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Abstract

With ever-scaling VLSI technology, the leakage is increasingly becoming a serious concern when addressing the
power consumption problem for next-generation real-time embedded systems. Dynamic Voltage Scaling (DVS) is
efficient in reducing the dynamic energy consumption of a CMOS processor. However, methods that employ DVS
without considering the leakage current are quickly becoming less effective to reduce the processor’s overall energy
consumption. To be overall energy efficient, the processor may have to run at a higher-than-necessary speed, which
will cause a large number of idle intervals. While the processor can be shut down during these idle intervals to save
energy, this process may incur significant timing and energyoverhead. In this paper, we propose a DVS scheduling
technique for fixed-priority hard real-time systems that can judiciously merge the short, scattered idle intervals into
longer ones to reduce the shut-down overhead. The proposed technique has very low on-line computation complexity
and can be readily incorporated with a variety of DVS scheduling techniques. Experimental results demonstrate that
proposed technique can significantly reduce the number of idle intervals and the overall energy consumption than
conventional scheduling techniques.

1 Introduction

Power consumption has become one of the primary design issues of next-generation portable, scalable and per-
vasive embedded systems. For CMOS circuits, power consumption includes dynamic power and leakage power.
Dynamic power is due to the switching activities of the transistors, and leakage power is consumed when the sub-
threshold current flows through the transistors. Current power saving techniques mainly focus on reducing dynamic
power, because it has traditionally been the dominant component in the overall power consumption for most em-
bedded systems today. However, as VLSI technology continues to evolve towards deep sub-micron and nanoscale
circuits operating at multi-GHz frequencies, the rapidly elevated leakage power dissipation will soon become com-
parable to, if not exceed, the dynamic power consumption [13]. More advanced techniques are required for the
development of future generations of low-power embedded systems.

Facing the increasing challenges presented by leakage power consumption, design efforts on all fronts must be
pursued to form an integrated solution for this problem. Recently, many circuit and architecture techniques, such
as those presented in [4, 8, 16, 27], have been proposed to control the leakage power. For a more comprehensive
survey on the circuit and architecture level techniques forleakage reduction, readers can refer to the recent publica-
tions [5, 32]. It has been demonstrated [7, 25, 38] that reducing both the dynamic and leakage power consumption
simultaneously is critical for an overall energy-efficientdesign. It is our belief that real-time scheduling plays a
unique role in this integrated effort, not only because a large percentage of future embedded systems will be real-



time, but also because real-time scheduling has proven to beone of the most effective ways of reducing power
consumption.

Dynamic Voltage Scaling (DVS) can effectively reduce dynamic power consumption in real-time systems, and
extensive DVS-based real-time scheduling techniques,e.g.[3,11,29,37] have been proposed. DVS works by varying
the processor’s supply voltage and frequency during runtime to match workload and deadline requirements. How-
ever, the energy savings achievable via voltage reduction is becoming severely limited due to the dramatic increase
in leakage power consumption [13]. Using DVS alone with no consideration of leakage power consumption may
actually increase the total energy consumption. This is because DVS tends to make the processor speed as low as
possible to minimize dynamic power. Unfortunately, as shown by Iraniet. al.[10], to be overall energy efficient, the
processor may have to run at a higher-than-necessary speed,since a low processor speed (supply voltage) increases
the active period of the processor, which in turn increases the leakage energy consumption to a degree that can offset
or even surpass the dynamic energy reduction.

In this paper, we present a leakage conscious scheduling approach that combines both the DVS and shut-down
strategies1 for hard real-time systems, scheduled by the fixed priority (FP) policy (such as the rate monotonic
scheduling (RMS) policy [23].) Running processor at a higher-than-necessary speed can produce a large number of
scattered idle intervals. While it is desirable to shut downthe processor or put the processor in a low-leakage mode
when idle, the significant energy overhead associated with alarge number of processor shut-downs and wake-ups
will make the system less energy-efficient. Moreover, considering the timing overhead, the processor simply cannot
be put to the low-leakage mode if the idle interval is not longenough. In this regard, we present efficient techniques
to delay the execution of tasks and merge the scattered idle intervals, thus greatly reducing the processor shut-down
overhead. The proposed technique has a very low on-line computation cost. Using a processor model with projected
0.07µs technology [25], our experimental results show that the proposed method can significantly reduce the shut-
down overhead by merging the idle intervals, and it is particularly effective in reducing overall energy when the
workload of the system is relatively low. When the system workload is relatively high or when processor shut-down
timing overhead is significant, however, our experiments did show that traditional DVS continues to be an effective
way to reduce the total energy consumption.

The remainder of this paper is organized as follows. Section2 discusses the related work. Section 3 introduces
preliminaries related to our problem. Section 4 discusses our general leakage conscious DVS approach. Section 5
introduces in details the techniques to delay the executionof real-time jobs such that idle intervals can be merged.
Section 6 demonstrates the effectiveness of our approach based on simulations. Section 7 concludes the paper.

2 Related Work

Previously, there have been extensive research (e.g. [3, 11, 29, 37]) on applying real-time scheduling methods
to reduce power/energy consumption. Most of these scheduling techniques are focused on reducing the dynamic
power/energy consumption. Recently, there have been increasing research efforts [14, 15, 20, 36] that use real-
time scheduling approach to control the leakage and reduce the overall power consumption for real-time embedded
systems. Yanet. al. [36] proposed a scheduling algorithm to reduce both dynamicand leakage power based on a
processor that has been furnished with both DVS and adaptivebody biasing (ABB) features. An analytic power
model is derived that can be applied to compute the optimal supply voltage and body bias voltage in terms of overall
energy reduction for a given clock frequency. This approachis only feasible when the supply voltage and body
biasing voltage are continuous variables. For processors with discrete levels of supply voltage and body biasing
voltage, Andreiet. al. [2] proved it is an NP-hard problem and provided a non-linearmathematic programming
technique to solve this problem. However, this approach cannot be applied for priority-based preemptive scheduling
schemes employed in many real applications [24]. Under the assumption that the processor shut-down overhead can
be infinitely small, Iraniet. al. [10] proposed a theoretical “optimal” voltage schedule with leakage consideration
which can be constructed from the traditional optimal DVS schedule. Their work forms the basis of our heuristic
techniques.

