System Wide Dynamic Power Management for Weakly Hard Real-ime Systems

Abstract

Energy reduction is critical to increase the mobility andteay life for today’s pervasive computing systems. At Haes
time, energy reduction must be subject to the real-timetecaings and quality of service (QoS) requirements for apgtiions
running on these systems. This paper presents a novelmsapproach to reduce thleystem-wideenergy consumption for
such systems using dynamic power management. In this papexpplications are modeled using a popular weakly hard
real-time model, i.e., thém, k)-model, which requires that at least m out of any k conseeuttistances of a task meet their
deadlines. Our experimental results show that, by judigipacheduling the real-time tasks and shutting down thegssor
and/or peripheral devices, our approach can lead to sigaifieenergy savings while guaranteeing the k)—firm deadlines

at the same time.

Keywords: Dynamic power management, weakly hard real-time, powerascheduling, Quality of Service, I/O devices

1 Introduction

Energy conservation has come to be recognized as a crigsmat iin design of pervasive real-time embedded systems,
particularly due to the proliferation of mobile systemshnlitnited power resources. For the sake of mobility, thesegide
computing and communication devices require low energygmption to maximize the battery lifetime. As VLSI tech-
nology continues its remarkable advances, the power coptsoimhas been increased exponentially [2]. Current batter
technology, with its 5% annual capacity increase [2], caeffectively address this problem. In addition, seriousaans

are raised with regards to managing the heat dissipation fhe rapidly elevated power consumption. Left uncheckeal, t

power consumption will threaten to curtail the availailitf the future high performance portable devices and ad@nc
multimedia functionality on these devices.

Power aware scheduling has been proven to be an effectiafytovreduce the power consumption. Rooted in the tra-
ditional real-time scheduling technology, the power avgfgeduling techniques change the system computing peafaen
accordingly based on the dynamically varied computationated. Two main types of power management mechanisms are
reported in the literature. The first one is commonly knowthaslynamic power dow(DPD), i.e., to shut down a processing
unit and save power when it is idle, and switch over to norrteesvhen the idle time expired. The second one is to update
the processor’s supply voltages and working frequenciég;iwis usually referred as thidynamic voltage scalin@QVs).
Thanks to the recent IC technology advancement, many mquecessors can vary its voltage and working frequencias (an
thus processing speeds) dynamically.

For the past few years, we have seen extensive researchesthioy a variety of real-time scheduling techniques to
reduce the energy consumption. Most of them have been fdesodely on reducing the energy consumption by the processor
(e.g. [22, 25, 34]). A typical portable device usually irdis one or more core processors, memory, and peripherakdevi
such as network interface card, disk, and display. Whilegtioeessor is one of the major power hungry units in the system
other peripherals such as network interface card, memankdyalisks also consume significant amount of power. The
empirical study by Viredaz and Wallach reveals that the @ssor core consumes around 28.8% of total power when playing
a video file on a hardware testbed [32] for handheld devicldgvthe DRAM consumes about 28.4% of the total power.
Note that this testbed [32] lacks disk storage and wireletaarking capability, which may contribute as much power
consumption as the processor core if not more [35, 9]. Thidien that the techniques that reducing the processor gnerg
alone may not be overall energy efficient.

A number of techniques (e.g. [11, 13, 38]) have been puldisbeently to deal with the power consumption for systems
consisting of DVS processors and peripheral devices. Adumehtal tradeoff that has to be made in these approaches is
whether to apply DVS or DPD during the scheduling processSE&thniques reduce energy consumption by lowering the
processor speed. Unfortunately, it extends the executimestof real-time tasks and shrinks the idle intervals, Wiécnot
favorable for DPD. Kim and Ha [13] proposed a techniquehfand real-time system, while scheduling decisions are made on
a timeslot-by-timeslot basis. To facilitate a run-time im&cism, the processor speed for each task is determinedbyzamg

the energy savings based on a pre-determined set of exetties. Jejurikar and Gupta [11] introduced a heuristicea

method to slow down the processor speed and optimize thgyunsage by both the processor and peripheral devices. Zhuo
and Chakrabarti [38] proposed a theoretical formulatiothefoptimal scaling factor and computed it numerically. é2hsn

this factor, they introduced a dynamic scheduling techaidpat reduces the potential excessive preemptions amskg)ta
further reduce the system wide energy consumption.

While DVS techniques can dramatically reduce the dynamiegp@onsumption for the processor, DPD techniques seems
to be more promising in reducing the system-wide overaltgneonsumption in the near future. As shown in the work by
Zhuo and Chakrabarti [38], when peripheral devices consomoee power than the processor, the effectiveness of DVS
techniques can be seriously degraded. Even for the pradésalf, the energy efficiency of DVS is becoming limited &s |
technology continue its evolution [36], especially whee khakage power is increasing exponentially and will soopass
the dynamic power consumption [10]. DPD, on the other hamdnie of the most intuitive and effective ways to control
the leakage power consumption. Moreover, most periphesdtds do not support DVS at all. As a result, the research on
employing DPD has regained its momentum to reduce the sysidmenergy consumption.

As a traditional energy-saving technique, DPD has beenlyig@opted in real-time scheduling. A majority of DPD
techniques (e.g. [28, 23]) have been proposed for softtimal-systems, where task deadlines can be missed albeit with
reduced quality levels. There are also a number of papags[{.30, 31]) deal with the power optimization for hard real
time systems, where a deadline miss is considered a systlemefaA good survey on DPM related real-time scheduling
research can be found in [4, 3].

