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Abstract

Energy reduction is critical to increase the mobility and
to extend the mission period in the development of today’s
pervasive computing systems. On the other hand, however,
energy reduction must be subject to the requirements not
to compromise the quality of service (QoS) that these sys-
tems need to provide. While most of the current research
in energy-aware real-time scheduling has been focused on
hard real-time systems, a large number of practical applica-
tions and systems exhibit more soft real-time nature. In this
paper, we study the problem of minimizing energy for soft
real-time systems with the requirements of QoS-guarantee.
The QoS requirements are deterministically quantified with
the (m,k)-constraints, which require that at leastm out of
any k consecutive jobs of a task meet their deadlines. To
deal with the dynamic characteristics of such applications
and systems, we propose a hybrid static/dynamic scheduling
approach that can efficiently reduce the energy consumption
while guaranteeing the(m,k)-constraints. The experimen-
tal results demonstrate that our proposed techniques out-
perform previous research significantly in terms of both the
energy savings and QoS that can be achieved.

1 Introduction

Power aware computing has come to be recognized as
a critical enabling technology in the design of pervasive
real-time embedded systems. A large number of techniques
(e.g., [2, 9, 25]) have been proposed to reduce the energy
consumption of real-time computing system. Most of these
techniques have targeted hard real-time systems,i.e., the
systems requiring that all the task instances meet their dead-
lines. However, many practical real-time applications ex-
hibit more complicated characteristics that can only be cap-
tured with more complex requirements, generally called the

Quality of Service (QoS) requirements. For example, some
applications may have soft deadlines where tasks which do
not finish by their deadlines can still be completed with a
reduced value [13]; or they can simply be dropped with-
out compromising the desired QoS levels. Energy reduction
under QoS requirement falls within the framework of more
general resource management/scheduling, such as the QoS-
based Resource Allocation Model (Q-RAM) [20]. A key to
the success is the ability to integrate the QoS requirements
into resource management/scheduling decisions in such a
way that the overall “benefit” of the system is optimized.
The techniques based on the traditional hard real-time sys-
tems become inefficient or inadequate when QoS require-
ments are imposed on the systems.

Recently, there has been increasing interest that incor-
porates the Dynamic Voltage Scaling (DVS) techniques in
real-time scheduling to deal with the power/energy conser-
vation with regard to QoS constraints. These approaches
can be classified into two categories:the best-effortand
the guaranteedapproaches. Thebest-effortapproaches
(e.g. [23, 22, 14, 15]) intend to enhance the QoS of the
system and minimize the power/energy consumption in the
context of power aware scheduling, but with no assurance
to either of them. Theguaranteedapproaches, on the other
hand, optimize the energy usage with QoS-guarantee in
mind. A predominated portion of the current guarantee re-
search in power aware scheduling has to do with thestatistic
service guarantee. For example, Qiuet al. presented a tech-
nique [18] to statistically guarantee the QoS for a real-time
embedded system. Yuanet al. [26] proposed incorporating
the stochastic analysis into DVS for soft deadline systems
to provide statistic QoS guarantee. With QoS requirements
formulated as a tolerable statistic deadline miss rate, Hua
et al. [8] introduced several techniques to exploit processor
slack time due to the deadline miss to reduce the energy.

The statistic guarantee ensures a quality of service in
a probabilistic manner. This can be problematic for some



real-time applications. For example, many real-time appli-
cations can tolerate occasional deadline misses of real-time
tasks, and the information carried by these tasks can be es-
timated to a reasonable accuracy using techniques such as
interpolation. However, even a very low overall miss rate
tolerance cannot prevent a large number of deadline misses
from occurring in such a short period of time that the data
cannot be successfully reconstructed. To avoid possible se-
vere consequences, one can always treat the system as a
hard real-time system. The problem, however, is that the
energy savings can be seriously degraded, and the mission
cycles can be severely reduced.

To provide a deterministic QoS to the real-time system,
the system should not only support the overall guarantee of
the QoS statistically, but also be able to provide a lower
bounded, predictable level of QoS locally. Hamdaouiet
al. [6] proposed the(m,k)-model that can well serve for this
purpose. According to this model, a repetitive task of the
system is associated with an(m,k)(0 < m≤ k) constraint
requiring thatm out of anyk consecutive job instances of
the task meet their deadlines. Adynamic failureoccurs,
which implies that the temporal QoS constraint is violated
and the scheduler is thus considered failed, if within any
k consecutive jobs more than(k−m) job instances miss
their deadlines. Westet al. [24] introduced another simi-
lar model, called thewindow-constrainedmodel. The ma-
jor difference between these two models is that the(m,k)-
constraint requires at leastm jobs meet their deadlines for
any k consecutive jobs, while thewindow constraintre-
quires that within anynon-overlappedandconsecutivewin-
dows containingk jobs, at leastm of them can meet their
deadlines. It can be concluded thatwindow constraintsare
weaker than the(m,k)−constraints, as if a schedule is fea-
sible under the(m,k)−constraints, it is also feasible under
the window constraints.

