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ABSTRACT 
In this paper, we present the analysis, design and implementation of 
an estimator to realize large bit width unsigned integer multiplier 
units. Larger multiplier units are required for cryptography and 
error correction circuits for more secure and reliable transmissions 
over highly insecure and/or noisy channels in networking and 
multimedia applications. The design space for these circuits is very 
large when integer multiplication on large operands is carried out 
hierarchically. In this paper, we explore automated synthesis of 
high bit-width unsigned integer multiplier circuits by defining and 
validating an estimator function used in search and analysis of the 
design space of such circuits. We focus on analysis of a hybrid 
hierarchical multiplier scheme that combines the throughput 
advantages of parallel multipliers and the resource cost-
effectiveness of serial ones.  We present an analytical model that 
rapidly predicts timing and resource usage for selected model 
candidates. We evaluate the estimator model in the design of a 
practical application, a 256-bit elliptic curve adder implemented on 
a Xilinx FPGA fabric.  We show that our estimator allows 
implementation of fast, efficient circuits, where resultant designs 
provide order-of-magnitude performance improvements when 
compared with that of software implementations on a high 
performance computing platform. 

Categories and Subject Descriptors 
B.2.4 [Arithmetic and logic structures]: High-speed arithmetic – 
algorithms, cost/performance.  

General Terms 
Algorithms, Performance, Design, Experimentation  
Keywords: Large-scale Integer Multipliers, High Level Synthesis, 
Design Exploration, Reconfigurable Computing, FPGA Devices. 

1. INTRODUCTION 
Reconfigurable computing machines (RCM) have become recognized as 
a viable means for achieving orders of magnitude speedup in compute-
intensive applications, through the use of fine-grained parallelism on a 
programmable logic “fabric” consisting of one or more commercially-
available field programmable gate arrays (FPGAs) [1][2]. Highly 
repetitive operations, such as pipelined arithmetic calculations on wide 
data words, and highly parallel SIMD operations—such as those found 
in cryptography and error coding applications—have been a good match 
for RCM-based high-performance computing and mobile computing, 
applications.  

Programmable logic design requires programming of an application 
using a hardware description language such as VHDL, which is then 
transformed onto an FPGA substrate using synthesis and layout tools.  
Since information on the performance and the resource usage required 
by the design is not determined until after synthesis and place-and-route 
steps, developers are usually engaged in an iterative design process that 
can be lengthy and error-prone. Extensive research (such as [3-4]) has 
been carried out in behavioral level design to leverage the productivity 
and effectiveness of FPGA design.  Also, commercial tools, such as 
Mentor Graphics’ Monet® [12] and Synopsys Behavioral Compiler® 
[13], are available that can realize efficient multiplication circuits.  
However, these tools treat arithmetic operations such as multiplication as 
atomic; thus, they work well for small operand bit-widths that can be 
performed on monolithic architectures.  However, using this scheme for 
large bit-width operations can lead to extreme resource utilization and/or 
severely degraded performance—to the point of even making the whole 
circuit infeasible. In our preliminary experiments, commercial synthesis 
tools completely failed to synthesize a 256-bit integer multiplier for a 
Vertex II 6000 FPGA device. 

In this paper, we present recent results in the design and 
implementation of high bit-width integer multipliers using an automated 
estimator technique.  Such multipliers are now required in cryptographic 
and error correction circuit applications.  In supercomputing applications 
using reconfigurable computing machines, such as the SRC 6-E® [17], 
these applications are coming into prominence—for example, the 
requirement of increased key lengths in cryptography, so as to thwart the 
brute force cracking of shared-key ciphers.  However, most conventional 
microprocessor architectures are not optimized for computation on 
operands above 64 or 128-bits. Larger bit widths significantly degrade 
processor performance.  It is from this perspective that we are exploring 
the efficient identification of optimal architectures for large bit width 
multipliers for implementation in FPGA fabrics that can either be used 
in supercomputing applications on reconfigurable computing platforms, 
or for implementation in supporting FPGAs in mobile computing 
platforms. 

Due to performance and resource constraint issues, large bit-width 
multiplication operations are usually mapped onto a series of smaller bit-
width units for creating partial product terms. The differences between 
small and large bit-width multiplier units are reasonably well-understood, 
as reported in [26].  These differ from one other in their performance, 
resource usage, scalability, flexibility, and so on. The search space for 
finding optimal application-specific designs for high bit-width multiplier 
circuits is very large.   

