
System Wide Dynamic Power Management for Weakly Hard Real-Time Systems

Abstract

Energy reduction is critical to increase the mobility and battery life for today’s pervasive computing systems. At the same

time, energy reduction must be subject to the real-time constraints and quality of service (QoS) requirements for applications

running on these systems. This paper presents a novel run-time approach to reduce thesystem-wideenergy consumption for

such systems using dynamic power management. In this paper,the applications are modeled using a popular weakly hard

real-time model, i.e., the(m,k)-model, which requires that at least m out of any k consecutive instances of a task meet their

deadlines. Our experimental results show that, by judiciously scheduling the real-time tasks and shutting down the processor

and/or peripheral devices, our approach can lead to significant energy savings while guaranteeing the(m,k)−firm deadlines

at the same time.

Keywords: Dynamic power management, weakly hard real-time, power-aware scheduling, Quality of Service, I/O devices

1 Introduction

Energy conservation has come to be recognized as a critical issue in design of pervasive real-time embedded systems,

particularly due to the proliferation of mobile systems with limited power resources. For the sake of mobility, these portable

computing and communication devices require low energy consumption to maximize the battery lifetime. As VLSI tech-

nology continues its remarkable advances, the power consumption has been increased exponentially [2]. Current battery

technology, with its 5% annual capacity increase [2], cannot effectively address this problem. In addition, serious concerns

are raised with regards to managing the heat dissipation from the rapidly elevated power consumption. Left unchecked, the

power consumption will threaten to curtail the availability of the future high performance portable devices and advanced

multimedia functionality on these devices.

Power aware scheduling has been proven to be an effectively way to reduce the power consumption. Rooted in the tra-

ditional real-time scheduling technology, the power awarescheduling techniques change the system computing performance

accordingly based on the dynamically varied computation demand. Two main types of power management mechanisms are

reported in the literature. The first one is commonly known asthedynamic power down(DPD), i.e., to shut down a processing

unit and save power when it is idle, and switch over to normal state when the idle time expired. The second one is to update

the processor’s supply voltages and working frequencies, which is usually referred as thedynamic voltage scaling(DVS).

Thanks to the recent IC technology advancement, many modernprocessors can vary its voltage and working frequencies (and

thus processing speeds) dynamically.

For the past few years, we have seen extensive researches that employ a variety of real-time scheduling techniques to

reduce the energy consumption. Most of them have been focused solely on reducing the energy consumption by the processor

(e.g. [22, 25, 34]). A typical portable device usually includes one or more core processors, memory, and peripheral devices

such as network interface card, disk, and display. While theprocessor is one of the major power hungry units in the system,

other peripherals such as network interface card, memory banks, disks also consume significant amount of power. The

empirical study by Viredaz and Wallach reveals that the processor core consumes around 28.8% of total power when playing

a video file on a hardware testbed [32] for handheld devices, while the DRAM consumes about 28.4% of the total power.

Note that this testbed [32] lacks disk storage and wireless networking capability, which may contribute as much power

consumption as the processor core if not more [35, 9]. This implies that the techniques that reducing the processor energy

alone may not be overall energy efficient.

A number of techniques (e.g. [11, 13, 38]) have been published recently to deal with the power consumption for systems

consisting of DVS processors and peripheral devices. A fundamental tradeoff that has to be made in these approaches is

whether to apply DVS or DPD during the scheduling process. DVS techniques reduce energy consumption by lowering the

processor speed. Unfortunately, it extends the execution times of real-time tasks and shrinks the idle intervals, which is not

favorable for DPD. Kim and Ha [13] proposed a technique forhard real-time system, while scheduling decisions are made on

a timeslot-by-timeslot basis. To facilitate a run-time mechanism, the processor speed for each task is determined by analyzing

the energy savings based on a pre-determined set of execution times. Jejurikar and Gupta [11] introduced a heuristic search

method to slow down the processor speed and optimize the energy usage by both the processor and peripheral devices. Zhuo

and Chakrabarti [38] proposed a theoretical formulation ofthe optimal scaling factor and computed it numerically. Based on

this factor, they introduced a dynamic scheduling technique that reduces the potential excessive preemptions among tasks to

further reduce the system wide energy consumption.

While DVS techniques can dramatically reduce the dynamic power consumption for the processor, DPD techniques seems

to be more promising in reducing the system-wide overall energy consumption in the near future. As shown in the work by

Zhuo and Chakrabarti [38], when peripheral devices consumemore power than the processor, the effectiveness of DVS

techniques can be seriously degraded. Even for the processor itself, the energy efficiency of DVS is becoming limited as IC

technology continue its evolution [36], especially when the leakage power is increasing exponentially and will soon surpass

the dynamic power consumption [10]. DPD, on the other hand, is one of the most intuitive and effective ways to control

the leakage power consumption. Moreover, most peripheral devices do not support DVS at all. As a result, the research on

employing DPD has regained its momentum to reduce the system-wide energy consumption.

As a traditional energy-saving technique, DPD has been widely adopted in real-time scheduling. A majority of DPD

techniques (e.g. [28, 23]) have been proposed for soft real-time systems, where task deadlines can be missed albeit with

reduced quality levels. There are also a number of papers (e.g. [7, 30, 31]) deal with the power optimization for hard real-

time systems, where a deadline miss is considered a system failure. A good survey on DPM related real-time scheduling

research can be found in [4, 3].

Few real-time applications are trulyhard real-time, i.e., missing one task deadline does not necessarily crash the en-

tire application or system. Many real-time applications, such as multimedia and communication applications, can often

tolerate occasional deadline misses, but too much deadlinemisses cannot satisfy user’s perceived quality of service (QoS)

requirement. While the statistic information such as the average deadline miss rate is commonly used to quantify the system

performance, this metric can be problematic. Note that evena very low average miss rate tolerance cannot prevent a large

number of deadline misses from occurring in a very short period of time. This may cause the loss of critical information

which cannot be reconstructed and therefore severely degrade the service quality from user’s perspective.