For its intuitiveness and capability of capturing not only
statistical but also deterministic QoS requirements,(m,k)-
model has been widely studied, e.g., [3, 19, 6, 21, 7]. Quan
et al. [19] formally proved that the problem of schedul-
ing with (m,k)−guarantee is NP-hard in the strong sense.
To guarantee the(m,k)-constraints, Ramanathanet al. [21]
proposed a strategy to partition the jobs intomandatory
and optional jobs. The mandatory jobs are the jobs that
must meet their deadlines in order to satisfy the(m,k)-
constraints, while the optional jobs can be executed to fur-
ther improve the quality of the service or simply be dropped
to save the computing resources. Quanet al. [19] improved
this partitioning strategy by reducing the maximal interfer-
ence between the mandatory jobs. Bernatet al.[4] proposed
to use the Bi-Modal scheduler to schedule the systems with
(m,k)−constraints. The tasks are first scheduled according
to the generic scheduling policy in thenormal mode, and
switched to thepanicmode if the dynamic failure is likely

to occur. All these work primarily targets at systems with
fixed priority assignment. Note that, even with thewindow
constraints, the guaranteed scheduling problem is NP-hard
as shown in [1]. Deterministic assurance with this model
can only be guaranteed for very limited range of systems,
such as those that all tasks have the same unit size execu-
tion times [1]. In addition, none of these approaches have
taken energy/power consumption into consideration.

Since all jobs to be scheduled are not required to meet
their deadlines, energy can be saved by running as many
mandatoryjobs as possible at low voltage levels. The prob-
lem is how to judiciously select the set of mandatory jobs
and their running speeds. The mandatory job set as well
as the job running speeds can be selected either statically
or dynamically. The advantage of statically selecting the
mandatory jobs and their speeds lies in the fact that the
schedulability analysis can be performed off-line and thus
is easier to guarantee the QoS constraints. However, due to
the dynamic nature of the real-time systems under investiga-
tion, the energy-saving performance that the static approach
can achieve is rather limited. On the other hand, the dy-
namic approach can generally utilize the system resources
more efficiently by incorporating the run-time information.
The problem, however, is how to ensure the schedulabil-
ity of the mandatory jobs and hence the QoS guarantee.
This is exacerbated when considering that both the manda-
tory/optional partition problem as well as the schedulability
analysis problem are NP-hard in the strong sense [19].

In this paper, we propose a hybrid approach to deter-
mine the mandatory job sets for real-time systems with
(m,k)-constraints. In our approach the mandatory jobs are
statically determined but can be dynamically updated dur-
ing run-time while still guaranteeing the(m,k)-constraints.
A scheduler, based on the dual priority scheduler [5],
is designed to dynamically determine if a job should be
mandatory/optional and the corresponding processor speed
to maximizing the energy-saving performance. Through
our extensive experiments, the results show that our pro-
posed approaches can significantly improve the energy sav-
ings over previous ones while guaranteeing the(m,k)-
constraints .

The rest of the paper is organized as follows. Section 2
introduces the system model and problem formulation as
well as the motivations. Section 3 presents some theoreti-
cal results that form the basis for our techniques. Section 4
introduces our new approaches in more details. The effec-
tiveness and energy efficiency of our approach are demon-
strated using simulation results in section 5. In section 6,
we offer conclusions for this paper.



2 Preliminary

In this section, we first formulate the problem formally,
followed by the introduction of some concepts as well as
observations important to our approach. We then present
the motivations for our approach.

2.1 System models and problem formulation

The real-time system considered in this paper containsn
independent periodic tasks,T = {τ0,τ1, · · · ,τn−1}, sched-
uled according to the earliest deadline first (EDF) pol-
icy [12]. Each task contains an infinite sequence of peri-
odically arriving instances calledjobs. Taskτi is charac-
terized using five parameters,i.e., (Ti , Di , Ci , mi , ki). Ti ,
Di (Di ≤ Ti), andCi represent the period, the deadline and
the worst case execution time forτi , respectively. A pair of
integers, i.e.,(mi ,ki) (0 < mi ≤ ki), represent the QoS re-
quirement forτi , requiring that, among anyki consecutive
jobs ofτi , at leastmi jobs meet their deadlines.

The DVS processor used in our system can operate
at a finite set of discrete supply voltage levelsV =
{V1, ...,Vmax}, each with an associated speed. To sim-
plify the discussion, we normalize the processor speeds
to Smax, the speed corresponding toVmax, which results in
S = {S1, ...,1}. We assume thatCi is the worst case execu-
tion time for taskτi in the highest voltage mode. Therefore,
if τi is executed under speedSj , the worst case execution
time for τi becomesCi

Sj
.

With the above system models, our problem can be for-
mulated as follows:

Problem 1 Given systemT = {τ0,τ1, · · · ,τn−1}, τi =
(Ti ,Di ,Ci ,mi ,ki), i = 0, · · · ,(n− 1), scheduleT with EDF
on a variable voltage processor with supply voltage lev-
elsV = {V1, ...,Vmax} and corresponding processor speeds
S = {S1, ...,1} such that all(m,k)-constraints are guaran-
teed and the energy consumption is minimized.

2.2 Mandatory/optional job partitioning

To solve Problem 1, one has to deal with two highly co-
related problems: to determine if a job should be mandatory
or optional, and to schedule these jobs most efficiently. As
shown in [19], both problems are NP-hard problems even
without the energy conservation consideration. It is not
difficult to see that different partition strategies can have
tremendous impacts on the schedulability of the system and
thus the energy consumption.

