

High-Level Synthesis for Large Bit-Width Multipliers on
FPGAs: A Case Study

Gang Quan, James P. Davis, Siddhaveerasharan Devarkal, and Duncan A. Buell
Department of Computer Science and Engineering

University of South Carolina, Columbia, SC 29208 USA
{gquan, jimdavis, buell}@cse.sc.edu}

ABSTRACT
In this paper, we present the analysis, design and implementation of
an estimator to realize large bit width unsigned integer multiplier
units. Larger multiplier units are required for cryptography and
error correction circuits for more secure and reliable transmissions
over highly insecure and/or noisy channels in networking and
multimedia applications. The design space for these circuits is very
large when integer multiplication on large operands is carried out
hierarchically. In this paper, we explore automated synthesis of
high bit-width unsigned integer multiplier circuits by defining and
validating an estimator function used in search and analysis of the
design space of such circuits. We focus on analysis of a hybrid
hierarchical multiplier scheme that combines the throughput
advantages of parallel multipliers and the resource cost-
effectiveness of serial ones. We present an analytical model that
rapidly predicts timing and resource usage for selected model
candidates. We evaluate the estimator model in the design of a
practical application, a 256-bit elliptic curve adder implemented on
a Xilinx FPGA fabric. We show that our estimator allows
implementation of fast, efficient circuits, where resultant designs
provide order-of-magnitude performance improvements when
compared with that of software implementations on a high
performance computing platform.

Categories and Subject Descriptors
B.2.4 [Arithmetic and logic structures]: High-speed arithmetic –
algorithms, cost/performance.

General Terms
Algorithms, Performance, Design, Experimentation
Keywords: Large-scale Integer Multipliers, High Level Synthesis,
Design Exploration, Reconfigurable Computing, FPGA Devices.

1. INTRODUCTION
Reconfigurable computing machines (RCM) have become recognized as
a viable means for achieving orders of magnitude speedup in compute-
intensive applications, through the use of fine-grained parallelism on a
programmable logic “fabric” consisting of one or more commercially-
available field programmable gate arrays (FPGAs) [1][2]. Highly
repetitive operations, such as pipelined arithmetic calculations on wide
data words, and highly parallel SIMD operations—such as those found
in cryptography and error coding applications—have been a good match
for RCM-based high-performance computing and mobile computing,
applications.

Programmable logic design requires programming of an application
using a hardware description language such as VHDL, which is then
transformed onto an FPGA substrate using synthesis and layout tools.
Since information on the performance and the resource usage required
by the design is not determined until after synthesis and place-and-route
steps, developers are usually engaged in an iterative design process that
can be lengthy and error-prone. Extensive research (such as [3-4]) has
been carried out in behavioral level design to leverage the productivity
and effectiveness of FPGA design. Also, commercial tools, such as
Mentor Graphics’ Monet® [12] and Synopsys Behavioral Compiler®
[13], are available that can realize efficient multiplication circuits.
However, these tools treat arithmetic operations such as multiplication as
atomic; thus, they work well for small operand bit-widths that can be
performed on monolithic architectures. However, using this scheme for
large bit-width operations can lead to extreme resource utilization and/or
severely degraded performance—to the point of even making the whole
circuit infeasible. In our preliminary experiments, commercial synthesis
tools completely failed to synthesize a 256-bit integer multiplier for a
Vertex II 6000 FPGA device.

In this paper, we present recent results in the design and
implementation of high bit-width integer multipliers using an automated
estimator technique. Such multipliers are now required in cryptographic
and error correction circuit applications. In supercomputing applications
using reconfigurable computing machines, such as the SRC 6-E® [17],
these applications are coming into prominence—for example, the
requirement of increased key lengths in cryptography, so as to thwart the
brute force cracking of shared-key ciphers. However, most conventional
microprocessor architectures are not optimized for computation on
operands above 64 or 128-bits. Larger bit widths significantly degrade
processor performance. It is from this perspective that we are exploring
the efficient identification of optimal architectures for large bit width
multipliers for implementation in FPGA fabrics that can either be used
in supercomputing applications on reconfigurable computing platforms,
or for implementation in supporting FPGAs in mobile computing
platforms.

