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Abstract

With ever-scaling VLSI technology, the leakage is increglgibecoming a serious concern when addressing the
power consumption problem for next-generation real-timébedded systems. Dynamic Voltage Scaling (DVS) is
efficient in reducing the dynamic energy consumption of a G\d@cessor. However, methods that employ DVS
without considering the leakage current are quickly becaéss effective to reduce the processor’s overall energy
consumption. To be overall energy efficient, the processyrmve to run at a higher-than-necessary speed, which
will cause a large number of idle intervals. While the pramrscan be shut down during these idle intervals to save
energy, this process may incur significant timing and enekgrhead. In this paper, we propose a DVS scheduling
technique for fixed-priority hard real-time systems that gadiciously merge the short, scattered idle interval®int
longer ones to reduce the shut-down overhead. The propeshditjue has very low on-line computation complexity
and can be readily incorporated with a variety of DVS schedutechniques. Experimental results demonstrate that
proposed technique can significantly reduce the numberlefiidervals and the overall energy consumption than
conventional scheduling techniques.

1 Introduction

Power consumption has become one of the primary designsisgugext-generation portable, scalable and per-
vasive embedded systems. For CMOS circuits, power consomipicludes dynamic power and leakage power.
Dynamic power is due to the switching activities of the tistwss, and leakage power is consumed when the sub-
threshold current flows through the transistors. Curremtgr@aving techniques mainly focus on reducing dynamic
power, because it has traditionally been the dominant coeoin the overall power consumption for most em-
bedded systems today. However, as VLSI technology corgitmevolve towards deep sub-micron and nanoscale
circuits operating at multi-GHz frequencies, the rapidgvated leakage power dissipation will soon become com-
parable to, if not exceed, the dynamic power consumptiof. [More advanced techniques are required for the
development of future generations of low-power embeddstesys.

Facing the increasing challenges presented by leakager mornsumption, design efforts on all fronts must be
pursued to form an integrated solution for this problem. dRdlg, many circuit and architecture techniques, such
as those presented in [4, 8, 16, 27], have been proposed twktre leakage power. For a more comprehensive
survey on the circuit and architecture level techniquedeakage reduction, readers can refer to the recent publica-
tions [5, 32]. It has been demonstrated [7, 25, 38] that redulboth the dynamic and leakage power consumption
simultaneously is critical for an overall energy-efficiafgsign. It is our belief that real-time scheduling plays a
unique role in this integrated effort, not only because gdapercentage of future embedded systems will be real-



time, but also because real-time scheduling has proven tmbeof the most effective ways of reducing power
consumption.

Dynamic Voltage Scaling (DVS) can effectively reduce dyimapower consumption in real-time systems, and
extensive DVS-based real-time scheduling technigeies[3,11,29,37] have been proposed. DVS works by varying
the processor’s supply voltage and frequency during runtionmatch workload and deadline requirements. How-
ever, the energy savings achievable via voltage reductitse¢oming severely limited due to the dramatic increase
in leakage power consumption [13]. Using DVS alone with nosideration of leakage power consumption may
actually increase the total energy consumption. This iqubee DVS tends to make the processor speed as low as
possible to minimize dynamic power. Unfortunately, as shoy Iraniet. al.[10], to be overall energy efficient, the
processor may have to run at a higher-than-necessary speeel a low processor speed (supply voltage) increases
the active period of the processor, which in turn increasesdakage energy consumption to a degree that can offset
or even surpass the dynamic energy reduction.

In this paper, we present a leakage conscious schedulimpagpthat combines both the DVS and shut-down
strategies* for hard real-time systems, scheduled by the fixed priof)(policy (such as the rate monotonic
scheduling (RMS) policy [23].) Running processor at a highan-necessary speed can produce a large number of
scattered idle intervals. While it is desirable to shut dalaprocessor or put the processor in a low-leakage mode
when idle, the significant energy overhead associated widinge number of processor shut-downs and wake-ups
will make the system less energy-efficient. Moreover, aersng the timing overhead, the processor simply cannot
be put to the low-leakage mode if the idle interval is not lemgugh. In this regard, we present efficient techniques
to delay the execution of tasks and merge the scatteredides/als, thus greatly reducing the processor shut-down
overhead. The proposed technique has a very low on-line gtatipn cost. Using a processor model with projected
0.07us technology [25], our experimental results show that tlepesed method can significantly reduce the shut-
down overhead by merging the idle intervals, and it is paldidy effective in reducing overall energy when the
workload of the system is relatively low. When the systemkhaad is relatively high or when processor shut-down
timing overhead is significant, however, our experimentsstiow that traditional DVS continues to be an effective
way to reduce the total energy consumption.

The remainder of this paper is organized as follows. Se@idiscusses the related work. Section 3 introduces
preliminaries related to our problem. Section 4 discussegieneral leakage conscious DVS approach. Section 5
introduces in details the techniques to delay the executioral-time jobs such that idle intervals can be merged.
Section 6 demonstrates the effectiveness of our approagdlmn simulations. Section 7 concludes the paper.