Theweakly hard real-time modelis a more suitable real-time model for this type of applications. The weakly-hard real-

time task has both a firm deadline (i.e., a task instance missing its deadline is utterly useless) and a throughput requirement

(i.e., there should besufficienttask instances from the same task meeting deadlines in orderto provide required quality

levels). Several weakly-hard models have been introduced [26, 8, 14, 5, 33]. Ramanathanet. al. [26] proposed a so-called

(m,k)−model, with a periodic task being associated with a pair of integers, i.e.,(m,k), such that among anyk consecutive

instances of the task, at leastm of the instances must finish by their deadlines for the systembehavior to be acceptable.

A dynamic failureoccurs, which implies that the temporal QoS constraint is violated and the scheduler is thus considered

failed, if within any consecutivek jobs more than(k−m) job instances miss their deadlines. Korenet. al. [14] proposed

a ‘skip-over’ model, which is a special case of(m,k) model withm= k− 1. Westet. al. [33] introduced another similar

model, called thewindow-constrainedmodel, which requires that within anynon-overlappedandconsecutivewindows each

of which containingk jobs, at leastm of them can meet their deadlines.

In this paper, we study the problem of employing DPD to reducethe system-wide energy consumption with guaranteed

QoS for a weakly hard real-time system. Specifically, we adopt the (m,k)-model to capture the QoS requirement for the

real-time application. A key challenge for this problem hasto do with the definition of which jobs are mandatory, i.e., whose

deadlines have to be met to guarantee no dynamic failure occur, and which jobs can be optional. This problem has shows to

be NP-hard even without the considerations of the power conservation [24]. In our approach, we employ a run-time technique

and dynamically choose and execute the mandatory jobs in such a way that facilitates the system shut down. Our experiments

shows that by judiciously choosing and merging the mandatory jobs, our techniques can lead to significant energy savings

while still guaranteeingthe (m,k)-firm deadlines.

The rest of the paper is organized as follows. We first introduce the system model, background, and motivations for our

research in Section 2. Section 3 describes a feasibility condition to guarantee the (m,k)-firm deadlines in our approachwhen

dynamically determining the mandatory/optional jobs. Section 4 presents two methods to delay the job execution to further

extend the idle interval. Section 5 discusses how to judiciously execute the optional jobs and present the overall algorithm.

Section 6 presents our experimental results. Section 7 draws the conclusions.

2 Preliminary

In this section, we first introduce the system model and the related work on real-time scheduling with (m,k)-firm guarantee.

We then present and discuss a motivation example.

2.1 System models

We model a real-time application withn independent periodic tasks,T = {τ0,τ1, · · · ,τn−1}, scheduled according to the

earliest deadline first (EDF) policy, i.e., the scheme that can best utilize the processor [16]. Each task contains an infinite

sequence of periodically arriving instances calledjobs. We useJi j to represent the jth job of taskτi . Taskτi is characterized

using the following five parameters:

• Ti : the time between the arrivals of two jobs from same task, referred to as theperiod.

• Di : the time by which each job ofτi must be completed, referred to as thedeadline. We assume thatDi ≤ Ti .

• Ci : the maximum number of processor cycles needed to complete one job ofτi without any interruption, referred to as

theworst case execution time.

• (mi ,ki)(0 < mi ≤ ki): the (m,k)-constraint forτi , requiring that, among anyki consecutive jobs ofτi , at leastmi jobs

meet their deadlines.

The system architecture consists of two functional units: acore processor and a peripheral device. Both the processor

and the peripheral device can be shut down and waken up later when idle time expired. We denote the processor power with

Ppact when running a task, andPpidle when the processor is idle (yet stillon). When the processor is shut down, its power

consumption is denoted asPpsleep. The peripheral device in our system can be in one of two states: activeor sleep. When the

processor is active, the peripheral devices must be also in active mode to provide timely service. We assume that the device

consumes the same power during its active mode no matter whether it is idle or not. The power consumption for the device

is denoted asPdact andPdsleepfor its active mode and sleep mode, respectively.

Time and energy needed to be consumed to shut-down and later wake up the processor and device. It will not be feasible

or beneficial to shut down the system if the idle interval is not longer enough. We useTmin to represent the minimal idle

intervals that can be feasibly shut-down with positive energy gains.

With the above system models, our problem can be formulated as follows:

Problem 1 Given weakly hard real-time task setT and system architectureA , scheduleT with EDF on systemA such that

all (m,k)-constraints are guaranteed and the total energy consumption is minimized.

2.2 Real-time scheduling with (m,k)-firm deadline

To schedule a real-time task set with (m,k)-firm deadline involves two sub-problems: (i) mandatory/optional partitioning

problem, i.e., to determine if a job should be mandatory or optional, and (ii) scheduling problem, i.e., to schedule these jobs

properly to guarantee their deadlines. As proven in [24], both problems are NP-hard problems. In what follows, we briefly

introduce some related real-time scheduling results for (m,k)-firm guarantee. For ease of our explanation, we usepatternsto

denote the mandatory/optional partitions. A pattern is an infinite binary sequence associated with each task such that ajob is

mandatory if its corresponding bit is “1” and optional otherwise.

The mandatory/optional partition decision can be made off-line or on-line. Two known static mandatory/optional parti-

tioning strategies are reported in literature. The first oneis calledthe deeply-red patternor R-pattern, which was proposed

by Korenet al. [14]. According to this technique, let

πi j =















1 0≤ j mod ki < mi

0 otherwise j = 0,1, · · ·

(1)

Then jobJi j is market as mandatory ifπi j = 1, or optional otherwise. The second one is proposed by Ramanathanet al. [27]

as follows.

πi j =















1 if j = ⌊⌈ j×mi
ki

⌉× ki
mi
⌋

0 otherwise j = 0,1, · · ·

(2)

The(m,k)-pattern defined with formula (2) has the property that mandatory jobs are marked evenly, and is therefore referred

as theevenly distributed pattern(or E-pattern) [21].

