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Abstract

Energy reduction is critical to increase the mobility and
battery life for today’s pervasive computing systems. At the
same time, energy reduction must be subject to the real-
time constraints and quality of service (QoS) requirements
for multimedia applications running on these systems. This
paper presents a novel run-time scheduling approach to
reduce thesystem-wideenergy consumption for such sys-
tems. In this paper, the multimedia applications are mod-
eled using a popular weakly hard real-time model, i.e., the
(m,k)-model. Our experimental results show that, by ju-
diciously scheduling the real-time tasks and shutting down
the processor and/or peripheral devices, our approach can
lead to significant energy savings while guaranteeing the
(m,k)−firm deadlines at the same time.

1 Introduction

Energy reduction is critical to increase the mobility for
today’s pervasive computing systems and thus becomes a
wide spread research area. Power aware scheduling has
been proven to be an effective way to reduce the energy
consumption. Rooted in the traditional real-time scheduling
technology, the power aware scheduling techniques change
the system computing performance accordingly based on
the dynamically varying computation demand. Most of the
existing power aware scheduling techniques (e.g. [2, 12])
have been focused on reducing the processor energy con-
sumption alone. While the processor is one of the major
power hungry units in the system, other peripherals such
as network interface card, memory banks, disks also con-
sume significant amount of power. The empirical study by
Viredaz and Wallach reveals that the processor core con-
sumes around 28.8% of total power when playing a video
file on a hardware testbed [25] for handheld devices, while
the DRAM consumes about 28.4% of the total power. Note
that this testbed [25] lacks disk storage and wireless net-
working capability, which may contribute as much power
consumption as the processor core if not more [27, 6]. This
implies that the techniques that attack the processor energy
alone may not be overall energy efficient.

Two main types of techniques are reported in the liter-
ature. The first one is commonly known as thedynamic
power down(DPD), i.e., to shut down a processing unit
and save power when it is idle. The second one is called
dynamic voltage scaling(DVS) which updates the pro-
cessor’s supply voltages and working frequencies dynam-
ically. While DVS techniques can dramatically reduce the
dynamic power consumption for the processor, DPD tech-
niques seems to be more promising in reducing the system-
wide overall energy when the energy consumptions of pe-
ripheral devices are taken into consideration. Even for the
processor itself, the energy efficiency of DVS is becoming
limited as IC technology continue its evolution [28], espe-
cially when the leakage power is increasing exponentially
and will soon surpass the dynamic power consumption [7].
DPD, on the other hand, is one of the most intuitive and
effective ways to control the leakage power consumption.
Moreover, most peripheral devices do not support DVS at
all. As a result, the research on employing DPD has re-
gained its momentum to reduce the system-wide energy
consumption.

Recently, several techniques (e.g. [10]) have been pro-
posed to reduce the energy consumption for hard real-time
systems consisting of both core processors and peripheral
devices. However, few real-time applications are trulyhard
real-time,i.e., many practical real-time applications can al-
low some deadline provided that user’s perceived quality
of service (QoS) constraints can be satisfied. Theweakly
hard real-time modelis more suitable for this type of ap-
plications. In the weakly-hard real-time model, tasks have
both firm deadlines (i.e., deadline missing is useless) and a
throughput requirement (i.e.,sufficienttask instances must
meet deadlines to provide required quality levels). For
example, Ramanathanet. al. [21] proposed a so-called
(m,k)−model, with a periodic task being associated with
a pair of integers,i.e., (m,k), such that among anyk con-
secutive instances of the task, at leastm of the instances
must finish by their deadlines for the system behavior to be
acceptable. Adynamic failureoccurs, which implies that
the temporal QoS constraint is violated and the scheduler
is thus considered failed, if within any consecutivek jobs
more than(k−m) job instances miss their deadlines.