Mandatory/optional partitioning involves the partition on
the infinite job sequences. To ease the static analysis as well
as to reduce the implementation cost, we adopt the concept
of (m,k)− patternas introduced in [19].

Definition 1 [19] The (m,k)-patternof taskτi , denoted by
Πi , is a binary stringΠi = {πi0πi1...πi(ki−1)} which satis-
fies the following: (i) τi j is a mandatory job ifπi j = 1 and

optional if πi j = 0, and (ii ) ∑ki−1
j=0 πi j = mi .

By repeating the(m,k)-patternΠi , we get a mandatory
job pattern forτi . It is not difficult to see that the(m,k)-
constraint forτi can be satisfied if the mandatory jobs ofτi

are selected accordingly.
Two static(m,k)−patterns are reported in literature. The

first one is proposed by Ramanathanet al. [21] as follows.

πi j =
{

1 if j = bd j×mi
ki
e× ki

mi
c

0 otherwise j = 0,1, · · · ,ki −1
(1)

The (m,k)-pattern defined with formula (1) has some in-
teresting properties which are summarized in the following
lemma.

Lemma 1 Let the mandatory jobs for taskτi with (m,k)
constraint (mi ,ki) be determined by equation (1). Then
(i) for any t > 0, the interval[0, t] has the largest number
of mandatory jobs compared with any other intervals with
the same length|t|; (ii) for any ki consecutive jobs ofτi ,
there are exactlymi mandatory jobs; (iii) for any two subse-
quences of taskτi that containpi(pi > 0) consecutive jobs,
the difference of the numbers of mandatory jobs is no more
than 1.

Proof: Conclusion(i) has been proved in [21] and conclu-
sion (ii ) can be readily derived from Lemma 2 in [21]. We
next prove conclusion (iii ) as follows.

Let Ni(xi ,yi) be the number of mandatory jobs starting
from job xi to job yi . For pi jobs starting from jobai and
bi (ai 6= bi ,ai ,bi ≥ 0), the numbers of mandatory jobs are
denoted asNi(ai ,ai + pi−1) andNi(bi ,bi + pi−1), respec-
tively. When the mandatory jobs are determined according
to equation (1), for the firstqi jobs (from job0 to jobqi−1)
of τi , there arel i(qi) = dmi

ki
qie jobs that are mandatory [21].

Therefore,

Ni(ai ,ai + pi −1) = l i(ai + pi)− l i(ai +1)

= dmi

ki
(ai + pi)e−dmi

ki
(ai +1)e,

and similarly,

Ni(bi ,bi + pi −1) = l i(bi + pi)− l i(bi +1)

= dmi

ki
(bi + pi)e−dmi

ki
(bi +1)e.

AssumeNi(ai ,ai + pi −1)≥ Ni(bi ,bi + pi −1), then

| Ni(ai ,ai + pi −1)−Ni(bi ,bi + pi −1) |
= dmi

ki
(ai + pi)e−dmi

ki
(ai +1)e

− dmi

ki
(bi + pi)e+ dmi

ki
(bi +1)e.
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Figure 1. Examples of mandatory jobs based on R-patterns, E-patterns, and ER-patterns.

Sincedx1+x2e≤ dx1e+dx2e anddx1+x2e≥ dx1e+bx2c
for anyx1,x2 ∈ R, it follows that

dmi

ki
(ai + pi)e ≤ dmi

ki
(ai +1)e+ dmi

ki
(pi −1)e,

and

dmi

ki
(bi + pi)e ≥ dmi

ki
(bi +1)e+ bmi

ki
(pi −1)c.

Therefore, we have

| Ni(ai ,ai + pi −1)−Ni(bi ,bi + pi −1) |
≤ d(pi −1)

mi

ki
e−b(pi −1)

mi

ki
c

≤ 1.

If Ni(ai ,ai + pi −1) < Ni(bi ,bi + pi −1), we can similarly
prove that,

|Ni(ai ,ai + pi −1)−Ni(bi ,bi + pi −1)| ≤ 1.

2

Lemma 1 implies that, with formula (1), a minimal set
of mandatory jobs are determined. Moreover, according to
Lemma 1, formula (1) helps to spread out the mandatory
jobs evenlyin each task along the time. We therefore call
this mandatory job pattern asthe evenly distributed pattern,
or simplyE-pattern.

The second partition strategy was proposed by Korenet
al. [10]. According to this scheme, a jobτi j , i.e., the jth job
of taskτi , is determined to be mandatory if

πi j =
{

1 0≤ j mod ki < mi

0 otherwise j = 0,1, · · · ,ki −1
(2)

We borrow the initial terminology of this strategy and refer
this mandatory job pattern asthe deeply-red patternor R-
pattern. The mandatory jobs defined using their R-patterns
have the following interesting property.

Lemma 2 LetJr be the mandatory job set selected from all
the jobs inT according to equation (2). IfJr is schedu-
lable, then the mandatory job set selected from any other
(m,k)−pattern is also schedulable.