1By shut down, we mean to either literally shut down the processor or put the processor in a low leakage mode.
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For a processor with no complex ABB control mechanism, putting the processor into a low leakage mode when it
is idle is one of the most effective strategies to reduce the leakage power consumption. However, care must be taken
as entering and exiting the low-leakage state can incur significant timing and energy overhead [8]. For real-time
tasks scheduled according to EDF policy, Leeet. al. [20] proposed a leakage reduction scheduling technique called
LC-EDF , which delays the execution of the arriving task instances when the processor is idle to extend the idle
intervals and reduce the number of power mode transitions. Specifically, according toLC-EDF , the extended idle
time is treated as one part of the tasks’ execution time. As long as the resultant total utilization is less than or equal to
1, the schedulability of the task set is guaranteed. However, they assume a non-DVS processor model, which cannot
optimize the dynamic power consumption. So the overall energy consumed cannot be minimized. To save both the
dynamic and leakage energy, Jejurikaret. al. [15] exploited a strategy that combines both DVS and procrastination
for periodic tasks. Each task is associated with a processorspeed and a procrastination value, computed based on the
utilization-related feasibility condition. In the same way asLC-EDF , the idle interval is extended by procrastinating
the execution of tasks when the processor is idle. This approach works very well for periodic task sets when the
tasks’ deadlines are equal to their periods. However, when the tasks are non-periodic or have deadlines less than their
periods, this scheme becomes invalid or very pessimistic indetermining the processor speeds and delay amount, and
thus energy inefficient.

A number of papers extend the idea of delaying the execution of job executions for real-time systems that employ
scheduling policies other than the EDF policy. Leeet. al. [20] proposed a leakage reduction scheduling technique
called LC-DP, by extending the Dual-Priority (DP) scheduling model presented in [6]. The DP scheduling was
initially proposed to improve the response time for soft real-time tasks by delaying the execution of hard deadline
tasks. (The detailed algorithm and introduction of DP can befound in [6].) InLC-DP, idle time is treated as a soft
real-time task in the DP model. The hard deadline tasks are originally put in the queue that has a lower priority
than that of the soft real-time task if the processor is idle,and are promoted to the higher priority queue after certain
promotion timeshave passed. If the processor is active, all the hard deadline tasks are promoted to the high priority
queue immediately. The idle interval is extended since the hard real-time tasks are delayed at the lower priority
queue. However, as explained in [14], the LC-DP algorithm cannot guarantee FP-tasks’ deadlines because of its
discrepancy with the original dual priority scheduling algorithm [6].

When real-time tasks are scheduled according to the FP scheme, Jejurikaret. al. [14] proposed delaying the
execution of tasks by the minimal promotion time over all lower and equal priority tasks. However, as shown
later in this paper(see Figure 2), this approach stillcannotguarantee the schedulability of the tasks under the FP
scheme. Lehoczky and Ramos-thuel [21] proposed a technique, calledslack stealer, that can delay the FP jobs as
late as possible and thus minimize the response times for aperiodic tasks. Specifically, they adopted the exact timing
analysis strategy, which potentially can have a very high computational cost, to compute the maximal delay of the
periodic tasks. In addition, note that it becomes extremelychallenging if not totally impossible to employ the exact
timing analysis strategy to deal with the scenario when different instances of the same task have different worst case
execution times, i.e., when different jobs need to run at different processor speeds to maximize the energy savings as
in our case. Kim et al. [17] proposed another strategy to delay the execution of FP jobs with the goal to reduce the
preemption times in DVS scheduling. The rationale of this technique is quite similar to the Look-Ahead RT-DVS
strategy [29,33], that is, to delay the higher priority jobsuntil the absolute last moment, i.e., when the delayed tasks
can only meet their deadlines by using the highest possible processor speed. The side effect of this technique is that
it may increase the processor speed and therefore compromise the energy saving performance.

In this paper, we develop a novel technique to delay the FP jobexecutions. Our goal is to merge the idle intervals
by delaying the jobs while guaranteeing their deadlines. Weachieve this goal by judiciously computing the latest
starting time of a task without varying its speed which is pre-determined to optimize the dynamic and leakage energy
consumption.
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3 Preliminaries

In this section, we first introduce the real-time system and power model considered in this paper. We then present
an example to motivate our approach.

3.1 System model

We consider a general system model that consists ofN jobs, denoted byJ = {J1,J2, · · · JN}. Each individual job is
denoted byJi = (r i ,ci ,di), wherer i , ci , anddi are the arrival time, worst case execution cycles, and absolute deadline
for the job, respectively. The job set is scheduled using an FP scheme. Without loss of generality, we assume that
Ji has a higher priority thanJk if i < k. When a real-time system is described by a set of periodic tasks, where each
task instance represents one job, we assume that it is sufficient to schedule the set of jobs produced up until the Least
Common Multiple (LCM) of the periods of all tasks.