The most significant advantage of applying static patterns is that they enable the application of theoretic real-time tech-

niques to analyze system feasibility. Analytical schedulability results are available [27, 20] for both fixed-priority and EDF

scheduling policies, based on either R-pattern or E-pattern. The problem, however, is its poor adaptivity in dealing with the

run-time variations, which is inherent in many real-time applications.

Dynamic mandatory/optional partitioning, on the other hand, is more flexible and therefore can accommodate run-time

variations more effectively. The problem is how to ensure the deadlines of all the mandatory jobs. A number of dynamic

mandatory/optional partitioning heuristics are proposed(e.g. [26, 29, 1]) with no guarantee for the deadlines of mandatory

jobs at all. Currently, two dynamic techniques published can ensure the (m,k)-guarantee. Bernetet. al. [6] proposed a Bi-

Modal Scheduler, which runs jobs at two modes: normal mode and panic mode. A task is first executed at the normal mode

and promoted to the panic mode if the dynamic failure will occur if it stays in the normal mode. Niuet. al. [21] proposed to

shift the E-pattern dynamically when an optional job meets its deadline.

2.3 The motivations

Our goal is to shut down the processor and device efficiently and guarantee the (m,k)-constraints in the mean time. Al-

though the static (m,k)-patterns can guarantee the(m,k)-constraints, they usually lead to large number of short andscattered

idle intervals. Figure1(a) shows the EDF schedule by determining mandatory jobs based on E-patterns for a task set with

three periodic tasks. As shown in Figure1(a), the mandatoryjobs are distributed evenly. This is advantages to scheduletask

sets with high utilizations but not to reduce the number of idle intervals. Note that there are as many as 11 idle intervalsin

time interval [0,96] in this schedule.

DPD mechanism is in favor of longer and fewer idle intervals.An intuitive idea to reduce the number of idle intervals is to

assign mandatory jobs as close as possible. This seems to make the R-pattern assignment a better choice. However, as shown

in Figure1(b), the EDF schedule based on R-patterns resultsin 12 idle intervals within the same time interval. The reasons

are two folds. First, from equation (1), an R-pattern alwaysmarks the firstmi jobs as mandatory jobs. The mandatory jobs

from different tasks are likely to overlap for the first “window” but not necessarily for the following windows due to the

differences of k’s and periods from different tasks. Second, even though mandatory jobs and the time intervals in which they

are supposed to run are overlapped (e.g., see interval [0,15] in Figure 1(b)), idle intervals still exist due to the deadline and

arrival constraints for the tasks.

Figure 1(c) presents a schedule that can cut the number of idle intervals to as small as 4. A small number of idle intervals

usually means longer idle interval length. As a result, the energy overhead for shutting down the processor and device can be

reduced. In addition, some idle intervals that previously cannot be shut down because they are too short can now be done so.

This can transform to significant energy savings. A careful study of Figure 1(c) would reveal that such solution is obtained by

employing an irregular mandatory/optional job pattern, i.e., neither E-pattern nor R-pattern, together with carefully delaying

the execution of mandatory jobs. The challenges are then howto define appropriate mandatory jobs and how to delay the

executions of these jobs effectively such that the idle intervals can be merged while the (m,k)-constraints can be guaranteed.

8
 72
64
56
48
40
32
24
16
 80
 88
 96

8
 72
64
56
48
40
32
24
16
 80
 88
 96

8
 72
64
56
48
40
32
24
16
 80
 88
 96

80
70
60
50
40
30
20
10
 90

80
70
60
50
40
30
20
10
 90

80
70
60
50
40
30
20
10
 90

72
36
12
 24
 48
 60
 84
 96

72
36
12
 24
 48
 60
 84
 96

72
36
12
 24
 48
 60
 84
 96

Task 1

Task 3

Task 2

Task 1

Task 3

Task 2

Task 1

Task 3

Task 2

Task 1=(8, 8, 2, 2, 4)
 Task 2=(10, 10, 1, 1, 3)
 Task 3=(12, 12, 3, 3, 6)

(a)

(b)

(c)

Figure 1. (a) The EDF schedule for three tasks according to E-patterns (with 11 idle intervals); (b)
The EDF schedule for same tasks based on R-patterns (with 12 idle intervals); (c) A better schedule
for the same task set (with only 4 idle intervals).

In following sections, we propose an integrated run-time technique to attack these challenges.

3 Meeting the (m,k)-constraints

From the motivation example shown above, it is evident that to the existing static (m,k)-patterns cannot effectively merge

the idle intervals. How to devise new static (m,k)-patternsthat can cluster mandatory jobs for this purpose is an interesting

problem and needs further study. Nonetheless, the static patterns are usually based on worst case scenarios and less adaptive.

Judiciously exploiting the variations, inevitable in the runtime environment, dynamically can be extremely beneficial. The

problem is how to determine the patterns dynamically and ensure that no dynamic failure will ever occur. The following

condition is critical in our approach when choosing mandatory jobs and ensure their feasibility.

Lemma 1 Given systemT , let M be the mandatory job set according to their R-patterns. Thenif M is EDF-schedulable,

a job (i.e. Jp) can be marked as mandatory and meet its deadline if for eachτi ∈ T , i = 0,1, ...,n−1, no more than mi jobs

(including Jp) among any consecutive ki jobs are marked as mandatory.

Proof: For an arbitrary real-time task set, i.e.,T , scheduled with EDF, Zhenget. al. [37] and Liebeherret. al. [15] showed

thatT is EDF-schedulableiff

∀t > 0,∑
i

Wi(0,t) ≤ t, (3)

whereWi(0, t) is the total workload from the jobs ofτi that arrive beforet andmustbe finished byt, or the so calledwork

demand.