Even though this property is proved in [19] for fixed-priority
case, it can also be proved under the EDF scheduling pol-
icy [17]. This property is important in guaranteeing the
(m,k)-constraints dynamically, as it ensure that any dy-
namic scheduling approach can guarantee the schedulabil-
ity of the mandatory jobs as long as there are no more than
mi mandatory jobs among anyki consecutive job instances
from taskτi . An immediate conclusion that follows this
lemma is that mandatory jobs determined by E-patterns are
easier to be schedulable than those by R-patterns. Figure 1
shows several examples of mandatory/optional jobs deter-
mined according to their R-patterns and E-patterns (The re-
verse evenly distributed pattern will be introduced later).

2.3 Motivations

Hua et al. [7] adopted a greedy approach to minimize
the energy consumption forunderloadedreal-time systems
running on a dual-voltage mode processor. When a new job
arrives, it is executed at the low voltage level if the corre-
sponding task can tolerate at least one more deadline miss.
Otherwise, this job is to be executed at the high voltage
level. Energy is saved since if the jobs can meet their dead-
lines with low processor speeds, they reduce the necessity
to run jobs at high processor speeds which consumes more
energy. However, this approach cannot always guarantee
the(m,k)-constraints even the task set can meet their dead-
lines with the highest processor speeds,i.e., the system is
underloaded.

Consider a task set of two tasks,i.e., τ1 =
(3,3,2,1,1) and τ2 = (5,5,1.5,1,2). The total utilization
of this task set is14.5

15 and it is schedulable under EDF. For
the dual-voltage mode processor, without loss of general-
ity, we assume the high voltage corresponds to a processor
speed of 1 and the low voltage corresponds to a processor
speed of 0.5. Also, we assume all tasks start at time 0. Fig-
ure 2 shows the task schedule according to this greedy ap-
proach.( The rectangles represent the executions of jobs and
the height of them represent the speeds of the jobs.)

At time t = 0, since taskτ1 has(m,k)-constraint of(1,1)
and thus each job is required to meet its deadline,τ11 is
executed with high processor speed. At timet = 2, when
τ11 finishes its execution, the low processor speed will be
assigned to executeτ21 according to the greedy approach
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Figure 2. The greedy approach in [7] fails
to guarantee the schedulability of an un-
derloaded task set ( τ1 = (3,3,2,1,1); τ2 =
(5,5,1.5,1,2)).

sinceτ2 has the(m,k)-constraint of(1,2) andτ21 is not re-
quired to meet the deadline. According to EDF, only after
τ21 ends att = 5 canτ12 be executed. However, even if it
is executed with high speed, it will still miss the deadline at
time t = 6 and therefore cause a dynamic failure.

The uniform treatment of mandatory and optional jobs
during the scheduling process in this greedy approach is one
of the major contributions to the dynamic failure. In consid-
ering that, we developed an approach [17] based on the dual
priority scheme [5]. The mandatory jobs are pushed into
the mandatory job queues with their priorities promoted to
the high priority band when necessary, while the priorities
of the optional jobs always stay at the low priority band.
This ensures that the execution of optional jobs will not
prevent mandatory jobs from meeting their deadlines and
cause the problems as shown in Figure 2. The feasibility of
the mandatory jobs and thus the(m,k)-guarantee can be en-
sured as long as mandatory jobs according to R-pattern are
schedulable (from Lemma 2). The problem, however, lies in
the conservation of feasibility test using R-pattern,i.e., as-
suming all the mandatory workload are accumulated within
a small interval. The consequence is that many mandatory
job sets are in fact schedulable even though the feasibility
analysis based on R-pattern predicts otherwise.

Recall that E-patterns help to evenly distributed the
mandatory workload and therefore have a better schedula-
bility. One intuitive approach would be the one that stati-
cally assigns all the mandatory jobs according to E-pattern
to the higher priority band. Two problems may exist in this
approach. First, even though the mandatory jobs for each
task are evenly distributed, the overall mandatory work-
load are not necessarily evenly distributed. For example,
as shown in Figure 3(a), the mandatory job set according to
their E-patterns fails to be schedulable, while other manda-
tory job assignments such as that shown in Figure 3(b) can
be well schedulable. Second, since the actual job execution
time can be much less than its worst case execution time,
an optional job can meet its deadline even running at a very
low processor speed. This makes running other mandatory
jobs at higher processor speed unnecessary and energy in-

efficient. Therefore it is desirable that the statically defined
(m,k)-patterns be variable dynamically. The problem is,
however, how to update the pattern dynamically while still
guaranteeing the schedulability and(m,k)-constraints. In
what follows, we present a hybrid approach to address this
problem.

3 A hybrid mandatory/optional partition ap-
proach

The dual goals of(m,k)-guarantee and accommodation
of dynamic variances call for an integrated static/dynamic
approach to solve this problem. During the static phase, it
is necessary to perform the analysis based on a prior de-
fined specifications, such as the predefined(m,k)-patterns.
It is important to select the appropriate specifications based
on which the static analysis can be conducted and the guar-
antee criteria can be set up correspondingly. Otherwise,
the static analysis may lead to poor feasibility predications
and/or high computation and implementation cost.