3.2 Power model

In a CMOS circuit, the power consumption includes both dynamic and static components during its active op-
eration [32]. The dynamic power consumption (Pdyn) mainly consists of the switching power for charging and
discharging the load capacitance, and the short circuit power due to the non-zero rising and falling time of the input
and output signals. The dynamic power (Pdyn) can be represented as

Pdyn = αCLV2 f , (1)

whereα is the switching activity factor,CL is the load capacitance,V is the supply voltage, andf is the system clock
frequency. The static power (Pleak) can be expressed as

Pleak = IleakV, (2)

where Ileak is the leakage current, which consists of both the sub-threshold leakage current and the reverse bias
junction current in the CMOS circuit. Leakage current increases rapidly with the scaling of devices and becomes
particularly significant with the reduction of the threshold voltage [38]. Therefore, leakage power consumption is
becoming a major part of the the active power consumption (Pact = Pdyn+ Pleak) in future CMOS circuits with low
supply voltage and high transistor density.

The processor consumes energy not only in its active mode butalso when it is idle. When idle, the major portion
of power consumption comes from leakage. With dramaticallyincreasing leakage current as VLSI technology
continue its evolution, it is imperative that this portion of energy be effectively reduced for the overall system-
energy reduction. Processor shut-down, i.e., putting the processor into a “sleep mode”, can greatly reduce the
energy consumption when the processor is idle. For example,it has been reported in [9] that the power dissipation
when the processor is idle can be three orders of magnitude higher than that when the processor is shut down.

While the processor consumes less power in the power down state, it costs extra energy and time to shut down and
later wake up the processor in order to save/restore the context, as well as initiate the architectural components such
as the cache, translation look aside buffers, and branch target buffers. One has to be careful when shutting down the
processor since energy overhead may outweigh the benefit of energy savings if the idle interval is too short. Assume
that the power consumption of a processor in its idle state and sleeping state arePidle andPsleep, respectively, the
energy overhead of shutdown/wakeup isEo and the timing overhead isto. The processor can be shut down with
positive energy savings only when

Pidle× t ≥ Eo+Psleep× (t − t0), (3)

i.e., the length of the idle interval must be larger thanTmin = max( Eo
Pidle−Psleep

, to). We callTmin theminimal length of
the idle interval.
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Figure 1. (a) A job set that consists of four jobs. (b) The volt age schedule that can reduce dynamic
power consumption. (c) The actual executions of the jobs acc ording to the voltage schedule shown in
(b). (d) Applying the threshold speed ( sth = 0.5) results in the scattered idle intervals.

3.3 A motivation example

As an illustrative example, Figure 1(a) shows a job set with four jobs (The upper and down arrows represent
the arrival times and deadlines of jobs, respectively.) Figure 1(b) is the voltage schedule according to the DVS
scheduling technique presented in [31], and Figure 1(c) shows the actual executions of the jobs based on the voltage
schedule from Figure 1(b).

As indicated in equation (1), the dynamic energy consumption is quadratically related to the supplied voltage.
Therefore, traditional DVS scheduling techniques (e.g. [31]) try to reduce the supply voltage to as low a level
as possible (see the voltage schedule shown in Figure 1(b) and (c)). However, such a voltage schedule may not
be always feasible and/or overall energy efficient due to thefollowing reasons. First, practical processors have
a minimal voltage supply limitation, which makes desirableprocessor speed not possible. Second, commercial
processors usually provide only a discrete set of voltages.This means the processor will likely not be able to run at a
speed selected by a particular DVS algorithm. Instead, the desired speed needs to be rounded up to the next discrete
speed that is available2. Furthermore, even when a low processor speed is available,the rapidly increased leakage
current may increase the static power consumption to the extent of over-weighing the dynamic power consumption.
Therefore, to achieve the best energy efficiency, the processor speed must be determined in a cooperative manner
with both dynamic and static energy consumption in mind.

Consider a job with workloadw. Let the total power of a processor during its active mode bePact(s). Then the
total energy, i.e.,Eact(s), consumed to finish this job with speeds, can be represented as

Eact(s) = Pact(s)×
w
s
. (4)

2While it is possible to use two discrete speeds immediate above and below the desired speed value to optimally schedule a single
job [12,19], this method can induce a significant transitionoverhead to the scheduling process, i.e., one extra transition per job.
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Hence, to minimize theEact(s) in equation (4), letdEact(s)
ds = 0 and thus

Pact(s) = P′
act(s)s. (5)

Equation (5) computes the most energy efficient speed to finish one job. We call this speed thethreshold speed3,
and denote it assth. To increase or decrease the processor speed fromsth will increase either the dynamic or static
power, and thus the total active power consumption for executing the job.

Note that, while it is desirable to execute a job using the threshold speed to minimize the active power consump-
tion, it is not always feasible to do so when considering the deadlines and the preemption effects among jobs. Given
a voltage schedule, a job that is required to run at a speed higher thansth must be executed with that speed to guar-
antee the schedulability of the job set. For jobs having required speeds lower thansth, they can be executed atsth to
conserve energy. Figure 1(d) shows the scheduling results with sth = 0.5.

Using sth for jobs with speed requirements lower thansth while maintaining the speeds of the rest certainly
guarantees all deadlines. The problem is that, as shown in Figure 1(d), such a voltage schedule can result in a
large number of scattered idle intervals. Though using a processor shut-down strategy is the most efficient method
to reduce the energy consumption for these intervals, too many shut-downs will incur significant energy overhead.
Moreover, using a processor power down strategy is not always feasible or necessarily energy efficient if the idle
interval is not long enough. Unless we can effectively deal with the idle intervals in the schedule, we cannot achieve
our ultimate goal of maximizing the overall energy-saving performance of the system. In what follows, we introduce
our approach to save the idle energy when scheduling a real-time task set by effectively clustering the idle intervals.

4 The General Approach

The shut-down strategy favors longer idle intervals. To extend an idle interval, one can always increase the
processor speed so that each job is executed faster. However, as shown in equation (5), increasing the speed over
sth will increase the dynamic power consumption. A better approach, as suggested in [10, 15, 20], would be one
that extends the interval lengths by delaying the executions of the incoming jobs,i.e., a job is executed as soon as
possible when the processor is not idle, but delayed as much as possible when the processor is idle.

