
A Unified Approach to Variable Voltage Scheduling for Non-ideal

DVS Processors ∗

Bren Mochocki Xiaobo Sharon Hu

Dept. of CSE

University of Notre Dame

Notre Dame, IN 46556, USA

{bmochock, shu}@cse.nd.edu

Gang Quan

Dept. of CSE

University of South Carolina

Columbia, SC 29208, USA

gquan@cse.sc.edu

Abstract

Voltage scheduling is an essential technique used to exploit the benefit of variable voltage processors.

Though extensive research exists in this area, current processor limitations such as transition overhead

and voltage level discretization are typically dismissed as insignificant. We show that for hard real-time

applications, disregarding these details can lead to sub-optimal or even invalid results. We propose

two algorithms that guarantee valid solutions. The first is a greedy yet simple approach, while the

second is more complex but significantly reduces energy consumption under certain conditions. Through

experimental results on both real and randomly generated systems, we show the effectiveness of both

algorithms and explore what conditions make it beneficial to use the complex algorithm over the basic

one.

1 Introduction

The demand for mobile and pervasive computing devices has made low power/energy computing a critical

technology. One of the most effective ways to reduce energy consumption in CMOS processors is Dynamic

Voltage Scaling (DVS), i.e., dynamically varying a processor’s supply voltage and clock frequency simul-

taneously. Various DVS processors are commercially available, including Intel’s XScale [1], AMD’s Mobile

Athlon [2], and Transmeta’s Crusoe processor [3]. Several research groups have also developed their own

variable voltage systems. For example, Burd and Brodersen implemented a variable voltage system using

the ARM8 core [4], while Pouwelse et al. constructed a similar system using the SA-1100 [5]. Ideally, a

DVS processor would operate at any voltage within a specific range and switch from one voltage to another

instantaneously. However, due to physical limitations, DVS processors always incur both time and energy

overhead during voltage transition. Furthermore, all commercially available DVS processors today can only

operate at discrete voltage levels.

To maximally exploit the benefits of a DVS processor, voltage scheduling, the selection of voltage levels

and operating frequencies, is indispensable. A large number of research results have been published on

voltage scheduling for DVS processors. These results differ in many aspects, such as the type of applications

(e.g., real-time or non real-time) considered, the type of systems (e.g., single or multiple processors) used,

∗This work is supported in part by NSF under grant numbers MIP-9701416, CCR-9988468 and CCR02-08992.

the location (intra-task v.s. inter-task) where a voltage change is allowed, the execution style (e.g., on-line

or off-line) of the voltage scheduling algorithms, etc. It is not difficult to see that non-ideal features of DVS

processors, such as discrete voltage levels and transition overheads, can effect voltage scheduling results and

deserves careful study.

In this paper, we focus on voltage scheduling for a set of real-time jobs executed by a single DVS processor.

Many embedded applications can be described by such a model. In particular, we study off-line, inter-job

voltage scheduling where the real-time jobs are executed according to the preemptive Earliest Deadline First

(EDF) scheduling scheme [6]. Preemptive EDF is an optimal scheduling algorithm and has been adopted by

many real-time systems [7]. Inter-job (or inter-task) voltage scheduling is realized by the operation system,

which is less intrusive and more portable for a given application. Offline scheduling does not compete for

resources with the actual application and hence can afford to use more sophisticated algorithms. Though

off-line scheduling cannot handle dynamic situation, it can often be used in a complementary fashion with

on-line approaches. The uniqueness of our work lies in that the voltage scheduling process accounts for non-

ideal features of the DVS processors including time and energy transition overhead as well as discrete voltage

levels. To the best of our knowledge, this is the first work to incorporate all these practical limitations into

voltage scheduling algorithms for the system model under consideration.

1.1 Related Work

Substantial research has been done on voltage scheduling for real-time applications, e.g., [8, 9, 10, 11, 12,

13, 14, 15, 16]. Some of the papers have considered off-line, inter-job voltage scheduling for preemptive EDF

based real-time systems, e.g., [14, 16]. A dominating trend in these efforts is to ignore the non-ideal features

of DVS processors.

A limited amount of work has examined voltage scheduling in the presence practical limitations. Some of

these consider only discrete voltage levels. For example, Chandrasena et al. [17] introduce a rate selection

algorithm for a variable voltage processor with limited voltage levels, but the algorithm provides no deadline

guarantee for the tasks. In [18] and [19], Lee et al. consider discrete voltage levels in dynamic (i.e., on-line)

voltage scheduling for periodic tasks. Their method, called time slicing, requires that tasks be divided into

subtasks (or slots), which is not always possible. Even if the division is possible, preemption is not allowed

within a sub-task, so this method cannot be applied to the preemptive scheduling problem we address

here. Kwon et al. give an optimal intra-task scheduling algorithm under the preemptive EDF scheme to

match a discrete set of voltage levels [20]. Saewong and Rajkumar give an in-depth analysis of the ideal

placement of a set of discrete voltage levels for a DVS processor, and conclude that the energy increase due

to voltage/frequency quantization is inversely proportional to the number of levels [21]. Since the above

approaches ignores transition overheads, they tend to introduce more transitions in order to better match

discrete voltage levels, which further exasperate the impact transition overhead.

A number of researchers have studied voltage scheduling when transition overhead is not negligible.

2

Manzak et al. [22] address the transition time overhead by linearly increasing the total required execution

time or decreasing the processor utilization. Such adjustments may lead to either a deadline miss or an

overly pessimistic design. In [23], Hong et al. present a heuristic algorithm that accounts for transition

overheads during static scheduling but assumes both the availability of any voltage levels and continuous

execution of instructions during a transition. Neither assumptions can be satisfied by most DVS systems

[2, 3, 1, 5]. AbouGhazaleh et al. present an intra-task voltage scheduling method that accounts for transition

overhead. Their method, however, requires both compiler support and that the source code be engineered

to give voltage selection “hints” to the operating system [24, 25]. Hsu and Kremer also present a compiler

driven DVS algorithm, but hard deadlines are not guaranteed [26].

