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Abstract— Dynamic Voltage Scaling (DVS) is an effective technique
for reducing energy consumption in real-time embedded systems. On-
line DVS can exploit the run-time variations in task execution to further
reduce energy. We present an on-line scheduling algorithm called low
power Limited Demand Analysis with Transition overhead (lpLDAT) for
hard real-time systems that execute periodic, fixed-priority tasks. lpLDAT
can reduce the energy consumption by as much as 40% when compared
to previous algorithms in its class, and it explicitly accounts for voltage
transition time and energy overhead, which previous methods do not.

I. INTRODUCTION

With the pervasiveness of embedded and portable computing
devices, such as cell-phones, PDAs and sensor/actuator networks,
decreasing the power consumption and increasing system lifetime
can have an enormous impact on system usability, cost and safety.
Dynamic Voltage Scaling (DVS) is an effective technique to reduce
power/energy consumption in such systems. A processor equipped
with DVS can vary its operation voltage and frequency during
runtime to take advantage of the quadratic relationship between
power consumption and supply voltage of CMOS technology. When
scaling, care must be taken so the delay incurred from scaling the
supply voltage does not violate timing constraints. Several major
IC producers have designed their modern processors with DVS
capability, including AMD’s Mobile Athlon [1], Intel’s XScale [2]
and Transmeta’s Crusoe processor [3].

Real-time scheduling plays a key role in the low power design for
real-time embedded systems not only because timing issues are criti-
cal but also because low power design is essentially a resource usage
optimization problem for such systems. There has been substantial
research for scheduling real-time applications on DVS processors,
e.g., [4], [5], [6], [7], [8], [9]. These approaches differ in many
aspects, such as the scheduling algorithms being on-line/off-line,
handling hard/soft deadline requirements, assuming fixed/dynamic
priority assignment, allowing intra-task/inter-task voltage transitions,
and single/multiple processor systems.

In this paper, we focus on reducing the energy consumption for
fixed-priority periodic real-time tasks executing on a single DVS
processor. Many real-time embedded applications adopt a fixed-
priority scheme, such as the Rate Monotonic (RM), due to its high
predictability, low overhead, and ease in the implementation [10].
Specifically, we study on-line voltage scheduling techniques, while
taking into consideration transition time and energy overhead. Current
research shows that time overhead can be anywhere from tens of
microseconds ([1], [11]) to tens of milliseconds ([12]). Because real-
time systems exist that have some task deadlines of 1 or 2 millisec-
onds [13] it is not always possible to merge the time overhead into
the worst case execution time of the tasks. Therefore, researchers are
developing algorithms to handle overheads of an arbitrary size [14],
[15]. While an off-line approach can fully leverage known system
specifications, using off-line techniques alone may lead to a large
waste of energy because, to guarantee timing constraints, one must
always consider the worst case. However, the average workload of an
application may vary largely from the worst case. Due to the dynamic

and reactive nature of embedded systems, an on-line approach, which
makes decisions during run time, is more flexible and adaptive.

Some previous research has been conducted regarding this prob-
lem, e.g., [4], [5], [6]. Pillai and Shin proposed the ccRM algorithm,
which first computes off-line the maximum speed necessary to meet
all task deadlines based on the worst-case response time analysis.
On-line, the processor speed is scaled down when task instances
complete early [6]. Although the ccRM approach guarantees job
deadlines, it is not aggressive enough to fully exploit slack in the
system when tasks finish closer to their best case execution times.
In [4], Gruian presents a method of off-line task stretching coupled
with on-line slack distribution. In addition, the paper presents an intra-
task voltage scheduling method that computes the optimal speed for
each execution cycle of the active task. Similar to ccRM, Gruian’s
off-line scheme is conservative. The intra-task method is not useful
in practice because it may require the speed to change on a cycle by
cycle basis. When considering transition overhead, this method is not
feasible. Kim in [5] developed a method called lpWDA that uses a
greedy, on-line algorithm to estimate the amount of slack available
and then apply it to the current job. It is unique in that it takes slack
from lower priority tasks, as opposed to the methods presented in [6]
and [4] that wait for slack to filter down from higher priority tasks. A
serious drawback is that it often too aggressive, resulting in wasted
energy.