Delaying job executions helps to merge scattered, short idle intervals into longer ones. More energy can be saved
because energy overhead incurred by frequently entering and leaving the power-down state is reduced. Moreover,
intervals that were previously shorter thanTmin can now be shut down. As mentioned before, the power dissipation
when the processor is idle can be 103 times higher than that when the processor is shut down. Therefore, merging
short idle intervals has the potential of significantly reduce the overall energy consumption.

To facilitate a clear explanation of our approach, we first introduce the following definition.

Definition 1 Let each job in the job set (J ) be executed with its pre-determined, feasible execution speed. Thelatest
starting time for a job set, e.g.J , (denoted as LST(J )) is the latest time such that, if the execution of any job inJ

starts no later than LST(J ), all jobs can meet their deadlines.

Algorithm 1 sketches the general framework of our approach.When the processor is not idle, it will run the jobs
in the ready queue according to the FP DVS schedule. The DVS schedule is computed off-line, using an algorithm
similar to the one presented in [31]. Other on-line DVS techniques that can dynamically reclaim system resources
(such as [18,34]) can be readily incorporated into this algorithm. The only variation when applying these techniques
is to use the threshold speed (sth) if a designated processor speed is less thansth—since using speeds less thansth

will increase the total active energy—and dynamically compute the LST. The key to the success of Algorithm 1 is
the computation of the LST for jobs arriving after the processor is idle, which is presented in the following section.

3The term used in [10, 15] isthe critical speed. We use a different term to avoid the possible confusion withthe speed for thecritical
interval when computing the unconstrained optimal DVS schedule [37].
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Algorithm 1 Algorithm to reduce both dynamic and leakage power consumption for real-time systems scheduled
according to the FP scheme

1: Input: J , sth, andTmin.
2: Compute the FP DVS schedule andsn, n = 1,2, ...,N;
3: // sn is the minimal feasible speed forJn based on the DVS schedule
4: Let sn = sth if sn ≤ sth, n = 1,2, ...,N;
5: if processor is not idlethen
6: Run jobJi in the ready queue withsi ;
7: else
8: Compute the latest starting time, i.e.,LST(Jn), for future jobs;
9: if LST(Jn)− tcur > Tmin then

10: // tcur is the current time
11: Shut down the processor and set up the wake up timer to beLST(Jn)− tcur;
12: end if
13: end if

5 Computing the LST

Delaying execution of jobs helps to extend the idle intervallength. At the same time, however, it may also cause
a job to miss its deadline. The major challenge when extending the length of idle intervals is to determine how long
a job set can be delayed without causing any future job to missits deadline.

5.1 Delaying job executions for FP job sets

Leeet. al. [20] first propose delaying the FP hard deadline tasks by their promotion times computed based on the
dual priority scheduling scheme. However, this method has been shown to be infeasible [14]. Jejurikaret. al. [14]
further proposed to delay the execution of a job by theminimal promotion time over all lower and equal priority
tasks. However, this strategy still cannot guarantee the schedulability of FP-jobs as illustrated in Figure 2.

A task set with two periodic tasks, i.e,τ1 andτ2, scheduled with RMS is shown in Figure 2. According to DP
scheme, taskτi can meet its deadline if its promotion time (Yi) satisfying

Yi ≤ Di −Ri, (6)

whereDi is the (relative) deadline of periodic taskτi andRi is its worst case response time. It is not difficult to
verify thatY1 = 6 andY2 = 7 in this example. However, assuming processor is idle before t = 0, delaying jobs to
t = min(Y1,Y2) = 6 will cause the first job ofτ2 to miss its deadline as shown in Figure 2. This is because that
delaying the high priority jobs may increase the blocking time of lower-priority jobs. For example in Figure 2,
without delaying, at most one job fromτ1 can preempt any job ofτ2. However, more than one job ofτ1 can
preemp/block the execution of a job ofτ2 if the delayed execution is allowed, and thus causeτ2 to miss its deadline.
Only by strictly adhering to the DP rules, (i.e., the second job ofτ1 will stay in the low priority queue untilt = 16)
can the deadlines be satisfied. This prevents “extra” higherpriority jobs (the second job ofτ1 in this case) from
preempting/blocking the execution of lower priority jobs (i.e., the first job ofτ2). Therefore, the previous job
procrastination strategies based on the promotion time arenot feasible when jobs are scheduled according to the FP
scheduling scheme.

In [26], Mochockiet. al. introduced a method to computeLST(J ) whenJ is scheduled according to EDF. Their
method is based on the following lemma.

Lemma 1 [26] Let job set (J ) be executed with a constant speed s∗, and

lst(Ji) = di − ∑
Jk∈hp(Ji )

ck

s∗
, (7)
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Figure 2. Using the minimal promotion time as the LST may caus e FP task sets to miss their deadlines.

where hp(Ji) is the jobs with the same or higher priorities than that of Ji . Then,

LST(J ) = min
i
{lst(Ji)}. (8)

The rationale behind Lemma 1 is that if the accumulated workload from a jobJi andall the higher priority jobs
can be finished beforedi , the deadline ofJi will be satisfied. It is worthy mentioning that in Lemma 1, equation (7)
is pessimistic in evaluating the latest starting time for ajob, but equation (8) tightly defines thelatest starting time
for the entire job set scheduled with EDF policy. While equation (8) can indeed guarantee the feasibility of an FP
job set, thefeasiblestarting time for the job set can be far fromthe latest. For example, in Figure 3(a), according to
equation (7) and (8), assumingsth = 0.5, we havelst(J1) = 13, lst(J2) = 14, lst(J3) = 3, lst(J4) = 6, and therefore,
LST(J ) = 3. However, even though all the jobs can meet their deadlines, not all the short idle intervals can be
effectively merged (Figure 3(a)). For example, if the LST ofthe task set is delayed to 6 as shown in Figure 3(b), all
jobs can meet their deadlines and the short idle intervals are merged to one single idle interval. The reason is that,
as opposed to the EDF case, a job with a higher fixed priority can have a deadline much later than that of the current
job. Therefore, it would be too pessimistic to assume that all higher priority jobs have to finish before the deadline
of the current job.

