues. In a CMOS-based processor,
power consumption consists of two components: dynamic and static power [Rabaey
and Pedram 1996]. The dynamic component comes from charging and discharg-
ing capacitance and the short circuit current due to the non-zero rising and falling

Author’s address: Gang Quan, Department of Computer Science & Engineering, University of
South Carolina, Columbia, SC 29208, gquan@cse.sc.edu.
Xhaobo Sharon Hu, Department of Computer Science & Engineering, University of Notre Dame,
Notre Dame, IN 46556, shu@cse.nd.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 1084-4309/2006/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006, Pages 1–30.



2 · Quan et al.

times of signals. The static component mainly attributes to the leakage current
sources, including both the subthreshold current and the junction reverse-bias cur-
rent, flowing through the transistors. In many embedded systems today, dynamic
energy consumption tends to be the dominate part in the overall energy consump-
tion. With the scaling of the IC technology, however, static power consumption is
increasing rapidly [ITRS snet].

Dynamic Voltage Scaling (DVS), which enables systems to operate under dy-
namically varied supply voltages, forms the basis for the total power consumption
reduction. Since dynamic power is a quadratic function of the voltage, reducing the
supply voltage and therefore the processor speed can effectively minimize the dy-
namic power consumption, which is the dominating part in the power consumption
for most of today’s processors and will still be a major component in overall power
consumption in the future [Duarte et al. 2002]. In terms of reducing the overall
energy consumption, many newly developed scheduling techniques, e.g. [Irani et al.
2003; Jejurikar et al. 2004; Niu and Quan 2004; Yan et al. 2003], are constructed
based on the DVS schedule. For example, Yan et. al. [Yan et al. 2003] proposed to
first reduce the processor speed such that no real-time task misses its deadline, and
then adjust the voltage supply and body biasing voltage based on the processor
speed to reduce the overall power consumption. For processor with no adaptive
body biasing control, Iran et. al. [Irani et al. 2003] showed that the overall optimal
voltage schedule can be constructed from the traditional DVS voltage schedule that
optimizes the dynamic energy consumption. Therefore, judiciously exploiting the
DVS feature of the variable voltage processor plays an important role in provid-
ing the just-in-time computation and achieving high overall energy efficiency for
real-time embedded systems.

In this paper, we are interested in studying the DVS scheduling techniques for a
fixed-priority (FP) real-time system. Specifically, the system consists of jobs with
predefined release times, deadlines and required number of CPU cycles. Such jobs
may either be aperiodic or be instances of periodic tasks. These jobs are scheduled
by a preemptive scheduler based on fixed priorities, e.g., according to the Rate-
Monotonic Scheme (RMS) [Liu and Layland 1973]. FP scheme is adopted in most
real-time systems of practical interest for its low overhead, ease of implementation,
high predictability [Liu 2000]. While finding the optimal voltage schedule that
consumes the least dynamic energy for a job set scheduled with Earliest Deadline
First (EDF) scheme [Liu and Layland 1973] can be solved in polynomial time [Yao
et al. 1995], the problem becomes NP-hard when the jobs are scheduled according
to the FP scheme [Yun and Kim 2003].

In this paper, we present an efficient heuristic technique to find the voltage sched-
ule of an FP real-time system, i.e., different voltage (processor speed) settings at
different time. Two algorithms are given in the paper. The first one takes O(N2)
time, where N is the number of jobs to be scheduled, and finds the minimum con-
stant speed needed to complete a job. The second algorithm, with O(N3) time
complexity, builds on the first one and gives two results. First, the minimum con-
stant voltage (or speed) needed to complete a set of jobs is obtained. This is an
important parameter when designing systems with no sophisticated power man-
agement hardware but only simple on/off modes or where large voltage transition

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 3

overhead is a concern [Mochocki et al. 2002]. Secondly, a voltage schedule is pro-
duced. We prove that this voltage schedule always results in lower dynamic energy
consumption compared to using the minimum constant voltage and shutting down
the system when it is idle. The iterative technique introduced in this paper can
further be exploited to handle discrete voltage levels and transition overhead.

We have tested our algorithm with both randomly generated job sets and practi-
cal applications, and compared with the results in previous research, e.g. [Shin and
Choi 1999; Shin et al. 2000; Quan and Hu 2003]. The experimental results show
that our approach can achieve dynamic energy savings very close to that by the
optimal ones (with 2%) with much less computation complexity.

The rest of the paper is organized as follows. Section 2 introduces the related
work and then formally formulates the problem. Two novel algorithms are presented
in Section 3 and 4. Section 5 discusses further the characteristic of our approach
and its extensions. Experimental results are discussed in Section 6 and Section 7
concludes the paper. This paper is the extended version of [Quan and Hu 2001].

2. PRELIMINARIES

In this section, we first introduce our system models and review some known results.
Then we formally formulate the problem to be solved.

2.1 System model

The real-time system we are studying consists of N independent jobs, J = {J1, J2,· · · , JN},
arranged in the decreasing order of their statically assigned priorities. The following
timing parameters are defined for each job Jn:

—Rn: the time at which job Jn is ready to be executed, referred to as release time.

—Dn: the time by which Jn must be completed, referred to as deadline.

—Cn: the maximum number of CPU cycles needed to complete job Jn without any
interruption, referred to as workload.

The real-time jobs are executed by a single processor based on the FP preemptive
scheduling scheme. Without loss of generality, we assume no special relationships
among release times and deadlines of different jobs. It is not difficult to see that
the above system model can be readily used to model task instances in periodic
real-time systems, where Rm and Rn differ by some integer multiple of the task
period if Jm and Jn belong to the same task.

The system architecture under consideration includes a variable voltage proces-
sor, other necessary circuits for altering voltage and clock frequency, an operating
system (OS), etc. Interesting readers can refer to [Burd and Brodersen 2000; Gutnik
and Chandrakasan 1996; Namgoong et al. 1997; Nielsen et al. 1994; T. Pering 2000]
for more implementation details of such an architecture. For ease of our discus-
sions, we assume that supply voltage can be changed continuously. This constraint
is removed in Section 4.2.

2.2 Related work

There has been substantial research conducted that exploits the DVS capability of
modern processors in real-time scheduling for saving energy. To determine at what

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



4 · Quan et al.

voltage (speed) a system should operate at each time instant can be done either
on-line or off-line. Weiser et.al. [Weiser et al. 1994] proposed an on-line approach
to reduce the processor speed based on the assumption that the workload in the
following time frame is similar to that in the previous one. Later on, Govil et.

al. [Govil et al. 1995], Huang et. al. [Hwang and Wu 1997], and Jacob et. al. [Lorch
and Smith 2001] improved this approach by proposing other better prediction poli-
cies for the future workload. However, as shown in an empirical work [Pering et al.
1998], the energy saving achieved by these approaches are likely to be severely lim-
ited due to the lack of knowledge for the system timing characteristics. Moreover,
these approaches cannot be applied to many real-time systems with hard deadlines.

To meet the hard real-time requirements, many novel on-line techniques are also
proposed, e.g. [Pillai and Shin ; Kim et al. 2002; Shin and Choi 1999; Aydin et al.
2001b; Kim et al. 2003]. While an on-line approach can efficiently exploit run-time
variations, we believe that an energy efficient scheduling approach must incorporate
more sophisticated off-line analysis results since many real-time embedded systems
have highly deterministic timing specifications, and the energy consumption for
such systems can be greatly reduced by aggressively taking advantage of these in-
formation when applying the DVS techniques. Furthermore, off-line approaches can
afford to employ more advanced optimization algorithms without being constrained
much by the time and energy consumption due to carrying out the approaches them-
selves. Some recent on-line techniques [Mochocki et al. 2005] also show that off-line
results may be used effectively to guide on-line decisions.

There have been many off-line approach results reported in the literature, e.g. [Ishi-
hara and Yasuura 1998; Hong et al. 1998; Yao et al. 1995; Aydin et al. 2001a; Je-
jurikar and Gupta 2002]. Yao, Demers and Shenker [Yao et al. 1995] presented an
off-line algorithm to find the optimal voltage schedule for a real-time job set with
arbitrary arrival times and hard deadlines. Aydin et. al. proposed an optimal volt-
age schedule for periodic task sets with different power consumption characteristics
in [Aydin et al. 2001b]. In [Ishihara and Yasuura 1998], the lower power scheduling
problem is formulated as an integer linear programming problem, and the system
consists of a set of tasks with same arrive times and deadlines but different con-
text switching activities. An off-line scheduling heuristic for non-preemptive hard
real-time tasks is discussed in [Hong et al. 1998]. Most of the above work [Yao
et al. 1995; Aydin et al. 2001b; Hong et al. 1998] assume that jobs are scheduled
according to the EDF priority assignment [Liu and Layland 1973].

A number of papers have been published on FP DVS scheduling techniques. Shin
and Choi [Shin and Choi 1999] presented an on-line FP scheduling scheme for hard
real-time systems on a variable voltage processor. The advantage of the technique
is its simplicity and hence can be readily incorporated into an operating system
(OS) kernel. However, it determines the processor speed based solely on the release
time of the closest “ready” job. It cannot exploit the fact that the release times
and deadlines of most real-time jobs, particularly the jobs corresponding to the
instances of periodic tasks, are known off-line. Hence, it often fails to fully utilize
the benefit provided by a variable voltage processor. In [Makzak and Chakrabarti
2003], Manzak and Chakrabarti proposed to use the Lagrange multiplier method
to determine the processor speed for a periodic task set scheduled with RMS. The

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 5

energy consumption is minimized under the constraint that the total utilization
is a constant no bigger than the well-known utilization bound [Liu and Layland
1973]. Unfortunately, the energy saving with this approach are severely limited
since using the utilization bound to predict the schedulability of the real time
systems scheduled with RMS can lead to very pessimistic results [Liu and Layland
1973]. For example, according to this approach, a real-time system with 5 periodic
tasks will have to limit the utilization of the processor to be within 0.74 which is
rather pessimistic. In regard to this, Shin, Choi, and Takayasu [Shin et al. 2000]
proposed to determine the lowest maximum processor speed based on the worst
case response time analysis [Lehoczky et al. 1989]. Note that this approach is
suitable for the periodic tasks having the same starting time or they can still be
very pessimistic otherwise. Moreover, it is not difficult to see that the processor
speeds can be further reduced for the jobs not having the worst case response time.