The previous methods do not consider transition overhead. A
number of researchers have studied voltage scheduling when tran-
sition overhead is not negligible. Mochocki et al. present a method
that accounts for transition overhead while scheduling a set of jobs
using the Earliest Deadline First (EDF) priority scheme off-line
([14]). In [15], Saewong and Rajkumar present an algorithm to
schedule fixed priority jobs sets with a very large transition time
overhead off-line. AbouGhazaleh et al. propose an intra-task voltage
scheduling method that uses compiler support and specially designed
code to account for transition overhead ([16]). Hsu and Kremer
also present a compiler driven DVS algorithm, but hard deadlines
are not guaranteed [17]. Zhang and Chakrabarty consider all three
limitations when scheduling voltage levels and checkpoint times for
fault-tolerant hard real-time systems with periodic tasks ([18]). They
assume that each task can meet all deadlines when running at the
smallest processor speed if no faults are present. This assumption
eliminates the benefit of DVS for the a fault free environment.

In this paper, we present our algorithm, called low power Lim-
ited Demand Analysis with Transition overhead (lpLDAT). Through
experimentation we demonstrate that combining what we call the
average case limiter with work demand analysis results in an energy
reduction of more than 40% when compared to previous methods. In
addition, our algorithm takes into account both the time and energy
overhead associated with a voltage transition.

The remainder of this paper is organized as follows. Section II
summarizes the background material, Section III describes our algo-
rithm, Section IV presents the experimental results and Section V
concludes the paper.



II. PRELIMINARIES

In this section, we first specify the type of system under consider-
ation and introduce the necessary notation. We then briefly review
lpWDA since our new algorithm is built on top of lpWDA. A
motivational example is given to show why lpWDA is not adequate
in harvesting maximally the benefit provided by DVS.

A. System Model

We consider real-time applications consisting of a set of n periodic
tasks, T = {T1, T2, · · · , Tn}. Task Ti is said to have a higher
priority than task Tj if i < j. Each task, Ti, is described by its worst
case execution cycles, wci, average case execution cycles, aci, and
best case execution cycles, bci, with wci ≥ aci ≥ bci. In addition,
each task has a period, pi, and relative deadline, di, with di ≤ pi.
The utilization of a task set is the sum of each task utilization over
all tasks in the system. That is, the worst-case utilization can be
computed as

Uwc =

n∑

i=1

wci

pi

(1)

The average-case utilization, Uac, and the best-case utilization, Ubc,
can be computed similarly. Each task is invoked periodically, and we
refer to the k-th invocation of task Ti as job Jk

i . Each job is described
by a release time, rk

i , deadline, dk
i , the number of cycles that have

already been executed, exk
i , and actual total execution cycles, ck

i ,
with 0 ≤ exk

i ≤ ck
i and bci ≤ ck

i ≤ wci. During run-time, we refer
to the latest job of each task that has not completed execution as the
current job for that task, and we index that job with cur, e.g., Jcur

i

is the current job for task Ti. The estimated work remaining for job
Jcur

i , wcur
i , is equal to wci − excur

i . A scheduling point of Ji is
a time instant that is equal to either the release time of any higher
priority job in [ri, di] or di itself.

The DVS processor used in our system can operate at a finite set
of supply voltage levels V = {V1, ..., Vmax}, each with an associated
speed. To simplify the discussion, we normalize the processor speeds
by Smax, the speed corresponding to Vmax, giving S = {S1, ..., 1}.
Changing from one voltage level to another takes a fixed amount
of time, referred to as the transition interval (denoted as ∆t), and
consumes a variable amount of transition energy, denoted as ∆E.
This is the same as the model used in [14].