In this paper, we study the problem of employing DPD to



reduce the system-wide energy consumption with guaran-
teed QoS for a weakly hard real-time system. Specifically,
we adopt the (m,k)-model to capture the QoS requirement
for the real-time application. A key challenge for this prob-
lem has to do with the definition of which jobs are manda-
tory, i.e., whose deadlines have to be met to guarantee no
dynamic failure occur, and which jobs can be optional. This
problem has shows to be NP-hard even without the consid-
erations of the power conservation [20]. In our approach,
we employ a run-time technique and dynamically choose
and execute the mandatory jobs in such a way that facili-
tates the system shut down. Our experiments shows that by
judiciously choosing and merging the mandatory jobs, our
techniques can lead to significant energy savings while still
guaranteeingthe (m,k)-firm deadlines.

The rest of the paper is organized as follows. We first
introduce some previous work in Section 2. Then in Sec-
tion 3, the system model and motivations are introduced.
Section 4 describes a feasibility condition to guarantee the
(m,k)-firm deadlines. Section 5 presents two methods to de-
lay the job execution to extend the idle interval. Section 6
discusses how to judiciously execute the optional jobs. Sec-
tion 7 presents our experimental results. Section 8 draws
the conclusions.

2 Related Work
Most DVS real-time scheduling approaches focus on

saving energy consumed by the processor only. Recently,
a number of researches (e.g. [8, 11, 29]) are reported to re-
duce the energy consumption for systems consisting of DVS
processors and peripheral devices. Kim and Ha [10] pro-
posed a technique forhard real-time system, while schedul-
ing decisions are made on a timeslot-by-timeslot basis. To
facilitate a run-time mechanism, the processor speed for
each task is determined by analyzing the energy savings
based on a pre-determined set of execution times. Je-
jurikar and Gupta [8] introduced a heuristic search method
to slow down the processor speed and optimize the energy
usage by both the processor and peripheral devices. Zhuo
and Chakrabarti [29] proposed a theoretical formulation
of the optimal scaling factor and computed it numerically.
Based on this factor, they introduced a dynamic scheduling
technique that reduces the potential excessive preemptions
among tasks to further reduce the system wide energy con-
sumption.

As a traditional energy-saving technique, DPD has also
been widely adopted in real-time scheduling [3]. A major-
ity of DPD techniques (e.g. [23]) have been proposed for
soft real-time systems, where task deadlines can be missed
albeit with reduced quality levels. There are also a number
of papers (e.g. [5, 24]) deal with the power optimization for
hard real-time systems.

Few real-time applications are trulyhard real-time, i.e.,

missing one task deadline does not necessarily crash the
entire application or system. Many real-time applications,
such as multimedia and communication applications, can
often tolerate occasional deadline misses, but too much
deadline misses cannot satisfy user’s perceived quality of
service (QoS) requirement. While the statistic information
such as the average deadline miss rate is commonly used to
quantify the system performance, this metric can be prob-
lematic. Note that even a very low average miss rate tol-
erance cannot prevent a large number of deadline misses
from occurring in a very short period of time. This may
cause the loss of critical information which cannot be recon-
structed and therefore severely degrade the service quality
from user’s perspective.

We are more interested in developing scheduling tech-
niques for weakly hard real-time systems. Several weakly-
hard models have been introduced [21, 13, 26]. Ra-
manathanet. al. [21] proposed a so-called(m,k)−model,
with a periodic task being associated with a pair of inte-
gers, i.e.,(m,k), such that among anyk consecutive in-
stances of the task, at leastm of the instances must finish
by their deadlines for the system behavior to be acceptable.
Koren et. al. [13] proposed a ‘skip-over’ model, which
is a special case of(m,k) model with m = k− 1. West
et. al. [26] introduced another similar model, called the
window-constrainedmodel, which requires that within any
non-overlappedand consecutivewindows each of which
containingk jobs, at leastm of them can meet their dead-
lines. In [1], Alenawy and Aydinintroduced a scheduling
technique to maximize (instead of guarantee) the quality
of service level under energy constraints for real-time sys-
tems with (m,k)-constraints. Niu and Quan [19] presented a
combined static/dynamic DVS scheduling method to reduce
processor energy with (m,k)-guarantee. Both techniques
only take the processor energy consumption into consider-
ation. All these work target reducing the processor energy
only.