5.1.1 Identifying the LST of a FP job set

In what follows, we present a more effective method to compute the LST of a FP job set. Our method identifies the
LST by judiciously expunging the high priority jobs during the LST computation. We theoretically prove thatall
jobs can meet their deadlines under the FP scheduling policywith the LST computed from our algorithm. Before
we explain our strategy in detail, we first introduce some terminology used in this paper.

Definition 2 (Scheduling point)4 Time t is called a Jn-scheduling point if t = dn or t = r i , i < n and rn < r i < dn.

Definition 3 (Reduced job set) A job set is called a Jn-reduced job set, denoted byR (Jn) if every job Ji in the set
satisfies ri ≥ rn.

We use Figure 3 to illustrate these definitions. Figure 3(c) shows theR (J3) and all theJ3-scheduling points (as
marked by “x”). Note that in Figure 3(c) ifJ3 is to be finished at any one of theJ3-scheduling points (e.g.,t = 12)
all the higher priority jobs arriving before this scheduling point (e.g.,J1) must be completed before this scheduling
point. Therefore, ifJn needs to finish at aJn-scheduling pointt, the execution ofJn or any higher priority jobs that
may interfere withJn must begin no later thanstn(t), where

stn(t) = t − ∑
Jk∈hp(Jn)

ck

sk
, rk < t, (9)

4This is a more general definition of the similar term defined in[22].
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Figure 3. (a) A job set with four jobs scheduled with FP. The pr ocessor speed for each job is less
than sth (assuming sth = 0.5) in the un-constrained DVS voltage schedule. The LST is comp uted to
be 3 according to Lemma 1. (b) Delay the job set until t = 6 and every job can meet its deadline. (c)
J3-scheduling points (marked by “x”). (d) Delay execution of t he job set untill t = 8 and J4 misses its
deadline.

wherehp(Jn) is the set of jobs with a priority greater than or equal to thatof Jn that arrive beforet.
It is not difficult to see that differentJn-scheduling points can lead to different values forstn(t). If we let S(Jn) be

the set of allJn-scheduling points, and let

lst(Jn) = max{stn(t), t ∈ S(Jn)}, (10)

then lst(Jn) is the latest time thatJn or any job inhp(Jn) needs to start to ensure thatJn can meet its deadline. We
denote the correspondingJn-scheduling point byP(lst(Jn)). From Figure 3(c), we havelst(J3) = 8 (andP(lst(J3)) =
12). It can be readily verified thatJ3 can meet its deadline with respect tolst(J3) = 8.

Note that, whilelst(Jn) can guarantee the feasibility of jobJn, it cannot guarantee the schedulability for any other
job in theJn-reduced job set. This is shown in Figure 3(d). IfJ3 and all the higher priority jobs are delayed to
t = 8, J4 will miss its deadline. The reason is that, withlst(J3) = 8, J3 and the higher priority jobs are not completed
until the corresponding scheduling pointt = 12, which will block the executions ofJ4 and cause it to miss deadline.
Next, we present an algorithm to determine the latest starting time that can guarantee the deadlines of a job and all
lower priority jobs. We call this time theeffective latest starting timefor the job. Based on this time, we present our
technique to determine the latest starting time for the entire job set.

As stated before,lst(Jn) can guarantee the feasibility of jobJn but may cause jobs with lower priorities to miss
their deadlines. A remedy for this problem is to compute the latest starting times in a similar way for all the
lower priority jobs that may potentially be preempted, and pick the smallest one. The above idea is formulated in
Algorithm 2.

To formally demonstrate that Algorithm 2 indeed produces the effectivelatest starting time forJn, we present the
following lemma and proof.

Lemma 2 The effective latest starting time, i.e.,(˜lst(Jn)), output from Algorithm 2, is the latest time that Jn and
all the higher priority jobs can be delayed to such that Jn and all the lower priority jobs inR (Jn) will meet their
deadlines.
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Algorithm 2 Compute the effective latest starting time˜lst(Jn) for job Jn such thatJn and all the lower priority jobs
in theJn-reduced job set can meet their deadlines.

1: Input: TheJn-reduced job set, i.e.,R (Jn).
2: Output: The effective latest starting time forJn, i.e., ˜lst(Jn)
3: nlst = lst(Jn); //Equation (10)
4: end= P(lst(Jn));//the scheduling point corresponding tolst(Jn)
5: for Jk ∈ R (Jn),k = n+1,n+2, ... do
6: if rk < end then
7: nlst = min{nlst, lst(Jk)};
8: end= max{end,P(lst(Jk))};
9: end if

10: end for
11: ˜lst(Jn) = nlst;

Proof: We first prove schedulability. The schedulability ofJn is guaranteed by equation 10 and in line (3) of
Algorithm 2, as well as the fact thatnlst can only be smaller (line (7)) as the algorithm continues. For any low
priority job with a release time earlier thanend, which may be potentially preempted when delayingJn and all other
jobs with priorities higher thanJn to timenlst, its schedulability is guaranteed by line (7) similar to that of Jn. For
other lower priority jobs (i.e., with a release time later thanendduring each FOR loop), considerJk(k > n) and let
rk > end. Note that, any higher priority job that is delayed tonlst will finish no later thanend. Therefore, delaying
these jobs will not affect the schedulability ofJk. Moreover, the value ofnlst can only be reduced later on, soJk can
meet its deadline ifJ is delayed tonlst.