Due to performance and resource constraint issues, large bit-width
multiplication operations are usually mapped onto a series of smaller bit-
width units for creating partial product terms. The differences between
small and large bit-width multiplier units are reasonably well-understood,
as reported in [26]. These differ from one other in their performance,
resource usage, scalability, flexibility, and so on. The search space for
finding optimal application-specific designs for high bit-width multiplier
circuits is very large.

Having a fast and effective evaluation method is critical to the
success of design space exploration during high-level synthesis. As such,
we have constructed an estimator model that rapidly predicts
performance and resource usage for a large subset of candidates in a
256-bit design space, based on different performance/resource
characteristics. Our Estimator model is parameterized and calibrated
with sample data collected from commercial logic synthesis and place-
and-route tools for multiplier permutations at the desired bit width. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

then applied this estimation model in the design of 256-bit elliptic curve
cryptosystem (ECC) adder circuits over a Galois field GF(p) [16], to aid
in selection of the most efficient 256-bit multiplier model for use.

In this paper, we show through our experiments that control logic
can contribute significantly to the latency and resource usage in large
complex multiplier architectures, particularly for those that need to
employ heavy resource sharing. Estimation results can deviate
significantly from actual results, as has been seen in approaches such as
[11], where the impact of control logic is ignored in evaluating
architectures. Our model incorporates heuristics to estimate the resource
usage in generating the control logic and the data path so as to produce
more accurate estimation. Our results indicate that estimator automation
can result in high-performance circuits; when compared with a software
implementation of the same ECC application on a 32-node Beowulf
cluster computer, FPGA implementation using designs selected by our
method can achieve an order of magnitude speedup and still meet critical
area and device timing constraints.

The paper is organized as follows. In Section 2, we provide
background on the application context and architecture assumptions in
this domain. In Section 3, we introduce the hybrid multiplier
architecture and Estimator models for obtaining timing and resource
estimates for the target Xilinx device. In Section 4, we present our
design exploration methodology and resource estimation incorporating
both control and datapath logic. In Section 5, we validate our Estimator
model and present implementation results.

2. THE DESIGN PROBLEM
A requisite target application for large integer operands is the Elliptic
Curve Cryptography (ECC) public-key cryptosystem proposed in 1985
[14][15]. ECC rests its security on the discrete logarithm problem over
the points on an elliptic curve, which is said to have no sub-exponential
solution [14]. It can, therefore, use smaller key sizes and still offer the
same level of security provided by other public key cryptosystems such
as RSA [16]. Smaller key sizes make the ECC algorithm highly suitable
for FPGA implementation [21].

The core of the ECC cryptosystem requires a fixed number of
modular multiplication, addition, shift, and squaring operations; the
actual number depends on the elliptic curve representation [16]. As a
problem to explore large multiplier architectures, our version of ECC
uses 14 modular multiplications for a point addition over a finite field
GF(p) as shown in Fig. 1. We selected an ECC structure requiring 256-
bit operands, as this is one of those recommended by NIST [19].

For the ECC Adder, the modular multiplication requires both a
multi-precise multiplication and division, which dominates the resource
usage and computation. Since division in hardware is expensive, the
Montgomery multiplication scheme [20] is used instead of regular
multiplication and modular reduction. By using this method, a modular
multiplication is transformed into three ordinary multiplications and two
low-cost shift operations. Our ECC Adder thus contains a total of 42
multi-precision multiplication operations.

The SRC-6E [17] is our target reconfigurable computing platform.
It is a reconfigurable board consisting of two Multi-Adaptive Processor
(MAP) modules, each with two programmable Xilinx Vertex II XC2V
6000 FPGAs, attached to the main microprocessor board, capable of
being clocked at 100 MHz. While there are up to four user-
programmable FPGAs residing on the same board, each one can be used
independently. The source models for execution on the FPGA can either
be written completely in a high-level language such as C, or using a
combination of C and VHDL/Verilog code implementing hardware
macro-functions that speed up compute-intensive functions. HDL code

is synthesized using Synplify Pro®, and placed and routed using Xilinx
ISE®.