3 Preliminary

In this section, we first introduce the system model and
then discuss a motivation example.

3.1 System models

We model the multimedia applications withn indepen-
dent periodic tasks,T = {τ0,τ1, · · · ,τn−1}, scheduled ac-
cording to the earliest deadline first (EDF) policy [14], i.e.,
the scheduling policy that can best utilize the resource. Each
task contains an infinite sequence of periodically arriving
instances calledjobs. We useJi j to represent thejth job of
taskτi . Taskτi is characterized using five parameters,i.e.,
(Ti , Di , Ci , mi , ki). Ti , Di (Di ≤ Ti), andCi represent the pe-
riod, the deadline and the worst case execution time forτi ,



respectively. A pair of integers, i.e.,(mi ,ki) (0 < mi ≤ ki),
represent the QoS requirement forτi , requiring that, among
any ki consecutive jobs ofτi , at leastmi jobs meet their
deadlines.

The system architecture consists of two functional units:
a core processor and a peripheral device. Both the proces-
sor and the peripheral device can be shut down and waken
up later when idle time expired. We denote the processor
power withPpact when running a task, andPpidle when the
processor is idle (yet stillon). When the processor is shut
down, its power consumption is denoted asPpsleep. The pe-
ripheral device in our system can be in one of two states:
activeor sleep. When the processor is active, the peripheral
devices must be also in active mode to provide timely ser-
vice. We assume that the device consumes the same power
during its active mode no matter whether it is idle or not.
The power consumption for the device is denoted asPdact

andPdsleepfor its active mode and sleep mode, respectively.
Time and energy needed to be consumed to shut-down

and later wake up the processor and device. It will not be
feasible or beneficial to shut down the system if the idle
interval is not long enough. We useTmin to represent the
minimal idle interval that can be feasibly shut-down with
positive energy-saving gains.

3.2 The motivations

Our goal is to shut down the processor and device ef-
ficiently and guarantee the (m,k)-constraints in the mean
time. To schedule a real-time task set with (m,k)-firm dead-
line involves two sub-problems: (i) mandatory/optional par-
titioning problem, i.e., to determine if a job should be
mandatory or optional, and (ii) scheduling problem, i.e., to
schedule these jobs properly to guarantee their deadlines.
Both problems are proven to be NP-hard [20].

The mandatory/optional partition decision can be made
statically (off-line) or dynamically (on-line). Two known
static mandatory/optional partitioning strategies are re-
ported in literature. The first one is calledthe deeply-
red patternor R-pattern, which was proposed by Korenet
al. [13]. According to this technique, let

πi j =
{

1 0≤ j mod ki < mi

0 otherwise j = 0,1, · · · (1)

Then jobJi j is market as mandatory ifπi j = 1, or optional
otherwise. The second one is proposed by Ramanathanet
al. [22] as follows.

πi j =
{

1 if j = bd j×mi
ki
e× ki

mi
c

0 otherwise j = 0,1, · · · (2)

The(m,k)-pattern defined with formula (2) has the property
that mandatory jobs are marked evenly, and is therefore re-
ferred as theevenly distributed pattern(or E-pattern) [18].

The most significant advantage of applying static pat-
terns is that they enable the application of theoretic real-
time techniques to analyze the system feasibility and there-
fore can guarantee the desired requirements off-line. The
problem, however, is its pessimism due to its worst case
scenario assumption and the poor adaptivity in dealing with
the run-time variations, which is inherent in many multi-
media applications. For example, Figure 1(a) and (b) show
the EDF schedules by determining mandatory jobs based
on E-patterns and R-patterns, respectively, for a task set
with three periodic tasks. As expected, Figure1(a) shows
the mandatory jobs distributed evenly and causes a large
number of idle intervals, i.e., as many as 11 idle intervals in
time interval [0,96], which is not favorable for DPD mech-
anism. On the other hand, one tends to believe that the
R-pattern assignments may help to reduce the number of
idle intervals since the mandatory jobs from the same task
are assigned consecutively. However, this is not necessarily
true as shown in Figure1(b), i.e., as many as 12 idle inter-
vals within the same time interval according to R-patterns.
The reasons are two folds. First, from equation ( 1), an R-
pattern always marks the firstmi jobs as mandatory jobs.
The mandatory jobs from different tasks are likely to over-
lap for the first “window” but not necessarily for the fol-
lowing windows due to the differences ofk′s and periods
from different tasks. Second, even though mandatory jobs
and the time intervals in which they are supposed to run are
overlapped (e.g., see interval [0,15] in Figure 1(b)), idle in-
tervals still exist due to the deadline and arrival constraints
for the tasks.