Few real-time applications are truhard real-time, i.e., missing one task deadline does not neghsseash the en-
tire application or system. Many real-time applicationschs as multimedia and communication applications, camofte
tolerate occasional deadline misses, but too much deaalisges cannot satisfy user’s perceived quality of sen@aeS)
requirement. While the statistic information such as therage deadline miss rate is commonly used to quantify thersys
performance, this metric can be problematic. Note that eveery low average miss rate tolerance cannot prevent a large
number of deadline misses from occurring in a very shortqoeof time. This may cause the loss of critical information
which cannot be reconstructed and therefore severely degna service quality from user’s perspective.

Theweakly hard real-time modé$ a more suitable real-time model for this type of appliwasi. The weakly-hard real-
time task has both a firm deadline (i.e., a task instance ngsts deadline is utterly useless) and a throughput reomére

(i.e., there should bsufficienttask instances from the same task meeting deadlines in tvdaovide required quality

levels). Several weakly-hard models have been introdu2eédd, 14, 5, 33]. Ramanatha&t al.[26] proposed a so-called
(m,k)—model, with a periodic task being associated with a pair td#gers, i.e.(m k), such that among arlyconsecutive
instances of the task, at leastof the instances must finish by their deadlines for the sydiehavior to be acceptable.
A dynamic failureoccurs, which implies that the temporal QoS constraintdated and the scheduler is thus considered
failed, if within any consecutivé& jobs more thar{k — m) job instances miss their deadlines. Koetn al.[14] proposed

a ‘skip-over’ model, which is a special case (of, k) model withm=k— 1. Westet. al.[33] introduced another similar
model, called thevindow-constrainednodel, which requires that within ampn-overlappe@ndconsecutivevindows each

of which containingk jobs, at leasin of them can meet their deadlines.

In this paper, we study the problem of employing DPD to redheesystem-wide energy consumption with guaranteed
QoS for a weakly hard real-time system. Specifically, we adog (m,k)-model to capture the QoS requirement for the
real-time application. A key challenge for this problem tmdo with the definition of which jobs are mandatory, i.e.osé
deadlines have to be met to guarantee no dynamic failurercmed which jobs can be optional. This problem has shows to
be NP-hard even without the considerations of the powerazwaton [24]. In our approach, we employ a run-time techaiq
and dynamically choose and execute the mandatory jobs masuay that facilitates the system shut down. Our experisgnent
shows that by judiciously choosing and merging the manglgtds, our techniques can lead to significant energy savings
while still guaranteeinghe (m,k)-firm deadlines.

The rest of the paper is organized as follows. We first intoedthe system model, background, and motivations for our
research in Section 2. Section 3 describes a feasibilitdition to guarantee the (m,k)-firm deadlines in our approsleén
dynamically determining the mandatory/optional jobs. tB&c4 presents two methods to delay the job execution tdhéurt
extend the idle interval. Section 5 discusses how to judelipexecute the optional jobs and present the overall iitgor

Section 6 presents our experimental results. Section 7<dtaavconclusions.

2 Preliminary

In this section, we first introduce the system model and tla¢ge work on real-time scheduling with (m,k)-firm guarante

We then present and discuss a motivation example.

2.1 System models

We model a real-time application withindependent periodic tasks, = {to,T1,---,Tn—1}, Scheduled according to the
earliest deadline first (EDF) policy, i.e., the scheme tlzat best utilize the processor [16]. Each task contains amitifi
sequence of periodically arriving instances cajlgots We useJ;j to represent the jth job of tagk Taskr; is characterized

using the following five parameters:

e T;: the time between the arrivals of two jobs from same taslerretl to as theeriod

e Dj: the time by which each job af must be completed, referred to as theadline We assume thdd; < T,.

e Ci: the maximum number of processor cycles needed to comphet@b oft; without any interruption, referred to as

theworst case execution time

e (m,ki)(0<m <k): the (m,k)-constraint for;, requiring that, among arly consecutive jobs dfi, at leastm; jobs

meet their deadlines.

The system architecture consists of two functional unitspi@ processor and a peripheral device. Both the processor
and the peripheral device can be shut down and waken up lagm wdle time expired. We denote the processor power with
Ppact When running a task, arfé,qie when the processor is idle (yet stilh). When the processor is shut down, its power
consumption is denoted &gsieep The peripheral device in our system can be in one of twosstattiveor sleep When the
processor is active, the peripheral devices must be alstctireanode to provide timely service. We assume that thecgevi
consumes the same power during its active mode no matteheshieis idle or not. The power consumption for the device
is denoted aByact andPysieepfor its active mode and sleep mode, respectively.

Time and energy needed to be consumed to shut-down and lakerwp the processor and device. It will not be feasible
or beneficial to shut down the system if the idle interval i$ looger enough. We usgnin to represent the minimal idle
intervals that can be feasibly shut-down with positive ggeyains.

With the above system models, our problem can be formulatéallaws:

Problem 1 Given weakly hard real-time task s&tand system architectur@, scheduleZ” with EDF on systenf such that

all (m,k)-constraints are guaranteed and the total energy conswmjsi minimized.

2.2 Real-time scheduling with (m,k)-firm deadline

To schedule a real-time task set with (m,k)-firm deadlin@ives two sub-problems: (i) mandatory/optional partitign
problem, i.e., to determine if a job should be mandatory dioogl, and (ii) scheduling problem, i.e., to schedule ¢hebvs
properly to guarantee their deadlines. As proven in [24{hlpvoblems are NP-hard problems. In what follows, we briefly
introduce some related real-time scheduling results fok)dfirm guarantee. For ease of our explanation, wepagternsto
denote the mandatory/optional partitions. A pattern is¥dinite binary sequence associated with each task such jbatis
mandatory if its corresponding bit is “1” and optional otivese.