Given any task set schedulable with R-pattern and timet, let the mandatory workload within[0,t) beW(0,t). Then from

equation (3) we have

∀t > 0,W(0,t) ≤ t. (4)

In addition, from equation 1, we can see that there areexactly mi jobs with anyki consecutive jobs inM . If we useM ′ to

represent any other mandatory job sets in which no more thanmi jobs among any consecutiveki jobs fromτi are mandatory,

and let its mandatory workload with[0, t] beW̃(0, t), then we must havẽW(0,t) ≤ W(0,t). Therefore, any mandatory job

from M ′ can meet its deadline. 2

Lemma 1 implies that as long as a task set is schedulable underR-patterns, we can flexibly choose a job as mandatory

provided we do not choose more thanmi amongki consecutive jobs from same taskτi . Therefore, when the system is idle,

we can intentionally delay theassignmentof mandatory jobs in such a way that they can be congregated. However, recall

that in the motivation example, even though the mandatory jobs are allocated closely, large number of idle intervals maystill

exist due to their arrival and deadline constraints. In nextsection, we solve this problem by carefully delaying theexecution

of mandatory jobs.

4 Delaying the execution of mandatory job set

When the processor is idle, delaying the execution of mandatory jobs helps to extend the idle intervals. However, it may

also potentially cause mandatory jobs to miss their deadlines and thus cause dynamic failure. A number of papers published

[7, 12] proposed to compute the job delay amount for a hard real-time task set based on its utilization factor. These approaches

cannot be applied for real-time system with weakly hard real-time constraints since the famous condition, i.e.,U ≤ 1 is not

necessary for a weakly hard real-time system to be feasible.In this section, we develop two sufficient conditions for delaying

the execution of mandatory jobs as late as possible without causing any dynamic failure. (The proofs are provided at the

Appendix section.) Before we introduce these sufficient conditions, we first introduce the following definition.

Definition 1 Assume thatM is the mandatory job sets fromT according to R-pattern and schedulable, and let Ri be the

worst case response time (i.e., the time from a job arrival toits finish). Thedelay factorfor τi (denoted as Yi) is defined as

Yi = (Di −Ri). (5)

The worst case response time can be computed in a similar way as that in [18]. Since we only need to compute once for

each task off-line, a more intuitive way is to scan through the interval from[0,LCM(kiTi)], i = 0, ...,n−1 to find the worst

case response time for each task. With Definition 5, our first sufficient condition is formulated in the following Theorem.

Theorem 1 LetM be the mandatory job set such that no more than mi mandatory jobs assigned for any ki consecutive jobs

fromτi ∈ T . Assume that processor is idle at t= t0, and let the arrival time for mandatory job Ji fromτi immediately after t0

be ri . Then if the processor resumes its execution at

TLS(M) = min
i

(r i +Yi), i = 0,1, ...,n−1, (6)

no mandatory job inM will miss its deadline.

Theorem 1 allows us to determine the maximal delay for mandatory jobs based on worst case response time analysis,

which is available off-line. The advantage of this approachis its small run-time overhead. Unfortunately, same as any other

off-line strategy, it suffers the pessimistic estimation due to its assumption of the worst case scenario, as exemplified in

Figure 2. Figure 2(a) shows the schedule of a task set of threetasks according to their static R-patterns. We can readily

identify thatY1 = 4,Y2 = 0, andY3 = 2. Assume a dynamically determined mandatory job sets shownin Figure 2(b). (We can

see that the job execution intervals are largely overlapped.) SinceY2 = 0, the mandatory job from Task 2 cannot be delayed

according to Theorem 1, and there is one idle interval between [28,36]. On the other hand, however, if we delay the processor

execution tillt = 27 (as shown in Figure 2(d)), all jobs can meet their deadlineand no idle interval exists. This is because

that Theorem 1 computes the maximal delay assuming the job always takes its worst case response time. When a job has a

much smaller response time, it can be delayed further and maythus be more effective in reducing the idle intervals.

Mochockiet. al.[17] introduced a method to compute the latest starting time(LST) for a real-time job set. Their method

is based on the following lemma.

Lemma 2 [17] Let job setJ ={J0,J1, ...,Js} and Ji = {r i ,di ,ci}, where ri , di , and ci refer to the arrival time, deadline, and

Task 1

(a)

0

Task 2

(c)

8
 24
16

19

10
 20

Task 1

(b)

Task 2

40
24
 32

19
 38

40

Task 3

Task 3

0

Task 1

Task 2

40
24
 32

19
 38

30

Task 3

0

(d)

Task 1

Task 2

40
24
 32

19
 38

30

Task 3

0

Task 1=(8, 8, 4, 2, 4)
 Task 2=(19, 19, 5, 1, 2)
 Task 3=(10, 10, 4, 1, 5)

30

20

20

28
 27

28

20

40

40

J

11

J

12

J

21

J
31

J

11

J

12

J

21

J

31

J

11

J

12

J

21

J
31

Figure 2. (a) Three tasks scheduled based on their R-Pattern; (b) J21 cannot be delayed according to
Theorem 1; (c) Delaying the mandatory jobs to t = 23 ([]) cannot remove the idle interval; (d) Delaying
the mandatory jobs to t = 27 and eliminating the idle interval.

execution time of Ji , respectively. Let

tLS(Ji) = di − ∑
Jk∈hp(Ji)

ck, (7)

where hp(Jk) is the jobs with the same or higher priorities than that of Jk. Then the latest starting time (LST) ofJ , i.e.,

TLS(J), without violating deadline constraints is

TLS(J) = min
i

tLS(Ji). (8)

Lemma 2 helps to compute the LST for a given job set. However, this method cannot be readily applied in our dynamic

approach where the job set is not statically determined. Niuet al. [19] later extended Lemma 2 and compute LST based

on information from only a subset of the jobs. This approach has a much lower complexity and hence is more suitable for

on-line purpose. We use Figure 2(c) to illustrate this approach.