Figure 1(c) presents a schedule that can cut the number
of idle intervals to as small as 4. A small number of idle
intervals usually means longer idle interval length. As a re-
sult, the energy overhead for shutting down the processor
and device can be reduced. In addition, some idle inter-
vals that previously cannot be shut down because they are
too short can now be done so. This can result in significant
energy savings. A careful study of Figure 1(c) would re-
veal that such solution is obtained by employing an irregular
mandatory/optional job pattern, i.e., neither E-pattern nor
R-pattern, together with carefully delaying the execution of
mandatory jobs. The challenges are then how to define ap-
propriate mandatory jobs and how to delay the executions
of these jobs effectively such that the idle intervals can be
merged while the (m,k)-constraints can be guaranteed. In
following sections, we propose an integrated run-time tech-
nique to attack these challenges.

4 Meeting the (m,k)-constraints
From the motivation example shown above, it is evi-

dent that the existing static (m,k)-patterns cannot effectively
merge the idle intervals. How to devise new static (m,k)-
patterns that can cluster mandatory jobs for this purpose is
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Figure 1. (a) The EDF schedule for three tasks
according to E-patterns; (b) The EDF sched-
ule for same tasks based on R-patterns; (c) A
better schedule for the same task set.

an interesting problem and needs further study. Nonethe-
less, the static patterns are usually based on worst case sce-
narios and less adaptive. Judiciously exploiting the varia-
tions, inevitable in the runtime environment, dynamically
can be extremely beneficial. The problem is how to deter-
mine the patterns dynamically and ensure that no dynamic
failure will ever occur.

A number of dynamic mandatory/optional partitioning
heuristics are proposed (e.g. [21, 1]) with no guarantee for
the deadlines of mandatory jobs at all. Currently, two dy-
namic techniques published can ensure the (m,k)-guarantee.
Niu et. al. [18] proposed to shift the E-pattern dynamically
when an optional job meets its deadline. Since E-pattern
tends to distributed the mandatory jobs evenly, it is advan-
tageous to schedule task sets with high utilizations but not to
reduce the number of idle intervals. Bernatet. al. [4] pro-
posed a Bi-Modal Scheduler under fixed-priority schedul-
ing policy based on the worst case timing analysis. How-
ever, a well-formulated analytical worst case timing anal-
ysis is not available under the EDF scheduling policy. In
what follows, we develop a sufficient condition to ensure
the feasibility when choosing mandatory jobs dynamically
in our approach (The proof is omitted due to page limit.)

Lemma 1 Given systemT , let M be the mandatory job
set according to their R-patterns. Then ifM is EDF-
schedulable, a job (i.e.Jp) can be marked as mandatory
and meet its deadline if for eachτi ∈ T , i = 0,1, ...,n−1,
no more thanmi jobs (includingJp) among any consecutive
ki jobs are marked as mandatory.

The necessary and sufficient condition to test the schedula-
bility for a mandatory job set according to R-patterns is for-
mulated in [17]. Based on this condition, Lemma 1 implies
that as long as a task set is schedulable under R-patterns,

we can flexibly choose a job as mandatory provided we do
not choose more thanmi amongki consecutive jobs from
same taskτi . Therefore, when the system is idle, we can in-
tentionally delay theassignmentof mandatory jobs in such
a way that they can be congregated. However, recall that
in the motivation example, even though the mandatory jobs
are allocated closely, large number of idle intervals may still
exist due to their arrival and deadline constraints. In next
section, we solve this problem by carefully delaying theex-
ecutionof mandatory jobs.