3.1 The optimality of E-pattern

We perform the static analysis based on the mandatory
job sets determined by their E-patterns. Elegant and ana-
lytical feasibility analysis formula can be derived (as shown
in [17]) thanks to the regularity of E-patterns. Moreover,
to further study the feasibility of mandatory jobs based on
E-patterns, we first introduce the following lemma.

Lemma 3 Let w be the number of mandatory jobs forτi

between[0, t] according to its E-pattern. For any other
(m,k)-pattern, we can always find at ′(t ′ ≥ 0) such that the
number of mandatory jobs according to the(m,k)-pattern
within [t ′, t ′+ t] is no less thanw.

Proof: Use Contradiction. LetR andR ′ be the manda-
tory job sets determined by E-pattern and any other(m,k)-
pattern, respectively. Without loss of generality, we assume
that t = pTi , p∈ Z. Consider the interval[0, pkiTi ]. To sat-
isfy the(m,k)−constraints, there are at leastp×mi manda-
tory jobs in this interval for bothR andR ′. Specifically,
for R , there are exactlyp×mi mandatory jobs in this inter-
val from Lemma 1. Now think about the intervals[0, pTi ],
[pTi ,(p+ 1)Ti ], ..., [p(ki −1)Ti , pkiTi ]. From Lemma 1, in
R , the number of mandatory jobs within interval[0, pTi ],
i.e., w, is the largest, and the difference between the num-
bers of mandatory jobs within any two of these intervals is
no more than 1. If forR ′, we assume that the number of
mandatory jobs in each interval is strictly less thanw, then
the overall number of mandatory jobs within[0, pkiTi ] must
be less thanp×mi . This contradicts the fact thatR′ is de-
termined according to a valid(m,k)−pattern. 2



Based on Lemma 3, we have the following important
theorem.

Theorem 1 Let T = {τ0,τ1, ...,τn−1}, where
τi = {Ti ,Di ,Ci ,mi ,ki}, and kiTi , i = 0,1, ...,n − 1 are
co-prime. LetR and R ′ be the mandatory job set con-
structed fromT according to theE-patterns and any other
(m,k)-patterns, respectively. Then ifR ′ is schedulable,
thenR is schedulable.

Proof: Use contradiction. SupposeR ′ is schedulable and
R is not. Let us assume some mandatory job inR first
misses its deadline att. From [17], we know thatt must
be located in the first busy interval. Then we have the total
mandatory work demand according to E-patterns between
[0, t], denoted as∑i Wi(0, t), is larger thant, i.e, ∑i Wi(0, t) >
t.

On the other hand, for any other arbitrary pattern, from
Lemma 3, we can always find an interval[t1, t2] with
t2− t1 = t such that the corresponding work demand for
τi , denoted asW′

i (t1, t1+ t), is no less thanWi(0, t), i.e.

W′
i (t1, t1+ t)≥Wi(0, t).

Since the mandatory jobs are determined by repeating the
(m,k)−patterns, we can therefore observe the workload
from τi within interval[t1, t2] periodically repeated with pe-
riod kiTi . If kiTi , i = 0,1, ...,n− 1 are co-prime, according
to the General Chinese Remainder Theorem [11], all these
“periodic events” will eventually start at one single time
point t ′. Since∑i W

′
i (t

′, t ′+ t) ≥ ∑Wi(0, t) > t, there must
be a deadline miss beforet ′+ t because the total mandatory
work demand between[t ′, t ′+ t] exceedst. This contradicts
thatR ′ is schedulable. 2

Theorem 1 shows that the E-pattern is the optimal
(m,k)−pattern whenkiTi , i = 0,1, ...,n− 1 are co-prime.
From the proof we can see that even ifkiTi , i = 0,1, ...,n−1
are slightly less than strictly co-prime, E-patterns still ex-
hibit a relative good schedulability.

3.2 Reverse-Evenly-Distributed pattern

Using E-patterns to determine the mandatory jobs may
have some problems. First, the schedulability of the manda-
tory job set may degrade severely if a large greatest common
divisor (GCD) exists forkiTi , i = 0,1, ...,(n−1). As implied
in Theorem 1, an extreme case would be

k0T0 = k1T1 = ... = kn−1Tn−1,

and m0 = m1 = ... = mn−1. How to find a better(m,k)-
pattern in such scenarios is beyond the scope of this pa-
per and will be our future study. Second, according to
E-patterns, the first job is always mandatory. As the suc-
cessful completion of optional jobs at the lower processor
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Figure 3. (a) The task set ( τ1 = (4,4,4,2,4);
τ2 = (8,8,6,1,2)) is NOT schedulable with E-
Pattern; (b) the same task set is schedulable
with other (m,k)-pattern.

speed may potentially alleviate the necessity to run manda-
tory jobs at higher speed, we modified the E-pattern as fol-
lows.

πi j =

{
0 if j = bd j×(ki−mi)

ki
e× ki

(ki−mi)
c

1 otherwise j = 0,1, · · · ,ki −1
(3)

The (m,k)-pattern determined by formula (3) re-
verses the E-pattern horizontally. We therefore call this
(m,k)−pattern thereverse evenly distributed pattern, or
simply ER-pattern. Examples of E-pattern and its corre-
spondingER-pattern are shown in Figure 1. As shown in
Figure 1, theER-pattern maintains some of the characteris-
tics of the E-pattern as stated in Lemma 1 ( conclusion(ii)
and(iii ) ). It also has some interesting properties that are
summarized in the following lemma.