We next prove that˜lst(Jn) is the latest. From equation 10 as well as line (3) and line (7) in Algorithm2, any
further delay will causeJn or some low priority jobs to miss their deadlines. Therefore, ˜lst(Jn) is the latest time that
Jn and other higher priority jobs need to start such thatJn and all the lower priority jobs inR (Jn) can meet their
deadlines. 2

Recall that our goal is to identify the latest starting time for a job set such thateveryjob can meet its deadline.
Using ˜lst(Jn) cannot completely achieve this goal because (1) it is based on an adjusted job set and (2) the schedu-
lability of jobs with a priority higher than that ofJn is not guaranteed in Lemma 2. To find the LST for the entire FP
job set, we have the following theorem. The proof of the theorem is given in the appendix of this paper.

Theorem 1 Given job setJ , the latest starting time forJ can be computed as

LST(J ) = min
n
{ ˜lst(Jn))}. (11)

where ˜lst(Jn) is computed according to Algorithm 2.

For the example in Figure 3, according to Theorem 1, we have˜lst(J1) = 8, ˜lst(J2) = 16, ˜lst(J3) = 6, ˜lst(J4) = 10,
and thereforeLST(J ) = 6, which is exactly the case shown in Figure 3(b). As shown in Figure 3(b), all the idle
intervals are successfully merged into one single interval.

While equation (11) requires computing theeffectiveLST for all jobs, it is not necessary in practice. Note that, to
ensure the schedulability, a task set cannot be delayed pastthe earliest deadline of a job, which bounds the maximal
value of LST. Therefore, we only need to compare the effective LSTs for jobs released before this bound and use
the minimal one as the LST for the entire job set. To further reduce the on-line cost, we can compute the LST for
each possible reduced job set off-line. Note that, wheneverthe processor is idle, the rest of the job set can always be
viewed as a reduced job set. We therefore can construct all the possible reduced job sets off-line and then compute
the corresponding LSTs. For a periodic task set, this means the computation of total∑n

P
Pn

reduced job sets, where
P is the least common multiple of the periods andPn is the period for taskn. During on-line phase, the LST can
be readily determined by the LST associated with the next jobthat arrives. This on-line technique has a very low
complexity, i.e., a constant time complexity for a single table lookup operation.
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6 Experimental results

In this section, we evaluate the proposed technique using simulations. We consider the following scenarios in our
experiments.

• BaseThe task sets are scheduled on a processor without DVS capability, i.e., all jobs are always executed
using the highest speed. A processor is shut down when there is enough idle time, and no task instance is
delayed. This is the most primitive scheduling approach, and its results are used as the reference to compare
other approaches.

• DVS The task sets are scheduled according to the DVS voltage schedules without considering leakage (i.e.
the threshold speed), and no task instance is delayed.

• DVS with No Delay (DVSND)Task sets are scheduled with DVS voltage schedules and leakage is considered
(i.e., the threshold speed is enforced), but no job execution is delayed.

• DVS with Shut down and Delay (DVSSD-FP)Task sets are scheduled with DVS voltage schedules, the
threshold speed is enforced and execution delay is computedusing (Algorithm 1). The LST computation is
based on Theorem 1.

In addition, we have also implemented and compared our algorithm with the dual-priority approach introduced
in [14], even though it is not strictly an FP approach. We callthis approach DVSDual Priority(DVS-DP).

We conducted two groups of experiments to evaluate the performance of our approaches. The first group exper-
iments were based on synthesized task sets and a more theoretical processor. In our second group of experiments
we intended to make our test conditions as close as possible to that in the practical scenarios. The test cases were
drawn from practical applications, and a more practical processor model that supports only discrete voltage levels
was used. The experiments and results are discussed in the following.

6.1 Experiments with synthesized task sets

In this group of experiments, the periodic real-time systems were randomly generated and used as the test cases.
These systems consist of five periodic tasks, with task periods randomly chosen in the range of[10,50]ms, and dead-
lines assumed to be equal to their periods. We assumed that the actual execution time of a job is normally distributed
between its best case execution time (BCET) and worst case execution time (WCET), withBCET/WCET= 0.4.
We examine the performance of the above techniques for systems with different utilizations. Based on the utilization
bound for periodic task set with five periodic tasks, i.e.,U = 5(21/5−1) = 0.74, we divide utilization ranging from
0.0 to 0.7 into intervals of length 0.1. Within each interval, we randomly generated no less than 10 periodic task
sets.

For the processor model used for this group experiments, similar to [15], we assumed the processor voltage is
continuously variable, and adopted the same threshold speed and sleep state power as that used in [15],i.e., sth = 0.41
andPsleep= 50µW. We conservatively assumed that the power consumption whenprocessor is idle comes only from
the leakage power consumption, which is computed accordingto the model in [25]. We also made a conservative
assumption that it takes only 1ms for the processor to be put into the low leakage mode even though the actual
time can be much longer [9]. The shut-down energy overhead consists of two parts: the leakage energy consumption
during the shut-down process, which was computed based on the power model in [25], and the fixed energy overhead
to flush/restore the cache contents, which we used 483µJ according to [15].

For approachesDVS, DVSND, andDVSSD-FP, we used VSLP [31] to find the unconstrained job-level DVS
voltage schedule. This heuristic was chosen instead of the optimal algorithm [30] because the FP DVS problem is
NP-Hard while the computation complexity of VSLP is much lower (O(N3)). The optimal algorithm is not practical
for systems with a large number of jobs. On the other hand, VSLP [31] cannot be applied forDVS-DP approach.
DVS-DPcomputes the delay for the task set based on the worst case timing analysis, which is not possible if different
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jobs from the same task have different worst case execution times. We hence used the task-level DVS scheduling
algorithm (i.e. [35]) to find the DVS schedule in this approach. To dynamically reclaim the system resource when
real-time jobs finish earlier than their worst case execution times, we adopted the technique in [34] for its simplicity,
i.e., we prolonged the execution of a real-time job to its deadline or next arrivals of new jobs (whichever is the
earliest) when it is the only job in the ready queue. To be overall energy efficient, the processor speed will never be
set below the threshold speed when dynamically reclaiming run-time slack.
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Figure 4. The average idle intervals by three different appr oaches for synthesized task sets.