B. Low-Power Work Demand Analysis (lpWDA)

To help put our contributions in perspective, we briefly review
the on-line DVS algorithm called lpWDA, given in Algorithms 1
and 2 (for more details on lpWDA, see [5]). For now, ignore lines
marked by ***. Algorithm lpWDA works in the following manner.
First, the system is initialized by setting the execution cycles and
deadlines of each task and by setting the initial values of H , where
Hi is an over estimate of the higher priority cycles that must be
executed before dcur

i (Lines 1–4). Next, on each preemption or
completion, the remaining cycles of the preempted or completed job
(wcur

α ) and the estimates of higher priority cycles are updated by the
updateLoadInfo algorithm. Finally, when a job Jcur

α is scheduled
for execution, the processor speed is scaled according to the amount
of slack available (see Lines 8–10). Essentially, lpWDA takes all
the slack that it can steal from lower priority tasks in linear time
and applies that slack to the currently executing job. Theorem 1
guarantees that all task deadlines are met when using lpWDA. For
the proof of Theorem 1, we refer the reader to [5].

Theorem 1: The schedule produced by lpWDA will guarantee all
system deadlines, and has a computational complexity of O(n) per
scheduling point, where n is the number of tasks in the system.

Algorithm 1 lpWDA
1: if on system start then
2: for Each Task Ti ∈ T do
3: dcur

i :=di; wcur
i :=wci;

4: Hi:=
∑i−1

j=0
(d

dcur
i

pj
e × wcj);

5: *** Ai:=
∑i−1

j=0
(d

dcur
i

pj
e × acj);

6: if finish/preempt Tα then updateLoadInfo(T ,α);
7: if on execute Tα then
8: Identify Tβ|β ≤ α AND dcur

β is minimized;
9: Compute slackα based on workload with respect to Tβ;

10: fclk := wcur
α

slackα+wcur
α

× fmax;

11: *** flimit := max{
Ai+acα−excur

α

dcur
i

−t
| i = 1..n};

12: *** fclk := max{fclk, flimit};
13: Set the voltage according to fclk;

Algorithm 2 updateLoadInfo(T ,α)
1: input: Tasks T and the preempted/completed task index α.
2: output: Workloads are updated to reflect current execution

information.
3: if Tα is completed then
4: dcur

α := dcur
α + pα;

5: Hα := Hα +
∑α−1

j=0
(d

dcur
i

pj
e − d

dcur
i −pα

pj
e) × wcj ;

6: *** Aα := Aα +
∑α−1

j=0
(d

dcur
i

pj
e − d

dcur
i −pα

pj
e) × acj ;

7: for each task Ti ∈ T with i > α do
8: Hi := Hi − (wcα − exk

α);
9: *** Ai := Ai − max{0, acα − exk

α};
10: wcur

α := wcα; // reset for next job of Tα

11: else
12: wcur

α := wcur
α − wdone;

13: for each task Ti ∈ T with i > α do
14: Hi := Hi − wdone;
15: *** Ai := Ai − wdone;

C. Motivational Example

Although lpWDA is effective in estimating the amount of slack
available to the currently executing job, the simple heuristic that uses
all available slack as soon as it is identified is too aggressive. Observe
the two-task system in Figure 1, where the task parameters are given
at the top of the figure. Figure 1(a) shows the task execution schedule
when tasks always take the worst-case execution cycles and lpWDA
is used. Because lpWDA is so aggressive at minimizing the speed of
J1

1 , J1
2 is forced to execute at 1.0. This situation is repeated for all

instances of T1 and T2, resulting in a total energy consumption of
4.25 (with Power = speed3). However, the schedule in Figure 1(b)
also meets all deadlines and only consumes 2.47 units of energy. The
situation in which lpWDA is effective is when tasks end much earlier
than the worst case. For example, if every task ends exactly after the
average case cycles, lpWDA follows the schedule of Figure 1(c) and
consumes only 0.806 units of energy.