2 Related Work

Previously, there have been extensive research (e.g.,[39137]) on applying real-time scheduling methods
to reduce power/energy consumption. Most of these schegltdichniques are focused on reducing the dynamic
power/energy consumption. Recently, there have beenasgicig research efforts [14, 15, 20, 36] that use real-
time scheduling approach to control the leakage and redhgceverall power consumption for real-time embedded
systems. Yaret. al.[36] proposed a scheduling algorithm to reduce both dynanitleakage power based on a
processor that has been furnished with both DVS and adaptidg biasing (ABB) features. An analytic power
model is derived that can be applied to compute the optinggllgwoltage and body bias voltage in terms of overall
energy reduction for a given clock frequency. This approacbnly feasible when the supply voltage and body
biasing voltage are continuous variables. For processdtsdiscrete levels of supply voltage and body biasing
voltage, Andreiet. al.[2] proved it is an NP-hard problem and provided a non-line@athematic programming
technique to solve this problem. However, this approacmatine applied for priority-based preemptive scheduling
schemes employed in many real applications [24]. Underdbamaption that the processor shut-down overhead can
be infinitely small, Iraniet. al.[10] proposed a theoretical “optimal” voltage schedulehwiakage consideration
which can be constructed from the traditional optimal DVBestule. Their work forms the basis of our heuristic
techniques.

1By shut downwe mean to either literally shut down the processor or perptiocessor in a low leakage mode.



For a processor with no complex ABB control mechanism, pgtthe processor into a low leakage mode when it
is idle is one of the most effective strategies to reducedhkdge power consumption. However, care must be taken
as entering and exiting the low-leakage state can incuifgignt timing and energy overhead [8]. For real-time
tasks scheduled according to EDF policy, legeal.[20] proposed a leakage reduction scheduling techniquedcal
LC-EDF, which delays the execution of the arriving task instancbsmthe processor is idle to extend the idle
intervals and reduce the number of power mode transitiopecifically, according t&.C-EDF, the extended idle
time is treated as one part of the tasks’ execution time. Ag &s the resultant total utilization is less than or equal to
1, the schedulability of the task set is guaranteed. Howd#wvey assume a non-DVS processor model, which cannot
optimize the dynamic power consumption. So the overallggneonsumed cannot be minimized. To save both the
dynamic and leakage energy, Jejurikdr al. [15] exploited a strategy that combines both DVS and pradicrason
for periodic tasks. Each task is associated with a procesmmd and a procrastination value, computed based on the
utilization-related feasibility condition. In the samewasLC-EDF, the idle interval is extended by procrastinating
the execution of tasks when the processor is idle. This agbravorks very well for periodic task sets when the
tasks’ deadlines are equal to their periods. However, wiketeisks are non-periodic or have deadlines less than their
periods, this scheme becomes invalid or very pessimistieiarmining the processor speeds and delay amount, and
thus energy inefficient.

A number of papers extend the idea of delaying the execufi@baxecutions for real-time systems that employ
scheduling policies other than the EDF policy. lete al.[20] proposed a leakage reduction scheduling technique
called LC-DP, by extending the Dual-Priority (DP) scheduling model preed in [6]. The DP scheduling was
initially proposed to improve the response time for sofi-teae tasks by delaying the execution of hard deadline
tasks. (The detailed algorithm and introduction of DP cafoled in [6].) INLC-DP, idle time is treated as a soft
real-time task in the DP model. The hard deadline tasks agialy put in the queue that has a lower priority
than that of the soft real-time task if the processor is idie] are promoted to the higher priority queue after certain
promotion timesave passed. If the processor is active, all the hard deatdlsks are promoted to the high priority
queue immediately. The idle interval is extended since tirel neal-time tasks are delayed at the lower priority
gueue. However, as explained in [14], the LC-DP algorithmnca guarantee FP-tasks’ deadlines because of its
discrepancy with the original dual priority schedulinga@ithm [6].

When real-time tasks are scheduled according to the FP sghigjurikaret. al. [14] proposed delaying the
execution of tasks by the minimal promotion time over all éovand equal priority tasks. However, as shown
later in this paper(see Figure 2), this approach stifinotguarantee the schedulability of the tasks under the FP
scheme. Lehoczky and Ramos-thuel [21] proposed a technigilledslack stealerthat can delay the FP jobs as
late as possible and thus minimize the response times foiodpetasks. Specifically, they adopted the exact timing
analysis strategy, which potentially can have a very highmatational cost, to compute the maximal delay of the
periodic tasks. In addition, note that it becomes extrerabllenging if not totally impossible to employ the exact
timing analysis strategy to deal with the scenario wheredtffit instances of the same task have different worst case
execution times, i.e., when different jobs need to run & kht processor speeds to maximize the energy savings as
in our case. Kim et al. [17] proposed another strategy toydisla execution of FP jobs with the goal to reduce the
preemption times in DVS scheduling. The rationale of thchteque is quite similar to the Look-Ahead RT-DVS
strategy [29, 33], that is, to delay the higher priority jalvgil the absolute last moment, i.e., when the delayed tasks
can only meet their deadlines by using the highest possibleegsor speed. The side effect of this technique is that
it may increase the processor speed and therefore comgrtinei€nergy saving performance.

In this paper, we develop a novel technique to delay the Fxebutions. Our goal is to merge the idle intervals
by delaying the jobs while guaranteeing their deadlines. adfdeve this goal by judiciously computing the latest
starting time of a task without varying its speed which isgetermined to optimize the dynamic and leakage energy
consumption.



3 Preliminaries

In this section, we first introduce the real-time system amalgy model considered in this paper. We then present
an example to motivate our approach.

3.1 System model

We consider a general system model that considisjobs, denoted by = {J;,J,, - - Jv}. Each individual job is
denoted by} = (rj, ¢, d;), wherer;, ¢;, andd; are the arrival time, worst case execution cycles, and atesdeadline
for the job, respectively. The job set is scheduled usingRs¢heme. Without loss of generality, we assume that
J; has a higher priority thad if i < k. When a real-time system is described by a set of periodis taghere each
task instance represents one job, we assume that it is soffio schedule the set of jobs produced up until the Least
Common Multiple (LCM) of the periods of all tasks.