In [Yun and Kim 2003], Yun and Kim formally proved that the problem of finding
the optimal voltage schedule for an FP real-time job set is NP-hard. Then they
provided an approximation algorithm to find the near optimal solution with the
complexity of O(N4/ǫ2) (where N is the number of jobs to be scheduled and ǫ
(0 < ǫ ≪ 1) measures the closeness of a desired solution to the optimal solution).
Even though it is reported [Yun and Kim 2003] that this approach takes polynomial
time in theory, the computation cost to get a good quality solution can be extremely
high which makes it impractical to large real-time applications. In [Quan and Hu
2003], Quan and Hu proposed an approach to find the optimal voltage schedule for
this problem. Unfortunately, this approach suffers prohibitively high computation
cost, i.e., the computation complexity may increase exponentially with the number
of jobs in the worst case, and therefore can only be applied to real-time systems
with a small number of real-time jobs.

Given the NP nature of this problem, a computation efficient heuristic that can
effectively save the energy is more desirable than the exhaustive search strategy. In
what follows, we first define the problem formally and then present our heuristic
techniques to solve the problem.

2.3 Problem formulation

Given a set of real-time jobs and a variable voltage processor as introduced, different
voltage values (or processor speeds) can be set at different times. We refer to a
set of voltage values or speeds during the entire time interval when the job set J
being executed as a voltage schedule. Our problem is then to determine a voltage
schedule with which the lowest amount of dynamic energy is consumed and the
jobs are all completed at or before their deadlines.

Several observations are helpful in formulating our problem more formally. The
authors of [Yao et al. 1995] presented a theorem regarding the best speed for a given
set of jobs that must be completed within an interval. We restate the theorem in
the following.

Theorem 2.1. Assume that the dynamic power consumption of a variable volt-

age processor is a convex function of the processor speed. Given a set of jobs starting

at t0 and to be completed by t1, the voltage schedule that employs a constant volt-

age in [t0, t1] is necessarily an optimal schedule in the sense that no other schedule

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



6 · Quan et al.

consumes less dynamic energy to complete the jobs in time.

Based on the above theorem, we can easily prove the following lemma which de-
scribes an important feature for any optimal voltage schedule.

Lemma 2.2. An optimal voltage schedule for a job set J is defined on a set of

time intervals in which the processor maintains a constant speed, and each of these

intervals must start and end at either the release times or deadlines of the jobs.

Proof: Suppose the curve S(t) in Figure 1 is the optimal voltage schedule for a
given job set, and t0, t1, · · · , tm are the release times or deadlines of the jobs. Let
s1, s2, · · · , sm be the constant speeds such that

si × (ti − ti−1) =

∫ ti

ti−1

S(t)dt,

i.e., the speeds that result in the same work load as S(t) within each interval. It
follows that no job will violate its deadline while the processor running at the speeds
s1, s2, · · · sm. According to Theorem 2.1, the processor will consume less dynamic
energy running at the speeds designated by s1, s2, · · · , sm than that running at the
speed defined by S(t). Thus an optimal schedule can only change its speed either
at the release times or deadlines of some jobs. 2

Time

Speed

t0 t1 t2 t4 tm−2 tmt3

s1
s2

s3 s4

sm−1
sm

tm−1

S(t)

Fig. 1. Optimal dynamic energy-saving schedule for a FP task set.

According to Lemma 2.2, the processor needs only update its speed at a schedul-

ing point, i.e., a release time or deadline of certain real-time job. With this lemma,
our voltage scheduling problem can be formally defined as follows:

Problem 2.3. Given a job set J , find a set of intervals, [tks , tkf ], and a set of

speeds, S = {S(tks , tkf ), k = 1, 2, · · · , K}, where tks and tkf are among the jobs’

scheduling points, and S(tks , tkf ) is a constant speed, such that if the processor
operates accordingly, all the jobs can be completed by their deadlines and no other
voltage schedules can consume less energy.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 7

While the only difference between Problem 2.3 and that studied in [Yao et al.
1995] is the way in which the priorities are assigned, it has been shown in [Quan
and Hu 2001] that the approach in [Yao et al. 1995] is not able to determine the
optimal voltage schedule for a given job set when the FP scheme is used. However,
we find the rational behind the technique used in [Yao et al. 1995] is enlightening.
The key to the algorithm in [Yao et al. 1995] is to find the minimum constant speed
needed to finish certain subsets of all jobs. In the EDF priority assignment, this
can be easily computed by

S(Rm, Dn) =

∑

Ji∈Jj
Ci

Dn − Rm

(1)

where Dn > Rm, and Jj is the subset of jobs whose release times and deadline are
both in [Rm, Dn]. In computing S(Rm, Dn), there is no need to include any jobs
that are released in [Rm, Dn], and have deadlines after Dn, since they always have
lower priorities than Jn. In the FP assignment case, (1) is no longer valid due to
the fact that a job Jk released in [Rm, Dn] with deadline larger than Dn may have
a higher priority than Jn. If Jk does have a higher priority, it may preempt Jn in
[Rm, Dn] (depending on if Jn is finished before or after Jk’s release time). This
uncertainty in the preemption relationship greatly increases the difficulty in finding
the voltage schedules under the FP assignment scheme. In the following section,
we present new observations and techniques to tackle such a problem.

3. DETERMINING THE CONSTANT MINIMUM SPEED TO COMPLETE A JOB

In this section, we present our approach to find the minimum constant speed needed
to complete a job by its deadline. Finding such speeds is beneficial in two aspects.
First, it can help us determine the minimum overall constant speed for the entire
job set J such that if the supply voltage is set for this speed, it will result in the
minimum dynamic energy consumption compared to any other constant speed for
J . Secondly, we can use it to derive a voltage schedule that leads to even lower
dynamic energy consumption. In what follows, we first use an example to illustrate
several critical observations to compute the constant minimum speed. Then we
derive several key properties for the constant minimum speed and its associated
interval, and propose an algorithm to find the constant minimum speed.

3.1 Properties related to the constant minimum speed

We use the example shown in Figure 2 to reveal several critical properties that the
constant minimum speed must possess. Let us denote by Sn the minimum constant
speed needed to complete a subset of jobs if Jn is the lowest priority job in this
job set. Suppose we want to find S3 for J3 in Figure 2. If we use interval [0, 14] to
compute S3, then, by (1), S3 = S[0, 14] = 1/2. However, applying S[0, 14] = 1/2
will cause an idle interval [2, 5] and J3 to miss its deadline. On the other hand, if
we set S3 = S[6, 14] = 1/4, J3 can be completed by D3. But in order for J3 to
start at t = 6, the processor speed must be set to at least S[5, 6] = 4 which would
not be possible if we assume the maximal speed is 1. With a lower speed in [5,6],
J1 will prevent J3 from finishing on time. Hence, S[6, 14] is not the valid minimum
constant speed for J3. For this example, a valid minimum constant speed for J3

is S3 = S[5, 14] = 2/3. Even if we allow S[5, 6] = 4 for the case in Figure 2(b),

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



8 · Quan et al.

0
 14
13
12
6
5


J1: R1=5  D1=13  C1=4


J3: R3=6  D3=14  C3=2

J2: R2=0  D2=12  C2=1


0
 14
13
12
6
5
2


Idle time


Deadline

miss


0
 14
13
12
6
5
 0
 14
13
12
6
5


(a)


(d)


(b)


(c)


S
 = 1/2


S
 = 1/2


S
 = 1/2


S
 = 1/5


S
 = 4


S
 = 2/8


J
1


J2


J3


J
1


J2


J3


J
1


J2


J3


J
1


J2


J3


S
 = 6/9


S
 = 1/5


S
 = 6/9


Fig. 2. Computing the minimum constant speed for J3 and its associated intervals. The up and
down arrows represent the jobs’ release times and deadlines, respectively. (a) A real-time system
with three jobs. (b) Using S3 = 1/2 for interval [0, 14] will cause an idle interval [2, 5] and J3 to
miss its deadline. (c) Using S3 = 2/8 for interval [6, 14] will allow J3 to complete by its deadline
on the condition that S[5, 6] = 4. (d) Using S3 = 6/9 for interval [5, 14] and every job can meet
their deadlines.

note that we can let the processor speed during [0, 5] be 1/5, it is easy to verify
that the dynamic power consumption (P = s3) for Figure 2(d) is 4.68% of that for
Figure 2(c).

To summarize, the minimum constant speed Sn is computed based on some
intervals which must have the following properties:

—There is no idle time within the interval that Sn corresponds to.

—Applying Sn do not force other intervals to take higher speeds.

—The interval must begin and end at the release times or deadlines of some jobs.

These properties play a key role in determining the interval to compute Sn.

3.2 Determining the constant minimum speed for a single job

In what follows, we introduce how to compute the minimum constant speed needed
to guarantee the deadline of one particular job. To make our explanation more
concrete, we use the example as shown in Figure 3.

To compute the minimum speed of Jn, we need to consider the jobs in Jn that
have higher priority than that of Jn. However, not all the higher priority jobs in J
need to be considered to determine the minimum speed for Jn since some of them

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 9

5
 19
18
17
11
10


J3: R3=10  D3=18  C3=4


J5: R5=11  D5=19  C5=2


J4: R4=5    D4=17  C4=1


T

L

(5)


J3


J4


J5


J2: R2=19  D2=25  C2=1

J1: R1=0    D1=5  C1=1


0
 25


J2

J
1


T

E

(5)


Fig. 3. An illustrative example with five jobs. TE(5) and TL(5) are the earliest and latest
scheduling point of J5, respectively.

have no possibility to interfere with the execution of Jn. The following definitions
help us to limit the number of jobs to be considered.