The difficulty with on-line scheduling is that we do not have
a priori knowledge of the execution cycles of the upcoming jobs.
However, quite often we do know both the average and worst-case
execution cycles. Exploiting this added knowledge can help achieve
more energy efficient schedules. In the next section, we present
an algorithm which uses the slack identifying feature of lpWDA
to reduce energy consumption when jobs finish early, but is also
conservative enough to prevent the large energy spikes of lpWDA
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Fig. 1. An example task set consisting of two tasks (a) scheduled by lpWDA,
(b) scheduled to minimize energy consumption in the worst case, and (c)
scheduled by lpWDA when each job only requires the average case execution
cycles.

when jobs execute near their worst-case cycles. Additionally, we
account for time and energy voltage transition overhead during the
scheduling process to ensure that all job deadlines are met.

III. OUR APPROACH

In this section, we first introduce the main idea behind our
approach to tapering the aggressiveness of lpWDA and discuss the
modifications to lpWDA. We then describe the method used to
account for transition overhead and present our overall algorithm
(lpLDAT).

A. Average-Case Limiter

As we have shown in Figure 1, lpWDA is effective at exploiting
the slack of lower priority jobs, but suffers later when near worst
case execution cycles are required. An effective algorithm would use
just enough slack given the stochastic information available about the
task set under consideration.

Limiting the slack used by higher priority tasks in lpWDA requires
a careful tradeoff between being aggressive and being conservative.
If one could compute an efficient speed based on the average-case
workload, this speed could be used as a limiter. By limiter we mean
that, if this speed is higher than the speed predicted by lpWDA, we
know that lpWDA is being too aggressive in stealing slack from lower
priority jobs and the limiting speed should be used.

In off-line voltage scheduling algorithms, an often used concept is
the minimum constant speed that can meet all job deadlines (e.g., [6],
[7], [9]). Due to the convexity of the power function, it is not
generally energy efficient for the processor to go below this speed
and switch to a higher speed later on, unless there is reason to expect
newly available slack ([6]). Thus the minimum constant speed can
serve as a proper limiter. To find the minimum constant speed for
a periodic task system where every job of a task assumes the same
execution cycles, one only needs to examine the case when all tasks
are released simultaneously. This time instant is known as the worst
case phasing of the task set because it represents the time that will
require the maximum speed to meet all deadlines.

SMC =
n

max
i=1

min
ts∈TSi

Speed(i, ts) (2)

where TSi is the set of scheduling points for J1
i under the worst-case

phasing. The required speed to complete Ti by ts is given in (3).

Speed(i, ts) =

∑i

j=1
d ts

pj
e × wcj

ts
(3)

Our idea is to perform a similar operation as above on-line.
Directly applying the formulae in (2) and (3) is not desirable due
to its pessimism and time complexity. To overcome unnecessary
pessimism, we recompute the minimum constant speed for each
job whenever it starts/resumes execution. This allows the actual
execution cycles of jobs executed earlier to be considered when
appropriate. This also removes the pessimistic assumption of the
worst-case phasing. Furthermore, instead of using the worst-case
execution cycles, we use the average-case execution cycles. Finally,
we opt to use the deadline dcur

i of job Jcur
i rather than checking

every scheduling point for the minimum speed. This reduces the time
needed to calculate the limiter.

The necessary changes to lpWDA are marked by *** in Algo-
rithms 1 and 2. We refer to this addition to lpWDA as the average
case limiter, or just limiter for short. In Algorithm 1, we add Line 5
which initializes the average number of cycles that must be completed
before each job deadline. Lines 6, 9 and 15 in Algorithm 2 ensure
that the current phasing and execution information is stored. Line 11
in Algorithm 1 calculates the speed required by each job to meet
its deadline on average. Finally, Line 12 of Algorithm 1 selects
the maximum of the speeds requested by lpWDA and the limiter,
essentially restricting the amount of slack that lpWDA can use. We
refer to this algorithm as lpLDA. Applying lpLDA to the example
task set in Figure 1 results in schedule (b) when all jobs require
their worst case cycles, and the schedule in (c) when they require
only their average cycles. We will show in the result section that
lpLDA indeed leads to more energy saving than lpWDA. Theorem 2
states the correctness of lpLDA in terms of satisfying the real-time
requirements.