3.2 Power model

In a CMOS circuit, the power consumption includes both dyicaamd static components during its active op-
eration [32]. The dynamic power consumptidpyy(,) mainly consists of the switching power for charging and
discharging the load capacitance, and the short circuiepolwe to the non-zero rising and falling time of the input
and output signals. The dynamic powB%y,) can be represented as

wherea is the switching activity facto€;, is the load capacitanc¥, is the supply voltage, anflis the system clock
frequency. The static poweRax) can be expressed as

I:)Ieak = IIeakva (2)

whereleak is the leakage current, which consists of both the subdtiotdsieakage current and the reverse bias
junction current in the CMOS circuit. Leakage current imaes rapidly with the scaling of devices and becomes
particularly significant with the reduction of the thregthebltage [38]. Therefore, leakage power consumption is
becoming a major part of the the active power consumptag € Payn -+ Peax) in future CMOS circuits with low
supply voltage and high transistor density.

The processor consumes energy not only in its active modaléntvhen it is idle. When idle, the major portion
of power consumption comes from leakage. With dramaticaltyeasing leakage current as VLSI technology
continue its evolution, it is imperative that this portioh emergy be effectively reduced for the overall system-
energy reduction. Processor shut-down, i.e., putting tleegssor into a “sleep mode”, can greatly reduce the
energy consumption when the processor is idle. For exaritflas been reported in [9] that the power dissipation
when the processor is idle can be three orders of magnitgdeihthan that when the processor is shut down.

While the processor consumes less power in the power dowa) gteosts extra energy and time to shut down and
later wake up the processor in order to save/restore thexipais well as initiate the architectural components such
as the cache, translation look aside buffers, and branghtthuffers. One has to be careful when shutting down the
processor since energy overhead may outweigh the benefieajesavings if the idle interval is too short. Assume
that the power consumption of a processor in its idle statesteeping state af@qe andPsieep respectively, the
energy overhead of shutdown/wakeugEisand the timing overhead t5. The processor can be shut down with
positive energy savings only when

Pdle X t > Eo+ Psleepx (t —to), )
i.e., the length of the idle interval must be larger tfigm = max( PldleE?jsleep’to)' We call Tiin the minimal length of

the idle interval
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Figure 1. (a) A job set that consists of four jobs. (b) The volt age schedule that can reduce dynamic
power consumption. (c) The actual executions of the jobs acc ording to the voltage schedule shown in
(b). (d) Applying the threshold speed ( sh = 0.5) results in the scattered idle intervals.

3.3 A motivation example

As an illustrative example, Figure 1(a) shows a job set watlr fiobs (The upper and down arrows represent
the arrival times and deadlines of jobs, respectively.)ufggl(b) is the voltage schedule according to the DVS
scheduling technigue presented in [31], and Figure 1(c)shbe actual executions of the jobs based on the voltage
schedule from Figure 1(b).

As indicated in equation (1), the dynamic energy consumpioquadratically related to the supplied voltage.
Therefore, traditional DVS scheduling techniques (e.d])[3ry to reduce the supply voltage to as low a level
as possible (see the voltage schedule shown in Figure 1(bjcdAn However, such a voltage schedule may not
be always feasible and/or overall energy efficient due tofdHewing reasons. First, practical processors have
a minimal voltage supply limitation, which makes desiraptecessor speed not possible. Second, commercial
processors usually provide only a discrete set of voltagjeis means the processor will likely not be able to run at a
speed selected by a particular DVS algorithm. Instead, ¢iseet speed needs to be rounded up to the next discrete
speed that is availale Furthermore, even when a low processor speed is availdigleapidly increased leakage
current may increase the static power consumption to thenerf over-weighing the dynamic power consumption.
Therefore, to achieve the best energy efficiency, the psocespeed must be determined in a cooperative manner
with both dynamic and static energy consumption in mind.

Consider a job with workloadv. Let the total power of a processor during its active mod®fgs). Then the
total energy, i.e Eact(S), consumed to finish this job with spesdcan be represented as

Eact(S) = Pact(s) x V_SV (4)

2While it is possible to use two discrete speeds immediatealmd below the desired speed value to optimally schedulages
job [12,19], this method can induce a significant transitigarhead to the scheduling process, i.e., one extra tiamgiér job.



Hence, to minimize th&,(s) in equation (4), Ie%(s) =0 and thus

Equation (5) computes the most energy efficient speed tdfmie job. We call this speed thiereshold speel)
and denote it asn. To increase or decrease the processor speeddrowill increase either the dynamic or static
power, and thus the total active power consumption for exagthe job.

Note that, while it is desirable to execute a job using theghold speed to minimize the active power consump-
tion, it is not always feasible to do so when considering thadlines and the preemption effects among jobs. Given
a voltage schedule, a job that is required to run at a spedebhtbans,, must be executed with that speed to guar-
antee the schedulability of the job set. For jobs havingireduspeeds lower thesy, they can be executed g to
conserve energy. Figure 1(d) shows the scheduling resittissy= 0.5.

Using s, for jobs with speed requirements lower thap while maintaining the speeds of the rest certainly
guarantees all deadlines. The problem is that, as shownguré-il(d), such a voltage schedule can result in a
large number of scattered idle intervals. Though using agssor shut-down strategy is the most efficient method
to reduce the energy consumption for these intervals, taoyrehut-downs will incur significant energy overhead.
Moreover, using a processor power down strategy is not avegsible or necessarily energy efficient if the idle
interval is not long enough. Unless we can effectively da#t #he idle intervals in the schedule, we cannot achieve
our ultimate goal of maximizing the overall energy-savimgfprmance of the system. In what follows, we introduce
our approach to save the idle energy when scheduling ainealtask set by effectively clustering the idle intervals.