The mandatory/optional partition decision can be maddid-or on-line. Two known static mandatory/optional parti
tioning strategies are reported in literature. The first ismzalledthe deeply-red patteror R-pattern which was proposed
by Korenet al.[14]. According to this technique, let

1 0<jmodk<m
T = (1)
0 otherwise j=0,1,--
Then jobJ;j is market as mandatorytf; = 1, or optional otherwise. The second one is proposed by Raifnanet al. [27]

as follows.

1ot =[50 x &)
T = o @
0 otherwise j=0,1,--

The (m,k)-pattern defined with formula (2) has the property that méorggobs are marked evenly, and is therefore referred
as theevenly distributed patter(or E-patterr) [21].

The most significant advantage of applying static pattesribat they enable the application of theoretic real-tinchte
nigues to analyze system feasibility. Analytical schediliky results are available [27, 20] for both fixed-prigriitnd EDF
scheduling policies, based on either R-pattern or E-patfEne problem, however, is its poor adaptivity in dealinghvthe
run-time variations, which is inherent in many real-timelgations.

Dynamic mandatory/optional partitioning, on the otherdhas more flexible and therefore can accommodate run-time
variations more effectively. The problem is how to ensueedeadlines of all the mandatory jobs. A number of dynamic

mandatory/optional partitioning heuristics are propo@ed. [26, 29, 1]) with no guarantee for the deadlines of ratony

jobs at all. Currently, two dynamic techniques published easure the (m,k)-guarantee. Beraetal.[6] proposed a Bi-
Modal Scheduler, which runs jobs at two modes: normal modepamic mode. A task is first executed at the normal mode
and promoted to the panic mode if the dynamic failure willwd€ it stays in the normal mode. Niet. al.[21] proposed to

shift the E-pattern dynamically when an optional job megstsieadline.

2.3 The motivations

Our goal is to shut down the processor and device efficiemitiguarantee the (m,k)-constraints in the mean time. Al-
though the static (m,k)-patterns can guarantegnh&)-constraints, they usually lead to large number of shortsadtered
idle intervals. Figurel(a) shows the EDF schedule by deteng mandatory jobs based on E-patterns for a task set with
three periodic tasks. As shown in Figurel(a), the mandatiry are distributed evenly. This is advantages to schedsle
sets with high utilizations but not to reduce the number & idtervals. Note that there are as many as 11 idle inteimals
time interval [0,96] in this schedule.

DPD mechanism is in favor of longer and fewer idle intervals.intuitive idea to reduce the number of idle intervals is to
assign mandatory jobs as close as possible. This seems &otheR-pattern assignment a better choice. However, assshow
in Figurel(b), the EDF schedule based on R-patterns raault? idle intervals within the same time interval. The raaso
are two folds. First, from equation (1), an R-pattern alwaysks the firsiny jobs as mandatory jobs. The mandatory jobs
from different tasks are likely to overlap for the first “wiomd” but not necessarily for the following windows due to the
differences of k's and periods from different tasks. Se¢ewdn though mandatory jobs and the time intervals in whiely t
are supposed to run are overlapped (e.g., see intervall [0, Figure 1(b)), idle intervals still exist due to the deiagland
arrival constraints for the tasks.

Figure 1(c) presents a schedule that can cut the numbereohiirvals to as small as 4. A small number of idle intervals
usually means longer idle interval length. As a result, thergy overhead for shutting down the processor and devitbea
reduced. In addition, some idle intervals that previousiyriot be shut down because they are too short can now be done so
This can transform to significant energy savings. A carefidyof Figure 1(c) would reveal that such solution is obediby
employing an irregular mandatory/optional job patter, ineither E-pattern nor R-pattern, together with cahgfiglaying
the execution of mandatory jobs. The challenges are thentbalefine appropriate mandatory jobs and how to delay the

executions of these jobs effectively such that the idleriratis can be merged while the (m,k)-constraints can be gteed.

Task 1=(8, 8, 2, 2, 4) Task 2=(10, 10, 1, 1, 3) Task 3=(12, 12, 3, 3, 6)

36 48 60 72 84 9
(©

Figure 1. (a) The EDF schedule for three tasks according to E-patterns (with 11 idle intervals); (b)
The EDF schedule for same tasks based on R-patterns (with 12 idle intervals); (c) A better schedule
for the same task set (with only 4 idle intervals).

In following sections, we propose an integrated run-tinohitggue to attack these challenges.

3 Meeting the (m,k)-constraints

From the motivation example shown above, it is evident th#hé existing static (m,k)-patterns cannot effectivelygee
the idle intervals. How to devise new static (m,k)-patteha can cluster mandatory jobs for this purpose is an intieng
problem and needs further study. Nonetheless, the staterpaare usually based on worst case scenarios and lgstvada
Judiciously exploiting the variations, inevitable in thentime environment, dynamically can be extremely benefidihe
problem is how to determine the patterns dynamically andirenthat no dynamic failure will ever occur. The following

condition is critical in our approach when choosing mandagjabs and ensure their feasibility.

Lemma 1 Given systen?, let M be the mandatory job set according to their R-patterns. Tihédf is EDF-schedulable,
ajob (i.e. J) can be marked as mandatory and meet its deadline if for gaehZ,i = 0,1,...,n— 1, no more than mjobs

(including J) among any consecutivejkbs are marked as mandatory.