Theorem 2: The voltage schedule constructed by lpLDA guaran-
tees that all jobs are completed at or before their deadlines. The time
complexity of lpLDA is O(n).
Proof: Executing at the speed identified by lpWDA guarantees all
deadlines according to Theorem 1. Because the limiter speed is only
selected if it is larger than the speed identified by lpWDA, the
deadline guarantee is preserved. The time complexity of lpLDA is
the same as lpWDA. 2

B. Voltage Transition Overhead

As pointed out in Section II, a voltage transition induces both
time overhead and energy overhead. Although lpLDA is effective in
further reducing energy compared with lpWDA, it cannot guarantee
a feasible speed when time overhead is not negligible. Observe the
schedule in Figure 1(b). If the transition from a speed of 2/3 to 0.6
at time 3 requires one time unit, then the speed of 0.6 can no longer
guarantee the deadline of J2

2 . We could try to solve this problem
by reducing the slack identified in Line 12 of Algorithm 1 by one
time unit. At time 3, lpLDA calls for a speed of 1/3 for job J2

1 .
(This speed is identified by Line 10 of Algorithm 1 where wcur

α =
1 and the estimated slack is 2, so 1/(1 + 2) = 1/3.) Removing
one time unit from the estimated slack will result in a speed of
1/2, which is still less than the limiter speed of 0.6. Execution of
J2

1 will thus begin at time 4 with a speed of 0.6, and complete at
time 5.5. Now we have a problem, because to meet the deadline
of J2

2 at time 8 requires a speed of 2/(8 − 5.5), or 0.8. To reach
0.8 requires another transition, and adjusting for the time overhead
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results in a speed of 2/(8 − 5.5 − 1), or 1.333, which is faster than
the normalized maximum of 1! Similarly, none of the existing on-
line voltage scheduling algorithms can guarantee task deadlines when
time overhead must be considered. Clearly, the speed selection must
be more careful in the presence of time overhead to guarantee that
a feasible speed is selected. Existing methods for handling transition
overhead are all for off-line algorithms and thus cannot be readily
used on-line. In the following we present our approach to minimize
the impact of transition overhead while guaranteeing deadlines.

Transition time overhead can complicate voltage scheduling in
several ways. The most straightforward effect is on slack utilization
since time overhead essentially reduces available slack. To guarantee
deadlines, we will always reduce the estimated slack to ensure that
there is enough time to make a transition now to a speed lower
than Smax, and also make another transition to Smax later when
necessary. Second, a job may be released during a transition. This
could happen in the task set of Figure 1 if ∆t > 1. We refer to this
problem as a transition error. The presence of a transition error may
induce an unexpected voltage transition. Third, notice that lpLDA
only checks the deadlines of tasks with an equal or lesser priority than
the currently executing job (Line 8 of Algorithm 1). This means that
we could scale down to a speed that guarantees the current job, only
to be preempted later by a higher priority job that requires a higher
speed. This is not a problem when transitions happen instantly, but
with time overhead we must be more careful. We refer to this problem
as a preemption error. These scenarios are illustrated graphically in
Figure 2. If not handled properly, such errors could cause deadline
violations.