4 The General Approach

The shut-down strategy favors longer idle intervals. Taeedtan idle interval, one can always increase the
processor speed so that each job is executed faster. Hovesveinown in equation (5), increasing the speed over
sh will increase the dynamic power consumption. A better appho as suggested in [10, 15, 20], would be one
that extends the interval lengths by delaying the execstairthe incoming jobsi.e., a job is executed as soon as
possible when the processor is not idle, but delayed as nsipbssible when the processor is idle.

Delaying job executions helps to merge scattered, shatindérvals into longer ones. More energy can be saved
because energy overhead incurred by frequently enteriddesaving the power-down state is reduced. Moreover,
intervals that were previously shorter th&g, can now be shut down. As mentioned before, the power digsipat
when the processor is idle can be*1nes higher than that when the processor is shut down. Tdreramerging
short idle intervals has the potential of significantly reglthe overall energy consumption.

To facilitate a clear explanation of our approach, we firsoiduce the following definition.

Definition 1 Let each job in the job sey{ be executed with its pre-determined, feasible execupierd Théatest
starting time for a job set, e.g. 7, (denoted as LS[V)) is the latest time such that, if the execution of any jol in
starts no later than LS{¥), all jobs can meet their deadlines.

Algorithm 1 sketches the general framework of our appro&¢hen the processor is not idle, it will run the jobs
in the ready queue according to the FP DVS schedule. The D&lsite is computed off-line, using an algorithm
similar to the one presented in [31]. Other on-line DVS téghes that can dynamically reclaim system resources
(such as [18, 34]) can be readily incorporated into thisritigm. The only variation when applying these techniques
is to use the threshold speeg} | if a designated processor speed is less gyar-since using speeds less thap
will increase the total active energy—and dynamically categhe LST. The key to the success of Algorithm 1 is
the computation of the LST for jobs arriving after the prameds idle, which is presented in the following section.

3The term used in [10, 15] ithe critical speed We use a different term to avoid the possible confusion withspeed for theritical
intervalwhen computing the unconstrained optimal DVS schedule. [37]



Algorithm 1 Algorithm to reduce both dynamic and leakage power consiamor real-time systems scheduled
according to the FP scheme
1. Input: 7, sn, andTmin.
Compute the FP DVS schedule aggn=1,2,....N;
Il s, is the minimal feasible speed fd; based on the DVS schedule
Lets,=shif sy <sh,n=12,....N;
if processor is not idlthen
Run jobJ; in the ready queue with;
else
Compute the latest starting time, i.eST(%,), for future jobs;
if LST(Jn) — teur > Tmin then
Il teyr is the current time
Shut down the processor and set up the wake up timer kSB€s,) — teur;
end if
. end if

el ol =
W N R o

5 Computing the LST

Delaying execution of jobs helps to extend the idle intetgabth. At the same time, however, it may also cause
a job to miss its deadline. The major challenge when extenittia length of idle intervals is to determine how long
a job set can be delayed without causing any future job to isiskeadline.

5.1 Delaying job executions for FP job sets

Leeet. al.[20] first propose delaying the FP hard deadline tasks by gremotion times computed based on the
dual priority scheduling scheme. However, this method lentshown to be infeasible [14]. Jejuriletr al. [14]
further proposed to delay the execution of a job by thiaimal promotion time over all lower and equal priority
tasks. However, this strategy still cannot guarantee theddability of FP-jobs as illustrated in Figure 2.

A task set with two periodic tasks, i.e; andt,, scheduled with RMS is shown in Figure 2. According to DP
scheme, task; can meet its deadline if its promotion timég)(satisfying

Y, <Di—R, (6)

whereD; is the (relative) deadline of periodic taskandR, is its worst case response time. It is not difficult to
verify thatY; = 6 andY, = 7 in this example. However, assuming processor is idle befer0, delaying jobs to
t = min(Y1,Y2) = 6 will cause the first job of, to miss its deadline as shown in Figure 2. This is because that
delaying the high priority jobs may increase the blockingeiof lower-priority jobs. For example in Figure 2,
without delaying, at most one job from can preempt any job of,. However, more than one job af can
preemp/block the execution of a jobtfif the delayed execution is allowed, and thus caiys® miss its deadline.
Only by strictly adhering to the DP rules,d., the second job af; will stay in the low priority queue until = 16)
can the deadlines be satisfied. This prevents “extra” higherity jobs (the second job af; in this case) from
preempting/blocking the execution of lower priority jobdse( the first job ofty). Therefore, the previous job
procrastination strategies based on the promotion timeatréeasible when jobs are scheduled according to the FP
scheduling scheme.

In [26], Mochockiet. al. introduced a method to comput&T(7) when g is scheduled according to EDF. Their
method is based on the following lemma.
Lemmal [26] Let job set (J) be executed with a constant speédand

St =d -y =, (7)
Jehp(J)
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Figure 2. Using the minimal promotion time as the LST may caus e FP task sets to miss their deadlines.

where hJ;) is the jobs with the same or higher priorities than that ofthen,
LST(7) = min{Ist(J%)}. (8)
|

The rationale behind Lemma 1 is that if the accumulated weakifrom a jobJ andall the higher priority jobs
can be finished beford, the deadline of; will be satisfied. It is worthy mentioning that in Lemma 1, atjan (7)
is pessimistic in evaluating the latest starting time fgola but equation (8) tightly defines thatest starting time
for the entire job set scheduled with EDF policy. While egquai8) can indeed guarantee the feasibility of an FP
job set, thdfeasiblestarting time for the job set can be far frahe latest For example, in Figure 3(a), according to
equation (7) and (8), assumisg = 0.5, we havdst(J;) = 13,1st(J;) = 14,Ist(J3) = 3, Ist(J4) = 6, and therefore,
LST(J) = 3. However, even though all the jobs can meet their deadlinessall the short idle intervals can be
effectively merged (Figure 3(a)). For example, if the LSThof task set is delayed to 6 as shown in Figure 3(b), all
jobs can meet their deadlines and the short idle intervalsrearged to one single idle interval. The reason is that,
as opposed to the EDF case, a job with a higher fixed priorityheare a deadline much later than that of the current
job. Therefore, it would be too pessimistic to assume thdtigher priority jobs have to finish before the deadline
of the current job.