Having a fast and effective evaluation method is critical to the 
success of design space exploration during high-level synthesis.  As such, 
we have constructed an estimator model that rapidly predicts 
performance and resource usage for a large subset of candidates in a 
256-bit design space, based on different performance/resource 
characteristics. Our Estimator model is parameterized and calibrated 
with sample data collected from commercial logic synthesis and place-
and-route tools for multiplier permutations at the desired bit width.  We 
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then applied this estimation model in the design of 256-bit elliptic curve 
cryptosystem (ECC) adder circuits over a Galois field GF(p) [16], to aid 
in selection of the most efficient 256-bit multiplier model for use.  

In this paper, we show through our experiments that control logic 
can contribute significantly to the latency and resource usage in large 
complex multiplier architectures, particularly for those that need to 
employ heavy resource sharing.  Estimation results can deviate 
significantly from actual results, as has been seen in approaches such as 
[11], where the impact of control logic is ignored in evaluating 
architectures.  Our model incorporates heuristics to estimate the resource 
usage in generating the control logic and the data path so as to produce 
more accurate estimation. Our results indicate that estimator automation 
can result in high-performance circuits; when compared with a software 
implementation of the same ECC application on a 32-node Beowulf 
cluster computer, FPGA implementation using designs selected by our 
method can achieve an order of magnitude speedup and still meet critical 
area and device timing constraints. 

The paper is organized as follows.  In Section 2, we provide 
background on the application context and architecture assumptions in 
this domain.  In Section 3, we introduce the hybrid multiplier 
architecture and Estimator models for obtaining timing and resource 
estimates for the target Xilinx device. In Section 4, we present our 
design exploration methodology and resource estimation incorporating 
both control and datapath logic.  In Section 5, we validate our Estimator 
model and present implementation results. 

2. THE DESIGN PROBLEM  
A requisite target application for large integer operands is the Elliptic 
Curve Cryptography (ECC) public-key cryptosystem proposed in 1985 
[14][15]. ECC rests its security on the discrete logarithm problem over 
the points on an elliptic curve, which is said to have no sub-exponential 
solution [14]. It can, therefore, use smaller key sizes and still offer the 
same level of security provided by other public key cryptosystems such 
as RSA [16].  Smaller key sizes make the ECC algorithm highly suitable 
for FPGA implementation [21]. 

The core of the ECC cryptosystem requires a fixed number of 
modular multiplication, addition, shift, and squaring operations; the 
actual number depends on the elliptic curve representation [16]. As a 
problem to explore large multiplier architectures, our version of ECC 
uses 14 modular multiplications for a point addition over a finite field 
GF(p) as shown in Fig. 1. We selected an ECC structure requiring 256-
bit operands, as this is one of those recommended by NIST [19].  

For the ECC Adder, the modular multiplication requires both a 
multi-precise multiplication and division, which dominates the resource 
usage and computation. Since division in hardware is expensive, the 
Montgomery multiplication scheme [20] is used instead of regular 
multiplication and modular reduction. By using this method, a modular 
multiplication is transformed into three ordinary multiplications and two 
low-cost shift operations. Our ECC Adder thus contains a total of 42 
multi-precision multiplication operations.  

The SRC-6E [17] is our target reconfigurable computing platform.  
It is a reconfigurable board consisting of two Multi-Adaptive Processor 
(MAP) modules, each with two programmable Xilinx Vertex II XC2V 
6000 FPGAs, attached to the main microprocessor board, capable of 
being clocked at 100 MHz. While there are up to four user-
programmable FPGAs residing on the same board, each one can be used 
independently. The source models for execution on the FPGA can either 
be written completely in a high-level language such as C, or using a 
combination of C and VHDL/Verilog code implementing hardware 
macro-functions that speed up compute-intensive functions. HDL code 

is synthesized using Synplify Pro®, and placed and routed using Xilinx 
ISE®.  