Lemma 4 Let T = {τ0,τ1, ...,τn−1}, where τi =
{Ti ,Di ,Ci ,mi ,ki}, andi = 0,1, ...,n−1. Then

• The number of optional jobs according to theER-
patterns in the interval[0, t] is no less than that in any
other intervals with the same length|t|.

• If T is schedulable under E-pattern, it is also schedu-
lable underER-pattern.

Proof:

• The first property follows directly from the first con-
clusion in Lemma 1 that the number of mandatory jobs
within [0, t] determined by E-patterns is no less than
that in any other intervals with the same length.

• To prove the second property, we use contradiction.
Assume that a job from the mandatory job set ac-
cording toER-patterns misses its deadline att2. As-
sume the starting point of the corresponding busy in-
terval ist1(t1 < t2). Then we have the total work de-
mand of the mandatory jobs between[t1, t2] (denoted



by ∑i W
′(t1, t2)) is greater than(t2− t1). Let t = t2− t1.

From Lemma 1, it is ready to conclude that the manda-
tory work demand byE-pattern,i.e., ∑i W(0, t) is no
less than∑i W

′(t1, t2). Therefore,

∑
i

W(0, t)≥∑
i

W′(0, t) > t = t2− t1

which means that a mandatory job according to E-
pattern must miss its deadline beforet. This contra-
dicts to thatT is schedulable under E-pattern.

2

3.3 Dynamic(m,k)-pattern adjustment

The static analysis based on the predetermined(m,k)-
patterns helps to ensure the feasibility of the mandatory job
sets and thus guarantee the QoS levels. However, the static
analysis is usually performed based on the worst case sce-
nario and is rather pessimistic. Therefore, judiciously ex-
ploiting the irregularities and changes, inevitable in the run-
time environment, dynamically can be extremely beneficial.
One specific problem in this regard is that, when an optional
job met its deadline, how it can help to demote other manda-
tory jobs to optional so that they can be executed with low
processor speed or even be dropped without execution to
save energy.

In our dynamic approach, the mandatory jobs are se-
lected according to theirER-patterns. Whenever an optional
job meets its deadline, we will restart its correspondingER-
pattern from its next job. This strategy can be illustrated
with Figure 4. Figure 4(a) shows the originalER-pattern
of a task set (τ1 = (2,2,1,3,7); τ2 = (4,4,2,1,2)) and its
corresponding static schedule (the height of the rectangles
represents the corresponding job speed.). Assuming that the
fourth job (optional) of taskτ1 and the second job (optional)
of taskτ2 met their deadlines with low speed, we will restart
theER-patterns of the two tasks from the next job, as shown
in Figure 4(b). Note that, by restarting theER-pattern, the
need to execute the mandatory jobs at higher speeds is de-
layed. In addition, more optional jobs are “inserted” before
the mandatory jobs which may offer more opportunities to
further delay the executions of the mandatory jobs of other
tasks. Significant amount of energy can be saved since the
number of jobs that need to be run at a high processor speed
is greatly reduced.

To guarantee that the(m,k)−constraints can still be sat-
isfied after restarting theER-pattern as stated above, we
have the following lemma.

Lemma 5 Let L be an infinite binary string by repeating
theER-pattern, and let theith character,i.e., j i = 0. Then
if we changej i from 0 to 1, and restart theER-pattern from
the(i +1)th character, the(m,k)−constraint is satisfied.

n1 “1”s

1001010101 …… … …

n1 “1”s

0101000101 …… … …

0

1

n2“1”s

n'2“1”s

( a )

( b )

j
i

j
i

……

……

Figure 5. (a)The original mandatory jobs ac-
cording to the ER-pattern of task τi ; (b) The
mandatory jobs of τi after restarting the ER

pattern.

Proof: Without loss of generality, assume the originalER-
pattern is like that in Figure 5(a), and the(m,k)-pattern after
the change is shown in Figure 5(b). It is not difficult to see
that all the windows that do not containj i can meet their
(m,k)−requirements. We then only need to consider the
windows that containj i .

Consider an arbitrary window that containsj i . Letn1 and
n2 denote the number of mandatory jobs before and afterj i
respectively, according to the originalER-pattern as shown
in Figure 5(a). Then we haven1 +n2 ≥m. After changing
j i from 0 to 1,n1 remains the same butn2 may be different.
We usen′2 to denote the new value. From Lemma 4, we
know that0≤ (n2−n′2) ≤ 1. Therefore, by addingn1 and
n′2 and countingj i (which changes from 0 to 1), there are
at least the same number of mandatory jobs as that in the
original window. 2

4 DVS scheduling for the task set with(m,k)-
constraints

After presenting our mandatory/optional partitioning
strategy, we are now ready to introduce our scheduling
approaches to reduce the energy consumption for systems
with (m,k)-constraints.