Proof: For an arbitrary real-time task set, i.&., scheduled with EDF, Zheng. al.[37] and Liebeheret. al.[15] showed

that7 is EDF-schedulabl#f

vt >0,y W(0t) <t, 3)

whereW (0,t) is the total workload from the jobs af that arrive beforé andmustbe finished by, or the so calledvork
demand

Given any task set schedulable with R-pattern and tinket the mandatory workload withii®,t) beW(0,t). Then from
equation (3) we have

¥t >0,W(0,t) <t. 4)

In addition, from equation 1, we can see that thereesaetly mjobs with anyk; consecutive jobs iMf. If we useM’ to
represent any other mandatory job sets in which no morerthgwbs among any consecuti4ejobs fromt; are mandatory,
and let its mandatory workload witld,t] be\W(0,t), then we must havé/(0,t) <W(0,t). Therefore, any mandatory job
from M’ can meet its deadline. a
Lemma 1 implies that as long as a task set is schedulable ty@atterns, we can flexibly choose a job as mandatory

provided we do not choose more thamamongk; consecutive jobs from same tagk Therefore, when the system is idle,
we can intentionally delay thassignmenbf mandatory jobs in such a way that they can be congregatedieter, recall
that in the motivation example, even though the mandatdry gve allocated closely, large number of idle intervals sily
exist due to their arrival and deadline constraints. In sextion, we solve this problem by carefully delaying éxecution

of mandatory jobs.

4 Delaying the execution of mandatory job set

When the processor is idle, delaying the execution of mamgédbs helps to extend the idle intervals. However, it may
also potentially cause mandatory jobs to miss their deasliamd thus cause dynamic failure. A number of papers pelbolish
[7, 12] proposed to compute the job delay amount for a halletirea task set based on its utilization factor. These apgies
cannot be applied for real-time system with weakly hard-tiaé constraints since the famous condition, Lex 1 is not
necessary for a weakly hard real-time system to be feagibthis section, we develop two sufficient conditions forayeéhg
the execution of mandatory jobs as late as possible withausing any dynamic failure. (The proofs are provided at the

Appendix section.) Before we introduce these sufficientditions, we first introduce the following definition.

Definition 1 Assume thafM is the mandatory job sets from according to R-pattern and schedulable, and lgbR the

worst case response time (i.e., the time from a job arrivétistdinish). Thedelay factorfor 1; (denoted as;Yis defined as

Yi = (Di —R). ()

The worst case response time can be computed in a similar svénagin [18]. Since we only need to compute once for
each task off-line, a more intuitive way is to scan throughititerval from[0,LCM(kiT;)], i = 0,...,n— 1 to find the worst

case response time for each task. With Definition 5, our firficient condition is formulated in the following Theorem.

Theorem 1 Let M be the mandatory job set such that no more thamrandatory jobs assigned for anydonsecutive jobs
fromT; € 7. Assume that processor is idle attty, and let the arrival time for mandatory job ffomt; immediately afterg

be 1. Then if the processor resumes its execution at

TLS(M):min(ri+Yi)7i:Oala"'vn_la (6)
|

no mandatory job iV will miss its deadline.

Theorem 1 allows us to determine the maximal delay for mamggbbs based on worst case response time analysis,
which is available off-line. The advantage of this appro@adlts small run-time overhead. Unfortunately, same as dhgro
off-line strategy, it suffers the pessimistic estimatiaredo its assumption of the worst case scenario, as exerdpiifie
Figure 2. Figure 2(a) shows the schedule of a task set of thsdes according to their static R-patterns. We can readily
identify thaty; = 4,Y, = 0, andYs = 2. Assume a dynamically determined mandatory job sets sloigure 2(b). (We can
see that the job execution intervals are largely overlap®itdceY, = 0, the mandatory job from Task 2 cannot be delayed
according to Theorem 1, and there is one idle interval batj2®,36]. On the other hand, however, if we delay the pramess
execution tillt = 27 (as shown in Figure 2(d)), all jobs can meet their deadiimno idle interval exists. This is because
that Theorem 1 computes the maximal delay assuming the yedoyaltakes its worst case response time. When a job has a
much smaller response time, it can be delayed further andimybe more effective in reducing the idle intervals.

Mochockiet. al.[17] introduced a method to compute the latest starting {in®T) for a real-time job set. Their method

is based on the following lemma.

Lemma 2 [17] Let job setJ={Jo, 1, ...,Js} and J = {ri,d;,ci}, where y, di, and G refer to the arrival time, deadline, and

Task 1=(8, 8, 4, 2, 4) Task 2=(19, 19, 5, 1, 2) Task 3=(10, 10, 4, 1, 5)

Task 1 Task 1

| |
8 16 24
Task 2 - > Task 2

Task 3 _-
0

19
| | > Task 3
10 20

11 12
Task 1 Q - > Task 1
24 5 32
21
Task 2 g/ | - T e Task 2 (7@
719 28 J 19 27 38 ;
31
Task3 (| | 70, s (| | -,
o 77 20 30 40 o 27 20 30 40
(©) (d)

Figure 2. (a) Three tasks scheduled based on their R-Pattern; (b) J,1 cannot be delayed according to
Theorem 1; (c) Delaying the mandatory jobs tot =23([]) cannot remove the idle interval; (d) Delaying
the mandatory jobs to t =27 and eliminating the idle interval.

execution time of;Jrespectively. Let

ts(d)=d- % o (7)
Jehp(J)

where h§Jy) is the jobs with the same or higher priorities than that f Then the latest starting time (LST) 6f i.e.,

T.s(J), without violating deadline constraints is
Tis(J) = miimLS(Ji)- (8)

Lemma 2 helps to compute the LST for a given job set. Howetés,method cannot be readily applied in our dynamic
approach where the job set is not statically determined. e\lial. [19] later extended Lemma 2 and compute LST based
on information from only a subset of the jobs. This approaa$ & much lower complexity and hence is more suitable for
on-line purpose. We use Figure 2(c) to illustrate this appho

Assume the processor is idle before 19 in Figure 2(c). Since the LST for a job set is bounded by #rkest deadline of
the jobs (so calledelay boundand denoted a&s), and is usually known on-line (i.dg = 32 in this case), it is desirable to
estimate LST for the entire job set based on the jobs arrivefgre the delay bound,i.&l;,; andJ,1. As pointed out in [19],

the LST computed by employing equation (7) directly Jor andJ>1 may not be valid since the validity of LST in Lemma 2

is ensured by employing (7) faveryjob in the job set. In this regard, Niet al. proposed to use theffective deadlinef a
job (i.e. the time before which a job has to be finished suchithdll not cause any other job to miss deadline) in place of
the deadline in (7). To keep low complexity of the algoritithey simply defined the effective deadline for a job by its own
deadline or the earliest arrival time of the coming low pitiojob, whichever is smaller. In Figure 2(c), both the effee
deadlines fod;1 andJ,1 happen to be 32. Therefore, based on equatio{(8)= min(t.s(J11),t s(Jd11)) = 23.