1.2 Our Contributions

In this paper, we present several observations to reveal the effects of transition overhead on executing real-

time jobs according to the preemptive EDF scheme. These observations show that time transition overhead

can cause deadline misses as well as consideration energy increase if not handled carefully. A basic algorithm

is devised to guarantee that no deadline violations occurs in the presence of time transition overhead.

Building on the basic algorithm, we have developed an algorithm taking full consideration of both time and

energy transition overheads as well as discrete voltage levels. A large number of experiments have been

conducted for both real-world examples and randomly generated examples to demonstrate the effectiveness

of our algorithms. Careful analysis of the experimental results help us to draw several conclusions regarding

the non-ideal features of DVS processors.

The remainder of this paper is organized as follows. Section 2 summarizes the relevant background

material, including system models and motivation examples. Section 3 describes the basic algorithm that

handles time transition overhead. Section 4 improves the basic algorithm in terms of energy savings and

accounts for both energy overhead and discrete voltage levels, in addition to time overhead. Section 5

presents our experimental results, and Section 6 concludes the paper.

2 Preliminaries

2.1 System Model

We consider real-time applications consisting of a set of independent jobs, J = {J1...Jn} with each job Ji ∈ J

having a release time ri, a deadline di, and worst case execution cycles ci. The job set is to be executed on a

DVS processor, whose power consumption is a convex function of the processor speed (i.e., frequency) [27].

The convexity assumption holds so long as the switching power is one of the main contributors of the total

power, which is the case for current and near future CMOS devices [28]. The DVS processor can operate

at a finite set of supply voltage levels V = {V1, ..., Vmax}, each with an associated speed. To simplify the

discussion, we normalize the processor speeds by Smax, the speed corresponding to Vmax, and thus we have

S = {S1, ..., 1}. Transitioning from one voltage level to another takes a fixed amount of time referred to

3

as the transition interval (denoted as ∆t), and consumes a variable amount of transition energy (denoted

as ∆E). No instructions are executed during a transition. The above DVS processor model captures the

main features of most commercial DVS processors [2, 5]. A variable length transition interval (e.g. the one

described in [4]) can be approximated by a fixed length interval equal to the maximum switching time. For

processors that do not block instructions during a transition (e.g., [4]), a schedule that assumes blocking

during a transition can be pessimistic, but it will guarantee to produce valid voltage schedule. As in most

voltage scheduling work, we assume that each job consumes an equal amount of energy per cycle at a given

speed, which is a valid assumption for many applications.

We introduce some notation below which will be used throughout the paper. We denote an interval by

T = [ts, tf] and the interval length by |T | = ts − tf . The intensity, s(T), of an interval T is the processor

speed required to finish all the jobs inside the interval by tf . It can be readily verified that

s(T) =

∑
Jk∈J ck

|T |
, rk ≥ ts, dk ≤ tf (1)

For a given job set J , the critical interval is defined as the interval with the highest speed. The algorithms

we describe in this paper operate by iteratively identifying and scheduling each critical interval. The critical

interval found at iteration i is denoted by Ti = [ts(i), tf (i)], which has a speed si = s(Ti) and executes a set

of jobs Ji ∈ J .

2.2 Low-Power Earliest Deadline First (LPEDF)

We briefly review the voltage scheduling algorithm, LPEDF, presented in [14], as it is referenced throughout

the paper. The algorithm is rephrased in Algorithm 1.

Algorithm 1 [T] = LPEDF (J)

1: Input: The job set J .
2: Output: A valid voltage Schedule T .
3: i := 0 /* the critical interval index */
4: while J is not empty do
5: Find the next critical interval Ti = [ts(i), tf (i)];
6: Insert Ti into T ;
7: Remove all jobs Ji from J ;
8: for every release time or deadline, tsch, where tsch > ts(i) do
9: if tsch ≤ tf (i) then

10: tsch := ts(i);
11: else
12: tsch := tsch − |Ti|;
13: i + +;
14: Return T ;

LPEDF finds off-line an optimal voltage schedule for a set of independent tasks executed according to

the EDF priority. It assumes an ideal DVS processor without transition overhead. The general idea is to

iteratively identify (line 5), schedule (lines 6 and 7) and remove (lines 8-14) each critical interval. Lines

8-14 essentially “squeeze” the critical interval to a single time point at ts(i) by reducing all release times or

4

0.6

1.333
idle

1.21.8

0

(b)

6 10 12

1.0
0.22

T4 T1 T3

0.6

0

C1 = 100, C2 = 400, C3 = 10, C4 = 200

J1

P
ri

or
ity

(a)

Time (units x102)

4 6 10 11 1254.5 10.5

J2

J3

J4

1.0

0 6 10 12

T3

T1

T2

0.29

5 113.5 4.5

(d)

0 6 10 12

T’4 T1 T’3

1.0

(c)

5 113.5 4.5

J1 J2 J3 J4 Idle

S
pe

ed
S

pe
ed

S
pe

ed

Time (units x102)

Time (units x102)Time (units x102)

0.29

4.5

T2

T’2

Figure 1: (a) An example set of jobs. (b) Optimal voltage schedule with LPEDF. (c) The LPEDF schedule
is modified by inserting ∆t = 100 at each transition, and then rescaling T2, T3 and T4 to maintain the same
executed workload. (d) The schedule produced by M-LPEDF.

deadlines inside Ti to ts(i) and then reducing all release times or deadlines after tf (i) by |Ti|. For the rest of

the paper when we refer to squeezing or compressing an interval, we mean performing a similar operation.