The key to realizing high-performance ECC Adder execution on 
the SRC-6E platform is in the design of the 256-bit integer 
multiplication unit.  To avoid a time consuming ad-hoc iterative design 
process, system programmers need to conduct fast and accurate 
prediction of the performance and resource outcomes for different 
design alternatives. As such, extensive work is reported (e.g. 
[7],[8],[10],[11]) that provides evaluation metrics and corresponding 
estimators for applications expressed using data flow graph (DFG) 
methods or high-level language such as C. Unfortunately, these 
approaches cannot be readily applied to our design problem, as they treat 
the high bit-width multiplication simply as an atomic operation.  As 
stated earlier, a 256-bit multiplier cannot be synthesized successfully 
when specified as a single, monolithic arithmetic operator targeted to 
FPGA devices using current EDA tools. Even if such a multiplier could 
be synthesized, it would be timing and resource inefficient if all the 
multiplications were required to use or share the same type of 
constituent multipliers. Considering the large design space, the critical 

issues for facilitating design-assist are: (1) making performance and 
resource tradeoffs in selecting the multiplier architecture; and, (2) 
determining how the multiplication operations will share the multiplier 
resources in the larger computation.  We discuss these points later in this 
paper.  

In what follows, we first present our development of the estimation 
model, and tune the parameters of the model using sampling points.  We 
then apply our estimation model to prune the search space and select 
optimal targets for the ECC Adder application.  

3. ESTIMATION MODEL 
We construct an estimation model for timing and resource usage 
evaluation in order to identify and select an optimal design for our 
intended application.  Resource usage is critical, as we need to “fit” the 
design on the target FPGA device; otherwise, we incur performance 
penalties by having to go “off chip” to complete the intended 
computation.  Speed is important for obvious reasons, in that 

 
Figure 1  Data flow graph for elliptic curve addition: 

P3(x3,y3,z3)=P1(x1, y1, z1) + P2(x2,y2,z2) 



 

minimizing latency (in the form of worst-case delay and maximum clock 
rate through the unit) affects the overall computation throughput.  Large 
bit-width multiplication forms the bulk of the computation in our 
application.  We first present the most prevalent architecture topologies 
for large bit-width multipliers and then develop the corresponding 
estimation models.  

3.1 Large Bit-Width Multiplier Architectures 
When constructing large-width multiplier data paths, a first-cut approach 
is to specify a “monolithic” (i.e., flat) multiplier that takes two large 
word operands and multiplies them to generate partial products, and to 
add the partial products as one would do using the “pencil and paper” 
method employed with operands of 8, 16, or 32 bits.  However, it is 
impractical to construct such monolithic circuits of very large bit-widths, 
say, greater than 64 bits, for the reasons that: (1) a monolithic circuit of 
such bit-widths is likely to be non-optimal, and difficult to optimize for 
specific applications; and, (2) a monolithic architecture is likely to be 
difficult to synthesize onto a fixed-size device.  Therefore, we must 
model our different multiplier schemes as a hierarchical decomposition 
of smaller, more basic units, from which we construct the larger units.  
These units are organized hierarchically, in that a large bit-width unit 
contains some number of units that execute smaller MUL and ADD 
operations (either concurrently or in a pipelined fashion) on a sub-range 
of the larger operands’ bits.  The results of the smaller multiplication 
operations are recombined according to the given algorithm being used. 

Such an approach allows better management of design complexity 
by exploiting the regularity of large numbers of identical structures, and 
also affords a better chance that a usable and efficient circuit can be 
synthesized. In this paper, we focus on two basic hierarchical 
architecture topologies for large bit-width multiplication.  We then take 
both of these and combine them into a number of possible hybrid 
configurations. 
3.1.1 Divide and Conquer Multiplier 
The first multiplier topology in our model is the Divide and Conquer 
scheme. There is a “naïve” version [26] and an optimized version [22]. 
According to the naïve Divide-and-Conquer (DC) approach, assume that 
A and B are n-bit numbers and can be evenly divided into two halves, 
i.e., AH and AL, BH and BL, respectively. Let 
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Note that, the four partial products, i.e., ,,,, 3210 aaaa  can be 
computed in parallel. In order to perform this calculation, four n/2-bit 
multipliers are required.  