5 Delaying the execution of mandatory jobs

When the processor is idle, delaying the execution of
mandatory jobs helps to extend the idle intervals. However,
it may also potentially cause mandatory jobs to miss their
deadlines and thus cause dynamic failure. A number of pa-
pers published [5, 9] proposed to compute the job delay
amount for a hard real-time task set based on its utiliza-
tion factor. These approaches cannot be applied for real-
time system with weakly hard real-time constraints since
the famous condition, i.e.,U ≤ 1 is not necessary for a
weakly hard real-time system to be feasible under EDF. In
this section, we develop two sufficient conditions for de-
laying the execution of mandatory jobs as late as possible
without causing any dynamic failure. Before we introduce
these sufficient conditions, we first introduce the following
definition.

Definition 1 Assume thatM is the mandatory job sets from
T according to R-pattern and schedulable, and letRi be the
worst case response time (i.e., the time from a job arrival to
its finish). Thedelay factorfor τi (denoted asYi) is defined
as

Yi = (Di −Ri). (3)

Even though there is no analytical method to compute
the worst case response time under EDF for mandatory
jobs determined according to R-pattern, we can always scan
through the interval from[0,LCM(kiTi)], i = 0, ...,n−1 to
find the exact value for each task. With Definition 3, our
first sufficient condition is formulated in the following The-
orem.

Theorem 1 Let M be the mandatory job set such that no
more thanmi mandatory jobs assigned for anyki consec-
utive jobs fromτi ∈ T . Assume that processor is idle at
t = t0, and let the arrival time for mandatory jobJi from τi

immediately aftert0 ber i . Then if the processor resumes its
execution at

TLS(M ) = min
i

(r i +Yi), i = 0,1, ...,n−1, (4)

no mandatory job inM will miss its deadline.



Theorem 1 allows us to determine the maximal delay for
mandatory jobs based on worst case response time, which
is available off-line. The advantage of this approach is its
small run-time overhead. Unfortunately, same as any other
off-line strategy, it suffers the pessimistic estimation due to
its assumption of the worst case scenario, as exemplified
in Figure 2. Figure 2(a) shows the schedule of a task set
of three tasks according to their static R-patterns. We can
readily identify thatY1 = 4,Y2 = 0, andY3 = 2. Assume a
dynamically determined mandatory job sets shown in Fig-
ure 2(b). (We can see that the job execution intervals are
largely overlapped.) SinceY2 = 0, the mandatory job from
Task 2 cannot be delayed according to Theorem 1, and there
is one idle interval between [28,36]. On the other hand,
however, if we delay the processor execution tillt = 27 (as
shown in Figure 2(d)), all jobs can meet their deadline and
no idle interval exists. This is because that Theorem 1 com-
putes the maximal delay assuming the job always takes its
worst case response time. When a job has a much smaller
response time, it can be delayed further and may thus be
more effective in reducing the idle intervals.

Mochocki et. al. [15] introduced a method to compute
the latest starting time (LST) for a real-time job set. Their
method is based on the following lemma.

Lemma 2 [15] Let job set J ={J0,J1, ...,Js} and Ji =
{r i ,di ,ci}, wherer i , di , andci refer to the arrival time, dead-
line, and execution time ofJi , respectively. Let

tLS(Ji) = di − ∑
Jk∈hp(Ji)

ck, (5)

wherehp(Jk) is the jobs with the same or higher priorities
than that ofJk. Then the latest starting time (LST) ofJ , i.e.,
TLS(J ), without violating deadline constraints is

TLS(J ) = min
i

tLS(Ji). (6)

Lemma 2 helps to compute the LST for a given job set.
However, this method cannot be readily applied in our dy-
namic approach where the job set is not statically deter-
mined. Niuet al.[16] later extended Lemma 2 and compute
LST based on information from only a subset of the jobs.
This approach has a much lower complexity and hence is
more suitable for on-line purpose. We use Figure 2(c) to
illustrate this approach.