To account for the above effects, we introduce several mod-
ifications to lpLDA. Essentially, the idea is to look ahead and
predict potential future necessary transitions. How much lookahead,
is needed deserves careful examination since too much will increase
complexity and too little may not be sufficient for meeting deadlines.
We achieve the proper scope as follows. First, a scheduling point
exactly ∆t time prior to the release time of every job is inserted into
the schedule. These pre-release scheduling points ensure that higher
priority jobs do not sneak up during execution without enough time
to have a transition. (See the case of Jcur

2 in Figure 2.) Second, when
a scheduling point is encountered (standard or pre-release), instead
of selecting the speed according to the currently executing job, we
first identify the highest priority task that is released within 2∆t of
the current time. Looking ahead 1∆t prevents transition errors, while
looking ahead an additional ∆t ensures when a transition is complete,
a higher priority job that requires a larger speed is not closer than
∆t away from the current time, thus preventing possible preemption
errors directly after a transition (See the case of Jcur

1 in Figure 2).
We denote the algorithm that includes the above modifications to

lpLDA to guaranteeing deadlines in the presence of time overhead as
lpLDAt, and Theorem 3 provides the deadline guarantee. The proof
is omitted due to the page limit.

Theorem 3: The voltage schedule constructed by lpLDAt guaran-
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Fig. 3. The energy consumed when applying (a) lpLDAt with S ′
max =

Smax, (b) lpLDAt with S′
max = SMC and (c) lpLDAT to the task set from

Figure 1.

tees that all jobs are completed at or before their deadlines. The time
complexity of lpLDAt is O(n).

Another challenge in dealing with time overhead is to reduce the
increase in energy consumption due to time overhead. To show how
time overhead can lead to undesirable consequence in DVS, let us
examine the data in Figure 3(a). Figure 3 (a) shows the energy
consumed by executing the task set from Figure 1 at the speeds
selected by lpLDAt for various sizes of ∆t, and various values for
bc/wc of each task. (Note that all times from Figure 1 are multiplied
by 100 for the simulation in Figure 3.) The black line represents the
energy consumed when executing at the minimum constant speed,
SMC , without DVS. All energy numbers are normalized against the
energy consumed when executing at Smax without DVS. The reader
will immediately notice that as ∆t grows, the benefit gained from
DVS quickly vanishes. Such results are due to the fact that lpLDAt
uses Smax for workload estimation and slack computation, which can
adversely introduce more transitions than necessary when transition
overhead is not negligible.

To ensure that time overhead does not cause an energy increase
over using just SMC , we propose scaling back the maximum speed
used by lpLDAt when predicting how much slack is available.
Intuitively, this will allow less aggressive slack exploitation and
thus avoid transitions that would increase energy instead of reducing
energy. The maximum speed, Smax (which is assumed to equal 1
when normalized) is used implicitly in Lines 9 and 10 of Algorithm 1
when determining fclk. That is, the normalized maximum of 1.0 is
divided into the workload values, resulting in equivalent time values.
If we choose a lower speed for Smax, it can be readily used to scale
these workload values and can effectively scale down the maximum
system speed. We refer to the adjusted maximum speed as S′

max.
An interesting problem is how to select this S′

max. One may be
tempted to select SMC as the speed for S′

max. Though this ensures
that no curves will appear above the SMC line in Figure 3, and
also guarantees all task deadlines, doing so would drastically reduce
the amount of slack available when ∆t is zero and jobs finish much
earlier than the worst case. This situation is illustrated in Figure 3(b).
Setting S′

max to a speed between SMC and Smax is not efficient in
general, because the reason that we scale back the max speed is that
we expect there to be very little slack available (due to near worst-
case cycles or high ∆t). Because there is little slack, we expect to
execute at S′

max a large percentage of the time and if that is the
case, the lower S′

max is the less energy the system will consume.
Through experimental study, we have observed that when ∆t is zero,
it is always better to execute with S′

max = Smax, and when ∆t ≥
10% of the minimum deadline in the system, it is generally better
to set S′

max = SMC . When ∆t is between these two values, we



must use a heuristic that selects either Smax or SMC . We give this
heuristic in the detailed algorithm description below. The result of
our S′

max scaling heuristic is given in Figure 3(c). Notice that no
curve exceeds SMC , and the curve with ∆t = 0 retains the energy
savings of lpLDAt from Figure 3(a).