Algorithm 1 is greedy in the sense that it always picks the critical interval to schedule first. Consequently,

the intervals are identified according to the monotonically non-increasing order of their associated speeds.

Due to the fact that the power function is convex, this monotonicity property, summarized formally in

Lemma 1, is desired in constructing voltage schedules. For the proof of Lemma 1 and more details on

LPEDF, we direct the readers to [14].

Lemma 1 Critical intervals found by successive iterations of LPEDF are monotonically non-increasing in

intensity, that is, si ≥ sj if i ≤ j.

2.3 Motivational Example

To see the possible impacts of ignoring transition overhead, let’s look at the following example. Consider

the task set in Figure 1(a), which contains four jobs (where 4 represents a job release time and 5 a

job deadline). The optimal voltage schedule by LPEDF, assuming both ∆t and ∆E are zero, is given in

Figure 1(b). Suppose the same set of jobs is scheduled on a variable voltage processor with ∆t = 100 (Note

that compared with the transition interval, the job active durations, i.e., di − ri, are relative small for the

example job set. This is to make the illustration easier. For real applications, job active durations can be

either comparable or much bigger than the transition interval).

A straightforward approach to include time overhead is to (i) insert a transition interval at each speed

change and (ii) rescale the speed of the interval with the lower speed to ensure that the same workload is

accomplished. (Increasing the speed of the interval with the higher speed would lead to less energy saving

5

due to the convexity property of the power function.) The new schedule is shown in Figure 1(c). The speed

of T ′
2, the modified interval T2, was calculated using equation 2.

s′i =
si(tf (i) − ts(i))

t′f (i) − t′s(i)
=

0.6(6 − 4.5)

5 − 4.5
= 1.8 (2)

There are several problems with the schedule in Figure 1(c). First, s′2 and s′3 are now higher than s1, i.e.,

the speed of a critical interval is higher than that of a critical interval identified in a previous iteration of

LPEDF. We refer to this as a monotonicity violation because it violates Lemma 1. Note that s′2 and s′3

also surpasses the normalized maximum of 1, referred to as overshoot, so the required speed is unachievable.

Second, J3 will never be executed. Notice that r3 = 500 and d3 = 1050, but cycles cannot execute from

[500, 600] or [1000, 1100] and the interval [600, 1000] is completely utilized by J2. We refer to this problem,

where a job is not executed because it is contained in transition intervals, as an execution violation.

Finally, notice that there is a sliver of idle time in the interval [1192, 1200]. When T2 was modified to T ′
2

to accomdate the transition interval, it still included the execution cycles of J3, even though T ′
2 is outside

[r3,d3]. The extra time was used by J4 during T ′
2, so the idle part of T ′

3 is not required. Because equation 2

fails to take into account release times and deadlines when rescaling the speed, it can result in schedules that

require jobs to execute before they are released or after their deadlines.

A bit more sophisticated modification to LPEDF can be done as follows: Instead of compressing just the

critical interval Ti = [ts(i), tf (i)] down to a single time point, compress the interval [ts(i) − ∆t, tf (i) + ∆t]

and adjust adjacent jobs accordingly. We refer to this approach as M-LPEDF. Applying M-LPEDF to the

system in Figure 1(a), we obtain a new voltage schedule shown in Figure 1(d). Unfortunately, the schedule

in Figure 1(d) still has monotonicity and execution violations since the speed of T2 is higher than that of T1

and J3 is not executed as it is contained in the transition interval.

From the above discussions, it is clear that the problem of accounting for the time overhead is not just a

simple process of locally adjusting the optimal LPEDF solution. Care must be taken during the scheduling

process to ensure that the resulting schedule is valid. Considering energy overhead and discrete levels adds

more challenges to the problem. In the following, we propose our approaches to solve this problem. To

simplify our discussion, we will first assume that ∆E is negligible and that the processor’s voltage can vary

continuously. We will remove these assumptions later.

3 A Basic Algorithm for Time Transition Overhead

As explained before, the monotonicity and execution violations in the naive extension of LPEDF, i.e., M-

LPEDF, will incur the overshooting processor speed, which will lead essentially to infeasible and/or energy

inefficient design. Our goal in this section is to derive a better algorithm that can eliminate these violations

and provide a feasible and reasonably energy efficient voltage schedule in the presence of voltage transition

overhead.

6

To handle monotonicity violations, we have observed that any critical interval that violates the monotonic-

ity must be adjacent to the critical interval identified in the previous iteration. (Note that generally critical

intervals found in subsequent iterations are not necessarily adjacent to one another). This observation is

stated formally in Lemma 2.

Lemma 2 Let Ti−1 and Ti be two critical intervals obtained by M-LPEDF. If s(Ti−1) < s(Ti), then Ti−1

and Ti are adjacent.

Proof: To schedule Ti−1 = [ts(i−1), tf (i−1)], M-LPEDF compresses T ′
i−1 = [ts(i−1)−∆t, tf (i−1)+∆t].

This modification does not change the workload distribution of jobs outside T ′
i−1. Only intervals adjacent

to or overlapping T ′
i−1 are altered; shortened by up to ∆t time or by exactly 2∆t time if Ti contains T ′

i−1.

Thus, only intervals adjacent to Ti−1 may experience an increase in intensity in the next iteration. 2

As implied in the proof for Lemma 2, monotonicity violation occurs when the execution space for some

jobs are shortened due to the transition overhead such that they have to require an even higher speed in

order to meet their deadlines. To remove these violations, we can remove the transitions in order to save the

transition overhead that cause the violation. Specifically, such violation can be eliminated by incorporating

these jobs into those in the previously found critical interval. We formulate this conclusion in Lemma 3.