Definition 3.1. (Scheduling Point) Time t is called a Jn-scheduling point if
t = Ri, 1 ≤ i ≤ n or t = Dn.

The Jn-scheduling points are simply the release time and deadline of Jn and the
release times of the jobs with priorities higher than that of Jn. According to
Lemma 2.2, if the processor speed varies between two consecutive scheduling points,
we can always find a constant speed in the corresponding interval which is more
energy efficient. For the rest of the paper, when we refer to a time t, we
always mean a scheduling point .

Definition 3.2. (Earliest and Latest Scheduling Points) The largest Jn-
scheduling point t that satisfies 0 ≤ t ≤ Rn and for all i < n,

t ≤ Ri if t ≤ Di,

and

t ≥ Di if t ≥ Ri,

is called the earliest scheduling point of Jn and is denoted by TE(n). The latest
time of Jn by which Jn must be completed is called the latest scheduling point of
Jn and is denoted by TL(n).

Based on the above definitions, TL(n) can be simply set to Dn, while TE(n) can
be obtained by checking each Jn-scheduling point in the decreasing order starting
from Rn. For the job set in Figure 3, one can readily verify that TE(5) = 5 and
TL(5) = 19. It is not difficult to see that the higher priority jobs released prior
to TE(n) (e.g. J1 in Figure 3) or after TL(n) (e.g. J2 in Figure 3) do not have
any impact on the speed needed to complete Jn (e.g. J5 in Figure 3) in a feasible
schedule. Thus, when computing Sn, we only need to focus on the jobs released
within [TE(n), TL(n)].

Since speed is closely related with average workload, we introduce the definition
of Jn-intensity to capture the concept of average workload for job Jn.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



10 · Quan et al.

Definition 3.3. (Job Intensity) Let ta, tb be two Jn-scheduling points, Jn-

intensity in the interval [ta, tb], denoted by In(ta, tb), is defined to be

In(ta, tb) =

∑n

i=1 δ(Ji) ∗ Ci

tb − ta
, (2)

where

δ(Ji) =

{

1 ta ≤ Ri < tb
0 otherwise

(3)

In Figure 3, for instance, we have J5(5, 19) = 4+1+2
14 = 1/2. Jn-intensity has a very

useful property which is summarized below.

Lemma 3.4. Let ta, tb, and tc be three Jn-scheduling points, and ta < tb < tc.
Then In(ta, tb), In(tb, tc), and In(ta, tc) always satisfy one of the following two

inequalities:

In(ta, tb) ≥ In(ta, tc) ≥ In(tb, tc), (4)

or

In(ta, tb) ≤ In(ta, tc) ≤ In(tb, tc). (5)

Proof: Let the workload in [ta, tc], [ta, tb], and [tb, tc] be W , W1, and W2, respec-
tively. Then

W = W1 + W2

In(ta, tc) =
W1 + W2

ta − tc

In(ta, tb) =
W1

tb − ta

In(tb, tc) =
W2

tc − tb
.

Without loss of generality, let In(ta, tb) ≥ In(ta, tc), i.e.,

W1

tb − ta
≥

W1 + W2

tc − ta
.

After some simple transformations, we have

W2

tc − tb
≤

W1 + W2

tc − ta
.

Thus (4) is true. Similarly, (5) can be proved to be correct. 2

Since having no idle time is one of the key properties required for Sn, we give the
following definition to precisely capture the idle time related concepts.

Definition 3.5. (Job Busy Interval) Interval [ta, tb] is a Jn-busy interval, if
the following conditions are satisfied:

—ta, tb are Jn scheduling points.

—TE(n) ≤ ta ≤ Rn < tb ≤ TL(n).

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 11

—If speed In(ta, tb) is applied within [ta, tb], the processor is kept busy in [ta, tb]
by executing jobs with priorities higher or equal to that of Jn.

Note that, in Figure 3, intervals such as [11, 17] and [10,19] are J5-busy intervals,
but interval [5, 19] is not a J5-busy interval since the processor will be idle from
7 to 10 if the speed I5[5, 19] = 1/2 is applied within this interval. For a Jn-busy
interval, we have the following lemma.

Lemma 3.6. An interval [ta, tb] is a Jn-busy interval if and only if

In(ta, t) ≥ In(ta, tb) (6)

for every Jn-scheduling point t ∈ (ta, tb].

Proof: Let t ∈ (ta, tb]. Since In(ta, t) ≥ In(ta, tb), and In(ta, t) × (t − ta) ≥
In(ta, tb) × (t − ta), the workload in [ta, t] is either not finished or finished at t if
the processor speed is In(ta, tb). Since this is true for any t ∈ (ta, tb], the processor
is not idle nor is executing any lower priority jobs within interval [ta, tb]. On the
other hand, let the processor with constant speed In(ta, tb) be always busy during
[ta, t], t ∈ (ta, tb]. Then, according to Definition 3.3, we have In(ta, t) × (t − ta) ≥
In(ta, tb) × (t − ta), and thus In(ta, t) ≥ In(ta, tb). 2

For job Jn, there may exist a number of Jn-busy intervals as shown before. The
largest one among them is particularly interesting and we give a definition for it
below.

Definition 3.7. (Job Essential Interval) A Jn-busy interval [ts, tf ] is called
the Jn-essential interval if for any Jn-busy interval [ta, tb], we have

ts ≤ ta and tb ≤ tf . (7)

The Jn-intensity corresponding to the Jn-essential interval possesses the prop-
erties of Sn stated earlier in this section. This is summarized in the following
important lemma.

Lemma 3.8. The Jn-essential interval, [ts, tf ], and the corresponding Jn-intensity,

In(ts, tf ), satisfy

In(t, ts) < In(ts, tf ), TE(n) ≤ t < ts, (8)

and

In(tf , t) > In(ts, tf), tf < t ≤ TL(n), (9)

Furthermore, if In(ts, tf ) is adopted as the processor speed during [ts, tf ], Jn is

completed by its deadline assuming all higher priority jobs arriving before ts are

finished.

Proof: We prove (8) by contradiction. Assume there exists t0 ∈ [TE(n), ts), such
that In(t0, ts) ≥ In(ts, tf ). Let tm be such that

In(tm, ts) = max
i

In(ti, ts), tm, ti ∈ [TE(n), ts). (10)

Then,

In(tm, ts) ≥ In(ts, tf ). (11)

We want to show that under such assumption (i.e., (11)) [tm, tf ] is a Jn−busy
interval. We consider two cases separately.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



12 · Quan et al.

—For any t such that tm < t ≤ ts, since In(tm, ts) ≥ In(t, ts) (according to (10)),
from Lemma 3.4, we have In(tm, t) ≥ In(tm, ts). From Lemma 3.4 and (11) we
have In(tm, t) ≥ In(tm, tf ).

—For any t such that ts < t ≤ tf , from Lemma 3.6, we have In(ts, t) ≥ In(ts, tf).
Incorporating (11), we get In(tm, t) ≥ In(ts, tf). From Lemma 3.4, we have
In(ts, tf ) ≥ In(t, tf ). Hence, In(tm, t) ≥ In(ts, tf ) ≥ In(t, tf ). Again, from
Lemma 3.4, we have In(tm, t) ≥ In(tm, tf ).

Thus for any t such that tm < t ≤ tf , we have

In(tm, t) ≥ In(tm, tf ),

and by Lemma 3.6, [tm, tf ] is a Jn-busy interval. Since tm < ts, this violates
Definition 3.7.

We can prove inequality (9) similarly. Assume there exists t0 ∈ (tf , TL(n)], such
that In(tf , t0) ≤ In(ts, tf ). Let tm be such that

In(tf , tm) = min
i

In(tf , ti), tm, ti ∈ (tf , TL(n)]. (12)

Then,

In(tf , tm) ≤ In(ts, tf ). (13)

We want to show that under such assumption (i.e., equation (13)) [ts, tm] is a
Jn−busy interval. We consider two cases: (1) ts < t ≤ tf ; and (2) tf < t ≤ tm.
Following the similar procedure as above, we can prove that [ts, tm] is a Jn−busy
interval and violates Definition 3.7.

To show that Jn is completed by its deadline, we only need to note that, assuming
all higher priority jobs arriving before ts are finished, Jn can be finished by tf if
In(ts, tf ) is used as the processor speed within [ts, tf ], and tf ≤ Dn. 2

According to Lemma 3.8, In(ts, tf ) is the valid minimum constant speed Sn.
Thus, determining the minimum constant speed for a job now becomes determining
the essential interval and corresponding intensity associated with the job. Such an
algorithm can be simply implemented based on Definition 3.7. In the following,
we present another algorithm, Algorithm 1 (see Figure 4), which also follows the
basic principle laid down in Definition 3.7 but employs a little different search
mechanism, and on average takes less time than a straightforward implementation
of Definition 3.7.