Another issue is how to deal with transition energy overhead. Be-
cause energy overhead cannot cause deadline misses, the only concern
is reducing its impact on energy consumption. This introduces a
relatively minor modification to lpLDAt.

In Algorithm 3, we present all the modifications to lpLDA. We
refer to this new algorithm as lpLDAT. Here we will focus on the parts
that are different from lpLDA. Lines 3–6 determines the adjusted
maximum speed S′

max. Essentially, we track the ratio of ∆t to the
minimum deadline of the task set and the ratio of the average-case
utilization to the worst-case utilization. If the latter is smaller, we
choose the maximum processor speed since in this case the processor
tends to have more slacks and more aggressive stealing of slack
is acceptable. Otherwise, we set the maximum speed to SMC . At
Line 7, we initiate the computation of the system speed not only
at job completion and preemption points as is done by lpLDA but
also the pre-release scheduling point as discussed above to prevent
transition and preemption errors. In Line 10, we look ahead 2∆t
time to prevent preemption errors as discussed above. Lines 12–15
compute all the possible choices of new speeds and select the one
that gives the minimum energy. After a new speed is selected, if the
selection results in a voltage transition from Si to Sj , then there
is one final check (Line 17), which ensures that ∆E doesn’t locally
dominate the energy saved by changing the voltage level. If executing
the workload of Jcur

α at Si consumes less energy than executing at
Sj + 2∆E and Si > Sj , then the voltage transition is rejected.
Otherwise, Sj is adopted as the new processor speed. The following
theorem states the correctness of Algorithm 3. We omit the proof due
to the page limit.

Theorem 4: Executing at the speed identified by lpLDAT at each
scheduling point will guarantee all deadlines for any arbitrarily large
time transition overhead. The time complexity of lpDAT is O(n).

Algorithm 3 lpLDAT
1: if system start then
2: Initialize each task as Algorithm 1 with ***;
3: ∆tRatio := max{0, 0.1×minDeadline−∆t

0.1×minDeadline
};

4: utilRatio := Uac

Uwc
;

5: if utilRatio < ∆tRatio then S′

max := Smax;
6: else S′

max := SMC ;
7: if job completion/preemption/pre-release then
8: Find Tα, the currently executing task;
9: updateLoadInfo(T ,α);

10: Tα := the highest priority incomplete task released before
t + 2∆t;

11: ts := max{t, rcur
α };

12: Compute slackα based on workload starting at ts;
13: if there is enough time for 2 transitions then fclk := the new

speed;
14: else if there is enough time for one transition then fclk stays

the same;
15: else fclk := S′

max;
16: if fclk < flimit then fclk := flimit;
17: if fclk < the previous speed then check energy overhead();
18: Set the voltage according to fclk;

IV. EXPERIMENTAL RESULTS

In this section we quantify the effectiveness of lpLDAT on several
real-world and randomly generated task sets, and compare its energy
consumption with ccRM and lpWDA. Both ccRM and lpWDA were
modified to account for time and energy transition overhead; lpWDA
with exactly the same method as lpLDAT, excluding the scaling of
Smax to S′

max and ccRM with a very similar method, e.g., it only
scales down when there is enough time to transition back up later.
We also compare with an algorithm we call MIN which we use as a
reference lower bound to all three algorithms. MIN operates similar to
the average-case limiter described in the previous section with three
key differences: First, it uses the exact execution cycle information
for every task when computing the best end time for a particular job.
Second, every scheduling point is checked when looking for the best
end time, not just the job’s deadline. Finally, ∆t is always considered
zero. Clearly MIN is not applicable in practice and cannot find the
minimum energy schedule in general. However, it is a lower bound
for the algorithms we present here.