Assume the processor is idle beforet = 19 in Figure 2(c). Since the LST for a job set is bounded by the earliest deadline of

the jobs (so calleddelay boundand denoted asTB), and is usually known on-line (i.e.TB = 32 in this case), it is desirable to

estimate LST for the entire job set based on the jobs arrivingbefore the delay bound,i.e.,J11 andJ21. As pointed out in [19],

the LST computed by employing equation (7) directly forJ11 andJ21 may not be valid since the validity of LST in Lemma 2

is ensured by employing (7) foreveryjob in the job set. In this regard, Niuet al. proposed to use theeffective deadlineof a

job (i.e. the time before which a job has to be finished such that it will not cause any other job to miss deadline) in place of

the deadline in (7). To keep low complexity of the algorithm,they simply defined the effective deadline for a job by its own

deadline or the earliest arrival time of the coming low priority job, whichever is smaller. In Figure 2(c), both the effective

deadlines forJ11 andJ21 happen to be 32. Therefore, based on equation (8),TLS = min(tLS(J11),tLS(J11)) = 23.

The approach in [19] delays mandatory jobs further than the one applying Theorem 1 and shorten the idle interval in

Figure 2(b). However, it fails to eliminate the idle interval. In what follows, we present another method to estimate the

LST for mandatory jobs. Our method maintains the same computational complexity as that in [19] but with a more accurate

estimation. Specifically, our method is formally formulated in Theorem 2.

Theorem 2 Let M be the mandatory job set such that no more than mi mandatory jobs assigned for any ki consecutive

jobs fromτi ∈ T . Assume that processor is idle at t= t0, and let the delay bound (i.e., the earliest deadline for thecoming

mandatory jobs) be TB for M . Then no mandatory job inM will miss its deadline if the processor resumes its execution at

T̃LS(M), where

T̃LS(M) = min
Ji∈Js

(d∗
i − ∑

Jk∈hp(Ji)

ck), (9)

whereJs consists of mandatory jobs fromM with arrival times earlier than TB but later than t0, and

d∗
i = min

p
(di, rp +Yp),∀Jp ∈ M ,Jp /∈ Js and dp > di . (10)

The fundamental difference between our technique and the one in [19] is the way that effective deadlines are defined.

From equation (10) in Theorem 2, the effective deadline for amandatory job is relaxed from the earliest arrival time of the

next lower priority job further with its delay factor. This in turn will allow mandatory jobs to delay further to merge theidle

interval. As such, the effective deadline forJ21 becomes 34 instead of 32, and thus we haveT̃LS= 27, which is the case shown

in Figure 2(d). Note that, sinceYi is available off-line, our technique based on Theorem 2 has the same on-line complexity

as that in [19]. Also, it is not difficult that the LST computedbased on Theorem 2 is never worst than that by the technique

in [19]. Finally, it is worthy to mention that both Theorem 1 and Theorem 2 are sufficient conditions. Therefore, the larger

one from equation (6 and (9) can be used as LST and guarantee the deadlines for all the mandatory jobs.

5 Executing of the optional jobs

When the system are idle, Lemma 1 helps us toassigna mandatory job as late as possible, and Theorem 1 and Theorem2

can further delay the idle intervals by delaying the execution of mandatory jobs. When the predicted idle interval is long

enough (i.e. greater thanTmin), it will be beneficial to shut down the processor and devices. One missing piece in our

approach is, however, what if the idle interval is still not long enough?

We have two choices when the idle interval is not long enough to accommodate the timing and energy overhead: (1) we

can simply keep the system idle (but active); (2) we can opt torun some optional jobs. For the first case, the processor

consumes a little less power (asPpact < Ppidle) while the device consumes nearly the same power. At the firstsight, running

optional jobs does not seem to be energy efficient sincePpact > Ppidle. However, executing optional jobs may potentially lead

to positive energy saving gain because (1) some mandatory jobs become optional and do not have to be executed; and (2)

more importantly, some short idle intervals in the future can be merged to longer ones and enable system to shut down if

appropriate mandatory jobs are demoted to optional. The problem is how to select theright optional jobs.

To make a precise analysis of the trade off in executing the optional jobs is a challenging problem, especially from the

dynamic scheduling perspective. In considering this, we resort to a heuristic approach in solving this problem. In our heuristic

approach, an optional job is executed, non-preemptively, only when it can finish within the idle intervals as predicted.This

helps to avoid the execution of too many optional jobs, whichwould not be energy efficient. When there are more than

one candidate optional jobs, we devise a function to evaluate the fitness of an optional job. The fitness function, i.e.F , is

determined by two parameters, i.e., the flexibility (F) and criticality (Cr). An optional tends to have higher energy-saving

potential if its corresponding mandatory jobs are more flexible to be moved around and/or it is closer to dynamic failure.

Therefore, for optional jobJi j , we define

F(Ji j) = (Yi +Di)×
kiTi

miCi
, (11)

and

Cr(Ji j) =
m′

i

ki −mi
, (12)

wherem′
i is the currently allowed deadline misses ofτi without causing dynamic failure. Note thatF(Ji j) can be computed

off-line butC(Ji j) is computed on-line.

The rationale behind equation (11) is that, from Theorem 1 and Theorem 2, largeYi andDi tend to make future mandatory

jobs fromτi more flexible to be delayed. On the other hand,miCi
kiTi

indicates the average mandatory workload for taskτi . The

higher the value is, the more difficult it is to shift the workload and thus merge idle intervals. Equation (12) measures the

number (normalized) of deadline misses that can still be tolerated. The higher the value, the less urgent thatJi j needs to

be executed in order not to cause a dynamic failure. Note thatif Ji j is optional,C(Ji j) cannot be zero. Therefore, based on

equation (11) and (12, we defineF as

F (Ji j) =
F∗(τi)

Cr(Ji j)
, (13)

whereF∗(τi) is the normalized value ofF(Ji j) (based on the largest value) for consistency.