For ease of understanding, we use the example in Figure 3 and compute the
essential interval for J5 with Algorithm 1. An interval is initiated to be [R5, R5]
and will grow increasingly in length with the iteration of the while loop in the
algorithm. Algorithms 1 first searches for the scheduling point t1 such that for
any other scheduling point t located on the right hand side of the interval we have
I5(R5, t1) ≤ I5(R5, t) (If a tie occurs, take the right most one.) In this example, t1 =
19. Then the algorithm searches for scheduling point t2 from those scheduling points
on the left hand side of the interval such that I5(t2, t1) ≥ I5(t, t1) (If a tie occurs,
take the left most one.) We have t2 = 10 in this example. The algorithm continues
in this fashion until the interval stops growing any longer, and the resultant interval,
i.e., [10,19], is the essential interval for J5.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 13

Input: Job set J = {J1, ..., JN}, and TE(n) and TL(n) for job Jn

Output: Jn-essential interval [ts, tf ] and Sn

t′a = t′
b

= Rn, ta = TE(n), tb = TL(n);
Imax = ∞;
while (ta 6= t′a or tb 6= t′

b
)

ta = t′a, tb = t′
b
;

t = tb;
Imin = Imax;
for every Jn-scheduling point t′ ∈ (tb, TL(n)] in increasing order

Compute I(ta, t′) incrementally based on I(ta, t);
if I(ta, t′) < Imin

t′
b

= t′;
Imin = I(ta, t′);

end if
t = t′;

end for
Imax = Imin;
t = ta;
for every Jn-scheduling point t′ ∈ [TE(n), ta) in decreasing order

Compute I(t′, t′
b
) incrementally based on I(t, t′

b
);

if I(t′, t′
b
) > Imax

t′a = t′;
Imax = I(t′, t′

b
);

end if
t = t′;

end for
end while
ts = ta, tf = tb, Sn = I(ta, tb);

Fig. 4. Algorithm 1: the algorithm for constructing the essential interval for a single job

To show that Algorithm 1 indeed produces the correct Jn-essential interval, we
only need to prove that ts and tf obtained from Algorithm 1 satisfies (7). The
following lemmas and theorem are sufficient for this purpose.

Lemma 3.9. At the end of each iteration of the while loop in Algorithm 1, [ta, tb]
is a Jn−busy interval.

Proof Outline: Figure 5 describes the execution steps of Algorithm 1. At the end of
each iteration of the while loop in Algorithm 1, we get interval [t2, t1], [t4, t3], and so
on. Consider [t2, t1]. For t ∈ (t2, Rn], since In(t2, t1) ≥ In(t, t1), by Lemma 3.4, we
have In(t2, t) ≥ In(t2, t1). Similarly, for t ∈ (Rn, t1], since In(t, t1) ≤ In(Rn, t1) ≤
In(t2, t1), so In(t2, t1) ≥ In(t2, t1). According to Lemma 3.6, [t2, t1] is a busy
interval. Other intervals can be proved similarly.

Lemma 3.10. The final interval produced by Algorithm 1 satisfies

In(t, ts) < In(ts, tf ), TE(n) ≤ t < ts, (14)

and

In(tf , t) > In(ts, tf), tf < t ≤ TL(n). (15)

Proof: Let TE(n) ≤ t < ts as shown in Figure 5. If In(t, ts) ≥ In(ts, tf ), by
Lemma 3.4, we have In(t, tf ) ≥ In(ts, tf ). This cannot be true since in Algorithm

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



14 · Quan et al.

T  (n)E ts

t4
Rnt2 t1 t3 t T  (n)Lf

t

Fig. 5. This illustration shows the sequence of steps taken to construct Jn-essential interval
according to Algorithm 1.

1, In(ts, tf ) is the maximum. Similarly, we can prove that

In(tf , t) ≤ In(ts, tf ), tf < t ≤ TL(n)

is not possible either. 2

Theorem 3.11. Algorithm 1 produces, in O(N2) time, the Jn-essential interval.

Proof: According to Lemma 3.8 and Lemma 3.9, we only need to prove that after
the completion of Algorithm 1, there is no Jn-busy interval [ta, tb] such that

ta < ts or tb > tf .

We use contradiction to prove the theorem. There are three cases to be considered.

—Case 1: ta < ts ≤ Rn < tb ≤ tf . Since [ta, tb] and [ts, tf ] are both busy intervals,
according to Lemma 3.6 and Lemma 3.4, we have

In(ta, ts) ≥ In(ta, tb) ≥ In(ts, tb) ≥ In(ts, tf ),

which contradicts (14).

—Case 2: ta < ts ≤ Rn < tf < tb. Since [ta, tb] and [ts, tf ] are both busy intervals,
by Lemma 3.6 and Lemma 3.4,we have

In(ta, ts) ≥ In(ta, tb) ≥ In(ts, tb) ≥ In(tf , tb),

and according to Lemma 3.10, we have

In(tf , tb) > In(ts, tf ).

So,

In(ta, ts) > In(ts, tf ),

which violates (14).

—Case 3: ts ≤ ta ≤ Rn < tf < tb. Since [ta, tb] and [ts, tf ] are both busy intervals,
according to Lemma 3.6 and Lemma 3.4, we have

In(ts, tf ) ≥ In(ta, tf ) ≥ In(tf , tb),

which contradicts (15).

To get the complexity of the algorithm, it is easy to see that the “while” loop
takes O(N) time since the maximum number of scheduling points for Jn is no

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 15

more than O(N). Furthermore, by incrementally computing the intensity of each
subsequent scheduling-point interval, each of the “for” loop also takes only O(N)
times. Therefore, the complexity of Algorithm 1 is bounded by O(N2). 2

4. DETERMINING THE GLOBAL VOLTAGE SCHEDULE

In this section, we make use of the observations and Algorithm 1 discussed in
Section 3 to derive the algorithm for solving the problem stated in Section 2. We
will also elaborate the limitations and extensions of the new algorithm.

4.1 The overall algorithm

Based on the algorithm for searching the minimum constant speed of a single job,
we can find both the minimum constant speed needed to satisfy all job deadlines
and a better voltage schedule to further improve the dynamic energy consumption.
In the following, we present the algorithm and prove some lemmas, which tackle the
two problems simultaneously. We first introduce the concept of critical interval.

Definition 4.1. (Critical Interval) The essential interval [ts, tf ] with the largest
Jn-intensity is called the critical interval of job set J.

The critical interval of J indicates the minimum constant speed, S = maxn Sn,
needed for J to be feasible. If Sn = In(ts, tf ) is used in [ts, tf ], which guarantees
to finish Jn by its deadline, what happens to other jobs in this interval and the jobs
elsewhere?

Suppose that the critical interval of J corresponds to Jn-essential interval [ts, tf ].
We would like to investigate the impact of removing [ts, tf ] from the overall execu-
tion time interval on the rest of the jobs. By removing the critical interval of J ,
we mean the following:

(1) Remove from J the jobs associated with [ts, tf ], that is, job Jn and all other
jobs that have higher priorities than Jn and are released within [ts, tf ].

(2) “Shrink” the interval [ts, tf ] into a single time point, i.e., reduce every time
instant greater than tf by the amount of (tf − ts). If Ri, TE(i) or TL(i) for any
job Ji is inside [ts, tf ] before the reduction, it will be changed to the value of
ts.

For the remaining jobs, we can again find the critical interval. Repeatedly perform-
ing the above steps, we obtain a set of critical intervals as well as the corresponding
speeds. We will show that these critical intervals form a valid, low-energy voltage
schedule. We first summarize the above procedure in Algorithm 2 (see Figure 6).

For the example shown in Figure 3, one can readily identify the first critical
interval to be [10,19] with intensity as 5/9. Along with the removal of this interval,
(i) job J3 and J5 are removed, (ii) the deadline of J4 is changed to 10, and (iii) J2

is “shifted” left correspondingly, i.e., with its updated release time and deadline as
11 and 16, respectively. Algorithm 2 continues until all the jobs are removed and
we obtain a set of intervals T and their corresponding constant speeds S. In the
following, we present two theorems describing the important characteristics of T
and S.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



16 · Quan et al.

Input: Job set J = {J1, ..., Jn}
Output: A set of critical intervals T = {[t1s , t1

f
], · · · , [tKs , tK

f
] }, and

a set of speeds S = {S(tks , tk
f
)} for 1 ≤ k ≤ K

k =1;
while (J is not empty)

for every Ji ∈ J
A,S′ = ∅;
Determine Ji-essential interval [ts, tf ] and minimum speed Si by Algorithm 1;
Add [ts, tf ] to A and Si to S′;

end for
Find j such that Sj = max Si, i = 1, · · · , n;
Select the interval [ts, tf ] associated with Sj from A;

Add Sj as S(tks , tk
f
) to S and add the [ts, tf ] as [tks , tk

f
] to T ;

forevery Ji ∈ J
if (ts ≤ Ri ≤ tf and i < j)

Remove Ji from J ;
end if
if(ts ≤ Ri ≤ tf )

Ri = ts;
elsif (Ri > tf )

Ri = Ri − (tf − ts);
end if
if(ts ≤ Di ≤ tf )

Di = ts;
elsif(Di > tf )

Di = Di − (tf − ts);
end if

end for
k++;

end while

Fig. 6. Algorithm 2: the algorithm for constructing the set of critical intervals for J .

Theorem 4.2. Given a job set J , let [tks , tkf ] and S(tks , tkf ) for 1 ≤ k ≤ K be the

critical intervals and corresponding speeds output from Algorithm 2. Every job in J
is guaranteed to be completed by its deadline if S(tks , tkf ) is used in the corresponding

interval [tks , tkf ].

The proof of Theorem 4.2 is rather long and given in the Appendix. From Theo-
rem 4.2, we conclude that the set of critical intervals and their associated speeds
obtained by Algorithm 2 form a valid voltage schedule. Furthermore, the speed for
each critical interval is the lowest constant speed possible for that interval. How-
ever, we still do not know if any of the speeds from Algorithm 2 can be used as the
overall minimum constant speed for the entire job set J . The following theorem
helps answer this question.

Theorem 4.3. Given a job set J , speeds S(tks , tkf ) ∈ S obtained by Algorithm 2

satisfy the following: S(t1s, t
1
f ) ≥ S(t2s, t

2
f ) ≥ · · · ≥ S(tKs , tKf ).

The proof for this theorem is also given in the Appendix. Based on Theorems 4.2
and 4.3, we have the the following corollaries.