To reduce the resource requirements, the Karatsuba-Ofman 
Algorithm (KOA) [22] reduces the number of sub-multipliers by 
replacing the multiplication operations with several additions. That is, let 
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Then, the product can be computed as 
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In this case, only two n/2-bit and one (n/2+1)-bit multiplication 
operations are necessary. Moreover, in order to use the same bit-width 
multiplier for all multiplications, the KOA algorithm can be 
implemented in a slightly different way as shown below. Let  
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Then 
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and only three n/2-bit multipliers are required. Even though the basic 2-
way method can theoretically be extended into an m-way method, the 
practical control overhead (including interconnect and control logic) will 
likely outweigh the potential performance benefits [22]. 

The naïve DC strategy and KOA algorithm achieve high 
computation performance by exploiting parallelism in computing the 
partial products.  However, such a high performance is achieved with 
excessive resource usage in terms of circuit area and required 
components, which can easily consume the hardware resources and 
makes it impossible to synthesize the high bit-width multiplier on a 
single FPGA.   
3.1.2 Broadcast multiplier 
An effective and flexible design strategy for trading-off performance and 
resource is to apply the Broadcast (BC) multiplier pattern for large 
operand widths, proposed in [21] as follows. Let A and B be n-bit 
integers. Assume that the available resources can be used to realize k 
multipliers, each of which can compute the p-bit multiplication, where 

 ./knp=  Then, we can partition both A and B into k blocks such that  
},{},{ 01)1(01)1( BBBBAAAA kk LL −− ==  

and .pBA ii ==  Then at the first cycle, we can use the k multipliers 

to compute the partial products )1(,...,0,0 −= kiBAi , simultaneously. 
After these products are appropriately accumulated, we can then use all 
the multipliers to compute another round of partial 
products )1(,...,0,1 −= kiBAi

 in parallel, and accumulated to the 
previous results. In general, we have   
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The BC multiplier is, in fact, a sequential block-based shift-and-
add multiplier. The computation efficiency of the BC multiplier comes 
from the fact that multiplication cost for generating the partial products 
usually dominates the accumulation cost. Since a BC multiplier has k 
independent sub-multipliers, the computations of the k sub-products can 
be computed in parallel during each sub-operand pass. Compared with 
the KOA scheme, the BC multiplier has an advantage in that it is more 
flexible in terms of selecting the sub-unit’s bit-width and number of sub-
multipliers to be implemented in the hardware, thereby achieving better 
resource usage.  However, since it can only make use of partial 
parallelism in the multiplication, it cannot achieve the computation 
performance of the Divide-and-Conquer schemes. 
3.1.3 The Hybrid Multiplier Scheme 
As explained before, the KOA and BC schemes represent two end 
choices for the hierarchical multiplier design.  The KOA approach can 
better exploit the parallelism in the partial product generation but 
requires greater resource usage.  The BC, on the other hand, is more 
resource conservative, but with lower computation performance.  As 
resource and delay tradeoffs are critical for the high level synthesis of 
new designs, it is desirable that we take the advantages afforded by each 
scheme by making proper tradeoffs in the design.  To achieve this trade-
off, we incorporate these two models into a single design topology to 
achieve the goal of designing high bit-width multipliers. 

A hybrid multiplier is the hierarchical multiplier that adopts 
different hierarchical implementation strategies at different hierarchical 
levels. In our study, we employ two hierarchical multiplier structures, 
i.e., KOA and BC as introduced before, in the design, since the 
variations of combinations of these two techniques can provide a 
relatively large number of candidate multiplier architectures with 
different area/speed characteristics.   



 

For ease of our presentation, we use an integer list, i.e. Mn={m1, 
m2, …, mN}, to represent a n by n hybrid multiplier with N hierarchical 
levels. Each element in the list, i.e., mi>0, represents the multiplication 
scheme adopted at the specific level, i.e., level i. The KOA scheme is 
applied at the ith level if mi=1, or the BC with k multiplication units is 
used if mi = k > 1.  

After hierarchically decomposed, the hybrid multipliers need a set 
of monolithic base multipliers. We can take advantage of the high 
performance and resource efficiency of the built-in hardware multipliers 
in many Xilinx Virtex-II® chips. The Xilinx Vertex-II FPGA comes 
with embedded multiplier blocks that can do signed multiplication for 
inputs of up to 18-bits wide, and unsigned up to 17-bits wide. Therefore, 
we assume the multiplications with bit-width less than 17 bit are 
conducted with these hardware multipliers. 