Now, with our heuristic to choose proper optional jobs introduced above, we are ready to present our overall algorithm

(Algorithm 1) for Problem 1. The algorithm consists of two phases: an off-line phase and an on-line phase. During the

off-line phase, the worst case response time for each task under itsR-pattern is computed. At the same time, the delay factor,

i.e.,Yi andF∗(τi) are also computed for later on-line use (line 3). During on-line phase, we keep track of the history of a

task and assign a job to be mandatory if it misses deadline will cause a dynamic failure (line 5). When processor is not idle,

we execute the mandatory job as soon as possible according toEDF schedule (line 7). If the processor is idle, we delay

the execution of mandatory job as late as possible to extend the idle intervals (line 10). If the idle interval is large enough,

we shut down the system and later wake up the system when the idle time expired (line 13). Otherwise, we execute proper

candidate optional job based on their fitness values (line 15-17).

The feasibility of Algorithm 1 is guaranteed by Lemma 1, Theorem 1, and Theorem 2. Note that exactlymi out of ki

from a taskτi are chosen as mandatory, but not all of them are executed since some optional jobs from the same task may

have been executed. On the other hand, the optional jobs are only executed when the processor is “idle” when executing the

mandatory jobs. Therefore, as long as a task set is schedulable with static R-pattern, our algorithm always guarantees that

no dynamic failure will ever occur. Further, the energy efficiency of our dynamic approach lies in the fact that it adjuststhe

mandatory/optional partition adaptively by incorporating the run-time information and merging smaller idle intervals into

larger ones. It is particularly efficient considering the fact that the actual execution time of a task can be much smallerthan

its worst case execution time. In the next section, we use experiments to evaluate the performance of our algorithm.

Algorithm 1 The overall algorithm.

1: Input: T andTmin.
2: Offline:
3: ComputeRi , Yi , F∗(τi) for τi ∈ T ;
4: Online:
5: A job is marked as mandatory if a dynamic failure will occur ifit fails to meet its deadline;
6: if processor is not idlethen
7: Run mandatory jobs according to EDF;
8: else
9: Let J be the coming mandatory job set;

10: Compute the maximal delayTLS for J based on Theorem 1 and Theorem 2;
11: if TLS− tcur > Tmin then
12: // tcur is the current time
13: Shut down the processor and set up the wake up timer to beTLS− tcur;
14: else
15: Jo = the optional jobs in the ready queue;
16: Compute the fitness based on equation (13).
17: RunJi ∈ Jo non-preemptively that have the maximum fitness value;
18: end if
19: end if

6 Experiments

In this section, we evaluate the performance of our approachusing simulations. We implemented five approaches in our

experiments. In the first approach, the mandatory jobs were statically determined using theR-patterns. We refer this approach

asDPDR and use its results as the reference results. The second approach also performed the mandatory/optional partitioning

statically. Different fromDPDR, we used E-pattern instead of R-pattern in this approach andhereby refer it asDPDE. In

the third approach, we marked the mandatory jobs dynamically as described in Algorithm 1. However, the execution of the

mandatory jobs were not delayed. We refer this approach asDPDND. The fourth approach also determined the mandatory

job dynamically and delayed the mandatory job executions. The delay amount is computed based on the approach in [19].

We call this approach asDPDNTA. The final approach, denoted byDPDDYN, is our new approach presented in this paper, i.e.,

the complete implementation of Algorithm 1.

The periodic task set in our experiments consisted of five tasks. Each task set were randomly generated with the periods

randomly chosen in the range of[10, 50]ms. We assumed that the deadlines for the tasks were the same as their periods. The

worst case execution time (WCET) of a task was set to be uniformly distributed from 1msto its deadline, and we assumed that

the actual execution time for a job was evenly distributed from [0.4WCET, WCET]. Themi andki for the(m,k)-constraints

were also randomly generated such thatki is uniformly distributed between 2 to 10, and 1≤ mi < ki . To investigate the

0

20

40

60

80

100

120

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5
 0.5 - 0.6
 0.6 - 0.7
 0.7 - 0.8
 0.8 - 0.9
 0.9 - 1.0

(m,k)-Utilization

N
u

m
b

er
 o

f
Id

le
 In

te
rv

al
s

DPD_R
 DPD_E
 DPM_ND
 DPM_NTA
 DPM_DYN

Figure 3. The average number of idle intervals by different approaches.

performance for different approaches under different workload, we divided the total(m,k)-utilization, i.e., ∑i
miCi
kiTi

, into

intervals of length 0.1. To reduce the statistical errors, we require that each interval contain at least 20 schedulabletask

sets, or at least 5000 task sets within each interval have been generated. For the processor and device considered in our

experiments, we assume thatPpact = 1.0W, Ppidle = 1
3Ppact, andPdact = 1.0W. We assume that the power consumption for

the processor and device during the sleep mode are negligible. We also assume the minimal idle interval length to be 3ms.

We first study the number of idle intervals by the five different scheduling strategies. A large number of idle intervals is

undesirable in DPD since it either incurs higher transitionoverhead due to more frequent transitions or has to keep system

busy due to shorter idle interval lengths. Figure 3 comparesthe normalized (with respect toDPDR) number of idle intervals

within LCM(kiTi) by different approaches.

Figure 3 clearly shows that our proposed technique (i.e.DPDDYN) can dramatically reduce the number of idle intervals.

It is interesting to see that the numbers of idle intervals byDPDE andDPDR are quite close which shows that both static

approaches are not effective in merging the idle intervals.When compared with our approach, the number of idle intervals by

DPDR andDPDE can be as nearly 3.5 times higher than our approach. In addition, we can observe from Figure 3 that, if we

only dynamically change the mandatory job assignment without delaying the execution of the mandatory jobs (i.e.DPDND,

it may help to merge the idle intervals in some cases but not always. And the result number of idle intervals is still much

larger than those that delaying the processor execution. Furthermore, compared withDPDNTA, i.e., the approach that adopts

a different way to delay the mandatory jobs [19], our approach can cut its idle interval number as many as a half. This results

50

60

70

80

90

100

110

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5
 0.5 - 0.6
 0.6 - 0.7
 0.7 - 0.8
 0.8 - 0.9
 0.9 - 1.0

(m,k) Utilization

T
o

ta
l E

n
er

g
y

C
o

n
su

m
p

ti
o

n

DPD_R
 DPD_E
 DPD_ND
 DPD_NAT
 DPD_DYN

Figure 4. The average total energy consumption by different approaches.

demonstrates favorably the strength of the two sufficient conditions presented in section 4.