We first study the number of idle intervals resulting from each scheduling strategy. A large number of idle
intervals is undesirable in terms of energy reduction, especially for leakage energy reduction. Schedules with large
number of idle intervals either incur higher transition overhead due to more frequent transitions or simply cannot go
into the low leakage mode due to shorter idle interval lengths. Figure 4 compares the normalized (according to the
results from theBaseapproach) number of idle intervals resulting from several approaches within the LCM of the
task periods.

Figure 4 clearly shows that our proposed technique (i.e.DVSSD-FP) can merge the idle intervals very effectively.
From Figure 4,DVSSD-FPcan significantly cut the idle interval numbers byDVSND, i.e., ranging from 34.3% to
44.3%, with an average of 39.1%. The results forDVSSD-FPandDVSDP are interesting. Note that, when the
utilization is low (i.e., less than 0.3), the numbers of idleintervals byDVSSD-FPandDVSDP are quite close. But
when the utilization is relative high,DVSDP can lead to much larger number of idle intervals thanDVSSD-FP.
For example, when utilization is around 0.6-0.7, the numberof idle intervals byDVSDP is 30% higher than that
by DVSSD-FP. This is because of two reasons. First,DVSDP can exploit DVS capability only at the task level,
i.e. different jobs of the same task always have the same processor speed, which may require jobs to run at much
higher speeds than they actually need and increase the idle intervals. Second,DVSDP always computes the latest
starting time based on the worst case response time. When utilization is relatively high, This strategy can severely
underestimate the maximal delay that a job is allowed, and therefore cannot merge the idle intervals effectively.

We next study the overall energy consumption for the same task sets by different strategies. Figure 5 shows the
normalized average total energy consumptions by four approaches, i.e.,DVS, DVSND, DVSSD-FP, andDVSDP.

From Figure 5, one can readily conclude that using DVS without considering leakage current cannot effectively
reduce the overall energy consumed. This is particularly true when the utilization of the task set is low. As shown
in Figure 5, when the utilization is less than 0.1, the average overall energy using the “pure” DVS voltage schedule
can be more than 25% higher than the leakage conscious approaches such asDVSSD-FPandDVSDP. This is due
to the factor that, when the utilization is low, the processor is required to run at a very low speed according to the
classical DVS approach. While reducing supplied voltage can reduce the dynamic and leakagepowerconsumption,
the extended execution time with a lower processor speed will rapidly increase the leakage energy consumption,
which may actually increase the totalenergyconsumption. We would expect a leakage conscious approach to be
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Figure 5. The average energy consumption by different appro aches for synthesized task sets.

more effective when leakage power consumption becomes the dominant component in overall power consumption.
On the other hand, when utilization is relative high, we do observe thatDVS can be slightly better than the others.

There are several reasons for this result. First, we adopt the concept of the threshold speed as defined in equation
(5). Note that such a speed can only optimize the energy consumption in executing a job (i.e., during the active
mode), but not necessarily minimize the energy consumptionduring the entire life cycle (including both the active
and idle period) of the system. When the system utilization is very high, reducing processor speed as low as possible
is still beneficial since both dynamic and leakage power consumption are significantly reduced. The power reduction
outweighs the extended execution times of tasks and thus leads to overall energy reduction. Second, we delay the
job execution as late as possible, which is not necessarily the optimal approach to merge the idle intervals. To find
the theoretically optimal solution for this problem is an interesting one and will be our future research.

Figure 5 also shows that our approach outperforms those thatadopt a similar heuristic. By effectively merging
the idle times, our approach, i.e.,DVSSD-FPconsumes over 14% less energy than that byDVSND. Compared with
DVSDP which also delays job executions, we can see that the energy savings ofDVSSD-FPvs. DVSDP varies
depending on the utilization.DVSDPworks under the assumption that each task is assigned a unique scaling factor,
which is determined based on the worst case scenario. As a result, real-time jobs may be run at speeds much higher
than necessary, which is not energy efficient and also cause more idle intervals. In our approach, different jobs
may be assigned different processor speeds as necessary, and the idle intervals can be effectively merged. When the
utilization is low, for example, within the interval[0.0,0.4], both approaches have the similar energy consumptions
since most of the jobs are forced to execute with the threshold speed and most of the idle intervals can be long enough
for shutting down the processor. When the task utilization is higher,DVSSD-FPcan save much more energy than
DVSDP, not only because it can take the advantage of the job-level DVS schedule but also because it can merge the
idle intervals more effectively. As shown in Figure 5, when utilization is around 0.6,DVSSD-FPconsumes 27%
less energy thanDVSDP.

6.2 Experiments with practical applications

In our second group of experiments, the test cases are drawn from two real world applications, i.e., CNC (Com-
puterized Numerical Control) [28] and INS (Inertial Navigation System) [1]. The processor and power models used
in this group of experiments are the same as that in the previous ones expect that the processor supports only five
discrete voltage levels, with normalized speeds as 0.2, 0.4, 0.6, 0.8 and 1.0. The critical speed was chosen to be
sth = 0.4.