The key to realizing high-performance ECC Adder execution on
the SRC-6E platform is in the design of the 256-bit integer
multiplication unit. To avoid a time consuming ad-hoc iterative design
process, system programmers need to conduct fast and accurate
prediction of the performance and resource outcomes for different
design alternatives. As such, extensive work is reported (e.g.
[7],[8],[10],[11]) that provides evaluation metrics and corresponding
estimators for applications expressed using data flow graph (DFG)
methods or high-level language such as C. Unfortunately, these
approaches cannot be readily applied to our design problem, as they treat
the high bit-width multiplication simply as an atomic operation. As
stated earlier, a 256-bit multiplier cannot be synthesized successfully
when specified as a single, monolithic arithmetic operator targeted to
FPGA devices using current EDA tools. Even if such a multiplier could
be synthesized, it would be timing and resource inefficient if all the
multiplications were required to use or share the same type of
constituent multipliers. Considering the large design space, the critical

issues for facilitating design-assist are: (1) making performance and
resource tradeoffs in selecting the multiplier architecture; and, (2)
determining how the multiplication operations will share the multiplier
resources in the larger computation. We discuss these points later in this
paper.

In what follows, we first present our development of the estimation
model, and tune the parameters of the model using sampling points. We
then apply our estimation model to prune the search space and select
optimal targets for the ECC Adder application.

3. ESTIMATION MODEL
We construct an estimation model for timing and resource usage
evaluation in order to identify and select an optimal design for our
intended application. Resource usage is critical, as we need to “fit” the
design on the target FPGA device; otherwise, we incur performance
penalties by having to go “off chip” to complete the intended
computation. Speed is important for obvious reasons, in that

Figure 1 Data flow graph for elliptic curve addition:

P3(x3,y3,z3)=P1(x1, y1, z1) + P2(x2,y2,z2)

minimizing latency (in the form of worst-case delay and maximum clock
rate through the unit) affects the overall computation throughput. Large
bit-width multiplication forms the bulk of the computation in our
application. We first present the most prevalent architecture topologies
for large bit-width multipliers and then develop the corresponding
estimation models.

3.1 Large Bit-Width Multiplier Architectures
When constructing large-width multiplier data paths, a first-cut approach
is to specify a “monolithic” (i.e., flat) multiplier that takes two large
word operands and multiplies them to generate partial products, and to
add the partial products as one would do using the “pencil and paper”
method employed with operands of 8, 16, or 32 bits. However, it is
impractical to construct such monolithic circuits of very large bit-widths,
say, greater than 64 bits, for the reasons that: (1) a monolithic circuit of
such bit-widths is likely to be non-optimal, and difficult to optimize for
specific applications; and, (2) a monolithic architecture is likely to be
difficult to synthesize onto a fixed-size device. Therefore, we must
model our different multiplier schemes as a hierarchical decomposition
of smaller, more basic units, from which we construct the larger units.
These units are organized hierarchically, in that a large bit-width unit
contains some number of units that execute smaller MUL and ADD
operations (either concurrently or in a pipelined fashion) on a sub-range
of the larger operands’ bits. The results of the smaller multiplication
operations are recombined according to the given algorithm being used.

Such an approach allows better management of design complexity
by exploiting the regularity of large numbers of identical structures, and
also affords a better chance that a usable and efficient circuit can be
synthesized. In this paper, we focus on two basic hierarchical
architecture topologies for large bit-width multiplication. We then take
both of these and combine them into a number of possible hybrid
configurations.
3.1.1 Divide and Conquer Multiplier
The first multiplier topology in our model is the Divide and Conquer
scheme. There is a “naïve” version [26] and an optimized version [22].
According to the naïve Divide-and-Conquer (DC) approach, assume that
A and B are n-bit numbers and can be evenly divided into two halves,
i.e., AH and AL, BH and BL, respectively. Let

,,,, 3210 LLHLLHHH BAaBAaBAaBAa ×=×=×=×=
Then

.)(22 321
2

0 aaaaBA
nn +++=×

Note that, the four partial products, i.e., ,,,, 3210 aaaa can be
computed in parallel. In order to perform this calculation, four n/2-bit
multipliers are required.

To reduce the resource requirements, the Karatsuba-Ofman
Algorithm (KOA) [22] reduces the number of sub-multipliers by
replacing the multiplication operations with several additions. That is, let

.),()(, 210 LLLHLHHH BAaBBAAaBAa ×=+×+=×=
Then, the product can be computed as

2012
2

0)(22 aaaaaBA
nn +−−+=× .