Lemma 3 Let Ti−1 and Ti be two critical intervals obtained by M-LPEDF with s(Ti−1) < s(Ti). The

minimum speed at which every job Jk ∈ (Ji−1 ∪ Ji) can execute and still meet its deadline is s(Ti−1).

Proof: According to Lemma 2, Ti−1 and Ti must be adjacent. Therefore, if a single speed, i.e., s(Ti−1),

is applied to both these intervals, no voltage transition is necessary. According to Lemma 1, s(Ti−1) is the

minimum speed required to guarantee the deadlines for the jobs in Ji−1 and greater than that to guarantee

the deadlines for jobs in Ji when no time overhead is presented. Therefore, s(Ti−1) is the minimum speed

for every jobs in (Ji−1 ∪ Ji) to meet their deadlines. 2

Lemmas 2 and 3 help us to keep track of the execution violation and remove it whenever it occurs. In

fact, they also help us to handle the execution violation as well since we can treat the an execution violation

as a special case of the monotonicity violation, i.e., the one with the required speed as infinity since we are

supposed complete a finite number of cycles in zero time.

Therefore, with Lemmas 2 and 3, we propose a more sophisticated algorithm, called Time Overhead

Earliest Deadline First (TOEDF), that can deal with both the monotonicity and execution violations and

produce a feasible voltage schedule under the voltage transition overhead. Algorithm 2 shows the salient

aspects of TOEDF.

In TOEDF, when a monotonicity or execution violation is encountered (line 6), the previous critical

interval is extended to include all jobs in the current interval (lines 7–10). Since “squeezing” a critical

interval will change the timing parameters of some jobs (line 16), which are needed if a critical interval

causes a violation (line 7), we need to save these parameters (lines 13) until needed. After the critical

interval is identified, we may need to extend of this interval as that in M-LPEDF to tolerate the transition

7

Algorithm 2 [T] = TOEDF (J , ∆t)

1: Input: The job set J , and time transition overhead length, ∆t.
2: Output: A valid voltage Schedule T .
3: i := 1; /* the critical interval index */
4: while J is not empty do
5: Find the next critical interval Ti = [ts(i), tf (i)];
6: if (i > 1 AND s(Ti) > s(T(i−1))) /* Monotonicity or execution violation */ then
7: Restore the timing information from the previous iteration;
8: Remove T(i−1) from T ;
9: Merge the interval Ti with T(i−1);

10: i −−; /* Roll back the critical interval index */
11: Adjust the end points of interval Ti to accommodate the transition overhead ∆t;
12: Backup the timing information;
13: Remove all jobs in Ti from J ;
14: Insert Ti to T ;
15: Squeeze Ti into a single time point;
16: i++;
17: RETURN T ;

overhead ∆t (line 12). One has to be particularly careful in doing this. For example, if an ending point of

the critical interval is overlapped with that of any previous intervals in T , we should not extend the critical

interval at this end to avoid accounting for ∆t more than once. In what follows, we apply Algorithm 2 on

the job set in Figure 1(a) and show more details of this algorithm.

When applying Algorithm 2 for the job set in Figure 1(a), in the first iteration of Algorithm 2, the critical

interval [600,1000] with the intensity of 1 is identified. It is extended to be [500,1100] (with ∆t = 100)

and then inserted to T . During the second iteration, however, an execution violation happens for job J3.

Therefore, J3 is merged to the previously identified interval [500,1100], which inherits the intensity, i.e., 1,

and is then adjusted to deal with the transition overhead. The result interval [400, 1150] is then re-inserted

to T . In the third iteration, a monotonicity violation is found related to job J4. Therefore, we have to

modify the interval [400,1150] again and replace it with the new interval [350,1300]. Finally, during the

fourth iteration, another critical interval is identified as [0,350] with intensity 100/350 = 0.29. Note that

the right ending point of this interval 350 is at the same position as one the ending points of the interval in

T . Therefore, there is no need to extend the interval at this end, and the interval [0,350] is inserted into T

(we assume no transition overhead at time 0.) One can readily verify that the result voltage schedule does

guarantee the schedulability of all the jobs.

To formally prove the correctness and explore the complexity of Algorithm 2, we have the following

theorem (Theorem 1).

Theorem 1 Algorithm 2 will always produce a valid voltage schedule in O(n3) time, given an initially

schedulable job set.

Proof: Executing jobs Ji ∈ Ti at s(Ti) ensures that all deadlines within Ti are met. Monotonicity and

execution violations are identified and eliminated with the jobs deadlines are guaranteed to be satisfied

8

according to Lemmas 2 and 3. The dominating step per iteration is identifying the critical interval, which is

O(n2). The outer loop can repeat up to O(n) times. 2

4 A Unified Algorithm for the Non-Ideal Properties of DVS Pro-
cessors

In the previous section, we present an algorithm, i.e., TOEDF, to produce a feasible and reasonably energy

efficient voltage schedule under the transition overhead condition. In this section, we present an enhanced

algorithm to improve the energy efficiency of TOEDF and incorporate discrete speeds and energy transition

overhead simultaneously.

4.1 Improving the Basic Algorithm

Unnecessary energy may be wasted when using TOEDF since, in order to eliminate the violations, we have

to use some “higher-than-necessary” voltage in some intervals. Whereas removing the violations is critical

for guaranteeing the feasibility of the voltage schedule, a shorter interval that demands the high processor

speed can help to reduce the energy consumption. For example, as explained in last section, when applying

TOEDF to the example in Figure 1(a), it is required that the processor speed for the interval [450,1200]

be 1.0. However, one can readily verify that using the processor speed of 1. 0 during the interval [590,120]

can also guarantee the schedulability of the jobs, i.e., J2,J3, and J4. The energy is saved in two ways: first,

the interval length that demands high processor speed is reduced; second, extra space is available for the

remaining jobs, such as J1 which can be used to reduce their required processor speed. Therefore, if we have

to use the high voltage, we can manage to save the energy by restricting the usage of the high voltage in an

interval as short as possible. We formalize this problem as follows.