The reduction of idle intervals has a strong correlation with the reduction of energy as can be shown in Figure 4. Figure 4

illustrates the overall energy consumption for the same task sets by different approaches. From Figure 4, it is not surprising

to see that the energy savings obtained withDPDDYN varies according to the (m,k)-utilization. When (m,k)-utilization is

very high (e.g. within [0.8,1.0]), the system is busy most ofthe time and cannot be shut down. Under this scenarios, all the

approaches have the similar energy savings. When the (m,k)-utilization is small, we can see thatDPDDYN can save energy

more effectively. As shown in Figure 4,DPDDYN can reduce the energy consumption ofDPDND by up to 18%, and can that

of DPDNTAup to 6%withoutincreasing the on-line complexity. The energy conservation is more significant when compared

with the conventional and naive approaches (DPPE andDPPR), i.e., up to over 23%. In summary, the experiment results has

shown that our approach can significantly reduce the idle intervals, and hence achieve better energy savings with guaranteed

QoS level that the conventional approaches.

7 Conclusions

Energy consumption is critical in the design of pervasive real-time computing platforms. The power consumption for

peripheral devices, as a significant part of the overall power consumption, must be taken into consideration to reduce the

system wide power consumption. On the other hand, most of these real-time systems are not hard real-time but exhibit more

complex QoS behaviors that can only be modeled by more complicated constraints. In this paper, we presented a dynamic

DPD approach to reduce the system wide energy consumption while guaranteeing the QoS requirement, which are modeled

as the(m,k)-constraints. Our approach ensures the(m,k)-firm guarantee by taking the advantage of static analysis. The

energy saving performance of our approach comes from the facts that we dynamically change the mandatory/optional job

settings, and merge the idle intervals effectively by delaying the execution for mandatory jobs. Our experimental results

demonstrate that our approach can greatly reduce the numberof idle intervals and thus the power consumption, while still

providing(m,k)-firm guarantee.

References

[1] T. A. AlEnawy and H. Aydin. Energy-constrained scheduling for weakly-hard real-time systems.Real-Time Systems Symposium,

pages 376–385, 2005.

[2] T. Austin, D. Blaauw, S. Mahlke, T. Mudge, C. Chakrabarti, and W. Wolf. Mobile supercomputers.IEEE Computer, 37(5):81–83,

2004.

[3] L. Benini, A. Bogliolo, and G. Micheli. A survey of designtechniques for system-level dynamic power management.IEEE Trans.

on VLSI, 8(3):299–316, June 2000.

[4] L. Benini and G. Micheli.Dynamic Power Management: Design Techniques and CAD Tools. Kluwer, 1997.

[5] G. Bernat and A. Burns. Combining (n,m)-hard deadlines and dual priority scheduling. InRTSS, Dec 1997.

[6] G. Bernat and R. Cayssials. Guarantted on-line weakly-hard real-time systems. InRTSS, 2001.

[7] H. Cheng and S. Goddard. Online energy-aware i/o device scheduling for hard real-time systems.International conference on

Design, automation and test in Europe, pages 1055–1060, 2006.

[8] J.-Y. Chung, J. W. Liu, and K.-J. Lin. Scheduling periodic jobs that allow imprecise results.IEEE Trans. on Computers, 39(9):1156–

1175, September 1990.

[9] L. Doherty, B. Warneke, B. Boser, and K. Pister. Energy and performance considerations for smart dust.International Journal of

Parallel Distributed Systems and Networks, 4(3):121–133, 2001.

[10] ITRS. International Technology Roadmap for Semiconductors. International SEMATECH, Austin, TX., http://public.itrs.net/.

[11] R. Jejurikar and R. Gupta. Dynamic voltage scaling for system-wide energy minimization in real-time embedded systems. Interna-

tional Symposium on Low Power Electronics and Design, pages 78–81, 2004.

[12] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for real-time embedded systems.DAC, pages 275 –

280, 2004.

[13] M. Kim and S. Ha. Hybrid run-time power management technique for real-time embedded system with voltage scalable processor.

ACM SIGPLAN workshop on Optimization of middleware and distributed systems, pages 11–19, 2001.

[14] G. Koren and D. Shasha. Skip-over: Algorithms and complexity for overloaded systems that allow skips. InRTSS, 1995.

[15] J. Liebeherr, D. Wrege, and D. Ferrari. Exact admissioncontrol for networks with a bounded delay service.IEEE Trans. on

Networking, 4(6):885–901, 1996.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment.Journal of the ACM,

17(2):46–61, 1973.

[17] B. Mochocki, X. Hu, and G. Quan. A realistic variable voltage scheduling model for real-time applications.ICCAD, 2002.

[18] M.Spuri. Analysis of deadline scheduled real-time systems. InRapport de Recherche RR-2772, INRIA, France, 1996.

[19] L. Niu and G. Quan. Reducing both dynamic and leakage energy consumption for hard real-time systems.CASES’04, Sep 2004.

[20] L. Niu and G. Quan. Energy-aware scheduling for realtime systems with (m,k)-guarantee.Technical Report TR-2005-05, Department

of Computer Science and Engineering, University of South Carolina, 2005.

[21] L. Niu and G. Quan. A hybrid static/dynamic dvs scheduling for real-time systems with (m, k)-guarantee.Real-Time Systems

Symposium, pages 356–365, 2005.

[22] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating systems. InSOSP, 2001.

[23] Q. Qiu, Q. Wu, and M.Pedram. Dynamic power management ina mobile multimedia system with guaranteed quality-of-service. In

DAC, pages 834–839, 2001.

[24] G. Quan and X. Hu. Enhanced fixed-priority scheduling with (m,k)-firm guarantee. InRTSS, pages 79–88, 2000.