In this case, only two n/2-bit and one (n/2+1)-bit multiplication
operations are necessary. Moreover, in order to use the same bit-width
multiplier for all multiplications, the KOA algorithm can be
implemented in a slightly different way as shown below. Let

.),()(, 210 LLLHLHHH BAaBBAAaBAa ×=−×−=×=
Then

2102
2

0)(22 aaaaaBA
nn +−++=× ,

and only three n/2-bit multipliers are required. Even though the basic 2-
way method can theoretically be extended into an m-way method, the
practical control overhead (including interconnect and control logic) will
likely outweigh the potential performance benefits [22].

The naïve DC strategy and KOA algorithm achieve high
computation performance by exploiting parallelism in computing the
partial products. However, such a high performance is achieved with
excessive resource usage in terms of circuit area and required
components, which can easily consume the hardware resources and
makes it impossible to synthesize the high bit-width multiplier on a
single FPGA.
3.1.2 Broadcast multiplier
An effective and flexible design strategy for trading-off performance and
resource is to apply the Broadcast (BC) multiplier pattern for large
operand widths, proposed in [21] as follows. Let A and B be n-bit
integers. Assume that the available resources can be used to realize k
multipliers, each of which can compute the p-bit multiplication, where

 ./knp= Then, we can partition both A and B into k blocks such that
},{},{ 01)1(01)1(BBBBAAAA kk LL −− ==

and .pBA ii == Then at the first cycle, we can use the k multipliers

to compute the partial products)1(,...,0,0 −= kiBAi , simultaneously.
After these products are appropriately accumulated, we can then use all
the multipliers to compute another round of partial
products)1(,...,0,1 −= kiBAi

 in parallel, and accumulated to the
previous results. In general, we have

)).()((
1

0
01)1(piBAAABA i

k

i
k ×>>×=× ∑

−

=
− L

The BC multiplier is, in fact, a sequential block-based shift-and-
add multiplier. The computation efficiency of the BC multiplier comes
from the fact that multiplication cost for generating the partial products
usually dominates the accumulation cost. Since a BC multiplier has k
independent sub-multipliers, the computations of the k sub-products can
be computed in parallel during each sub-operand pass. Compared with
the KOA scheme, the BC multiplier has an advantage in that it is more
flexible in terms of selecting the sub-unit’s bit-width and number of sub-
multipliers to be implemented in the hardware, thereby achieving better
resource usage. However, since it can only make use of partial
parallelism in the multiplication, it cannot achieve the computation
performance of the Divide-and-Conquer schemes.
3.1.3 The Hybrid Multiplier Scheme
As explained before, the KOA and BC schemes represent two end
choices for the hierarchical multiplier design. The KOA approach can
better exploit the parallelism in the partial product generation but
requires greater resource usage. The BC, on the other hand, is more
resource conservative, but with lower computation performance. As
resource and delay tradeoffs are critical for the high level synthesis of
new designs, it is desirable that we take the advantages afforded by each
scheme by making proper tradeoffs in the design. To achieve this trade-
off, we incorporate these two models into a single design topology to
achieve the goal of designing high bit-width multipliers.

A hybrid multiplier is the hierarchical multiplier that adopts
different hierarchical implementation strategies at different hierarchical
levels. In our study, we employ two hierarchical multiplier structures,
i.e., KOA and BC as introduced before, in the design, since the
variations of combinations of these two techniques can provide a
relatively large number of candidate multiplier architectures with
different area/speed characteristics.

For ease of our presentation, we use an integer list, i.e. Mn={m1,
m2, …, mN}, to represent a n by n hybrid multiplier with N hierarchical
levels. Each element in the list, i.e., mi>0, represents the multiplication
scheme adopted at the specific level, i.e., level i. The KOA scheme is
applied at the ith level if mi=1, or the BC with k multiplication units is
used if mi = k > 1.