Problem 1 Given a set of jobs, J , and a constant speed, s∗ (unless notified otherwise, s∗ is a constant

speed higher than the minimum one required to meet all deadlines of J), find the shortest interval in which

all deadlines of J are met.

The key to solving Problem 1 is to realize that we really only have one degree of freedom in the problem;

how long we can delay the start of the interval, i.e. delay the use of the higher speed. Of course, by delaying

the interval we run the risk of missing job deadlines. To prevent any deadlines from being missed, we next

introduce the concept of the latest start time for a job set and an important lemma stating how to compute

it.

Definition 1 The Latest Start Time tLS , for a job set J , is the latest time at which jobs in J can begin

execution at the speed s∗ and still meet all deadlines.

Lemma 4 The job set J scheduled by EDF has the latest start time tLS as

tLS = min{tLS(i)|tLS(i) = di −
∑

Jk∈hp(Ji)

ck

s∗
, i = 1..|J |},

9

where hp(Ji) is the job set containing jobs with priorities equal to or higher than that of Ji.

Proof: First we will prove that starting at a time later than tLS(i) will cause Ji to miss its deadline. Then

we will prove that Ji will not miss its deadline if we start execution at or before tLS(i).

(1) By EDF, hp(Ji) includes the jobs with deadlines no later than di. To guarantee that all the jobs in

hp(Ji) can meet their deadlines, there must be a sufficient amount of time to execute the cycles of these

jobs. The total workload of these jobs is W =
∑

Jk∈hp(Ji)
ck, and the total time needed to execute this

workload is W/s∗. It is trivial to see that starting later than tLS(i) will not give enough time to finish

W . The minimum tLS(i) is the most restrictive latest start time of all jobs in J , so it is the correct

choice for tLS .

(2) Suppose that beginning execution at tLS(i) causes Ji to miss its deadline. Considering the execution

of the jobs in hp(Ji), there must be idle time in the interval [tLS(i), di] that no job in hp(Ji) can be

executed. Note that executing these jobs at any time earlier than tLS(i) will not alter the job release

time, so Ji must still miss its deadline. This contradicts the assumption in Problem 1 that all jobs in

J executing at the speed s∗ can be finished by their deadlines. 2

Lemma 4 helps us to find the latest start time jobs for J in Problem 1. Then, with a simple plane-

sweeping algorithm we can find the last finish time. With these observations, we construct an algorithm,

i.e., MININT (Algorithm 3), to find the minimal required interval.

Algorithm 3 [T] = MININT(J , s∗)

1: Input: The set of jobs to include in the minimum interval, J , sorted from highest to lowest priority,
and the speed at which the jobs must execute, s∗.

2: Output: The minimum interval T = [ts, tf].
3: ts := ∞;
4: Sum := 0;
5: for (i := 1; i < |J |; i + +) do
6: Sum := Sum + ci

s∗
;

7: tLS(i) := di − Sum;
8: ts := min{ts, tLS(i)};
9: tf := Identify Finish Given Start(J , ts, s

∗);
10: T := [ts, tf];
11: RETURN T ;

To show that Algorithm 3 indeed produces the minimum-length valid interval, we have the following

theorem.

Theorem 2 Given a set of jobs, J , and a constant speed, s∗, Algorithm MININT finds the minimum length

interval T needed to complete all Jk ∈ J at the speed s∗ by their deadlines.

Proof: We consider the following two cases based on |T |:

(1) |T | =
∑|J |

i=1
ci

s∗

10

Based on the arguments used in proving Lemma 4, it follows that |T | in this case is the shortest interval

needed in order to complete all jobs in J .

(2) |T | >
∑|J |

i=1
ci

s∗

In this case there must be idle time within T . Without loss of generality, suppose there is one idle

interval, [tc, tr], where tc is the time when the previous job completes execution, and tr is the time

when the next job is released. Note that moving ts back in time will only increase |[tc, tr]| or produced

new idle intervals inside T , causing |T | to increase. Lemma 4 states that ts must be less than or equal

to tLS or at least one job will miss its deadline. Because tr is fixed and all jobs in T execute at the

constant speed s∗, the finish time of the final job, tf , is also fixed. Expanding T beyond this point

will introduce idle time, and moving it back will cause the final job to miss its deadline. Therefore,

moving ts or tf to any other point cannot decrease |T | without causing a deadline miss, and the proof

is complete. 2

Algorithm MININT can be readily incorporated into TOEDF and improve its energy performance. In

TOEDF, when a violation happens and jobs are merged to the previously found interval, we can apply

MININT to find the minimal interval within which all the deadlines of the jobs can be satisfied, and more

energy can be saved. Moreover, as explained later, Algorithm MININT can also help to improve the energy

efficiency when dealing with the discrete voltage levels and energy transition overhead.

4.2 Discrete Voltage/Frequency Levels

Up to now, to simplify our discussion, we assume that the processor speed can be continuously varied.

However, current commercial variable voltage processors [2, 3, 1] only have a finite number of speeds. This

factor must be integrated into voltage scheduling algorithms to provide a practical, valid, and energy efficient

voltage schedule.