When the processor supports only a number of discrete voltage levels, more idle intervals are created since the
processor speeds for real-time jobs often have to be roundedup to a higher level. Our experimental results exhibit
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Figure 6. The average number of idle intervals and energy con sumptions for INS and CNC.

the excellent performance of our approach in merging the idle intervals under this scenario. Figure 6(a) compares
the normalized number of idle intervals for CNC and INS by different approaches. As can be seen from Figure 6(a),
DVSSD-FPcan cut approximately 50% of the idle intervals produced byDVSND, and around 29% of those pro-
duced byDVSDPfor CNC application. For the INS application,DVSSD-FPcan cut around 44% of the idle intervals
produced byDVS andDVSND, and around 15% of those produced byDVSDP.

Our experimental results demonstrate the excellent performance of our approach for practical applications not
only in merging the idle intervals, but also in total energy savings as well. It is interesting that Figure 6(b) shows
thatDVSSD-FPachieves different energy saving performance for CNC and INS. A closer look at our experimental
results reveals that, for CNC application, the numbers of idle intervals are small (i.e. 28 forDVSND and 14 for
DVSSD-FP), and the energy consumption during the active mode dominates the energy of the idle mode. Further,
all the processor speeds from the DVS schedule are higher than the threshold speed. As a result, we see almost no
difference betweenDVS, DVSND, andDVSSD-FP. For CNC, however,DVSDPconsumes much more energy than
the other approaches (over 21%) since it cannot effectivelyreduce the processor speed. For the INS application,
the number of idle intervals is much higher (i.e., 747 forDVSND and 418 forDVSSD-FP), which makes the idle
interval merging more profitable. As shown in Figure 6(b),DVSSD-FPcan reduce the energy consumed by as much
as 10.4% when compared withDVS andDVSND.

7 Summary

Reducing the overall power dissipation is critical in the design of future real-time embedded systems. As the IC
technology continues to scale down, leakage power consumption is becoming a more and more significant part of the
overall power consumption. In this paper, we investigate the problem of applying real-time scheduling techniques
to reduce the overall energy consumption of real-time systems scheduled by the FP schemes.

As demonstrated in our experiments, applying a DVS based voltage schedule alone cannot effectively reduce
the overall energy consumption for the system, and can even increase it significantly. A leakage-power-conscious
voltage schedule may require the processor to adopt a speed higher-than-necessary to avoid the rapidly increasing
leakage energy consumption at low voltage levels. This could result in a large number of small idle intervals during
job execution, which is not energy-efficient considering the overhead associated with the process of shutting down
and waking up the processor.

To reduce the processor shutdown overhead and improve the overall energy performance, previously proposed
techniques are based on the task level DVS which require thatreal-time jobs run at unnecessarily high speeds and
may generate even more idle intervals. In this paper, we proposed an efficient and effective approach to merge idle
intervals and improve the overall energy performance of FP systems. Under the job-based analysis paradigm, our
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techniques can be applied to both periodic and aperiodic real-time tasks, and are more flexible and efficient in dealing
with the run-time variations. Extensive and comprehensiveexperiments are conducted and clearly demonstrate that
our approaches can significantly outperform previous research in reducing the number of idle intervals and the
overall power consumption.
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8 Appendix

8.1 Proof for Theorem 1

The proof of Theorem 1 needs the following lemma regarding totheeffective latest starting timefor a job, i.e.,
˜lst(Jn) (see section5.1.1).

Lemma 3 For job setJ , let Ji, Jk ∈ J , i < k. Then ˜lst(Ji) ≤ ˜lst(Jk) if r i < rk.

Proof: The proof for the casedi ≤ rk is trivial since ˜lst(Ji) cannot exceeddi . We use contradiction to prove that
whendi > rk andr i < rk, ˜lst(Ji) > ˜lst(Jk) is not possible.

Let Ji andJk represent the correspondingJi- andJk-reduced job sets, respectively, andLP(Jp,Jp) represent the
jobs inJp with priorities the same or lower than that ofJp. Then

Ji ⊃ Jk, and LP(Ji ,Ji) ⊃ LP(Jk,Jk).

According to Lemma 2, delaying the execution ofJi to ˜lst(Ji) can ensure that all jobs inLP(Ji ,Ji) meet their dead-
lines. If ˜lst(Ji) > ˜lst(Jk), this contradicts to the fact that̃lst(Jk) is the latest time thatJk can be delayed to such that
the jobs inLP(Jk,Jk) can meet their deadlines. 2

To prove Theorem 1, letLST(J ) = ˜lst(Ji) = minn{ ˜lst(Jn)}. We want to prove that any otherJk ∈ J can meet its
deadline ifJ is delayed to˜lst(Ji). We consider two different cases separately.

• Case 1:k < i.

From Lemma 3, we have for anyk < i, rk ≥ r i . Let job rq be the earliest arrival time for any jobJq such that
q < k. If we haverq ≥ rk, Jk can meet its deadline sincẽlst(Jk) ≥ ˜lst(Ji). On the other hand, ifrq < rk, the
schedulability ofJk is guaranteed according to Lemma 2 due to the fact that˜lst(Jq) ≥ ˜lst(Ji) andJk is a lower
priority job of Jq.
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• Case 2:k > i

If all the jobs arrive later thanJi , Lemma 2 can guaranteeJk’s deadline. Assume there is at least one job
arriving earlier thanJi , and letJk be the one with the earliest arrival time. Since˜lst(Ji)≤ ˜lst(Jk), Jk and all the
lower priority jobs can meet their deadlines. Therefore, weonly need to consider the jobJq such thati < q< k.
Note that, for any such jobJq, removingJk and all the lower priority jobs fromJ neither changes its feasibility
nor increase ˜lst(Jq). If rq < r i andrq is the next earliest arrival time of the jobs, we can prove that Jq and all
the lower priority jobs can meet their deadlines similarly.By repeating this process, we thus prove that all the
lower priority jobs can meet their deadlines ifJ is delayed to˜lst(Ji).
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