The processor model we use is representative of the ARM8 core.
For all experiments we assume there are 32 frequency levels available
in the range of 10 to 100 MHz, with corresponding voltage levels of
1 to 3.3 Volts. When idling, the processor is assumed to consume one
half the power consumed when executing at the minimum processor
speed. Transition energy overhead is modeled using ∆E = η ×
CDD × |V 2

1 − V 2
2 |, with η = 0.9 and CDD = 5 µF as presented by

Burd in [11]. The energy of all the results presented in this section
are normalized against a processor running at Smax without DVS.

The first set of experiments was conducted on randomly generated
task sets with the number of tasks per set varied from 2 to 10 in
two task increments. Each grouping has 100 separate task sets, with
periods and deadlines uniformly distributed in the range [1, 100] ms,
hyper periods less than or equal to 5 s, and a Uwc normally distributed
in the range [0.2, 0.8]. Additionally the SMC speed of all task sets is
less than or equal to the normalized maximum of 1. ∆t is assumed
to be 100 µs. The results are given in Figure 4. Clearly lpLDAT
outperforms the other two algorithms in all cases, and the margin of
its improvement increases with the number of jobs in the system and
as the best case execution cycle to worst-case execution cycle ratio
(bc/wc) decreases. The improvement of lpLDAT compared to ccRM
varies between about 2% with 2 tasks and a bc/wc ratio of 1 to over
40% with 10 tasks and a bc/wc ratio of 0.1. The improvement over
lpWDA varies from less than 1% with 2 tasks and a bc/wc ratio of
0.1 to as much as 60% with 10 tasks and a bc/wc ratio of 0.1.

Next, each algorithm was applied to two real-world examples: A
Computerized Numeric Controller (CNC) task set based on the work
by Kim et al. in [19] and an avionics task set based on Locke’s
work in [13]. For each task set, ∆t was varied from 0 to 180 µs in
60 µs steps. The results are displayed in Figures 5(a–d) and 5(e–h)
respectively. MIN was also applied to offer a lower bound on energy
consumption. For the CNC tasks set, lpLDAT is always as good as or
better than ccRM and lpWDA. Note that instead of displaying bc

wc
on

the x-axis, we display 1 − bc
wc

. With ∆t = 0, lpLDAT is within 2%
of the lower bound and consumes as much as 40% less energy than
ccRM or lpWDA. As ∆t increases, lpLDAT eventually saturates to
ccRM, due to the scaling of S′

max. The avionics task set is different
because ccRM doesn’t outperform lpWDA in this case. The reason
is that the normalized SMC for the avionics set is 0.97, or very close
to the maximum speed. In this case the aggressive nature of lpWDA
wins out. However, lpLDAT still outperforms lpWDA by as much as
20%.
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Fig. 4. Energy consumption of lpLDAT, ccRM and lpWDA when scheduling
randomly generated task sets. In each case the transition time overhead is is
set to 100 µs.
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Fig. 5. Energy consumption of lpLDAT, ccRM and lpWDA on the CNC
(a–d) and Avionics (e–h) task sets with various amounts of transition time
overhead.

V. SUMMARY

In this paper we presented a new algorithm called low power
Limited Demand Analysis with Transition overhead (lpLDAT) that
leverages the advantages of lpWDA by Kim in [5] while at the same
time removing the inherent disadvantages of lpWDA. Additionally,
time and energy transition overhead are accounted for in an intelligent
manner that guarantees system deadlines, while at the same time
keeping energy consumption down to a reasonable level. lpLDAT
outperforms previous on-line DVS algorithms by as much as 40%.

Although lpLDAT does perform well, it is not optimal. The
heuristic used to deal with time overhead is pessimistic in that
it assumes no jobs can execute before the highest priority job is
released, up to 2∆t from the current time, which is rarely the case.
Additionally, lpLDAT could benefit from a more sophisticated off-line
analysis of the task set, especially if more is information is known
about each task. One example is the probability density of each task’s
execution cycles. Future work should conduct an in depth analysis
of these issues.
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