One intuitive way to deal with discrete speeds is to round up the required frequency and voltage to some

allowed level. Unfortunately, this can be extremely pessimistic and energy inefficient, especially for many

commercial processors with only a few voltage levels available [2]. Another better approach is proposed

in [29] that can use the two levels immediate above and below the desired voltage/speed value to optimally

schedule a single job. Kwon et. al. [20] built upon the results in [29] and develop an optimal voltage/frequency

scheduling algorithm for an entire job set, called AllocVT. Although theoretically optimal, AllocVT is not

practically applicable on real processors because excessive voltage transitions are acquired, i.e., roughly twice

per job according to this algorithm, and the ignorance of the transition overhead will cause the jobs to miss

their deadlines.

We believe that it is more advantageous to incorporate the discrete speed effects into the construction

of critical intervals and let it propagate to future critical interval construction. Specifically, after a critical

interval is identified in Algorithm 2, its speed is increased to the next available level. Recall that when a

11

higher-than-necessary voltage is applied, we can use MININT to find the minimal necessary interval with

the given voltage.

Note that, when increasing the voltage to the next higher level, it can introduce a significant amount of

unused idle time even after we apply algorithm MININT to find the minimal necessary interval. A better

method to utilize these idle times is to relax the requirement that all jobs originally found in the critical

interval must run at the higher speed. Therefore, we keep only one of these busy intervals (intervals without

idle time) for the final voltage schedule, with the expectation that the rest of the jobs may benefit from the

higher-than-necessary speed assignment for this interval and can execute at a lower speed. We summarize

this approach in Algorithm 4.

Algorithm 4 [T ′
i , J

′
i , s′(Ti)] = DISCRETE (Ti, Ji, s(Ti), S)

1: Input: The initial critical interval Ti, its speed s(Ti), the set of jobs Ji in Ti, and the set of valid speeds
S.

2: Output: A valid critical interval T ′
i , running at s′(Ti) that executes the jobs J ′

i .
3: s′(Ti) := min{Sj ∈ S|Sj ≥ s(Ti)};
4: T := MININT (Ji, s

′(Ti));
5: Identify one busy interval, B(i) = [ts, t

′
f] ∈ T ;

6: T ′
i := B(i);

7: J ′
i := all jobs Jk ∈ Ji that finish execution in B(i);

8: RETURN T ′
i , J

′
i , and s′(Ti);

In Algorithm 4, one problem is to select a busy interval to keep (line 5). A good choice can lead to low

computation cost and higher energy efficiency. There are a number of heuristics, such as always selecting (a)

the first, (b) the last, (c) the shortest, or (d) the longest busy interval. Though each of these approaches has

its intuitive advantages, none of them dominates the others in our experiments, due to the many patterns

of job arrival times, deadlines, and execution cycles. Therefore, we simply choose the first busy interval

because it is the most computationally convenient.

4.3 Energy Transition Overhead

So far, we have ignored energy transition overhead in our voltage scheduling algorithms. To deal with

the energy transition overhead, like timing overhead, we feel it is valuable to account for this overhead

while constructing the critical intervals, thus allowing the effect to propagate throughout the schedule. Our

approach works as follows: when a new critical interval is identified, whether this critical interval should be

kept depends on whether or not the energy consumed by adopting its speed is smaller than that consumed

by merging it with an adjacent critical interval.

If the energy transition overhead is so significant that using different processor speeds for different intervals

may not be beneficial at all, we can simply merge these intervals and remove the voltage transitions. Given

a critical interval Ti = [ts(i), tf (i)], its adjacent critical interval, Tj = [ts(j), tf (j)], can be in any one of the

following forms: (a) tf (j) < ts(i), (ii) tf (i) < ts(j), or (c) ts(i) < ts(j), tf (j) < tf (i). To merge Ti with Tj

while guaranteeing the schedulability of the jobs in these intervals, we have to adopt the higher processor

12

speed for these interval. Now we are in the same situation that a higher-than-necessary voltage is applied

in an interval. We can then use algorithm MININT to find the minimal-length interval to better save the

energy.

4.4 The Unified Algorithm

By combining the techniques from sections 4.1 through 4.3 with Algorithm 2, a valid voltage schedule

with superior energy savings can be achieved while accounting for practical limitations of real-world DVS

processors, including time and energy transition overhead and discrete voltage levels. We call this unified

algorithm UAEDF (Algorithm 5).

Algorithm 5 [T] = UAEDF (J , ∆t, S)

1: Input: The job set J , the time transition overhead length, ∆t, and the set of allowable speeds, S.
2: Output: A valid voltage schedule T .
3: i := 1; /* The critical interval index. */
4: iprev := 1; /* The index of the previously inserted critical interval */
5: while J is not empty do
6: Find the next critical interval Ti = [ts(i), tf (i)];
7: [Ti,Ji,s(Ti)] := DISCRETE(Ti, Ji, s(Ti), S)
8: if (i > 1 AND s(Ti) > s(T(i−1))) then
9: Remove Tiprev

from T ;
10: Jiprev

:= Jiprev
∪ Ji

11: Tiprev
:= MININT(Jiprev

, s(Tiprev
));

12: i −−;
13: else
14: iprev := i;
15: Adjust the end points of interval Ti to accommodate the transition overhead ∆t;
16: Tadj := the set of all intervals adjacent to Ti;
17: Find Tk ∈ Tadj such that merging Ti with Tk has the maximal gain in energy saving;
18: if the maximal gain > 0 then
19: Ji := Ji ∪ Jk;
20: Ti := MININT(Ji, s(Tk));
21: Adjust the end points of interval Ti to accommodate the transition overhead ∆t;
22: Replace Tk in T with Ti;
23: else
24: Insert Ti to T ;
25: Squeeze Ti into a single time point;
26: i++;
27: RETURN T ;