5.1.1 Identifying the LST of a FP job set

In what follows, we present a more effective method to compioe LST of a FP job set. Our method identifies the
LST by judiciously expunging the high priority jobs duriniget LST computation. We theoretically prove tladit
jobs can meet their deadlines under the FP scheduling pwiitythe LST computed from our algorithm. Before
we explain our strategy in detail, we first introduce sommtaology used in this paper.

Definition 2 (Scheduling point)* Time tis called a ¢-scheduling pointift =d, ort =r;, i <nandf < ri < dn.

Definition 3 (Reduced job set) A job set is called apdreduced job set, denoted byR (J,) if every job Jin the set
satisfies r > ry,.

We use Figure 3 to illustrate these definitions. Figure 3topns the® (J3) and all theJs-scheduling points (as
marked by “x”). Note that in Figure 3(c) i; is to be finished at any one of tldg-scheduling points (e.gt,= 12)
all the higher priority jobs arriving before this schedglipoint (e.g.J;) must be completed before this scheduling
point. Therefore, if], needs to finish at &,-scheduling point, the execution o, or any higher priority jobs that
may interfere withJ, must begin no later thast,(t), where
sht)=t— 3 <t ©)
Jehp(dn)

4This is a more general definition of the similar term definef2E.
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Figure 3. (a) A job set with four jobs scheduled with FP. The pr ocessor speed for each job is less
than sp (assuming shp = 0.5) in the un-constrained DVS voltage schedule. The LST is comp uted to

be 3 according to Lemma 1. (b) Delay the job set until t = 6 and every job can meet its deadline. (c)
Js-scheduling points (marked by “x”). (d) Delay execution of t he job set untill t =8 and J; misses its
deadline.

wherehp(J,) is the set of jobs with a priority greater than or equal to tifal, that arrive before.
It is not difficult to see that different,-scheduling points can lead to different valuesdift). If we let S(J,) be
the set of alll,-scheduling points, and let

Ist(J,) = maxXst(t),t € S(In)}, (10)

thenlst(J,) is the latest time thal, or any job inhp(J,) needs to start to ensure thlatcan meet its deadline. We
denote the correspondidg-scheduling point by(Ist(J,)). From Figure 3(c), we havst(J;) = 8 (andP(Ist(J)) =
12). It can be readily verified thdg can meet its deadline with respect$t(Jz) = 8.

Note that, whildst(J,) can guarantee the feasibility of jdh, it cannot guarantee the schedulability for any other
job in the J,-reduced job set. This is shown in Figure 3(d).Jifand all the higher priority jobs are delayed to
t = 8, J4 will miss its deadline. The reason is that, with(J3) = 8, J3 and the higher priority jobs are not completed
until the corresponding scheduling point 12, which will block the executions @ and cause it to miss deadline.
Next, we present an algorithm to determine the latest statiine that can guarantee the deadlines of a job and all
lower priority jobs. We call this time theffective latest starting timfer the job. Based on this time, we present our
technique to determine the latest starting time for theeijb set.

As stated befordst(J,) can guarantee the feasibility of jal but may cause jobs with lower priorities to miss
their deadlines. A remedy for this problem is to compute Hitedt starting times in a similar way for all the
lower priority jobs that may potentially be preempted, aiak phe smallest one. The above idea is formulated in
Algorithm 2.

To formally demonstrate that Algorithm 2 indeed producesdffiectivelatest starting time fod,, we present the
following lemma and proof.

Lemma 2 The effective latest starting time, i.ét(Jn)), output from Algorithm 2, is the latest time that dnd
all the higher priority jobs can be delayed to such thatahd all the lower priority jobs ing (J,) will meet their
deadlines.



Algorithm 2 Compute the effective latest starting tirﬁse(Jn) for job J, such that, and all the lower priority jobs
in the Jy-reduced job set can meet their deadlines.
Input: TheJ,-reduced job set, i.eR (Jy).
Output: The effective latest starting time fdg, i.e.,I§t(Jn)
nist=Ist(Jy); //Equation (10)
end= P(lIst(Jy));//the scheduling point correspondingl#b(J,)
for k€ R(In),k=n+1,n+2,...do
if rx <end then
nist = min{nlst,Ist(J)};
end= max{end P(Ist(J))};
end if
. end for
 Ist(Jn) = nlst;

[
[N =)

Proof: We first prove schedulability. The schedulability &f is guaranteed by equation 10 and in line (3) of
Algorithm 2, as well as the fact thalist can only be smaller (line (7)) as the algorithm continuesr &t low
priority job with a release time earlier thamd which may be potentially preempted when delayidp@nd all other
jobs with priorities higher thad, to time nlst, its schedulability is guaranteed by line (7) similar tottbfJ,. For
other lower priority jobsi(e., with a release time later thand during each FOR loop), considég(k > n) and let

rg > end Note that, any higher priority job that is delayednist will finish no later tharend Therefore, delaying
these jobs will not affect the schedulability & Moreover, the value dfilst can only be reduced later on, §ocan
meet its deadline i is delayed tanlst.