Assume the processor is idle beforet = 19in Figure 2(c).
Since the LST for a job set is bounded by the earliest dead-
line of the jobs (so calleddelay boundand denoted asTB),
and is usually known on-line (i.e.TB = 32 in this case), it
is desirable to estimate LST for the entire job set based on
the jobs arriving before the delay bound,i.e.,J11 andJ21. As
pointed out in [16], the LST computed by employing equa-
tion (5) directly forJ11 andJ21 may not be valid since the
validity of LST in Lemma 2 is ensured by employing (5) for

everyjob in the job set. In this regard, Niuet al. proposed
to use theeffective deadlineof a job (i.e. the time before
which a job has to be finished such that it will not cause
any other job to miss deadline) in place of the deadline in
(5). To keep low complexity of the algorithm, they simply
defined the effective deadline for a job by its own dead-
line or the earliest arrival time of the coming low priority
job, whichever is smaller. In Figure 2(c), both the effective
deadlines forJ11 andJ21 happen to be 32. Therefore, based
on equation (6),TLSmin(tLS(J11), tLS(J11)) = 23.

The approach in [16] delays mandatory jobs further than
the one applying Theorem 1 and shorten the idle interval in
Figure 2(b). However, it fails to eliminate the idle interval.
In what follows, we present another method to estimate the
LST for mandatory jobs. Our method maintains the same
computational complexity as that in [16] but with a more
accurate estimation. Specifically, our method is formally
formulated in Theorem 2.

Theorem 2 Let M be the mandatory job set such that no
more thanmi mandatory jobs assigned for anyki consec-
utive jobs fromτi ∈ T . Assume that processor is idle at
t = t0, and let the delay bound (i.e., the earliest deadline for
the coming mandatory jobs) beTB for M . Then no manda-
tory job inM will miss its deadline if the processor resumes
its execution at̃TLS(M ), where

T̃LS(M ) = min
Ji∈Js

(d∗i − ∑
Jk∈hp(Ji)

ck), (7)

whereJs consists of mandatory jobs fromM with arrival
times earlier thanTB but later thant0, and

d∗i = min
p

(di , rp +Yp),∀Jp ∈M ,Jp /∈ Js and dp > di . (8)

The fundamental difference between our technique and
the one in [16] is the way that effective deadlines are de-
fined. From equation (8), the effective deadline for a
mandatory job is relaxed from the earliest arrival time of the
next lower priority job further with its delay factor. This in
turn will allow mandatory jobs to delay further to merge the
idle interval. As such, the effective deadline forJ21 becomes
34 instead of32, and thus we havẽTLS = 27, which is the
case shown in Figure 2(d). Note that, sinceYi is available
off-line, our technique based on Theorem 2 has the same
on-line complexity as that in [16]. Also, it is not difficult
that the LST computed based on Theorem 2 is never worse
than that by the technique in [16]. Finally, it is worthy to
mention that both Theorem 1 and Theorem 2 are sufficient
conditions. Therefore, the larger one from equation (4) and
(7) can be used as LST and guarantee the deadlines for all
mandatory jobs.
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Figure 2. (a) Three tasks scheduled based on their R-Pattern; (b) J21 cannot be delayed according
to Theorem 1; (c) Delaying the mandatory jobs to t = 23 ( [16]) cannot remove the idle interval; (d)
Delaying the mandatory jobs to t = 27 and eliminating the idle interval.

6 Execution of the optional jobs

When the system are idle, Lemma 1 helps us toassigna
mandatory job as late as possible, and Theorem 1 and Theo-
rem 2 can further delay the idle intervals by delaying the ex-
ecution of mandatory jobs. When the predicted idle interval
is long enough (i.e. greater thanTmin), it will be beneficial
to shut down the processor and devices. One missing piece
in our approach is, however, what if the idle interval is still
not long enough?