[25] G. Quan and X. S. Hu. Energy efficient fixed-priority scheduling for real-time systems on voltage variable processors. InDAC, pages

828–833, 2001.

[26] K. Ramamritham and J. A. Stankovic. Scheduling algorithms and operating system support for real-time systems.Proceedings of

the IEEE, 82(1):55–67, January 1994.

[27] P. Ramanathan. Overload management in real-time control applications using (m,k)-firm guarantee.IEEE Trans. on Paral. and Dist.

Sys., 10(6):549–559, Jun 1999.

[28] P. Rong and M. Pedram. Hierarchical power management with application to scheduling.International symposium on Low power

electronics and design, pages 269–274, 2005.

[29] A. Striegel and G. Manimaran. Best-effort scheduling of (m,k)-firm real-time streams in multihop networks.Workshop on Parallel

and Distributed Real-Time Systems, 2000.

[30] V. Swaminathan and K. Chakrabarty. Energy-conscious,deterministic i/o device scheduling in hard real-time systems. IEEE Trans.

on CAD, 22(7):847–858, 2003.

[31] V. Swaminathan and K. Chakrabarty. Pruning-based, energy-optimal, deterministic i/o device scheduling for hardreal-time systems.

Trans. on Embedded Computing Sys., 4(1):141–167, 2005.

[32] M. A. Viredaz and D. A. Wallach. Power evaluation of a handheld computer.IEEE Micro, 23(1):66–74, 2003.

[33] R. West and K. Schwan. Dynamic window-constrained scheduling for multimedia applications. InICMCS, 1999.

[34] F. Yao, A. Demers, and S. Shenker. A scheduling model forreduced cpu energy. InAFCS, pages 374–382, 1995.

[35] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and R. Wang. Modeling hard-disk power consumption.2nd USENIX

Conference on File and Storage Technologies (FAST ’03), pages 217–230, 2003.

[36] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner. Theoretical and practical limits of dynamic voltage scaling.DAC, pages 868–873,

2004.

[37] Q. Zheng and K. G. Shin. On the ability of establishing real-time channels in point-to-point packet-switched networks. IEEE Trans.

on Comm., 42(2/3/4):1096–1105, 1994.

[38] J. Zhuo and C. Chakrabarti. Systemlevel energyefficient dynamic task scheduling.Design Automation Conference, pages 628–631,

2005.

8 Appendix

8.1 Proof for Theorem 1

To prove Theorem 1, we first prove the following lemma.

Lemma 3 Let M be the mandatory job set fromT according to the R-pattern. Then if the processor starts itsexecution at

ts = min(Yi), i = 0,1, ...,n−1, no mandatory job inM will miss its deadline.

Proof: Use contradiction. Assume that when the processor starts its execution atts, some mandatory jobJp = /rp,cp,dp/

misses its deadline, whererp, cp, anddp represent the arrival time, execution time, and absolute deadline ofJp. Jp must be

in the first busy interval since the processor delay its execution would not causeJp to miss its deadline otherwise. Therefore

∑
i

Wi(0,dp) > (dp− ts). (14)

whereWi(t1,t2) represents thework demand(see the proof for Lemma 1) fromM between interval[t1,t2].

AssumeJp finishes atfp(rp < fp ≤ dp) when the processor starts att = 0. Let

• J (0,dp) represent the mandatory jobs with deadlines no later thandp;

• J (0,df) represent the mandatory jobs arriving earlier thanfp with deadlines no later than thandp;

• J (df ,dp) represent the mandatory jobs arrivingNO earlier thanfp with deadlines no later thandp.

It is easy to see thatJ (0,dp) = J (0,df)∪ J (df ,dp). LetW′(J) represent the workload, i.e., total execution time, ofJ . Then

we have

∑
i

Wi(0,dp) = W′(J (0,dp)) = W′(J (0, fp))+W′(J (fp,dp)). (15)

and

W′(J (0, fp)) ≤ fp. (16)

Now consider jobJq = rq,cq,dq ∈ J (df ,dp) such thatJq finishes atfq (the latest beforedp) when the processor starts att = 0.

Then we have

W′(J (fp,dp)) ≤ (dp− fp)− (dq− fq). (17)

As (dq− fq) ≥ (Dq−Rq) = Yq (Definition 5) andYq ≥ ts, from equation (17), we have

W′(J (fp,dp)) ≤ (dp− fp)− ts. (18)

Then from equation (15, (16), and (18), we have

∑
i

Wi(0,dp) ≤ dp− ts, (19)

which contradicts equation (14). 2

We now proceed to prove Theorem 1. Again we use contradiction. Assume the processor is idle att0 and a mandatory job

Jp misses its deadline when the processor resumes its execution att = t0 + ts. Therefore we have

∑
i

Wi(t0,dp) > dp− t. (20)

Now considerM ′, the mandatory job set fromT according to the R-pattern. SinceM ′ is schedulable when processor delays

its execution tots, we have

∑
i

Wi(0,dp− t0) < dp− t0− ts = dp− t. (21)

In addition, forM , there are no more thanmi jobs among any consecutiveki jobs fromτi are mandatory. Therefore, we have

∑
i

Wi(0,dp− t0) ≥ ∑
i

Wi(t0,dp) > dp− t, (22)

which contradicts equation (20).

8.2 Proof for Theorem 2

We prove Theorem 2 based on Theorem 1. Assume the processor resumes its execution at̃TLS(M), as defined in equation

(9). Let Jp be the first mandatory that is executed. From Lemma 2, it is easy to see thatJp and all higher priority jobs are

schedulable. For any jobJi with priority lower than that ofJn, we consider two cases: (a)r i < TB, (b) r i ≥ TB. Whenr i < TB,

similarly asJp, its schedulability is guaranteed. Whenr i ≥ TB, note that the jobs are delayed no more than mini r i +Yi and

are therefore schedulable according to Theorem 1. Thus, allthe mandatory jobs can meet their deadlines.