We next prove thatét(Jn) is thelatest From equation 10 as well as line (3) and line (7) in AlgoritBmany
further delay will causd, or some low priority jobs to miss their deadlines. ThereftﬁrE(Jn) is the latest time that
Jn and other higher priority jobs need to start such thaand all the lower priority jobs iR (J,) can meet their
deadlines. O

Recall that our goal is to identify the latest starting tine & job set such thaveryjob can meet its deadline.
Usinglét(Jn) cannot completely achieve this goal because (1) it is baseh@djusted job set and (2) the schedu-
lability of jobs with a priority higher than that @k, is not guaranteed in Lemma 2. To find the LST for the entire FP
job set, we have the following theorem. The proof of the teaois given in the appendix of this paper.

Theorem 1 Given job set/, the latest starting time fof can be computed as

LST(J) = mnin{l?st(;ln))}. (11)

wherelét(Jn) is computed according to Algorithm 2.

For the example in Figure 3, according to Theorem 1, we hetyé,) = 8, Ist(J;) = 16, Ist(Js) = 6, Ist(Jz) = 10,
and thereford.ST(J) = 6, which is exactly the case shown in Figure 3(b). As shownigufe 3(b), all the idle
intervals are successfully merged into one single interval

While equation (11) requires computing thiectiveLST for all jobs, it is not necessary in practice. Note that, t
ensure the schedulability, a task set cannot be delayedhgastrliest deadline of a job, which bounds the maximal
value of LST. Therefore, we only need to compare the effedti8Ts for jobs released before this bound and use
the minimal one as the LST for the entire job set. To furtheuoe the on-line cost, we can compute the LST for
each possible reduced job set off-line. Note that, whenieeprocessor is idle, the rest of the job set can always be
viewed as a reduced job set. We therefore can constructeafidhsible reduced job sets off-line and then compute
the corresponding LSTs. For a periodic task set, this mdensdamputation of totay , PBn reduced job sets, where
P is the least common multiple of the periods dRds the period for task. During on-line phase, the LST can
be readily determined by the LST associated with the nexthabarrives. This on-line technique has a very low
complexity, i.e., a constant time complexity for a singleléalookup operation.
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6 Experimental results

In this section, we evaluate the proposed technique usinglations. We consider the following scenarios in our
experiments.

e BaseThe task sets are scheduled on a processor without DVS dipaibe., all jobs are always executed
using the highest speed. A processor is shut down when themeough idle time, and no task instance is
delayed. This is the most primitive scheduling approach, iemresults are used as the reference to compare
other approaches.

e DVS The task sets are scheduled according to the DVS voltagesiesewithout considering leakagiee(
the threshold speed), and no task instance is delayed.

e DVSwith No Delay (DVSND)Task sets are scheduled with DVS voltage schedules andjeakaonsidered
(i.e., the threshold speed is enforced), but no job exetugidelayed.

e DVS with Shut down and Delay (DVSSD-FP)Task sets are scheduled with DVS voltage schedules, the
threshold speed is enforced and execution delay is compusied (Algorithm 1). The LST computation is
based on Theorem 1.

In addition, we have also implemented and compared our iigowith the dual-priority approach introduced
in [14], even though it is not strictly an FP approach. We ttali approach DV ®ual Riority(DVS-DP).

We conducted two groups of experiments to evaluate the qmediace of our approaches. The first group exper-
iments were based on synthesized task sets and a more tbtalopevcessor. In our second group of experiments
we intended to make our test conditions as close as possiltet in the practical scenarios. The test cases were
drawn from practical applications, and a more practicatessor model that supports only discrete voltage levels
was used. The experiments and results are discussed inltveihg).

6.1 Experiments with synthesized task sets

In this group of experiments, the periodic real-time systevere randomly generated and used as the test cases.
These systems consist of five periodic tasks, with task geriandomly chosen in the range[®0,50ms and dead-
lines assumed to be equal to their periods. We assumed ¢hatthal execution time of a job is normally distributed
between its best case execution time (BCET) and worst casmian time (WCET), wittBCET/WCET= 0.4.

We examine the performance of the above techniques fomegstath different utilizations. Based on the utilization
bound for periodic task set with five periodic tasks, L5 5(2%/° — 1) = 0.74, we divide utilization ranging from
0.0 to 0.7 into intervals of length.D. Within each interval, we randomly generated no less titapetiodic task
sets.

For the processor model used for this group experimentslasito [15], we assumed the processor voltage is
continuously variable, and adopted the same thresholdispeksleep state power as that used in [1&],5n = 0.41
andPsjeep= 50UW. We conservatively assumed that the power consumption woaessor is idle comes only from
the leakage power consumption, which is computed accordinige model in [25]. We also made a conservative
assumption that it takes onlyris for the processor to be put into the low leakage mode evergthtie actual
time can be much longer [9]. The shut-down energy overheasisis of two parts: the leakage energy consumption
during the shut-down process, which was computed basedegother model in [25], and the fixed energy overhead
to flush/restore the cache contents, which we use@dl&8cording to [15].