After hierarchically decomposed, the hybrid multipliers need a set
of monolithic base multipliers. We can take advantage of the high
performance and resource efficiency of the built-in hardware multipliers
in many Xilinx Virtex-II® chips. The Xilinx Vertex-II FPGA comes
with embedded multiplier blocks that can do signed multiplication for
inputs of up to 18-bits wide, and unsigned up to 17-bits wide. Therefore,
we assume the multiplications with bit-width less than 17 bit are
conducted with these hardware multipliers.

For example, a 192-bit hybrid multiplier, M192 ={ 1, 1, 3}, has three
abstraction levels. At the first level, KOA scheme is adopted which
requires three 96-bit multipliers. For each of the 96-bit multipliers (the
2nd level), the KOA scheme is adopted again requiring three 48-bit
multipliers each. For each of the 48-bit multipliers (the 3rd level), the
broadcast scheme with three 16-bit multipliers is used, and therefore,
totally 27 built-in hardware multipliers are used as the base multipliers.

3.2 Hybrid Multiplier Estimator
As the hybrid multipliers are constructed hierarchically, and the
implementation strategies adopted at different levels are independent of
each other. We can formulate both the resource usage and delay for the
hybrid multiplier analytically.

Specifically, given a hybrid multiplier Μn={m1, m2, …, mN}, the
area cost for Mn (i.e., S(Mn))can be recursively estimated as S(Mn) =
S1(n), and










>=+



+++





=+



++





=
+

+

1 if),,()()()(

1 if),()
2

(*4)(*4)
2

(3
)(

)1(

)1(

kmknS
k
nnSnS

k
nkS

mnSnSnSnS
nS

ictlbcADDADDi

ikoactlADDADDi

i

 (1)

where Si(n) is the area requirement at level i, SADD(n) is the area cost for
n-bit adders, and Skoactl(n) and Sbcctl(n) are the logic control area overhead
corresponding to the n-bit KOA and BC scheme and will be identified
later. Similarly, the execution cycles for Mn (i.e. T(Mn)) can be predicted
as T(Mn) = T1(n), and










>=



+++





=+





=
+

1 if)),()()((

1 if),(4)
2

(
)(

1

km
k
nnTnT

k
nTk

mnTnT
nT

iaddadd

iaddi

i

 (2)

where Ti(n) is the number of execution cycles at level i, and TADD(n) is
the timing cost for n-bit adders. The details for the development of
equation (1) and (2) are omitted due to the page limit. Interesting readers
can refer to [24] for more technical details.

Equation (1) and (2) provide an analytical method to estimate the
resource usage and delay amount for a hybrid multiplier. However, to
get the concrete values, we still need to measure the resource usage for
the adders and control logic, as well as the timing for the adders, which
depends on the actual platform as well as the clock rate of the design.
Based on our target platform and after conducting a series of
experiments, we found that adders with bit width no more than 64 bits
can be operated at the 10 ns as required. For adders with more than 64
bits, we simply use multiple cycles to compute the addition such that the
adder units can be reused. We also found that the number of slices
consumed by an adder is always half the operand bit-width by the
synthesis tools (Xilinx ISE 6.1i®), which makes the resource usage for
adder sub-units a trivial problem.

Now the problem becomes how to estimate the resource usage for
the control logic. Menn et al. [18] presented a method for estimating the
resource usage based on the number of states in the design. Their
method is more suitable in the control oriented design where there is
strong correlation between the complexity of the control and number of
states. Due to the high regularity of the hierarchical structure, it is
conceivable that the complexity of control logic varies more significantly
with the size of input rather than the complexity (i.e., the number of
states) of the control. We therefore assume a linear relationship between
the usage of the control logic and the input size. Specifically, we assume
 11)(βα += nnS koactl
and
 .),(222 γβα ++= knknS bcctl

To identify the parameters, i.e., α1, β1, α2, β2 and γ2 , we applied
traditional regression methods [14]. We randomly chose a set of five
multipliers, i.e. 24, 32, 48, 64 and 96-bits, as our sample models. These
models were then specified in VHDL, simulated to check for functional
correctness, and synthesized to obtain the actual resource usage, (i.e.,
slice usage) in the target FPGA. These numbers were used as inputs in
the regression model to compute the parameters. Through our
experiments, we obtained parameter values as α1=5.28, β1=-14.26,
α2=1.92, β2=-3.03 and γ2=17.4. As demonstrated later, the performance
metrics predicted with our analytical method have a very low percentage
error over actual results generated through synthesis and layout.