The approach in [19] delays mandatory jobs further than thee applying Theorem 1 and shorten the idle interval in
Figure 2(b). However, it fails to eliminate the idle intekvdn what follows, we present another method to estimate the
LST for mandatory jobs. Our method maintains the same coatiputl complexity as that in [19] but with a more accurate

estimation. Specifically, our method is formally formulkte Theorem 2.

Theorem 2 Let M be the mandatory job set such that no more thammandatory jobs assigned for any ¢onsecutive
jobs fromt; € 7. Assume that processor is idle atttp, and let the delay bound (i.e., the earliest deadline forabming
mandatory jobs) beglfor 4. Then no mandatory job ifi/ will miss its deadline if the processor resumes its exenudio
TLs(M), where

T = min(d’ — 9
Ls(M) 5@2(. Jkethui)ck), 9)

where s consists of mandatory jobs froM with arrival times earlier than g but later than , and
di*:mpin(di,rp+Yp),v\]pe.‘M,Jpgéjsandq3>di. (10)

The fundamental difference between our technique and tharofil9] is the way that effective deadlines are defined.
From equation (10) in Theorem 2, the effective deadline foraandatory job is relaxed from the earliest arrival time @& th
next lower priority job further with its delay factor. This turn will allow mandatory jobs to delay further to merge itile
interval. As such, the effective deadline fbs becomes 34 instead of 32, and thus we hege= 27, which is the case shown
in Figure 2(d). Note that, sincg is available off-line, our technique based on Theorem 2 hasame on-line complexity
as that in [19]. Also, it is not difficult that the LST computkdsed on Theorem 2 is never worst than that by the technique
in [19]. Finally, it is worthy to mention that both Theorem acaTheorem 2 are sufficient conditions. Therefore, the large

one from equation (6 and (9) can be used as LST and guaraetdedilines for all the mandatory jobs.

5 Executing of the optional jobs

When the system are idle, Lemma 1 helps uadsigna mandatory job as late as possible, and Theorem 1 and Th@orem
can further delay the idle intervals by delaying the exexutif mandatory jobs. When the predicted idle interval igglon
enough (i.e. greater thahyn), it will be beneficial to shut down the processor and devic€me missing piece in our
approach is, however, what if the idle interval is still nmd¢) enough?

We have two choices when the idle interval is not long enoogictommodate the timing and energy overhead: (1) we
can simply keep the system idle (but active); (2) we can optitbsome optional jobs. For the first case, the processor
consumes a little less power (Bgact < Ppidie) While the device consumes nearly the same power. At thesfight, running
optional jobs does not seem to be energy efficient Siagg > Ppidle. However, executing optional jobs may potentially lead
to positive energy saving gain because (1) some mandatbsyljecome optional and do not have to be executed; and (2)
more importantly, some short idle intervals in the futura b@ merged to longer ones and enable system to shut down if
appropriate mandatory jobs are demoted to optional. Thielgmois how to select thieght optional jobs.

To make a precise analysis of the trade off in executing th®woal jobs is a challenging problem, especially from the
dynamic scheduling perspective. In considering this, wentdo a heuristic approach in solving this problem. In cewurstic
approach, an optional job is executed, non-preemptivaly, @hen it can finish within the idle intervals as predictdthis
helps to avoid the execution of too many optional jobs, whicluld not be energy efficient. When there are more than
one candidate optional jobs, we devise a function to evaltre fitness of an optional job. The fitness function, jfe.is
determined by two parameters, i.e., the flexibiliB) @nd criticality Cr). An optional tends to have higher energy-saving
potential if its corresponding mandatory jobs are more lflexto be moved around and/or it is closer to dynamic failure.

Therefore, for optional jok;j, we define
KiTi

F(Jj) = (Y +Dj) x me’

(11)

and

CI’(J”‘) = %, (12)

wherent is the currently allowed deadline missestpfvithout causing dynamic failure. Note th&atJ;j) can be computed

off-line butC(J;;) is computed on-line.

The rationale behind equation (11) is that, from TheoremdlTdreorem 2, larg¥ andD; tend to make future mandatory
jobs fromt; more flexible to be delayed. On the other ha@% indicates the average mandatory workload for task he
higher the value is, the more difficult it is to shift the warkd and thus merge idle intervals. Equation (12) measuees th
number (normalized) of deadline misses that can still beréskéd. The higher the value, the less urgent dhateeds to
be executed in order not to cause a dynamic failure. Noteiftldgtis optional,C(J;;) cannot be zero. Therefore, based on
equation (11) and (12, we defirfeas

Fr(mi)

f(Ji,-):W, (13)

whereF*(T;) is the normalized value d¥(J;j) (based on the largest value) for consistency.