For approache®VS, DVSND, and DVSSD-FP, we used VSLP [31] to find the unconstrained job-level DVS
voltage schedule. This heuristic was chosen instead ofghmal algorithm [30] because the FP DVS problem is
NP-Hard while the computation complexity of VSLP is much é&sO(N2)). The optimal algorithm is not practical
for systems with a large number of jobs. On the other hand,R/R1] cannot be applied fddVS-DP approach.
DVS-DP computes the delay for the task set based on the worst casg timalysis, which is not possible if different
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jobs from the same task have different worst case executivest We hence used the task-level DVS scheduling
algorithm (i.e. [35]) to find the DVS schedule in this appioado dynamically reclaim the system resource when
real-time jobs finish earlier than their worst case exeauiimes, we adopted the technique in [34] for its simplicity,
i.e., we prolonged the execution of a real-time job to itsdliea or next arrivals of new jobs (whichever is the
earliest) when it is the only job in the ready queue. To beall’energy efficient, the processor speed will never be
set below the threshold speed when dynamically reclaimingtime slack.
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Figure 4. The average idle intervals by three different appr ~ oaches for synthesized task sets.

We first study the number of idle intervals resulting from teacheduling strategy. A large number of idle
intervals is undesirable in terms of energy reduction, @afig for leakage energy reduction. Schedules with large
number of idle intervals either incur higher transition khwead due to more frequent transitions or simply cannot go
into the low leakage mode due to shorter idle interval leagfigure 4 compares the normalized (according to the
results from theBaseapproach) number of idle intervals resulting from sevepgraaches within the LCM of the
task periods.

Figure 4 clearly shows that our proposed technique D\NSSD-FP) can merge the idle intervals very effectively.
From Figure 4DVSSD-FPcan significantly cut the idle interval numbers BYSND, i.e., ranging from 34.3% to
44.3%, with an average of 39.1%. The results B’¥SSD-FPand DVSDP are interesting. Note that, when the
utilization is low (i.e., less than 0.3), the numbers of iditervals byDVSSD-FPandDVSDP are quite close. But
when the utilization is relative higfpDVSDP can lead to much larger number of idle intervals thAnSSD-FP.

For example, when utilization is around 0.6-0.7, the nunddedle intervals byDVSDP is 30% higher than that
by DVSSD-FP. This is because of two reasons. Fild¥/SDP can exploit DVS capability only at the task level,
i.e. different jobs of the same task always have the same pracsgsed, which may require jobs to run at much
higher speeds than they actually need and increase thentdlwals. Second)VSDP always computes the latest
starting time based on the worst case response time. WHeratitn is relatively high, This strategy can severely
underestimate the maximal delay that a job is allowed, aadkthre cannot merge the idle intervals effectively.

We next study the overall energy consumption for the sameseis by different strategies. Figure 5 shows the
normalized average total energy consumptions by four @mhees, i.e.DVS, DVSND, DVSSD-FP, andDVSDP.

From Figure 5, one can readily conclude that using DVS witlvomsidering leakage current cannot effectively
reduce the overall energy consumed. This is particuladg when the utilization of the task set is low. As shown
in Figure 5, when the utilization is less than 0.1, the averaggerall energy using the “pure” DVS voltage schedule
can be more than 25% higher than the leakage conscious appauch aBVSSD-FPandDVSDP. This is due
to the factor that, when the utilization is low, the procedsaequired to run at a very low speed according to the
classical DVS approach. While reducing supplied voltagerealuce the dynamic and leakgg@verconsumption,
the extended execution time with a lower processor speddapidly increase the leakage energy consumption,
which may actually increase the towhergyconsumption. We would expect a leakage conscious approaié t
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more effective when leakage power consumption becomesotinéndnt component in overall power consumption.

On the other hand, when utilization is relative high, we dseyiie thaDV'S can be slightly better than the others.
There are several reasons for this result. First, we adeptahcept of the threshold speed as defined in equation
(5). Note that such a speed can only optimize the energy agption in executing a job (i.e., during the active
mode), but not necessarily minimize the energy consumptioing the entire life cycle (including both the active
and idle period) of the system. When the system utilizatsorery high, reducing processor speed as low as possible
is still beneficial since both dynamic and leakage powerawonion are significantly reduced. The power reduction
outweighs the extended execution times of tasks and thds keaoverall energy reduction. Second, we delay the
job execution as late as possible, which is not necessaglpptimal approach to merge the idle intervals. To find
the theoretically optimal solution for this problem is ateiresting one and will be our future research.

Figure 5 also shows that our approach outperforms thoseattogit a similar heuristic. By effectively merging
the idle times, our approach, i.@YSSD-FPconsumes over 14% less energy than thaDgND. Compared with
DVSDP which also delays job executions, we can see that the enexgygs ofDVSSD-FPvs. DVSDP varies
depending on the utilizatiolDVSDP works under the assumption that each task is assigned aeusigling factor,
which is determined based on the worst case scenario. Asily, mesl-time jobs may be run at speeds much higher
than necessary, which is not energy efficient and also cause idle intervals. In our approach, different jobs
may be assigned different processor speeds as necesghtigeadle intervals can be effectively merged. When the
utilization is low, for example, within the intervé0.0,0.4], both approaches have the similar energy consumptions
since most of the jobs are forced to execute with the thres$pded and most of the idle intervals can be long enough
for shutting down the processor. When the task utilizat®higher,DVSSD-FPcan save much more energy than
DVSDP, not only because it can take the advantage of the job-levV&8 §chedule but also because it can merge the
idle intervals more effectively. As shown in Figure 5, whdilization is around 0.6DVSSD-FPconsumes 27%
less energy thabVSDP.

6.2 Experiments with practical applications

In our second group of experiments, the test cases are drawntvo real world applications, i.e., CNC (Com-
puterized Numerical Control) [28] and INS (Inertial Naviigam System) [1]. The processor and power models used
in this group of experiments are the same as that in the prevines expect that the processor supports only five
discrete voltage levels, with normalized speeds as 0.2,0064 0.8 and 1.0. The critical speed was chosen to be
Sh = 0.4.