Our new dynamic approach consists of two phases: an
off-line phase followed by an on-line phase. In our ap-
proach, one processor speed is associated with each task
and is determined during the off-line phase. Specifically,
if processor speedSj is assigned to taskτi , then the worst
case execution time for the mandatory jobs fromτi becomes
Ci/Sj . We will then useCi/Sj as the worst case execution
time in the necessary and sufficient feasibility condition for
tasks with E-patterns, as introduced in [17]. In order to
minimize the energy consumption on the statically defined
E-patterns, an exhaustive search approach ( using branch
and bound ) is used to find the optimal processor speed for
each task. The worst case response time for each task un-
der itsER-pattern is computed using the method similar to
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Figure 4. (a) Executing only the mandatory jobs of task set ( τ1 = (2,2,1,3,7); τ2 = (4,4,2,1,2)) according
to their ER-patterns; (b) Dynamically restarting the ER-Pattern at t = 8 for τ1 and t = 4 for τ2.

that in [16] for the on-line use. Note that, according to The-
orem 4, if the task set is schedulable withE-patterns, it is
also schedulable with the correspondingER-patterns.

During the on-line phase, we adopt the dual-priority
scheduling [5] scheme on the mandatory jobs. Algorithm 1
presents the salient part of our on-line scheduling algorithm.

Algorithm 1 The online phase of the dynamic approach.
(Algorithm MKER)

1: if HMQ is not empty then
2: Run jobs inHMQ according to EDF;
3: else ifOPQ is not emptythen
4: Jo =jobs inOPQ;
5: Select and runJi ∈ Jo that have the maximum energy-

saving potential;
6: if Ji is finished by its deadlinethen
7: Restart theER-pattern for taskτi from its next job;
8: end if
9: if Jo = /0 then

10: Run jobs inLMQ;
11: end if
12: else
13: Run jobs inLMQ;
14: end if

As shown in Algorithm 1, three job ready queues are
maintained: the high mandatory queue (HMQ), the optional
queue (OPQ) and the low mandatory queue (LMQ). Upon
arrival, a job,i.e., τip ∈ τi is determined to be a mandatory
or optional job based on its currentER-pattern. The op-
tional jobs are directly put in the OPQ, and the mandatory
jobs will be first put in the LMQ, and later promoted to the
HMQ after a fixed time offset, calledthe promotion time
and represented asYi , which is computed by

Yi = Di −Ri , (4)

whereDi is the relative deadline ofτi andRi is the worst
case response time ofτi which is computed during the off-
line phase as stated above.

The jobs in the HMQ have the highest priority level
among the three ready queues, and will be executed fol-

lowing the EDF scheme with the corresponding speeds de-
termined during the off-line phase. The jobs in the LMQ,
on the other hand, always run at the lowest possible speed.
Note that, while the jobs in the OPQ have a higher priority
level than those in the LMQ, an optional job is executed,
non-preemptively by any other optional job, only when it
could be finished by the earliest promotion time of the near-
est mandatory job in the future. This helps to avoid the ex-
ecution of optional jobs that may miss their deadlines later,
which has no benefit to either energy saving or improve-
ment of QoS. The jobs in the LMQ are executed according
to EDF only when the HMQ is empty and no optional jobs
are qualified to execute.

It is not difficult to see that there may be more than one
optional jobs available in the OPQ, and selecting which one
to run may have profound impacts on future job executions.
While the jobs in the OPQ can be simply run at the low-
est speed without causing any dynamic failure, we use a
more delicate heuristic to achieve better energy saving per-
formance. Specifically, when the HMQ is empty, we first
compute the speed̂Si that is required to finish each optional
job in the OPQ by the promotion time of the next mandatory
job. Then those optional jobs requiring speed less than their
predetermined speedSi will be chosen as candidate jobs.
After that, the energy gain∆Ei of each candidate jobJi is
computed, which is defined as∆Ei = E(Si)- E(Ŝi), where
E(Si) is the energy consumption ofJi under its predeter-
mined speed andE(Ŝi) is the energy consumption ofJi un-
der its required speed. The candidate job that has the largest
energy gain∆Ei will be chosen to be executed.

The energy efficiency of our dynamic approach lies
in the fact that it adjusts the mandatory/optional partition
adaptively with the run-time conditions. It is particularly
efficient considering the fact that the actual execution time
of a task can be much smaller than its worst case execu-
tion time. Moreover, during the executions of jobs in the
HMQ, the dynamic resource reclaiming techniques such as
the ones in [2, 9] can be exploited to further reduce the en-
ergy. To ensure the effectiveness and efficiency of the dy-
namic approach, we have the following theorem.

Theorem 2 Algorithm 1, with complexity ofO(n), can en-



Comparison of Energy Consumption

0

10

20

30

40

50

60

70

80

90

100

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

(M,K) Utilization

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

 (
 %

 )


MK_E-SD MK_E{R}

Figure 6. The average total energy consump-
tion by MKE−SD and MKER.

sure the(m,k)-requirements forT if T is schedulable under
theE-patterns.