Corollary 4.4. The first speed in the speed set produced by Algorithm 2 is the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 17

minimum constant speed that can be applied throughout the execution of all jobs

such that no jobs violate their deadlines.

Proof: According to Theorem 4.3, the first speed is the highest necessary processor
speed among all the critical intervals. Note that each job is associated with one
critical interval and is schedulable as long as the processor speed is no less than the
minimum speed for the critical interval, so all the jobs are schedulable if the first
speed in the speed set produced by Algorithm 2 is applied throughout the entire
execution period. 2

Corollary 4.5. The voltage schedule obtained by Algorithm 2 always saves

more dynamic energy than the one that applies the minimum constant speed when

the processor is busy while shuts down the processor when it is idle.

Proof: Let the minimum constant processor speed be SH , and the speed when it
is shut down be SL. From Lemma 4.3, the processor speed by Algorithm 2 can be
represented as

S(t) = α(t)SL + (1 − α(t))SH , 0 ≤ α(t) ≤ 1. (16)

Also, let the total execution time of the job set be T , the dynamic power consump-
tion when processor runs at speed S(t) be g(S(t)), and the the total time when
processor running at the minimum constant speed be t1. We want to prove that

∫ T

0

g(S(t))dt ≤

∫ t1

0

g(SH)dt +

∫ T

t1

g(SL)dt (17)

= g(SH)T + (g(SL) − g(SH))(T − t1).

Since g(x) is a convex function, from (16), we have

g(S(t)) ≤ α(t)g(SL) + (1 − α(t))g(SH),

and thus,
∫ T

0

g(S(t)) ≤

∫ T

0

α(t)g(SL)dt +

∫ T

0

(1 − α(t))g(SH)dt (18)

= g(SH)T + (g(SL) − g(SH))

∫ T

0

α(t)dt.

Moreover, since
∫ T

0

S(t)dt =

∫ t1

0

SHdt +

∫ T

t1

SLdt, (19)

by (16) and (19), after several transformations, we have
∫ T

0

α(t) = T − t1. (20)

With (18) and (20), it is easy to see that (17) is correct. 2

4.2 Discussions

In this section, we discuss the limitations of our approach and extensions of our
approach to address more practical issues. In particular, we consider the fact that

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



18 · Quan et al.

0
 14
12
2


J1: R1=2  D1=14  C1=6

J2: R2=0  D2=12  C2=2


(a)


J
1


J2


0
 14
12
2


(b)


J
1


J2


S
 = 2/3

S
 = 1


S
 = 1/2


Fig. 7. An illustrative example with two jobs. (a) The voltage schedule computed according
to Algorithm 2 dynamic energy consumption 3.56. (b) A better voltage schedule with dynamic
energy consumption 3.5.

most commercial processors only have discrete supply voltage levels and suffer from
transition overhead. Furthermore, we examine the challenges of reducing both
dynamic and leakage power consumption for a real-time embedded system.

Our approach to constructing a low-energy voltage schedule guarantees to result
the minimum peak dynamic power consumption. However, our algorithm may not
always produce the minimum dynamic energy voltage schedule. Such as example
is shown in Figure 7.

Figure 7(a) shows the voltage schedule computed from our algorithms. According
to Algorithm 1, the J1 essential interval is [2,14] with intensity of 6

12 = 1/2, and
the J2 essential interval is [0,12] with intensity of 8

12 = 2/3. Therefore, the first
critical interval which is also the only critical interval for this job set is [0,12] with
speed 2/3. Using this voltage schedule, we can easily compute the corresponding
dynamic energy consumption as 3.56 (assuming P = S3). With this schedule, both
J1 and J2 finish at t = 12. However, if we allow J2 to finish at t = 2 and thus
J1 can finish at t = 14 as shown in Figure 7(b), the dynamic energy consumption
is only 3.5. This is because that our approach is a greedy approach and always
strive to find the minimum constant speed during any critical interval. Note that
computing the optimal solution (e.g. [Quan and Hu 2003]) takes exponential time,
while our approach takes only polynomial time. In addition, as we will show in
the following experimental section that energy savings achieved by applying our
algorithm is very close to that by the optimal approach in general.

Up to now, we have assumed that the voltage (or the speed) of the processor
can be varied continuously. However, practical commercial processors support only
several discrete level supply voltages. To deal with discrete processor speeds, one
approach is simply to round up the processor speed computed with Algorithm 2 to
its immediate higher level. As higher processor speeds are used, all jobs can still
meet their deadlines. This approach has the advantage that it does not increase the
number of speed transitions and thus the associated timing and energy overhead.
The disadvantage of such approach is that it uses “higher-than-necessary” processor
speeds to execute real-time jobs and is not most energy efficient.

An alternative approach for handling discrete voltage levels is to incorporate the
method introduced in [Ishihara and Yasuura 1998; Kwon and Kim 2005], i.e., using
two available neighboring processor speeds immediate above or below the desired

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 19

processor speed computed from Algorithm 2. More specifically, let the processor
speed computed from Algorithm 2 be Sn for job Jn

1, and let available processor
speeds immediate above and below Sn be Su and Sd, respectively. If we run Jn

with Su for tu time units and with Sd for td time units, where

tu =
Sn − Sd

Su − Sd

×
Cn

Sn

, (21)

and

td =
Cn

Sn

− tu. (22)

Then Jn can meet its deadline and the energy cost for executing Jn is minimized.
For more detailed proof of this conclusion, readers can refer to Theorem 3.1 in [Kwon
and Kim 2005]. While this approach can further reduce the energy consumption
with discrete processor speeds, the price to pay is the increased number of transi-
tions, i.e., extra one for each job when its desired processor speed is not available.
Note that the work in [Kwon and Kim 2005] assumes that a valid voltage sched-
ule has already been found. Therefore, the approach cannot guarantee to produce
a minimum energy schedule since the voltage schedule was determined without
consideration of discrete levels.

Another limitation of our algorithm is that it assumes transition overhead is
negligible. This assumption is acceptable if job timing parameters , particularly
deadlines, are much longer than the time which it takes to transition between
different voltage levels. Whether the above is true depends on the actual system
under consideration. For systems where the transition time of the DVS processor
is in tens or even hundreds of microseconds, the above assumption tends to hold.

When transition time is much longer, Algorithm 2 may produce invalid schedules
(i.e., schedules that either violate job deadlines or requires voltage values exceeding
the maximum allowed). To deal with this problem, the authors in [Mochocki et al.
2004] proposed a technique for systems scheduled by the EDF policy. The technique
is based on the iterative algorithm of finding voltage schedules in [Yao et al. 1995]
and guarantees to produce valid voltage schedules for EDF systems regardless of
the magnitude of the transition overhead. Observe that Algorithm 2 has an overall
structure similar to that of the algorithm in [Yao et al. 1995] except that the former
is for FP scheduling while the latter is for EDF scheduling. By overall structure,
we mean that both algorithms proceed by finding the critical interval of a job set,
removing the interval and the associated jobs, then repeating the process. The
algorithms in [Mochocki et al. 2004] essentially exploits this iterative nature of the
algorithm in [Yao et al. 1995]. Therefore, to handle transition overhead for FP
systems, the general approach in [Mochocki et al. 2004] can be used in combination
with Algorithm 2 in a manner similar to what was one for EDF systems. We are
working out the details of this approach [Mochocki et al. ].

Since neither the optimal approach introduced in [Quan and Hu 2003] nor the
heuristic method described in [Yun and Kim 2003] is based on the concept of critical
intervals, it is not clear how they can be readily exploited by the technique proposed
in [Mochocki et al. 2004]. In fact, the heuristic in [Yun and Kim 2003] adopts a

1Sn is the speed for the critical interval that contains Jn in Algorithm 2.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



20 · Quan et al.

Input: J , sth, and Tmin (sth is the processor speed limiter.)
Compute the dynamic voltage schedule and sn, n = 1, 2, ...,N ;
// sn is the minimal speed for Jn to meet its deadline
Let sn = sth if sn ≤ sth, n = 1, 2, ...,N ;
if (processor is not idle)

Run job Ji in the ready queue according to the FP or EDF DVS schedule;
else

Compute the latest starting time, i.e., LST (Jn), for future jobs;
if(LST (Jn) − tcur > Tmin) // tcur is the current time

Shut down the processor and set up the wake up timer to be LST (Jn) − tcur ;
end if

end if

Fig. 8. Algorithm 3: the algorithm to reduce both dynamic and leakage power consumption for
real-time systems.

similar approach as in [Quan and Hu 2003] except that the former reduces the search
space by using certain observations. We are not aware of any results to overcome
the limitations faced by the techniques introduced in [Quan and Hu 2003; Yun and
Kim 2003].

Finally, our approach reduces the energy consumption by lowering the processor
supply voltage as small as possible. While reducing processor supply voltage is
efficient in reducing the dynamic energy, it becomes less effective with the leakage
power consumption increasing dramatically as IC circuits continue to scale. To
reduce the overall energy, the dynamic and leakage energy consumption need to
be reduced collaboratively. In recent work, Irani et. al. [Irani et al. 2003] and
Jejurikar et. al. [Irani et al. 2003; Jejurikar et al. 2004] proposed to set a limiter
for the processor speed. The limiter is determined as follows. Consider a job with
workload w. Let the total power of a processor during its active mode be Pact(s).
Then the total energy, i.e., Eact(s), consumed to finish this job with speed s, can
be represented as

Eact(s) = Pact(s) ×
w

s
. (23)

The energy-minimal speed can be determined by setting dEact(s)
ds

= 0, i.e.,

Pact(s) = P ′
act(s)s. (24)

Equation (24) computes the most energy efficient speed (sth) to finish one job. To
increase or decrease the processor speed above or below sth will increase either
the dynamic or leakage power, and thus the total active power consumption for
executing the job. This immediate leads to the algorithm (see Figure 8) for reducing
the total energy.