We have two choices when the idle interval is not long
enough to accommodate the timing and energy overhead:
(1) we can simply keep the system idle (but active); (2) we
can opt to run some optional jobs. For the first case, the
processor consumes a little less power (asPpidle < Ppact)
while the device consumes nearly the same power. At the
first sight, running optional jobs does not seem to be energy
efficient sincePpact > Ppidle. However, executing optional
jobs may potentially lead to positive energy saving gain be-
cause (1) some mandatory jobs become optional and do not
have to be executed; and (2) more importantly, some short
idle intervals in the future can be merged to longer ones and
enable system to shut down if appropriate mandatory jobs
are demoted to optional. The problem is how to select the
right optional jobs.

To make a precise analysis of the trade off in execut-
ing the optional jobs is a challenging problem, especially
from the dynamic scheduling perspective. In considering
this, we resort to a heuristic approach in solving this prob-
lem. In our heuristic approach, an optional job is executed,
non-preemptively, only when it can finish within the idle
intervals as predicted. This helps to avoid the execution
of too many optional jobs, which would not be energy ef-
ficient. When there are more than one candidate optional
jobs, we devise a function to evaluate the fitness of an op-
tional job. The fitness function, i.e.F , is determined by
two parameters, i.e., the flexibility (F) and criticality (Cr).

An optional tends to have higher energy-saving potential if
its corresponding mandatory jobs are more flexible to be
moved around and/or it is closer to dynamic failure. There-
fore, for optional jobJi j , we define

F(Ji j ) = (Yi +Di)× kiTi

miCi
, (9)

and

Cr(Ji j ) =
m′

i

ki −mi
, (10)

wherem′
i is the currently allowed deadline misses ofτi with-

out causing dynamic failure. Note thatF(Ji j ) can be com-
puted off-line butC(Ji j ) is computed on-line.

The rationale behind equation (9) is that, from Theo-
rem 1 and Theorem 2, largeYi andDi tend to make future
mandatory jobs fromτi more flexible to be delayed. On the
other hand,miCi

kiTi
indicates the average mandatory workload

for taskτi . The higher the value is, the more difficult it is to
shift the workload and thus merge idle intervals. Equation
(10) measures the number (normalized) of deadline misses
that can still be tolerated. The higher the value, the less
urgent thatJi j needs to be executed in order not to cause a
dynamic failure. Note that ifJi j is optional,C(Ji j ) cannot be
zero. Therefore, based on equation (9) and (10, we define
F as

F (Ji j ) =
F∗(τi)
Cr(Ji j )

, (11)

whereF∗(τi) is the normalized value ofF(Ji j ) (based on
the largest value) for consistency.

7 Experiments

In this section, we evaluate the performance of our ap-
proach using simulations. We implemented five approaches
in our experiments. In the first approach, the mandatory



jobs were statically determined using theR-patterns. We
refer this approach asDPDR and use its results as the ref-
erence results. The second approach adopts E-patterns in-
stead of R-patterns and hereby is referred asDPDE. In the
third approach, referred asDPDND, we marketed manda-
tory jobs as late as possible, but the execution of the manda-
tory jobs were not delayed. The fourth approach, referred
asDPDNTA, determines the mandatory job dynamically and
delays the mandatory job executions, with delay amount
computed based on the approach in [16]. The final ap-
proach, denoted byDPDDYN, is the complete implemen-
tation of our approach presented in this paper.

The periodic task set in our experiments consisted of five
tasks. Each task set were randomly generated with the peri-
ods randomly chosen in the range of[10, 50]ms. We as-
sumed that the deadlines for the tasks were the same as
their periods. The worst case execution time (WCET) of
a task was set to be uniformly distributed from1ms to its
deadline, and the actual execution time for a job was evenly
distributed from [0.4WCET, WCET]. Themi andki for the
(m,k)-constraints were randomly generated such thatki is
uniformly distributed between 2 to 10, and1≤mi < ki . The
total (m,k)-utilization, i.e.,∑i

miCi
kiTi

, is divided into intervals
of length 0.1, each of which contains at least 20 schedulable
task sets, or at least 5000 task sets within each interval have
been generated. For the processor considered in our exper-
iments, we assume thatPpact = 1.0W, Ppidle = 1

3Ppact. We
assume that the power consumption for the processor and
device during the sleep mode are negligible. We also as-
sume the minimal idle interval length to be3ms. Since the
active power of the peripheral devices can be comparable
to or even much larger than that of the core processor, we
collect the data of power consumption for these two cases
separately:(i) Pdact = Ppact and(ii) Pdact = 10Ppact.