4. DESIGN SPACE EXPLORATION AND
SYSTEM CONTROL ESTIMATION

Having modeled timing and resource usage for high bit-width
multipliers, the most critical processing element in ECC adder, we
started the design space exploration. The process starts with
identification of the potential multipliers that can be used in our
benchmark design. This can be achieved by exploring the permutations
of hybrid multipliers and obtaining a Pareto-optimal [23] set of
candidates. That is, for any two given multipliers, no given one is clearly
better than the other in terms of both resource usage and computational
latency. Pareto-optimal solutions play a significant role for making the
design tradeoffs.

After identifying the candidate multipliers, we continued with the
design space exploration including allocation, scheduling, and binding.
If N is the maximal number of multipliers that can fit in one FPGA chip
and M is the size of the Pareto-optimal set, the there exists maximal MN
ways of selecting types and numbers of candidates in the final design.
The Pareto-optimal set that we identified is small—with only total 9
choices; therefore it was reasonable to explore all possible allocation
results (types and numbers of different processing units) via an
exhaustive search. For data path scheduling and binding, we simply
adopted the traditional list scheduling scheme [25].

With the output from list scheduling, we can estimate the
computation cost for a design alternative; estimating resource usage,
however, needs more careful analysis. Note that, using estimation
methods presented in other work, we are able to gauge the resource
usage only for the data path in our design. This is usually tolerable for
small designs employing simple control schemes. However, our large
bit-width multipliers require considerable resource sharing, as the
number of multipliers that can be put into one single FPGA is quite
limited. Recall that 42 large bit-width multiplications are required in one
ECC addition operation. This implies extensive resource sharing in our
design, requiring a more intricate control regime for pipelining. The
resources consumed by this control logic can be comparable to, or even
that of, the processing units in the data path; the control resources must

be considered to accurately predict the total resource usage in the
candidate designs.

Intuitively, the resource usage by the control logic is more tightly
coupled with the control step rather than the bit-width of the operators.
Let the number of total control steps (available from list scheduling
output) be x and let  .log2 xX = Suggested by the work in [9][18], we
assume a quadratic relationship between the resource requirement by
control logic and value of X. Therefore, the resource usage for control
(i.e, Sctl(X)) is estimated using

 32
2

1 KXKXKSctrl ++= . (3)
Again we use regression to determine the parameters. We synthesized
three versions of ECC adders (44-bit, 96-bit, and 128-bit) and collected
their resource usage. Their datapath resource usages are estimated as
introduced above, and the differences are treated as the resource
consumed by the control logic. From our experiment results, we
obtained the values as K1=2811.03, K2=-50038.78, and K3=222243.20.
These parameters and equation (3) are then used to estimate the resource
usage for the system control and added to the data path resource usage to
estimate the overall resource usage for a design alternative.

5. VALIDATION AND EXPERIMENTAL
RESULTS
In this section, we validate the accuracy of our estimation model
and present our final design results for 255-bit ECC Adder. Our
first set of experiments evaluates the accuracy of our estimation
model for hybrid multipliers. Based on our tuned hybrid multiplier
model presented in Section 3.2, we searched and found 9 different
“short-list” 256-bit hybrid multiplier candidates in the Pareto-
optimal set derived from thousands of possible alternatives. We
created these 9 multipliers in VHDL and synthesized them to obtain
the actual timing and area cost data. The results are compared with
the estimated results in Table 1.

As shown in Table 1, the estimated delays (from formula (2))
exactly match to the actual results as captured from simulation (using
Mentor’s ModelSim SE 5.7d). This is because equation (2) can
precisely determine the timing characteristics of a hybrid multiplier as
long as those for the base multipliers and adders are precisely
characterized. Moreover, as shown in Table 1, the relative deviations of
the estimate results to actual results are very small, with an average error
(3.49%) less than 5%. These results demonstrate that our hybrid
multiplier model and related analytical area/performance estimations can
be effectively used in automatic design exploration for implementing
efficient high bit-width multipliers.