Proof: The details of the proof are presented in [17].2

5 Experimental results

In this section, we compare our approach with other pre-
vious related approaches with experiments. Four different
approaches are studied. In the first approach, the task sets
are statically partitioned withE-patterns, and the manda-
tory jobs are executed with the highest processor speed. We
refer this approach as (MKE) and use its results as the ref-
erence results. The second approach (MKE−SD) partitions
the mandatory/optional jobs based onE-patterns first, and
the processor speeds of the mandatory jobs for each task
are slowed down based on the feasibility tests in [17]. The
third approach (MKR) is the dynamic approach proposed
in [17], which is based on theR-patterns. The fourth ap-
proach (MKER) is the hybrid approach presented in Sec-
tion 4. The processor model used in the experiments has
five discrete voltage levels with normalized speed as (0.2,
0.4, 0.6, 0.8, 1.0). We assume that the processor speed is
proportional to the supply voltage and the processor power
consumption is a cubic function of the processor speed.

Two separate sets of experiments were conducted. In
the first set of experiments, we studied the energy-saving
performance by our hybrid approach,i.e., MKER, com-
pared with the one that uses only the static approach,i.e.,
MKE−SD. We randomly generated the periodic task sets
with the periods randomly chosen in the range of[10, 50]
assuming the deadlines equal to their periods. The worst
case execution time (WCET) of a task at the high volt-
age mode was set to be uniformly distributed from 1 to
its deadline, and the actual execution time of a job was
randomly picked from [0.4WCET, WCET]. Themi and
ki for the (m,k)-constraints were also randomly generated
such thatki is uniformly distributed between 3 to 10, and
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Figure 7. The average number of effective
jobs by MKE−SD and MKER.

2≤ mi < ki . To investigate the energy performance of dif-
ferent approaches under different workload, we divided the
total (m,k)-utilization, i.e.,∑i

miCi
kiTi

, into intervals of length
0.1. To reduce the statistical errors, we require that each
interval contain at least 20 schedulable task sets , or at
least 5000 task sets within each interval have been gen-
erated. The energy consumption for each approach was
normalized to that byMKE, and the results are shown in
Figure 6(a). To evaluate the QoS that each approach can
provide, we also collected the total number of jobs within
LCM(kiTi), i = 0, ...,n− 1, (LCM refers to the least com-
mon multiple) that met their deadlines (we call these jobs
as theeffective jobs) by each approach. These numbers are
normalized to that byMKE and the results are shown in Fig-
ure 6(b).

From Figure 6(a), one can immediately see that by
adopting a static/dynamic hybrid approach,MKER can
achieve up to 55% energy-saving performance improve-
ment, compared withMKE−SD which uses the static ap-
proach alone. It is particularly interesting to notice that
MKER can achieve more energy savings while at the same
time provide a better QoS level (up to 40% more effective
jobs) thanMKE−SD, as shown in Figure 6(b). This is be-
cause, by running optional jobs at low processor speed and
dynamically varying the(m,k)-pattern,MKER saves the en-
ergy that is needed to run mandatory jobs at high proces-
sor speeds which are energy consuming. Therefore, more
energy can be saved even though more effective jobs are
executed.

We next study the(m,k)-guarantee capability ofMKER

and MKR. In this set of experiments, we randomly gen-
erated periodic task sets such that within each(m,k) uti-
lization interval no less than 100 task sets were schedula-
ble byMKER or at least 5000 different task sets have been
generated for each interval. The results are listed in Ta-
ble 1. As shown in Table 1, when the(m,k)-utilization is
low (less than 0.3), the(m,k)-guarantee capability between
MKER andMKR are very close. However, when the(m,k)-



utilization is relatively high (larger than 0.3),MKER exhibits
a much stronger(m,k)-guarantee capability thanMKR. For
example, when the(m,k)-utilization is over 0.8, the(m,k)-
requirements and thus the QoS levels for more than 50% of
the task sets that can be guaranteed withMKER cannot be
ensured withMKR.

Overall, the experimental results show that our hybrid
approach based on theER-pattern helps to significantly im-
prove not only the energy saving performance and QoS lev-
els of a scheduler, but also the range of the real-time systems
with (m,k)-firm guarantee.

(m,k) Feasible Task Sets
Util MK

ER MKR

0.0-0.1 100 100
0.1-0.2 100 100
0.2-0.3 100 100
0.3-0.4 100 97
0.4-0.5 100 85
0.5-0.6 100 81
0.6-0.7 100 70
0.7-0.8 100 56
0.8-0.9 100 47
0.9-1.0 100 30

Table 1. The average numbers of feasible task
sets by MKER and MKR

6 Conclusions

Energy consumption and QoS guarantee are two of the
most critical factors for the successful design of pervasive
real-time computing platforms. In this paper, we presented
a hybrid DVS approach to reduce the energy consumption
while guaranteeing the QoS requirement in terms of(m,k)-
constraints. Our approach ensures the(m,k)-firm guarantee
by conducting static analysis based on the evenly distributed
(m,k)-pattern instead of the deeply-red pattern as suggested
in the previous work. To accommodate the dynamic nature
of run-time environment, a dynamic strategy is proposed
to vary the(m,k)-pattern and a run-time scheduler is con-
structed based on the dual-priority scheme to dynamically
determine if a job should be mandatory or optional as well
as its corresponding processor speed. As shown in our ex-
periments, with excellent adaptivity to the run-time condi-
tions, the proposed approach outperforms previous research
significantly in terms of energy savings, QoS levels, as well
as the range of real-systems with(m,k)-firm guarantee.
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