Now, with our heuristic to choose proper optional jobs idtroed above, we are ready to present our overall algorithm
(Algorithm 1) for Problem 1. The algorithm consists of twoagks: an off-line phase and an on-line phase. During the
off-line phase, the worst case response time for each taddrutsR-pattern is computed. At the same time, the delay factor,
i.e.,Yi andF*(t;) are also computed for later on-line use (line 3). During ioe-phase, we keep track of the history of a
task and assign a job to be mandatory if it misses deadlineailse a dynamic failure (line 5). When processor is not idle
we execute the mandatory job as soon as possible accordiBDFoschedule (line 7). If the processor is idle, we delay
the execution of mandatory job as late as possible to extendlte intervals (line 10). If the idle interval is large ey,
we shut down the system and later wake up the system whenlén expired (line 13). Otherwise, we execute proper
candidate optional job based on their fithess values (ling7)5

The feasibility of Algorithm 1 is guaranteed by Lemma 1, Tieso 1, and Theorem 2. Note that exaatty out of k;
from a taskt; are chosen as mandatory, but not all of them are executed sarme optional jobs from the same task may
have been executed. On the other hand, the optional jobsbrexecuted when the processor is “idle” when executing the
mandatory jobs. Therefore, as long as a task set is schéelw@h static R-pattern, our algorithm always guarantées t
no dynamic failure will ever occur. Further, the energy éficy of our dynamic approach lies in the fact that it adjtists
mandatory/optional partition adaptively by incorporgtthe run-time information and merging smaller idle intésviato
larger ones. It is particularly efficient considering thetfthat the actual execution time of a task can be much snthber

its worst case execution time. In the next section, we useraxgnts to evaluate the performance of our algorithm.

Algorithm 1 The overall algorithm.

1: Input: 7T andTpmin.

2: Offline:

3: ComputeR;, Y, F*(1;) for 1 € T

4: Online:

5: A job is marked as mandatory if a dynamic failure will occuit ifails to meet its deadline;
6: if processor is not idlthen

7: Run mandatory jobs according to EDF;
8: else
9: Let g be the coming mandatory job set;

10: Compute the maximal deldy s for 7 based on Theorem 1 and Theorem 2;

11: if Tus—teur > Tmin then

12: I tcur is the current time

13: Shut down the processor and set up the wake up timer Tpdeteyr;
14: else

15: Jo = the optional jobs in the ready queue;

16: Compute the fitness based on equation (13).

17: RunJ; € 4, non-preemptively that have the maximum fitness value;
18: end if

19: end if

6 Experiments

In this section, we evaluate the performance of our appraatty simulations. We implemented five approaches in our
experiments. In the first approach, the mandatory jobs watieally determined using tHe-patterns. We refer this approach
asDPDg and use its results as the reference results. The seconubaplso performed the mandatory/optional partitioning
statically. Different fromDPDg, we used E-pattern instead of R-pattern in this approacthangby refer it aDPDg. In
the third approach, we marked the mandatory jobs dynaryiaaldescribed in Algorithm 1. However, the execution of the
mandatory jobs were not delayed. We refer this approaddPd3yp. The fourth approach also determined the mandatory
job dynamically and delayed the mandatory job executioe delay amount is computed based on the approach in [19].
We call this approach &PDyta. The final approach, denoted ByPDpy ;, is our new approach presented in this paper, i.e.,
the complete implementation of Algorithm 1.

The periodic task set in our experiments consisted of fidestaBach task set were randomly generated with the periods
randomly chosen in the range [0, 5Jms We assumed that the deadlines for the tasks were the saimeigseriods. The
worst case execution time (WCET) of a task was set to be unlfadistributed from insto its deadline, and we assumed that
the actual execution time for a job was evenly distributedfi[0.4WCET, WCET]. Then andk; for the (m, k)-constraints

were also randomly generated such tkais uniformly distributed between 2 to 10, andklm < k;. To investigate the

120

@mDPD_R mDPD_E 0 DPM_ND mDPM_NTA @ DPM_DYN

100 ++

60 H —

40 .

Number of Idle Intervals

20 H —

0.0-0.1 0.1-02 02-0.3 03-0.4 04-05 05-0.6 0.6-0.7 0.7-0.8 0.8-0.9 09-1.0

(m k)-Utilization

Figure 3. The average number of idle intervals by different approaches.

performance for different approaches under different ‘eadt, we divided the tota(m, k)-utilization, i.e., 3; 'E_TQ' into
intervals of length 0.1. To reduce the statistical errors,require that each interval contain at least 20 schedutable
sets, or at least 5000 task sets within each interval have geeerated. For the processor and device considered in our
experiments, we assume tHgact = 1.0W, Ppigle = %Ppact, andPyact = 1.0W. We assume that the power consumption for
the processor and device during the sleep mode are negligifd also assume the minimal idle interval length to e 3

We first study the number of idle intervals by the five diffarecheduling strategies. A large number of idle intervals is
undesirable in DPD since it either incurs higher transitterrhead due to more frequent transitions or has to keeprayst
busy due to shorter idle interval lengths. Figure 3 comptresiormalized (with respect @PDg) number of idle intervals
within LCM(k;T;) by different approaches.

Figure 3 clearly shows that our proposed technique QfeDpY N) can dramatically reduce the number of idle intervals.
It is interesting to see that the numbers of idle interval®Dg and DPDg are quite close which shows that both static
approaches are not effective in merging the idle intersélisen compared with our approach, the number of idle intertval
DPDr andDPDg can be as nearly 3.5 times higher than our approach. In additie can observe from Figure 3 that, if we
only dynamically change the mandatory job assignment withelaying the execution of the mandatory jobs [&DnD,
it may help to merge the idle intervals in some cases but neaye. And the result number of idle intervals is still much
larger than those that delaying the processor executiathé&unore, compared withPDyra, i.€., the approach that adopts

a different way to delay the mandatory jobs [19], our apphazen cut its idle interval number as many as a half. This tesul

110
@DPD_R M@DPD_E ODPD_ND mDPD_NAT @DPD_DYN

100 44

90 H

80

70 H

Total Energy Consumption

60

50 H
00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10
(m k) Utilization

Figure 4. The average total energy consumption by different approaches.

demonstrates favorably the strength of the two sufficienti@@mns presented in section 4.