The essential goal of our project is to design and implement 256-bit
ECC Adder on a Virtex-II® FPGA fabric. We exploited the design
space, as introduced in Section 4, locating one candidate, and
implemented it on the Xilinx Vertex-II XC2V6000 FPGA (with total
33,792 slices and 144 built-in hardware multipliers), running at 100
MHz. Table 2 shows the resource usage of our design.

As shown in Table 2, the total area-cost difference between the
estimated result and the actual one is around 20%. Comparing against
the component results in Table 1, we believe the difference derives from
the estimation error for the control path. Since the large bit-width
multipliers have high resource-cost and must be intensively shared, the
control path consumes significant amount of slices. As also shown in
Table 2, it is evident that using the estimated resource requirements for
the data path components to predict the whole design can be
problematic—the actual design requires 61% more resources as the
predicted results.

Finally, we compared the performance of the resultant design
against a benchmark software implementation of 256-bit ECC Adder, as
shown in Table 3. The software version was implemented on a 32-node
Beowulf cluster, with each node using a 933MHz Pentium III and 1GB
of memory. The application was programmed [21] in C, using GNU
Multi-precision Library (GMP) routines for multi-precise integer
arithmetic. The timing, in µsec, shown in Table 3, is for one elliptic
curve point addition. As indicated in Table 3, we realize an 8X speedup
in performance from our ECC Adder over its implementation on a high
performance software platform.

6. SUMMARY
The extreme flexibility and increasing capacity of FPGAs makes them

an excellent choice for custom computing applications, and at the same
time imposes tremendous design challenges to developers. While there
have been extensive research published for optimizing FPGA-based
designs, many developers still resort to high-level global performance
optimization by hand, due largely to the limited optimization methods
supported in available EDA tools for designs of this type.

To study the limitation of the current EDA tools and examine our
behavioral synthesis methodology in practical application design, we
presented an empirical study of designing and implementing a 256-bit
ECC Adder over GF(p) on an FPGA fabric. As large bit-width
multiplication is critical component in our application, we proposed a
hierarchical architecture for hybrid multiplier circuits in which we can

Table 1 Comparison of the estimated results to the actual timing
and resource cost obtained from the synthesized results

Actual Estimate Actual Estimate % error
M256{1 1 1 1} 38 38 17564 17665 0.58
M256{1 1 1 2} 43 43 12917 13507 4.57
M256{1 1 2 1} 50 50 11891 12274 3.22
M256{1 1 4} 54 54 7054 7360 4.34
M256{1 4 1} 73 73 6374 6610 3.70
M256{1 2 4} 87 87 4385 4684 6.82
M256{2 1 4} 98 98 4086 4240 3.77
M256{2 4 1} 136 136 3649 3740 2.49
M256{4 4} 156 156 1615 1584 -1.92

 Cycles256-bit
Hybrid

multiplier

Slices

Table 3 Comparison of software and hardware implementation
of ECC Adder over GF(p)

Timing (µsec)
Bit-width

Software FPGA
Speed-up

256 196.72 24.56 8.01

Table 2 Resource Usage for 255-bit ECC Adder
Multipliers Slices

Types Area
est.

Area
act.

Datapath only
est.

MULT
18x18

9
Same

(M256{4 4})
31059 25860 16084 144

combine the performance advantages of parallel multipliers and the
resource cost-effectiveness of serial ones. To facilitate the behavioral
synthesis process, we built an analytical model that can rapidly predict
the timing and resource values for a large subset of hybrid and
hierarchical integer multiplier topologies. The estimation model was
parameterized and calibrated with sample data collected using logic
synthesis and place-and-route tools. As shown in our experiments, the
resultant multiplier model can estimate the timing precisely and resource
usage with error less than 5%.

Based on this calibration, we further developed an estimation
model—predicting the resource usage required by both data path
components and control logic—to prune the search space and locate the
Pareto-optimal design choice for our intended application, which is then
programmed with VHDL and realized on the FPGA fabric.
Benchmarked against a software implementation on a high performance
computing platform, the resultant implementation from using our
technique still achieves an 8X improvement in overall computation
speed while also fitting on the Virtex-II device.

On the downside, we observed that the set of heuristics identified
thus far will not allow us to make reasonable estimates of the entire
application working off the constituent estimates of the individual
components—indicating that the cost is non-linear and has some
additional control component that is not covered under our current
control-oriented estimation heuristic.