When the processor supports only a number of discrete wl@agls, more idle intervals are created since the
processor speeds for real-time jobs often have to be roumged a higher level. Our experimental results exhibit
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the excellent performance of our approach in merging theiitlervals under this scenario. Figure 6(a) compares
the normalized number of idle intervals for CNC and INS byadtént approaches. As can be seen from Figure 6(a),
DVSSD-FPcan cut approximately 50% of the idle intervals producedMEND, and around 29% of those pro-
duced byDVSDPfor CNC application. For the INS applicatioDySSD-FPcan cut around 44% of the idle intervals
produced byDVS andDVSND, and around 15% of those producedySDP.

Our experimental results demonstrate the excellent pagoce of our approach for practical applications not
only in merging the idle intervals, but also in total energyiags as well. It is interesting that Figure 6(b) shows
thatDVSSD-FPachieves different energy saving performance for CNC arfl INcloser look at our experimental
results reveals that, for CNC application, the numbers lef iictervals are small (i.e. 28 fddVSND and 14 for
DVSSD-FP), and the energy consumption during the active mode doesrae energy of the idle mode. Further,
all the processor speeds from the DVS schedule are highetthieahreshold speed. As a result, we see almost no
difference betwee®VS, DVSND, andDVSSD-FP. For CNC, howevelVSDP consumes much more energy than
the other approaches (over 21%) since it cannot effectiredyice the processor speed. For the INS application,
the number of idle intervals is much higher (i.e., 747 BdfSND and 418 forDVSSD-FP), which makes the idle
interval merging more profitable. As shown in Figure 6[@Y,SSD-FPcan reduce the energy consumed by as much
as 10.4% when compared wibV/S andDVSND.

7 Summary

Reducing the overall power dissipation is critical in thesida of future real-time embedded systems. As the IC
technology continues to scale down, leakage power consomigtbecoming a more and more significant part of the
overall power consumption. In this paper, we investigageioblem of applying real-time scheduling techniques
to reduce the overall energy consumption of real-time systecheduled by the FP schemes.

As demonstrated in our experiments, applying a DVS basadg®|schedule alone cannot effectively reduce
the overall energy consumption for the system, and can ewvaease it significantly. A leakage-power-conscious
voltage schedule may require the processor to adopt a spgeer-than-necessary to avoid the rapidly increasing
leakage energy consumption at low voltage levels. Thisccoegult in a large number of small idle intervals during
job execution, which is not energy-efficient considering tiverhead associated with the process of shutting down
and waking up the processor.

To reduce the processor shutdown overhead and improve #ralbgnergy performance, previously proposed
techniques are based on the task level DVS which requirer¢laftime jobs run at unnecessarily high speeds and
may generate even more idle intervals. In this paper, wegseg an efficient and effective approach to merge idle
intervals and improve the overall energy performance of ydesns. Under the job-based analysis paradigm, our
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techniques can be applied to both periodic and aperiodidirea tasks, and are more flexible and efficient in dealing
with the run-time variations. Extensive and comprehensigeriments are conducted and clearly demonstrate that
our approaches can significantly outperform previous rekem reducing the number of idle intervals and the
overall power consumption.
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8 Appendix

8.1 Proof for Theorem 1

_ The proof of Theorem 1 needs the following lemma regardinthéeffective latest starting timfer a job, i.e.,
Ist(J,) (see section5.1.1).

Lemma 3 For job set7, letd, J € 7, i < k. Thenlst(J) < Ist(J) if rj < r.

Proof: The proof for the casd; < ry is trivial sincelét(Ji) cannot exceed;. We use contradiction to prove that
whend, > r andrj < ry, Ist(J) > Ist(J) is not possible.

Let % and j represent the correspondidg and Jc-reduced job sets, respectively, aoé(Jp, 7,) represent the
jobs in 7, with priorities the same or lower than thatdf Then

% D %, and LP(Ji,ji) D LP(Jk,]k).

According to Lemma 2, delaying the execution%fo I§t(Ji) can ensure that all jobs ItP(J;, %) meet their dead-
lines. IfIst(J) > Ist(J), this contradicts to the fact tht(J) is the latest time thaf can be delayed to such that
the jobs inLP(J, %) can meet their deadlines. O

To prove Theorem 1, latST(7) = Ist(3) = min,{Ist(J))}. We want to prove that any othég € 7 can meet its
deadline if7 is delayed td§t(Ji). We consider two different cases separately.

e Caselk<«i.

From Lemma 3, we have for arlky< i, r > r;. Let jobrg be the earliest arrival time for any jaly such that
g < k. If we haverq > ry, Jc can meet its deadline sind:ét(Jk) > I§t(Ji). On the other hand, ify < ry, the
schedulability of) is guaranteed according to Lemma 2 due to the factigék;) > Ist(J) andJy is a lower
priority job of Jg.

16



e Case2k>i

If all the jobs arrive later thad;, Lemma 2 can guarantel’s deadline. Assume there is at least one job
arriving earlier thardi, and letJ be the one with the earliest arrival time. SiriéE(Ji) < I§t(Jk), Jk and all the
lower priority jobs can meet their deadlines. Thereforepwly need to consider the jaly such that < g <k.
Note that, for any such joly,, removingJ, and all the lower priority jobs fronf neither changes its feasibility
norincreaselst(Jq). If rq < r; andrq is the next earliest arrival time of the jobs, we can prove dgand all

the lower priority jobs can meet their deadlines similaBy. repeating this process, we thus prove that all the
lower priority jobs can meet their deadlinesJifs delayed td§t(Ji).
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