The reduction of idle intervals has a strong correlatiorliie reduction of energy as can be shown in Figure 4. Figure 4
illustrates the overall energy consumption for the samie sats by different approaches. From Figure 4, it is not ssimy
to see that the energy savings obtained vidiPDpy varies according to the (m,k)-utilization. When (m,k)kagtion is
very high (e.g. within [0.8,1.0]), the system is busy mosthaf time and cannot be shut down. Under this scenarios,&ll th
approaches have the similar energy savings. When the (ntiligation is small, we can see thBPDpy N can save energy
more effectively. As shown in Figure BPDpy \ can reduce the energy consumptiorbdfDyD by up to 18%, and can that
of DPDnTAup to 6%withoutincreasing the on-line complexity. The energy conservdtionore significant when compared
with the conventional and naive approacheBPB: andDPRg), i.e., up to over 23%. In summary, the experiment resulés ha
shown that our approach can significantly reduce the ideniats, and hence achieve better energy savings with giesihn

QoS level that the conventional approaches.

7 Conclusions

Energy consumption is critical in the design of pervasiva-tene computing platforms. The power consumption for
peripheral devices, as a significant part of the overall paw@sumption, must be taken into consideration to reduee th
system wide power consumption. On the other hand, most eétheal-time systems are not hard real-time but exhibit more
complex QoS behaviors that can only be modeled by more coatpli constraints. In this paper, we presented a dynamic

DPD approach to reduce the system wide energy consumptibe giiaranteeing the QoS requirement, which are modeled

as the(m, k)-constraints. Our approach ensures thek)-firm guarantee by taking the advantage of static analysie T
energy saving performance of our approach comes from the flaat we dynamically change the mandatory/optional job
settings, and merge the idle intervals effectively by dielgythe execution for mandatory jobs. Our experimentalltesu
demonstrate that our approach can greatly reduce the nuhime intervals and thus the power consumption, whild stil

providing (m, k)-firm guarantee.

References

[1] T. A. AlEnawy and H. Aydin. Energy-constrained schedglifor weakly-hard real-time systemReal-Time Systems Symposium
pages 376-385, 2005.
[2] T. Austin, D. Blaauw, S. Mahlke, T. Mudge, C. Chakrabgatid W. Wolf. Mobile supercomputer$EEE Computer37(5):81-83,
2004.
[3] L. Benini, A. Bogliolo, and G. Micheli. A survey of desigechniques for system-level dynamic power managem@&E Trans.
on VLS] 8(3):299-316, June 2000.
[4] L. Benini and G. Micheli.Dynamic Power Management: Design Techniques and CAD Tedlsver, 1997.
[5] G.Bernat and A. Burns. Combining (n,m)-hard deadlined dual priority scheduling. IRTSSDec 1997.
[6] G.Bernat and R. Cayssials. Guarantted on-line weaklygtmeal-time systems. RTS$2001.
[7] H. Cheng and S. Goddard. Online energy-aware i/o devibeduling for hard real-time systemsnternational conference on
Design, automation and test in Eurggeages 1055-1060, 2006.
[8] J.-Y. Chung, J. W. Liu, and K.-J. Lin. Scheduling periogbbs that allow imprecise resultieEE Trans. on Computer89(9):1156—
1175, September 1990.
[9] L. Doherty, B. Warneke, B. Boser, and K. Pister. Energyg aerformance considerations for smart dusternational Journal of
Parallel Distributed Systems and Netwaork$3):121-133, 2001.
[10] ITRS. International Technology Roadmap for Semiconducttwternational SEMATECH, Austin, TX., http://public.#met/.
[11] R. Jejurikar and R. Gupta. Dynamic voltage scaling f@mtem-wide energy minimization in real-time embeddedesyst Interna-
tional Symposium on Low Power Electronics and Despsges 78-81, 2004.
[12] R. Jejurikar, C. Pereira, and R. Gupta. Leakage awanamjc voltage scaling for real-time embedded syste#sC, pages 275 —
280, 2004.
[13] M. Kim and S. Ha. Hybrid run-time power management téghe for real-time embedded system with voltage scalatdegssor.

ACM SIGPLAN workshop on Optimization of middleware andithisted systemgages 11-19, 2001.

(14]

(19]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

G. Koren and D. Shasha. Skip-over: Algorithms and canxipy for overloaded systems that allow skips RiSS$S1995.

J. Liebeherr, D. Wrege, and D. Ferrari. Exact admissiontrol for networks with a bounded delay servicEEEE Trans. on
Networking 4(6):885-901, 1996.

C. L. Liuand J. W. Layland. Scheduling algorithms for ltprogramming in a hard real-time environmeournal of the ACM
17(2):46-61, 1973.

B. Mochocki, X. Hu, and G. Quan. A realistic variable tage scheduling model for real-time applicatioflSCAD, 2002.

M.Spuri. Analysis of deadline scheduled real-timetegss. InRapport de Recherche RR-2772, INRIA, Frarid96.

L. Niu and G. Quan. Reducing both dynamic and leakagegyrensumption for hard real-time systen®ASES'04Sep 2004.

L. Niu and G. Quan. Energy-aware scheduling for reatsystems with (m,k)-guaranteBechnical Report TR-2005-05, Department
of Computer Science and Engineering, University of Soutiol®a, 2005.

L. Niu and G. Quan. A hybrid static/dynamic dvs schedglfor real-time systems with (m, k)-guaranteReal-Time Systems
Symposiumpages 356-365, 2005.

P. Pillai and K. G. Shin. Real-time dynamic voltage sugfor low-power embedded operating systemsS@SP 2001.

Q. Qiu, Q. Wu, and M.Pedram. Dynamic power managemeatritobile multimedia system with guaranteed quality-of/ser. In
DAC, pages 834-839, 2001.