Our work demonstrates the feasibility of using automated methods
for design-assist in creating a class of large bit-width integer multiplier
circuits. We believe this method is extensible to a wider range of
possible topologies. We also believe that accuracy in estimation—when
moving from the multiplier components to the whole application—can
be improved through identification of additional heuristics, which is the
subject of future research.

7. REFERENCES
[1] S. Hauck, “The roles of FPGAs in reprogrammable systems,”

Proceedings of the IEEE, Vol. 86, 1998, pp. 615-639.
[2] K. Compton and S. Hauck, “Reconfigurable computing: A

survey of systems and software,” ACM Computing Surveys,
Vol. 34, No. 2, June 2002, pp. 171-210.

[3] R. P. Dick and N. K. Jha, “CORDS: Hardware-software Co-
synthesis of Reconfigurable Real-Time Distributed Embedded
Systems”, ICCAD98, 62-69, 1998.

[4] N. Shenoy and A. Choudhary and P. Banerjee, “An Algorithm
for Synthesis of Large Time-Constrained Heterogeneous
Adaptive Systems”, ACM Trans. DAES. Vol 6, No. 2, 207-
225, 2001.

[5] S.C. Goldstein and M. Budiu, “The DIL Language and
Compiler Manual,” Carnegie Mellon University,
www.ece.cmu.edu/research/piperench/dil.ps, 1999

[6] J. Hammes, R. Rinker, W. Bohm, and W. Jajjar, “Compiling a
High-Level Language to Reconfigurable Systems,” CASES,
1999.

[7] B. So, P. Diniz and M. Hall, “Using Estimates from
Behavioral Synthesis Tools in Compiler-Directed Design
Space Exploration”, DAC, 2003

[8] B. So, M. Hall and P. Diniz, “A Compiler Approach to Fast
Hardware Design Space Exploration in FPGA-based Systems,”
PLDI, 2002.

[9] C. Brandolese and W. Fornaciari and F. Salice, “An Area
Estimation Methodology for FPGA Based Designs at
SystemC-Level”, DAC, 2004.

[10] A. Nayak et al, “Accurate Area and Delay Estimation for
FPGA”, DATE, 2002

[11] D. Kulkarni et al, “Fast Area Estimation to Support Compiler
Optimizations in FPGA-based Reconfigurable Systems,”
FCCM, 2002.

[12] Mentor Graphics Inc. MonetTM User’s Manual, 2002
[13] “CoCentric SystemC Compiler, Behavioral User and

Modelling Guide,” Synopsys,http://www.synopsys.com
[14] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of

Computation, 48:203-209, 1987.
[15] V. S. Miller. Uses of elliptic curves in cryptography. In

Advances in Cryptology: Proceedings of Crypto ’85, LNCS
218, pp. 417-426, New York: Springer-Verlag, 1986.

[16] Alfred J. Menezes, Paul C. van Oorschot and Scott A.
Vanstone. Handbook of Applied Cryptography. CRC Press,
October 1996.

[17] SRC High Performance Computer
www.srccomp.com/default.htm, 2004

[18] C. Menn et al, “Control Estimation for FPGA Target
Architectures During High-Level Synthesis,” ISSS, 2002

[19] National Institute of Standards and Technology (NIST),
Recommended Elliptic Curves for Federal Government Use,
found at http://csrc.nist.gov/csrc/fedstandards.html, July 1999.

[20] Peter L. Montgomery. “Modular multiplication without trial
division”. Mathematics of Computation, 44(170):519--521,
1985

[21] D.A. Buell, J.P. Davis, and G. Quan, “Reconfigurable
Computing Applied to Problems in Communications
Security”, in Proceedings MAPLD-02, Laurel, MD, 2002.

[22] D.E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, Addison-Wesley, 1998.

[23] U. Junker, “Preference-based search and multi-criteria
optimization”, 8th National Conference on AI, 2002

[24] U. Junker, “Design space exploration of Elliptic curve
arithmetic on a reconfigurable platform,” MS Thesis, 2004

[25] G.D. Micheli, “Synthesis and Optimization of Digital
Circuits”, McGraw-Hill, 1994

[26] B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs, Oxford University Press, New York, 2000