For example, a 192-bit hybrid multiplier, M192 ={ 1, 1, 3}, has three 
abstraction levels. At the first level, KOA scheme is adopted which 
requires three 96-bit multipliers. For each of the 96-bit multipliers (the 
2nd level), the KOA scheme is adopted again requiring three 48-bit 
multipliers each. For each of the 48-bit multipliers (the 3rd level), the 
broadcast scheme with three 16-bit multipliers is used, and therefore, 
totally 27 built-in hardware multipliers are used as the base multipliers. 

3.2 Hybrid Multiplier Estimator 
As the hybrid multipliers are constructed hierarchically, and the 
implementation strategies adopted at different levels are independent of 
each other. We can formulate both the resource usage and delay for the 
hybrid multiplier analytically.  

Specifically, given a hybrid multiplier Μn={m1, m2, …, mN}, the 
area cost for Mn (i.e., S(Mn))can be recursively estimated as S(Mn) = 
S1(n), and 
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where Si(n) is the area requirement at level i, SADD(n) is the area cost for 
n-bit adders, and Skoactl(n) and Sbcctl(n) are the logic control area overhead 
corresponding to the n-bit KOA and BC scheme and will be identified 
later. Similarly, the execution cycles for Mn (i.e. T(Mn)) can be predicted 
as T(Mn) = T1(n), and            
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where Ti(n) is the number of execution cycles at level i, and TADD(n) is 
the timing cost for n-bit adders. The details for the development of 
equation (1) and (2) are omitted due to the page limit. Interesting readers 
can refer to [24] for more technical details.  

Equation (1) and (2) provide an analytical method to estimate the 
resource usage and delay amount for a hybrid multiplier. However, to 
get the concrete values, we still need to measure the resource usage for 
the adders and control logic, as well as the timing for the adders, which 
depends on the actual platform as well as the clock rate of the design. 
Based on our target platform and after conducting a series of 
experiments, we found that adders with bit width no more than 64 bits 
can be operated at the 10 ns as required. For adders with more than 64 
bits, we simply use multiple cycles to compute the addition such that the 
adder units can be reused. We also found that the number of slices 
consumed by an adder is always half the operand bit-width by the 
synthesis tools (Xilinx ISE 6.1i®), which makes the resource usage for 
adder sub-units a trivial problem.  

Now the problem becomes how to estimate the resource usage for 
the control logic. Menn et al. [18] presented a method for estimating the 
resource usage based on the number of states in the design. Their 
method is more suitable in the control oriented design where there is 
strong correlation between the complexity of the control and number of 
states. Due to the high regularity of the hierarchical structure, it is 
conceivable that the complexity of control logic varies more significantly 
with the size of input rather than the complexity (i.e., the number of 
states) of the control. We therefore assume a linear relationship between 
the usage of the control logic and the input size. Specifically, we assume  
                   11)( βα += nnS koactl                                  
and  
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To identify the parameters, i.e., α1, β1, α2, β2 and γ2 , we applied 
traditional regression methods [14]. We randomly chose a set of five 
multipliers, i.e. 24, 32, 48, 64 and 96-bits, as our sample models. These 
models were then specified in VHDL, simulated to check for functional 
correctness, and synthesized to obtain the actual resource usage, (i.e., 
slice usage) in the target FPGA. These numbers were used as inputs in 
the regression model to compute the parameters.  Through our 
experiments, we obtained parameter values as α1=5.28, β1=-14.26, 
α2=1.92, β2=-3.03 and γ2=17.4. As demonstrated later, the performance 
metrics predicted with our analytical method have a very low percentage 
error over actual results generated through synthesis and layout. 

4. DESIGN SPACE EXPLORATION AND 
SYSTEM CONTROL ESTIMATION 

Having modeled timing and resource usage for high bit-width 
multipliers, the most critical processing element in ECC adder, we 
started the design space exploration. The process starts with 
identification of the potential multipliers that can be used in our 
benchmark design. This can be achieved by exploring the permutations 
of hybrid multipliers and obtaining a Pareto-optimal [23] set of 
candidates. That is, for any two given multipliers, no given one is clearly 
better than the other in terms of both resource usage and computational 
latency. Pareto-optimal solutions play a significant role for making the 
design tradeoffs.   