G. Quan and X. Hu. Enhanced fixed-priority schedulinghviin,k)-firm guarantee. IRTSSpages 79-88, 2000.

G. Quan and X. S. Hu. Energy efficient fixed-priority sghkng for real-time systems on voltage variable processiorDAC, pages
828-833, 2001.

K. Ramamritham and J. A. Stankovic. Scheduling al¢ponis and operating system support for real-time systéPnsceedings of
the IEEE 82(1):55-67, January 1994.

P. Ramanathan. Overload management in real-timeaaagplications using (m,k)-firm guarantd&EE Trans. on Paral. and Dist.
Sys, 10(6):549-559, Jun 1999.

P. Rong and M. Pedram. Hierarchical power managemetht agiplication to schedulinglnternational symposium on Low power
electronics and desigmpages 269-274, 2005.

A. Striegel and G. Manimaran. Best-effort schedulifigro,k)-firm real-time streams in multihop networké/orkshop on Parallel
and Distributed Real-Time Syster2600.

V. Swaminathan and K. Chakrabarty. Energy-conscidaggrministic i/o device scheduling in hard real-time eyss. I[EEE Trans.
on CAD 22(7):847-858, 2003.

V. Swaminathan and K. Chakrabarty. Pruning-basediggreptimal, deterministic i/o device scheduling for hagdl-time systems.

Trans. on Embedded Computing Sy$1):141-167, 2005.

[32] M. A. Viredaz and D. A. Wallach. Power evaluation of a Haald computerlEEE Micro, 23(1):66—74, 2003.

[33] R. Westand K. Schwan. Dynamic window-constrained dalieg for multimedia applications. 'CMCS 1999.

[34] F. Yao, A. Demers, and S. Shenker. A scheduling modeldduced cpu energy. IBFCS pages 374-382, 1995.

[35] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnathyrand R. Wang. Modeling hard-disk power consumptignd USENIX
Conference on File and Storage Technologies (FAST, ji&)es 217—-230, 2003.

[36] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner. Thetaral and practical limits of dynamic voltage scalii@AC, pages 868-873,

2004.

[37] Q. Zheng and K. G. Shin. On the ability of establishinglféme channels in point-to-point packet-switched ne&solEEE Trans.
on Comm.42(2/3/4):1096-1105, 1994.

[38] J. Zhuo and C. Chakrabarti. Systemlevel energyeffiagnamic task schedulingdesign Automation Conferenceages 628—631,

2005.

8 Appendix
8.1 Proof for Theorem 1

To prove Theorem 1, we first prove the following lemma.

Lemma 3 Let M be the mandatory job set froffi according to the R-pattern. Then if the processor startexescution at

ts=min(Y;),i =0,1,...,n— 1, no mandatory job i/ will miss its deadline.

Proof: Use contradiction. Assume that when the processor starexécution ats, some mandatory jol, = /rp,Cp,dp/
misses its deadline, wherg, cp, andd, represent the arrival time, execution time, and absolusellitee ofJ,. J, must be

in the first busy interval since the processor delay its eti@ewvould not causd, to miss its deadline otherwise. Therefore

5 W(0,dp) > (dp—ts). (14)

whereW (t1,t2) represents thevork demandsee the proof for Lemma 1) frofif’ between intervalky, to].

Assumelp, finishes atf,(rp < fp < dp) when the processor startstat 0. Let

e 7(0,dp) represent the mandatory jobs with deadlines no later digan

¢ 7(0,ds) represent the mandatory jobs arriving earlier thawith deadlines no later than thalg;
e J(df,dp) represent the mandatory jobs arriviNg earlier thanf, with deadlines no later thaaf,.

It is easy to see that(0,dp) = 7(0,ds) U 7(df,dp). LetW’'(J) represent the workload, i.e., total execution time7ofrhen

we have

> WH(0,dp) =W'(7(0,dp)) =W'(J(0, fp)) + W'(J(fp,dp)). (15)

and

W'(7(0, fp)) < fp. (16)

Now consider jollg = rq,Cq,dq € J(df,dp) such thatl, finishes atfy (the latest beforep) when the processor startstat 0.

Then we have

W'(J(fp,dp)) < (dp— fp) — (dg— fq)- (7)

As (dg— fq) > (Dgq— Rq) = Yq (Definition 5) andYq > ts, from equation (17), we have

W/ (J(fp,dp)) < (dp— fp) —ts. (18)

Then from equation (15, (16), and (18), we have

S W(0,dp) < dp—ts (19)

which contradicts equation (14). |
We now proceed to prove Theorem 1. Again we use contradicliesume the processor is idletgand a mandatory job

Jp misses its deadline when the processor resumes its exeeattie- to + ts. Therefore we have

3 Wi(to, dp) > dp—t. (20)

Now considerM’, the mandatory job set from according to the R-pattern. Sindé’ is schedulable when processor delays
its execution tds, we have

In addition, for, there are no more than jobs among any consecutilkgjobs fromt; are mandatory. Therefore, we have

which contradicts equation (20).
8.2 Proof for Theorem 2

We prove Theorem 2 based on Theorem 1. Assume the processoras its execution dts(M), as defined in equation
(9). LetJp be the first mandatory that is executed. From Lemma 2, it ig &nsee thatl, and all higher priority jobs are
schedulable. For any jab with priority lower than that ofl,, we consider two cases: (8)< Tg, (b) r; > Tg. Whenr; < Tg,
similarly asJp, its schedulability is guaranteed. Whegn> Tg, note that the jobs are delayed no more thanminY; and

are therefore schedulable according to Theorem 1. Thutheathandatory jobs can meet their deadlines.