Algorithm 5 follows the same general flow as Algorithm 2. First it identifies the next critical interval

under the discrete voltage level assumption (line 6-7). Then it removes the possible monotonicity or execution

violations and shorten the critical interval with algorithm MININT (line 9-11). A greedy approach is adopted

in Algorithm 5 to deal with the energy overhead during the voltage transition (line 17-26). After a critical

interval is found, we check to ensure whether or not it is more advantageous to merge it with an adjacent

interval (line 17-18). If such a merge is necessary (line 19), we simply merge it with one of its adjacent

intervals that will lead to the maximal energy saving gain, and then apply MININT to minimize the interval

13

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500
Time Overhead (microseconds)

%
 in

cr
ea

se
 a

bo
ve

 L
P

E
D

F

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500
Time Overhead (microseconds)

%
 In

cr
ea

se
 a

bo
ve

 L
P

E
D

F

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500
Time Overhead (microseconds)

%
 In

cr
ea

se
 a

bo
ve

 L
P

E
D

F

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500
Time Overhead (microseconds)

%
 In

cr
ea

se
 a

bo
ve

 L
P

E
D

F

(a) (b) (c) (d)
TOEDF SYS CLOCKUAEDF

Figure 2: Increase in the energy consumption above LPEDF of randomly generated jobs on a simulated
AMD Mobile Athlon4 processor. (a) Results from a continuous voltage supply, (b) 14 voltage levels (c) 5
voltage levels and (d) 2 voltage levels.

length (line 20-23). Finally, as that in TOEDF, the newly generated interval is ”squeezed” into one single

time point and one iteration of the algorithm is completed. Theorem 3 formally states that Algorithm 5

finds a valid schedule in O(n3) time.

Theorem 3 Algorithm 5 always produces a valid voltage schedule with a time complexity of O(n3).

Proof: Theorem 1 states that TOEDF always produces a valid voltage schedule. Algorithm 5 includes time

overhead and handles the same violations as TOEDF, but uses MININT instead of simply matching release

times and deadlines. It follows from Theorem 2 that this method always produces a valid schedule. Energy

overhead is also accounted for using MININT, so Theorem 2 ensures the validity of this step as well. Discrete

voltage levels are matched by rounding up to a valid level and taking the first busy interval. The jobs in the

busy interval will obviously meet their deadlines, and the rest of the jobs will be rescheduled by methods we

have just shown to be valid.

The most time consuming step per iteration is identifying the next critical interval in O(n2) time, which

can repeat O(n) times. Therefore, the overall complexity is O(n3). 2

5 Experimental Results

In this section, we quantify the energy consumption due to the transition overhead and discrete voltage levels

and evaluate the energy savings of our proposed algorithms with both the randomly generated job sets and

real-world examples.

We first constructed and tested 100 randomly generated sets of 20 jobs each with our algorithms. The

jobs are assumed to have worst-case execution times and release times uniformly distributed between [0,800]

and [0,1000] µS, respectively. The relative deadlines of the jobs are normally distributed with an average of

810 µS and a standard deviation of 280µS. For each job set, we applied both Algorithm 2 and Algorithm 5

with the overhead ranging from 0 (no overhead) to 1 mS.

We also apply our algorithms to two real-world examples, i.e. CNC [30] and Avionics [31].

14

6 Summary

In this paper, we studied the impact that practical limitations of current processors can have on existing

voltage schedules. We have shown through examples and analysis that limitations such as transition over-

head or discrete voltage levels can cause a theoretically optimal schedule to become invalid if not correctly

accounted for during the scheduling process. Accounting for such limitations is not a trivial matter, as trying

to make adjustments to the optimal schedule by inserting overhead between voltage intervals will likely cause

jobs to miss their deadlines. Our experiments show that for practical processors and real applications, the

largest contributor to energy consumption is discrete voltage levels, the second is time transition overhead,

and finally energy transition overhead. Although they vary in importance, they must be considered in unison

to ensure a valid schedule is reached. We have presented two algorithms, which guarantee a valid voltage

schedule given an initially schedulable job set. The basic algorithm, TOEDF, offers a simple implementa-

tion, while the improved algorithm, UAEDF, can significantly reduce energy consumption when compared

to TOEDF.

Currently, the optimality of our algorithms is not guaranteed, so further algorithm development may

improve results even more. Also, for the scheduling process to give a practical voltage schedule for an even

wider range of systems, we will need to account for other implementation details, such as context switching

overhead, support for different transition models and support for other prioritization schemes, such as fixed

priority scheduling. Future work must account for these limitations.

References

[1] Intel, “The intel xscale microarchitecture,” Intel Corporation, Tech. Rep., 2000.

[2] AMD, “Mobile amd athlon 4 processor model 6 cpga data sheet rev:e,” Advanced Micro Devices, Tech.

Rep. 24319, Nov. 2001.

[3] M. Fleischmann, “Longrun power management: Dynamic power management for crusoe processors,”

Advanced Micro Devices, Tech. Rep., Jan. 2001.

[4] T. D. Burd and R. W. Brodersen, “Design issues for dynamic voltage scaling,” in Proceedings of the

2000 International Symposium on Low Power Electronics and Design (ISPLED). New York: IEEE,

July 2000, pp. 9–14.

[5] J. Pouwelse, K. Langendoen, and H. Sips, “Dynamic voltage scaling on a low-power microprocessor,”

in Proceedings of the 7th annual international conference on Mobile computing and networking (MOBI-

COM). New York: ACM Press, July 2001, pp. 251–259.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time envi-

ronment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61, Jan. 1973.

15

[7] J. W. S. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice Hall, 2000.