After identifying the candidate multipliers, we continued with the 
design space exploration including allocation, scheduling, and binding. 
If N is the maximal number of multipliers that can fit in one FPGA chip 
and M is the size of the Pareto-optimal set, the there exists maximal MN 
ways of selecting types and numbers of candidates in the final design. 
The Pareto-optimal set that we identified is small—with only total 9 
choices; therefore it was reasonable to explore all possible allocation 
results (types and numbers of different processing units) via an 
exhaustive search. For data path scheduling and binding, we simply 
adopted the traditional list scheduling scheme [25].  

With the output from list scheduling, we can estimate the 
computation cost for a design alternative; estimating resource usage, 
however, needs more careful analysis. Note that, using estimation 
methods presented in other work, we are able to gauge the resource 
usage only for the data path in our design. This is usually tolerable for 
small designs employing simple control schemes. However, our large 
bit-width multipliers require considerable resource sharing, as the 
number of multipliers that can be put into one single FPGA is quite 
limited. Recall that 42 large bit-width multiplications are required in one 
ECC addition operation. This implies extensive resource sharing in our 
design, requiring a more intricate control regime for pipelining.  The 
resources consumed by this control logic can be comparable to, or even 
that of, the processing units in the data path; the control resources must 



 

be considered to accurately predict the total resource usage in the 
candidate designs.  

Intuitively, the resource usage by the control logic is more tightly 
coupled with the control step rather than the bit-width of the operators.  
Let the number of total control steps (available from list scheduling 
output) be x and let  .log2 xX =  Suggested by the work in [9][18], we 
assume a quadratic relationship between the resource requirement by 
control logic and value of X. Therefore, the resource usage for control 
(i.e, Sctl(X)) is estimated using  

 32
2
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Again we use regression to determine the parameters. We synthesized 
three versions of ECC adders (44-bit, 96-bit, and 128-bit) and collected 
their resource usage. Their datapath resource usages are estimated as 
introduced above, and the differences are treated as the resource 
consumed by the control logic. From our experiment results, we 
obtained the values as K1=2811.03, K2=-50038.78, and K3=222243.20.  
These parameters and equation (3) are then used to estimate the resource 
usage for the system control and added to the data path resource usage to 
estimate the overall resource usage for a design alternative.  

5. VALIDATION AND EXPERIMENTAL 
RESULTS 
In this section, we validate the accuracy of our estimation model 
and present our final design results for 255-bit ECC Adder. Our 
first set of experiments evaluates the accuracy of our estimation 
model for hybrid multipliers. Based on our tuned hybrid multiplier 
model presented in Section 3.2, we searched and found 9 different 
“short-list” 256-bit hybrid multiplier candidates in the Pareto-
optimal set derived from thousands of possible alternatives. We 
created these 9 multipliers in VHDL and synthesized them to obtain 
the actual timing and area cost data. The results are compared with 
the estimated results in Table 1.  

As shown in Table 1, the estimated delays (from formula (2)) 
exactly match to the actual results as captured from simulation (using 
Mentor’s ModelSim SE 5.7d). This is because equation (2) can 
precisely determine the timing characteristics of a hybrid multiplier as 
long as those for the base multipliers and adders are precisely 
characterized.  Moreover, as shown in Table 1, the relative deviations of 
the estimate results to actual results are very small, with an average error 
(3.49%) less than 5%. These results demonstrate that our hybrid 
multiplier model and related analytical area/performance estimations can 
be effectively used in automatic design exploration for implementing 
efficient high bit-width multipliers. 

The essential goal of our project is to design and implement 256-bit 
ECC Adder on a Virtex-II® FPGA fabric.  We exploited the design 
space, as introduced in Section 4, locating one candidate, and 
implemented it on the Xilinx Vertex-II XC2V6000 FPGA (with total 
33,792 slices and 144 built-in hardware multipliers), running at 100 
MHz. Table 2 shows the resource usage of our design.  

As shown in Table 2, the total area-cost difference between the 
estimated result and the actual one is around 20%. Comparing against 
the component results in Table 1, we believe the difference derives from 
the estimation error for the control path. Since the large bit-width 
multipliers have high resource-cost and must be intensively shared, the 
control path consumes significant amount of slices. As also shown in 
Table 2, it is evident that using the estimated resource requirements for 
the data path components to predict the whole design can be 
problematic—the actual design requires 61% more resources as the 
predicted results. 