As shown in Algorithm 3, the unconstrained DVS schedule produced by our
algorithm can be readily incorporated into this approach (line 3). Since Algorithm
3 may use processor speeds “higher than necessary” to execute the real-time jobs,
which may result in a large number of short and scattered idle intervals, some
research efforts (e.g., [Jejurikar et al. 2004; Quan et al. 2004]) have been made
to merge these idle interval so that the processor can be shut down to save the
leakage power consumption. However, the detailed algorithm for doing so is out

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 21

of the scope of this paper. Further, finding a voltage schedule that minimizes the
overall energy when shutdown overhead is not negligible is still an open problem.

5. EXPERIMENTAL RESULTS

In this section, we present experiment results for comparing the dynamic energy
savings and computational efficiency achieved by ours and some previous work,
i.e. [Quan and Hu 2003; Shin and Choi 1999]2, for FP real-time systems. All these
experiments are conduct on Sun Blade-100. For brevity, we use VSLP,LPFS, and
OPT in the following to represent Algorithm 2, the algorithm in [Shin and Choi
1999], and the optimal one in [Quan and Hu 2003], respectively.

We use three processor models in our experiments: a theoretical model P1 and
two practical models, i.e., P2 and P3. In P1, based on the work in [Burd 2001],
we assume that the processor speed is proportional to the supply voltage and the
processor power consumption is a cubic function of the processor speed. Making
these assumptions helps to collect concrete experimental data for the comparison
purpose. Also, we ignore the discrete voltage levels and transition overhead in this
model. Processor models P2 and P3 are derived from the commercial processor
Transmeta TM5400 [Transmeta-Corporation 2000] and StrongARM SA-1100 [In-
tel ], respectively. In these two models, the voltage can only vary in a limited
range, and only a number of levels of working frequencies/voltages are available.
Table I (adopted from [Pouwelse et al. 2001] and [Sinha and Chandrakasan 2001])
summarizes the relation between frequency, voltage, and power consumption for
Transmeta TM5400 and StrongARM SA-1100. When the desired processor speed
is not available, we adopt the approach in [Transmeta-Corporation 2000], i.e., use
two neighboring processor speeds immediately above and below the non-existing
speed to optimize the energy consumption. According to [Transmeta-Corporation
2000], the transition overhead is less than 20µs. This overhead is not significant
for most real-time systems where task timing parameters are on the order of milli-
seconds and is therefore ignored in our experiments.

We use two groups of real-time job sets in our experiment to evaluate the per-
formance of our approach, one is randomly generated, and the other one is drawn
from practical applications. In our first set of experiments, we use 10 groups of
randomly generated real-time systems with the number of jobs being 2, 4, · · · , 20.
The arrival times and deadlines of these jobs are chosen to be uniformly distributed
within [0, 50]ms, [20, 100]ms, respectively. These data are randomly chosen without
special considerations. The execution time of each job is randomly generated from
1 to half of its deadline to make the job sets easier to schedule under the maximum
processor speed. Only the job sets that are schedulable under the maximum pro-
cessor speed are used in our experiment, and each group contains up to 100 such
schedulable job sets. To reduce statistical errors, we collected the average energy

2While our algorithm’s complexity is proven to be lower than the algorithm in [Yun and Kim 2003]
discussed in the introduction, it would be desirable to compare the two through experiments as
well. However, through our experiments, we have found some inconsistencies in the experiment
results reported in [Yun and Kim 2003]. Furthermore, since the experimental data presented
in [Yun and Kim 2003] are not compared with the optimal results, and the implementation details
and initial test data are not available to us, we are not able to make a fair comparison.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



22 · Quan et al.

Processors Frequency (Mhz) Voltage (V) Relative Power (%)

700 1.65 100
600 1.60 80.59

P2 500 1.50 59.03
400 1.40 41.14
300 1.25 24.60
200 1.10 12.70

206 1.50 100
195 1.42 78.9
180 1.30 63.2
165 1.20 50.0
150 1.15 39.9

P3 135 1.10 33.6
120 1.08 33.0
105 0.95 19.8
90 0.90 15.0
75 0.82 11.8
60 0.80 9.44

Table I. Clock frequency vs. supply voltage vs. relative power for Transmate Crusoe processor
and StrongARM SA1100

consumption for each group, and normalized them using the optimal results, i.e.,
the ones computed with OPT. Figure 9 shows the average dynamic energy savings
for each generated job sets with the theoretical processor model, i.e., processor P1,
and Figure 10 shows the results with one of the practical processor models, i.e.,
processor P2.

3 Moreover, to compare the computational cost, we also gather the
average CPU times of LPFS, VSLP and OPT, and depict them in Figure 11.

The test cases in our second set of experiments contain three real-world applica-
tions: video phone [Shin et al. 2001], CNC [N.Kim et al. 1996] and INS [A.Burns
et al. 1995]. We tested these application examples with all three processor models.
In this set of experiments, we collected the energy consumption by each approach,
normalized it with the energy consumption using processor without DVS capability,
and filled in Table II. The CPU times for VSLP and LPFS were also collected
and filled Table II. Note that the test data of using OPT on CNC and INS are
unavailable because of its excessive requirement of computation time.

From the experimental results shown in Figure 9 and Figure 11, one can readily
conclude that our voltage scheduling strategy is very effective in terms of both en-
ergy savings and computation cost. Note that, in Figure 9, the energy consumption
by VSLP is very close to that of OPT (within 2% for our randomly generated ex-
amples) and much better than that of LPFS. The energy efficiency of our approach
comes from the fact that LPFS always uses the full speed to execute the jobs when
the ready queue is not empty, but in our approach many of the jobs can be in
fact executed with much lower speed according to the voltage schedule obtained by
Algorithm 2. Therefore, our approach can exploit the processor slack time more
efficiently and achieve better energy saving performance than LPFS. On the other
hand, the CPU time for VSLP, comparable with that of LPFS, is much less than

3Processor model P3 yielded very similar results to that with P2 for the randomly generated job
sets and thus omitted.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 23

0.0


0.5


1.0


1.5


2.0


2.5


3.0


3.5


4.0


4.5


2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Jobs


A
ve

ra
g

e 
E

n
er

g
y 

C
o

n
su

m
p

ti
o

n



OPT

VSLP

LPFS


Fig. 9. Average dynamic energy saving performance comparison for OPT, VSLP, and LPFS
using randomly generated job sets and the theoretical processor model, i.e., processor P1.

0.8


0.9


1


1.1


1.2


1.3


1.4


1.5


2
 4
 6
 8
 10
 12
 14
 16
 18
 20


Jobs


A
ve

ra
g

e 
E

n
er

g
y 

C
o

n
su

m
p

ti
o

n

 Opt


VSLP

LPFS


Fig. 10. Average dynamic energy saving performance comparison for OPT, VSLP, and LPFS
using randomly generated job sets and the practical processor model, i.e., P2.

that for the OPT. As shown in Figure 11, it can be very costly, if not impractical,
to apply OPT in real applications that have a large number of jobs. Moreover,
through our experiments, we can see that the factors such as the discrete voltage
levels do impact the energy saving potential of our approaches as demonstrated in
Figure 10. However, even with the considerations of these practical factors, our
approach can still outperform previous research significantly (up to 45% as shown

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



24 · Quan et al.

0.00


100.00


200.00


300.00


400.00


500.00


600.00


700.00


800.00


900.00


1000.00


2
 4
 6
 8
 10
 12
 14
 16
 18
 20


Jobs


C
P

U
 T

im
e 

(s
ec

o
n

d
)


OPT


VSLP


LPFS


Fig. 11. Average computation cost for OPT, VSLP, and LPFS.

Table II. Experimental results for three practical applications.
Systems video phone CNC INS

Job Numbers 16 289 2147

OPT 0.952 N/A∗ N/A∗

P1 VSLP 0.952 0.24 0.54
LPFS 0.955 0.63 0.76

Energy OPT 0.99 N/A∗ N/A∗

P2 VSLP 0.99 0.65 0.85
Consumption LPFS 0.99 0.81 0.88

OPT 0.953 N/A∗ N/A∗

P3 VSLP 0.953 0.40 0.58
LPFS 0.956 0.58 0.81

CPU VLSP 0.00 0.23 68.31
Time(s) LPFS 0.00 0.01 0.55

∗ These results are unavailable due to the excessive computation time requirement by

OPT.

in Figure 10).
The experimental results for the practical applications shown in Table II also

conform with our analysis above. OPT can only be applied to real-time systems
with small numbers of jobs, such as the video phone [Shin et al. 2001], it becomes
ineffective for more complicated real-time systems such as CNC and INS. While
VSLP consumes more CPU time than that by LPFS, it produces much better
voltage schedules for real-time systems in terms of energy saving. It is interesting
to note that, with the theoretical processor model (i.e., processor P1), our approach
finds the theoretically optimal voltage schedule for the video phone application
even though it is heuristic in nature. It is also interesting to note that VSLP
is more energy efficient on processor P2 than on processor model P3 for all three
applications. This is because P3 provides more voltage levels (according to [Sinha
and Chandrakasan 2001]) than processor model P2 (according to [Pouwelse et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 25

2001]) does. Therefore the discrete voltage levels has less impacts on the energy
saving performance for VSLP. While the practical factors of the processor has
limited the energy potential of our approach, from Table II, our approach can still
reduce 16% energy consumption on processor model P2 and 32% on processor model
P3 for CNC application.