We first study the number of idle intervals by the five
different scheduling strategies. A large number of idle in-
tervals is undesirable in DPD since it either incurs higher
transition overhead due to more frequent transitions or has
to keep system busy due to shorter idle interval length. Fig-
ure 3(a) compares the normalized (with respect toDPDR)
number of idle intervals within LCM(kiTi) by different ap-
proaches.

Figure 3 clearly shows that our proposed technique (i.e.
DPDDYN) can effectively reduce the number of idle inter-
vals. It is interesting to see that the numbers of idle intervals
by DPDE andDPDR are quite close to each other, which
shows that both static approaches are not effective in merg-
ing the idle intervals. When compared with our approach,
the number of idle intervals byDPDR and DPDE can be
as nearly 3.5 times higher than our approach. In addition,
we can observe from Figure 3 that, if we only dynamically
change the mandatory job assignment without delaying the
execution of the mandatory jobs (i.e.DPDND), it may help
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Figure 3. The average number of idle inter-
vals by different approaches.

to merge the idle intervals in some cases but not always.
And the number of idle intervals can be much larger than
those by delaying the processor execution. Furthermore,
compared withDPDNTA, i.e., the approach that adopts a dif-
ferent way to delay the mandatory jobs [16], our approach
can cut its idle interval number as many as a half. These
results favorably demonstrate the strength of the two suffi-
cient conditions presented in section 5.

The reduction of idle intervals has a strong correlation
with the reduction of energy as shown in Figure 4. From
Figure 4 (a) and (b), it is not surprising to see that the en-
ergy savings obtained withDPDDYN varies according to
the (m,k)-utilization. When (m,k)-utilization is very high
(e.g. within [0.8,1.0]), the system is busy most of the time
and cannot be shut down. Under this scenario, all the ap-
proaches have the similar energy savings. When the (m,k)-
utilization is small, we can see thatDPDDYN can save en-
ergy more efficiently. As shown in Figure 4(a), when the
active power of the peripheral devices (Pdact) is comparable
to that of the core processor (Ppact), DPDDYN can reduce
the energy consumption by up to 18% when compared with
DPDND , and by up to 6% when compared withDPDNTA,
without increasing the on-line complexity. The energy con-
servation is more significant when compared with the con-
ventional and naive approaches (DPDE andDPDR), i.e., up
to over 23%. When the active power of the peripheral de-
vices (Pdact) is much larger than that of the core processor
(Ppact), more energy saving can be observed. As shown in
Figure 4(b),DPDDYN can reduce the energy consumption
by up to 30% when compared withDPDND, and by up to
5% when compared withDPDNTA. In summary, the experi-
ment results have shown that our approach can significantly
reduce the idle intervals, and hence achieve better energy
savings than the conventional approaches.
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Figure 4. The average total energy consumption by different approaches when (a) Pdact = Ppact; (b)
Pdact = 10Ppact.

8 Conclusions

Energy consumption is critical in the design of perva-
sive real-time computing platforms. The power consump-
tion for peripheral devices, as a significant part of the over-
all power consumption, must be taken into consideration to
reduce the system-wide power consumption. On the other
hand, most of these real-time systems are not hard real-
time but exhibit complex QoS behaviors that can only be
modeled by more complicated constraints. In this paper,
we present a dynamic DPD approach to reduce the system-
wide energy consumption while guaranteeing the QoS re-
quirements, which are modeled as the(m,k)-constraints.
Our approach ensures the(m,k)-firm guarantee by taking
advantage of static analysis. The energy saving perfor-
mance of our approach comes from the fact that we dynami-
cally change the mandatory/optional job settings, and effec-
tively merge the idle intervals by delaying the execution for
mandatory jobs. Our experimental results demonstrate that
our approach can greatly reduce the number of idle inter-
vals and thus the power consumption, while still providing
the(m,k)-firm guarantee.
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