Finally, we compared the performance of the resultant design 
against a benchmark software implementation of 256-bit ECC Adder, as 
shown in Table 3. The software version was implemented on a 32-node 
Beowulf cluster, with each node using a 933MHz Pentium III and 1GB 
of memory. The application was programmed [21] in C, using GNU 
Multi-precision Library (GMP) routines for multi-precise integer 
arithmetic. The timing, in µsec, shown in Table 3, is for one elliptic 
curve point addition. As indicated in Table 3, we realize an 8X speedup 
in performance from our ECC Adder over its implementation on a high 
performance software platform.  

 

6. SUMMARY 
The extreme flexibility and increasing capacity of FPGAs makes them 

an excellent choice for custom computing applications, and at the same 
time imposes tremendous design challenges to developers. While there 
have been extensive research published for optimizing FPGA-based 
designs, many developers still resort to high-level global performance 
optimization by hand, due largely to the limited optimization methods 
supported in available EDA tools for designs of this type. 

To study the limitation of the current EDA tools and examine our 
behavioral synthesis methodology in practical application design, we 
presented an empirical study of designing and implementing a 256-bit 
ECC Adder over GF(p) on an FPGA fabric. As large bit-width 
multiplication is critical component in our application, we proposed a 
hierarchical architecture for hybrid multiplier circuits in which we can  

Table 1 Comparison of the estimated results to the actual timing 
and resource cost obtained from the synthesized results 

Actual Estimate  Actual Estimate % error
M256{1 1 1 1} 38 38 17564 17665 0.58
M256{1 1 1 2} 43 43 12917 13507 4.57
M256{1 1 2 1} 50 50 11891 12274 3.22
M256{1 1 4} 54 54 7054 7360 4.34
M256{1 4 1} 73 73 6374 6610 3.70
M256{1 2 4} 87 87 4385 4684 6.82
M256{2 1 4} 98 98 4086 4240 3.77
M256{2 4 1} 136 136 3649 3740 2.49
M256{4 4} 156 156 1615 1584 -1.92

 Cycles256-bit 
Hybrid 

multiplier

Slices

 

Table 3 Comparison of software and hardware implementation 
of  ECC Adder over GF(p) 

Timing (µsec) 
Bit-width 

Software FPGA 
Speed-up 

256 196.72 24.56 8.01 
 

Table 2 Resource Usage for 255-bit ECC Adder  
Multipliers Slices 

# Types Area
est.  

Area 
act.  

Datapath only 
est. 

MULT 
18x18 

9 
Same   

( M256{4  4} ) 
31059 25860 16084 144 

 



 

combine the performance advantages of parallel multipliers and the 
resource cost-effectiveness of serial ones. To facilitate the behavioral 
synthesis process, we built an analytical model that can rapidly predict 
the timing and resource values for a large subset of hybrid and 
hierarchical integer multiplier topologies. The estimation model was 
parameterized and calibrated with sample data collected using logic 
synthesis and place-and-route tools. As shown in our experiments, the 
resultant multiplier model can estimate the timing precisely and resource 
usage with error less than 5%.  

Based on this calibration, we further developed an estimation 
model—predicting the resource usage required by both data path 
components and control logic—to prune the search space and locate the 
Pareto-optimal design choice for our intended application, which is then 
programmed with VHDL and realized on the FPGA fabric. 
Benchmarked against a software implementation on a high performance 
computing platform, the resultant implementation from using our 
technique still achieves an 8X improvement in overall computation 
speed while also fitting on the Virtex-II device. 

On the downside, we observed that the set of heuristics identified 
thus far will not allow us to make reasonable estimates of the entire 
application working off the constituent estimates of the individual 
components—indicating that the cost is non-linear and has some 
additional control component that is not covered under our current 
control-oriented estimation heuristic. 

Our work demonstrates the feasibility of using automated methods 
for design-assist in creating a class of large bit-width integer multiplier 
circuits.  We believe this method is extensible to a wider range of 
possible topologies.  We also believe that accuracy in estimation—when 
moving from the multiplier components to the whole application—can 
be improved through identification of additional heuristics, which is the 
subject of future research. 
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