6. SUMMARY AND FUTURE WORK

DVS scheduling techniques are critical energy-saving techniques not only for the
current embedded systems in which dynamic energy consumption predominates in
the total energy consumption, but also for the future generation of such systems
when static grows significantly with the continuous evolvement of IC technology.
In this paper, we present an off-line, heuristic DVS scheduling technique for an FP
real-time embedded system. Two algorithms are presented in the paper. The first
one takes O(N2) time, where N is the number of jobs to be scheduled, and finds the
minimum constant speed needed to complete a single job. The second algorithm,
with O(N3) time complexity, builds on the first one and can produce the minimum
constant voltage (or speed) needed to complete a set of jobs, as well as a voltage
schedule which always results in lower dynamic energy consumption compared to
using the minimum constant voltage and shutting down the system when it is idle.

The minimum constant voltage is an important parameter when designing sys-
tems with no sophisticated power management hardware but only simple on/off
modes or where the voltage transition overhead is a concern. The experimental
results obtained from both randomly generated examples and the real-world ap-
plications have shown the effectiveness of applying our voltage schedules to save
energy, even with the considerations of the limitations in the practical processors.
Moreover, our approach has much less computation cost than the theoretical opti-
mal one and therefore can be applied to more complicated real-time applications.

The proposed heuristic provides a powerful means to iteratively construct the
voltage schedule of a job set based on critical intervals. This unique approach can
be readily exploited by other heuristics [Mochocki et al. 2004; Quan et al. 2004] for
handling transition overhead and leakage power. We are working on the details of
such combined techniques [Mochocki et al. ; Quan et al. ]. Finding optimal voltage
schedules in the presence of transition overhead and non-negligible leakage power
still eludes researchers. We would like to examine these problems in our future work.
Another challenge is to study the impact of different switching capacitances of jobs
on the voltage schedule. In [Kwon and Kim 2005], an integer linear programming
approach is used to find a voltage schedule that takes into account discrete voltage
levels and different switching capacitance. However, the approach assumes that the
start and end time of a job has already be found. This assumption simplifies the
problem and do not guarantee to find the optimal voltage schedule. We plan to
investigate this problem in our future work.

7. ACKNOWLEDGEMENT

The authors would like to express their sincere gratitude to the reviewers for their
effort in reviewing this paper. Their valuable comments have improved the paper
greatly. This research is supported in part by NSF under grant number CNS-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



26 · Quan et al.

0545913, CCR02-08992, CNS-0410771, and in part by the University of South Car-
olina Research Program under the Research Scholarship Award.

APPENDIX

We present the detailed proofs for Theorem 4.2 and 4.3 in this section.

A.1 Proof for Theorem 4.2

The following lemma is needed in proving Theorem 4.2.

Lemma A.1. Let TE(n) ≤ T ′
E(n) and TL(n) = T ′

L(n) in Algorithm 1, and let

the two resultant Jn-essential intervals be [ts, tf ] and [t′s, t
′
f ], respectively. Then

In(ts, tf ) ≥ In(t′s, t
′
f ),

and ts ≤ t′s < t′f ≤ tf .

Proof: Since TE(n) ≤ T ′
E(n), and TL(n) = T ′

L(n), from Algorithm 1, we have

ts ≤ t′s < t′f ≤ tf .

If ts ≤ t′s < t′f = tf , by Lemma 3.4 and Lemma 3.6, we have

In(ts, t
′
s) ≥ In(ts, tf ) ≥ In(t′s, t

′
f ).

If ts ≤ t′s < tf < t′f , according to Lemma 3.10, we have In(tf , t′f ) > In(t′s, t
′
f ). By

Lemma 3.4 and Lemma 3.6, we have

In(t′s, t
′
f ) < In(tf , t′f ) ≤ In(ts, tf ).

2

To prove Theorem4.2, we concentrate on demonstrating that every job removed
while removing the critical interval is fully executed within the interval and meets
its deadline. Without loss of generality, consider a critical interval associated with
job Jn, i.e., [tks , tkf ] = [ts, tf ]. From Theorem 3.11, we know that Jn is schedulable.
Consider the rest of the jobs that are removed when removing [ts, tf ]. Note that
only the jobs with priorities higher than that of Jn and release time in [ts, tf ) are
removed. For a removed job Ji other than Jn, if ts ≤ TE(i) < TL(i) ≤ tf , the Ji-
essential interval must be within [ts, tf ] and have a lower speed requirement than
In(ts, tf ), so job Ji must be schedulable. Otherwise, we only need to prove that
if the original earliest and/or latest scheduling points TE(i) and TL(i) are moved
to ts and/or tf , respectively, the constant speed for the resultant new Ji-essential
interval is still less than In(ts, tf ).

Several cases need to be considered. For each case, we let [ts, tf ] be the critical
interval, [ta, tb] be the original essential interval for Ji, and [t′a, t′b] be the new
essential interval for Ji after the change of TE(i) and/or TL(i).

—ta < ts < tb ≤ tf . Since [ts, tf ] is the critical interval, and earliest starting point
of job Ji have to be moved to ts. Note that moving TL(i) to tb will not change the
original essential interval [ta, tb]. Therefore, according to Lemma A.1, we have

Ii(t
′
a, t′b) ≤ Ii(ta, tb) ≤ In(ts, tf ),

and thus Ji is schedulable.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 27

—ts ≤ ta < tb ≤ tf . Note that moving TE(i) to ts if TE(i) < ts and moving TL(i)
to tf if TL(i) > tf do not change the initial Jk-essential interval. Hence, Ji is
schedulable since Ii(ta, tb) = Ii(t

′
a, t′b) ≤ In(ts, tf ).

—ta ≤ ts < tf ≤ tb. In this case, TE(i) is moved to ts and TL(i) is moved to tf .
Suppose Ii(t

′
a, t′b) > In(ts, tf ). According to Lemma 3.10, Ii(t

′
b, tf ) > Ii(t

′
a, t′b).

According to Definition 3.3, since i < n, we have

In(t′b, tf ) ≥ Ii(t
′
b, tf ) > Ii(t

′
a, t′b) > In(ts, tf )

which contradicts In(ts, tf ) ≥ In(t′b, tf ). Therefore, Ii(t
′
a, t′b) ≤ In(ts, tf ), and Ji

is schedulable.

—ts ≤ ta < tf < tb In this case, TL(i) is moved to tf and TE(i) is moved to
ts if TE(i) < ts. With a similar proof as the previous case, we can show that
Ii(t

′
a, t′b) ≤ In(ts, tf ), and Ji is schedulable.

2

A.2 Proof for Theorem 4.3

To prove Theorem 4.3, we only need to show that after removing a critical interval,
the minimum speeds for jobs whose essential intervals have changed are never bigger
than that of the removed critical interval.

Let the critical interval [ts, tf ] be a Jn-essential interval, and Ji be a job that
Ri, TE(i) or TL(i) need to be changed due to this removal. The corresponding Ji-
essential interval will be re-constructed. The priority of Ji can be either higher or
lower than that of Jn. We deal with them separately. In our proofs, we let [ts, tf ]
be the critical interval, [t′a, t′b] and [t′′a, t′′b ] represent possible locations of the Ji-
essential before removing [ts, tf ], [ta, tb] be the Ji-essential interval after removing
[ts, tf ].

Note that after removing the critical interval, ts and tf become a single point.
For the ease of reference, we still keep them apart. We will denote the intensity of
an interval before (resp., after) removing the critical interval by I ′ (resp. I). For
the critical interval, I and I ′ are always the same.
Case 1: Job Ji has a higher priority than Jn (i < n).
In this case, Ri must be outside the critical interval and either TE(i) or TL(i) is
changed after removing [ts, tf ] (see Algorithm 2). If Ri < ts, TL(i) is moved to ts.
Similarly if Ri > tf , TL(i) is moved to tf . In either case, according to Definition 3.7,
[ta, tb] is a busy interval contained in the original Ji-essential interval [t′a, t′b] (or
([t′′a , t′′b ]). According to Lemma 3.8, Ii(ta, tb) = I ′i(ta, tb) ≤ I ′i(t

′
a, t′b). Since In(ts, tf )

is the critical interval, we conclude Ii(ta, tb) ≤ In(ts, tf ).
Case 2: Job Ji has a lower priority than Jn (i > n).
Let us first analyze the possible locations of the original Ji-essential interval with
respect to the critical interval. First, we show that [t′a, t′b] can neither be totally
contained in [ts, tf ] nor partially overlap with [ts, tf ].

Let ts ≤ t′a < t′b ≤ tf . According to Definition 3.3 and Lemma 3.8, we have
I ′i(ts, t

′
a) ≥ In(ts, t

′
a) ≥ In(ts, tf ) ≥ I ′i(t

′
a, t′b), this contradicts Lemma 3.8. Let

t′a < ts < t′b < tf . Similarly, I ′i(t
′
a, t′b) ≥ I ′i(ts, t

′
b) ≥ In(ts, t

′
b) ≥ In(ts, tf ), this

contradicts In(ts, tf ) > I ′i(t
′
a, t′b). Therefore, to prove the theorem, we only need to

consider the scenario where [t′a, t′b] contains the critical interval.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



28 · Quan et al.

Depending on the location of the Ji-essential interval after the removal of the
critical interval, the following cases exist.

—ta < t′a: According to Lemma 3.4 and Lemma 3.6, Ii(ta, tb) ≤ Ii(ta, t′a) =
I ′i(ta, t′a). From Lemma 3.8, I ′i(ta, t′a) < I ′i(t

′
a, t′b) ≤ In(ts, tf ). Thus, we have

Ii(ta, tb) < In(ts, tf ).

—tb < t′b: Similar to the above proof, we have Ii(ta, tb) < In(ts, tf ).

—t′a ≤ tf ≤ ta and tf ≤ t′b ≤ tb: (Note that ts and tf become the same af-
ter removing the critical interval.) By Lemma 3.4 and Lemma 3.6, we have
I ′i(t

′
a, t′b) ≥ I ′i(ta, t′b) = Ii(ta, tb) ≥ Ii(ta, tb). Since In(ts, tf ) ≥ I ′i(t

′
a, t′b), there-

fore, we have Ii(ta, tb) ≤ In(ts, tf ).