[8] W. Kim, J. Kim, and S. L. Min, “Dynamic voltage scaling algorithm for dynamic-priority hard real-

time systems using slack time analysis,” in Design, Automation and Test in Euroope Conference and

Exhibition (DATE). New York: IEEE, Mar. 2002, pp. 788–794.

[9] T. Okuma, T. Ishihara, and H. Yasuura, “Software energy reduction techniques for variable-voltage

processors,” Design & Test of Computers, vol. 18, no. 2, pp. 31–41, March – April 2001.

[10] ——, “Real-time task scheduling for a variable voltage processor,” in Proceedings of teh 12th Interna-

tional Symposium on System Synthesis (ISSS). New York: IEEE, Nov. 1999, pp. 24–29.

[11] G. Quan and X. S. Hu, “Energy efficient fixed-priority scheduling for real-time systems on variable

voltage processors,” in Proceedings of the 2001 Design Automation Conference (DAC). New York:

IEEE, June 2001, pp. 828–833.

[12] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for hard real-time systems,” in Pro-

ceedings of the 36th Design Automation Conference (DAC). New York: IEEE, June 1999, pp. 21–25.

[13] D. Shin, S. Lee, and J. Kim, “Intra-task voltage scheduling for low-energy hard real-time applications,”

Design & Test of Computers, vol. 18, no. 2, pp. 20–30, March – April 2001.

[14] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu energy,” in Proceedings of the

36th Annual Symposium on the Foundations of Computer Science (FOCS). New York: IEEE, Oct.

1995, pp. 374–382.

[15] H.-S. Yun and J. Kim, “On energy-optimal voltage scheduling for fixe-priority hard real-time systems,”

ACM Transactions on Embedded Computing Systems (TECS), vol. 2, no. 3, pp. 393–430, Aug. 2003.

[16] H. Aydin, R. Melhem, D. Moss, and P. Mejia-Alvarez, “Power-aware scheduling for periodic real-time

tasks,” To appear in IEEE Transactions on Computers, 2003.

[17] L. H. Chandrasena, P. Chandrasena, and M. Liebelt, “An energy efficient rate selection algorithm for

voltage quantized dynamic voltage scaling,” in Proceedings of teh 14th International Symposium on

System Synthesis (ISSS). New York: IEEE, 30 Sept. - 3 Oct. 2001, pp. 124–129.

[18] S. Lee and T. Sakurai, “Run-time power control scheme using software feedback loop for low-power real-

time applications,” in Proceedings of the 2000 Asia and South Pacific Design Automation Conference

(ASP-DAC). New York: IEEE, Jan. 2000, pp. 381–386.

[19] ——, “Run-time voltage hopping for low-power real-time systems,” in Proceedings of the 37th Design

Automation Conference (DAC). New York: IEEE, June 2000, pp. 806–809.

16

[20] W.-C. Kwon and T. Kim, “Optimal voltage allocation techniques for dynamically variable voltage

processors,” in Proceedings of the 2003 Design Automation Conference (DAC). New York: IEEE, June

2003, pp. 125–130.

[21] S. Saewong and R. Rajkumar, “Practical voltage-scaling for fixed-priority rt systems,” in Proceedings of

the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). New York:

IEEE, May 2003, pp. 106–114.

[22] A. Manzak and C. Chakrabarti, “Variable voltage task scheduling algorithms for minimizing energy,”

in Proceedings of the 2001 International Symposium on Low Power Electronics and Design (ISPLED).

New York: IEEE, Aug. 2001, pp. 9–14.

[23] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava, “Synthesis techniques for low-power hard real-

time systems on variable voltage processors,” in Proceedings of the 19th Real-Time Systems Symposium

(RTSS). New York: IEEE, Dec. 1998, pp. 178–187.

[24] N. AbouGhazaleh, B. Childers, D. Moss, R. Melhem, and M. Craven, “Energy management for real-time

embedded applications with compiler support,” in Proceedings of the 2003 ACM SIGPLAN conference

on Language, compiler, and tool for embedded systems (LCTES). New York: ACM Press, June 2003,

pp. 284–293.

[25] N. AbouGhazaleh, D. Moss, B. Childers, R. Melhem, and M. Craven, “Collaborative operating system

and compiler power management for real-time applications,” in Proceedings of the 9th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS). New York: IEEE, May 2003, pp.

133–141.

[26] C.-H. Hsu and U. Kremer, “The design, implementation, and evaluation of a compiler algorithm for cpu

energy reduction,” in Proceedings of the ACM SIGPLAN 2003 conference on Programming language

design and implementation (PLDI). New York: ACM Press, June 2003, pp. 38–48.

[27] A. Chandrakasan, S. Sheng, and R. W. Brodersen, Low-Power Digital CMOS Design. New York, NY:

Kluwer Academic Publishers, 1996.

[28] (2003) Technology roadmap for semiconductors. online. International SEMATECH. [Online]. Available:

http://public.itrs.net/

[29] T. Ishihara and H. Yasurra, “Voltage scheduling problem for dynamically variable voltage processors,”

in Proceedings of the 1998 International Symposium on Low Power Electronics and Design (ISPLED).

New York: IEEE, Aug. 1998, pp. 197–202.

[30] N. Kim, M. Ryu, SeongsooHong, M. Saksena, C. ho Choi, and H. Shin, “Visual assessment of a real-

time system design: a case study on a cnc controller,” in Proceedings of the 17th Real-Time Systems

Symposium (RTSS). New York: IEEE, Dec. 1996, pp. 300–310.

17

[31] C. D. Locke, D. R. Vogel, and T. J. Mesler, “Building a predictable avionics platform in ada: a case

study,” in Proceedings of the 12th Real-Time Systems Symposium (RTSS). New York: IEEE, Dec.

1991, pp. 181–189.

18