—t′a ≤ ta ≤ ts and t′b ≤ tb: Let w1, w2, w3, w4, w5 be the workloads in [t′a, ta], [ta, ts], [ts, tf ], [tf , t′b],
and [t′b, tb], respectively. Furthermore, let the workloads of those jobs that are
removed when removing critical interval [ts, tf ] be w′

2. Apparently w2 ≥ w′
2, and

I ′i(ta, t′b) =
w1 + w2 + w3

t′b − ta
≤ I ′i(t

′
a, t′b) ≤ In(ts, tf ) =

w′
2

tf − ts
, (25)

Suppose Ii(ta, tb) > I(ts, tf ). Then, by Lemma 3.6,

Ii(ta, t′b) =
w1 + w2 − w′

2 + w3

t′b − ta − (tf − ts)
> Ii(ta, tb) (26)

> In(ts, tf ) =
w′

2

tf (n) − ts(n)
.

Moreover, by Lemma 3.6 and Lemma 3.4, we have

I ′i(t
′
a, t′b) ≥ I ′i(ta, t′b) > Ii(ta, t′b). (27)

It can be readily shown that (25), (26), and (27) cannot be true simultaneously.
Therefore, the intensity of the new Ji-essential interval must be less than or equal
to that of the critical interval being removed.

2

REFERENCES

A.Burns, Tindell, K., and Wellings, A. 1995. Effective analysis for engineering real-time fixed
priority schedulers. IEEE Transactions on Software Engineering 21, 920–934.

Aydin, H., Melhem, R., Mosse, D., and Alvarez, P. 2001a. Determining optimal processor
speeds for periodic real-time tasks with different power characteristics. ECRTS , 225–232.

Aydin, H., Melhem, R., Mosse, D., and Alvarez, P. 2001b. Dynamic and aggressive scheduling
techniques for power aware real-time systems. RTSS , 95–105.

Burd, T. 2001. Energy-Efficient Processor System Design. Ph.D. Thesis, Department of Electrical
Engineering and Computer Sciences, Uiversity of California, Berkeley.

Burd, T. D. and Brodersen, R. W. 2000. Design issues for dynamic voltage scaling. ISLPED ,
9–14.

Duarte, D., Vijaykrishnan, N., Irvin, M., Kim, H., and McFarland, G. 2002. Impact of
scaling on the effectiveness of dynamic power reduction schemes. ICCD , 382–387.

Govil, K., Chan, E., and Wasserman, H. 1995. Comparing algorithms for dynamic speed-
setting of a low-power cpu. International Conference on Mobile Computing and Networking ,
13–25.

Gutnik, V. and Chandrakasan, A. 1996. An efficient controller for variable supply-voltage low
power processing. Symposium on VLSI Circuits, 158–159.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



Energy Efficient DVS Schedule For Fixed-Priority Real-Time Systems · 29

Hong, I., Kirovski, D., Qu, G., Potkonjak, M., and Srivastava, M. B. 1998. Power optimiza-

tion of variable voltage core-based systems. Proceedings of DAC , 176–181.

Hwang, C. and Wu, A. 1997. A predictive system shutdown method for energy saving of
event-driven computation. Proceedings of International Conference on Compter Aided Design,
28–32.

Intel. Strongarm processors. http://developer.intel.com/design/strong/sa1100.htm.

Irani, S., Shukla, S., and Gupta, R. 2003. Algorithms for power savings. SODA, 37–46.

Ishihara, T. and Yasuura, H. 1998. Voltage scheduling problem for dynamically variable voltage
processors. ISLPED , 197–202.

ITRS. http://public.itrs.net/. International Technology Roadmap for Semiconductors. Interna-
tional SEMATECH, Austin, TX.

Jejurikar, R. and Gupta, R. 2002. Energy aware edf scheduling with task synchronization for
embedded real time operating systems. COLP , 71–76.

Jejurikar, R., Pereira, C., and Gupta, R. 2004. Leakage aware dynamic voltage scaling for
real-time embedded systems. DAC , 275 – 280.

Kim, W., Kim, J., and Min, S. L. 2003. Dynamic voltage scaling algorithm for dynamic priority
hard real-time systems using work-demand analysis. ISLPED , 396–401.

Kim, W., Kim, J., and S.L.Min. 2002. A dynamic voltage scaling algorithm for dynamic-priority
hard real-time systems using slack analysis. DATE , 788–794.

Kwon, W. and Kim, T. 2005. Optimal voltage allocation techniques for dynamicaly variable
voltage processors. ACM Transactions on Embedded Computing Systems 4, 1, 211–230.

Lehoczky, J., Sha, L., and Ding, Y. 1989. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. RTSS , 166–171.

Liu, C. L. and Layland, J. W. 1973. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM 17, 2, 46–61.

Liu, J. 2000. Real-Time Systems. Prentice Hall, NJ.

Lorch, J. R. and Smith, A. J. 2001. Improving dynamic voltage scaling algorithms with PACE.
In SIGMETRICS/Performance. 50–61.

Makzak, A. and Chakrabarti, C. 2003. Variable voltage task scheduling algorithms for mini-
mizing energy/power. IEEE Transactions on VLSI 11, 2 (April), 270–276.

Mochocki, B., Hu, X., and Quan, G. On-line and off-line dvs scheduling of fixed-priority real-
time systems on practical processors. to be submitted to IEEE Transactions on Computer-Aided
Design for Integrated Circuits and Systems.

Mochocki, B., Hu, X., and Quan, G. 2002. A realistic variable voltage scheduling model for

real-time applications. ICCAD , 726–731.

Mochocki, B., Hu, X., and Quan, G. 2004. A unified approach to variable voltage scheduling
for nonideal dvs processors. IEEE Trans. on Computer-Aided Design for Integrated Circuits
and Systems 23, 9, 1370– 1377.

Mochocki, B., Hu, X., and Quan, G. 2005. Practical on-line dvs scheduling for a fixed-priority
real-time system. RTAS , 224–233.

Namgoong, W., Yu, M., and Meng, T. 1997. A high-efficiency variable-voltage cmos dynamic
dc-dc switching regulator. IEEE Internation Solid-State Circuits Conference, 380–381.

Nielsen, L., Niessen, C., Sparso, J., and Berkel, K. 1994. Low-power operation using self-
timing circuits and adaptive scaling of supply voltage. IEEE Transactions on VLSI and Sys-
tems 2, 425–435.

Niu, L. and Quan, G. 2004. Reducing both the dynamic and leakage energy consumption for
hard real-time systems. CASES , 140–148.

N.Kim, Ryu, M., Hong, S., Saksena, M., Choi, C., and Shin, H. 1996. Visual assessment of a
real-time system design: a case study on a cnc controller. RTSS , 300–310.

Pering, T., Burd, T., and Brodersen, R. 1998. The simulation and evaluation of dynamic
voltage scaling algorithms. ISLPED , 76–81.

Pillai, P. and Shin, K. G. Real-time dynamic voltage scaling for low-power embedded operating
systems. In SOSP. 89–102.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.



30 · Quan et al.

Pouwelse, J., Langendoen, K., and Sips, H. 2001. Dynamic voltage scaling on a low power

microprocessor. SIGMOBILE , 251–259.

Quan, G. and Hu, X. 2003. Minimum energy fixed-priority scheduling for variable voltage
processors. IEEE Transactions on ICCAD 22, 8 (August), 1062–1971.

Quan, G. and Hu, X. S. 2001. Energy efficient fixed-priority scheduling for real-time systems on
voltage variable processors. DAC , 828–833.

Quan, G., Niu, L., Hu, X., and Mochocki, B. 2004. Fixed priority scheduling for reducing
overall energy on variable voltage processors. RTSS , 309–318.

Quan, G., Niu, L., Mochocki, B., Hu, X., and Quan, G. Real-time scheduling for reducing
the overall energy for variable voltage processors. under review by IEEE Transactions on
Computer-Aided Design for Integrated Circuits and Systems.

Rabaey, J. and Pedram, M. 1996. Low Power Design Methodologies. Kluwer.

Shin, D., Kim, J., and Lee, S. 2001. Intra-task voltage scheduling for low-energy hard real-time
applications. IEEE Design and Test of Computers 18, 2 (March-April), 20–30.

Shin, Y. and Choi, K. 1999. Power conscious fixed priority scheduling for hard real-time systems.
DAC , 134–139.

Shin, Y., Choi, K., and Sakurai, T. 2000. Power optimization of real-time embedded systems
on variable speed processors. ICCAD , 365–368.

Sinha, A. and Chandrakasan, A. P. 2001. Jouletrack- a web based tool for software energy
profiling. DAC , 220–225.

T. Pering, T. Burd, R. B. 2000. Voltage scheduling in the lparm microprocessor system.
ISLPED , 96–101.

Transmeta-Corporation. January,2000. TM5400 processor specifications.
http://www.transmeta.com/crusoe/download/pdf /TMS5400 ProductBrief 5-23-00.pdf.

Weiser, M., Welch, B., Demers, A., and Shenker, S. 1994. Scheduling for reduced cpu energy.
Proceedings of USENIX Symposium on Operating System Design and Implementation, 13–23.

Yan, L., Luo, J., and Jha, N. 2003. Combined dynamic voltage scaling and adaptive body
biasing for heterogeneous distributed real-time embedded systems. ICCAD , 30–37.

Yao, F., Demers, A., and Shenker, S. 1995. A scheduling model for reduced cpu energy. IEEE
Annual Foundations of Comp. Sci., 374–382.

Yun, H.-S. and Kim, J. 2003. On energy optimal voltage scheduling for fixed-prioirty hard
real-time systems. ACM Transactions on Embedded Computing Systems 2, 3, 393–430.

Received Month Year; revised Month Year; accepted Month Year.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.




