
Fixed Priority Scheduling for Reducing Overall Energy on Variable Voltage
Processors

Gang Quan Linwei Niu
Dept. of CSE

University of South Carolina
Columbia, SC 29208

{gquan, niul}@cse.sc.edu

Xiaobo Sharon Hu Bren Mochocki
Dept. of CSE

University of Notre Dame
Notre Dame, IN 46556

{shu, bmochock}@cse.nd.edu

Abstract

While Dynamic Voltage Scaling (DVS) is an efficient tech-
nique in reducing the dynamic energy consumption of a
CMOS processor, methods that employ DVS without con-
sidering leakage current are quickly becoming less efficient
when considering the processor’s overall energy consump-
tion. A leakage conscious DVS voltage schedule may require
the processor to run at a higher-than-necessary speed to ex-
ecute a given set of real-time tasks, which can result in a
large number of idle intervals. To effectively reduce the en-
ergy consumption during these idle intervals, and therefore
the overall energy consumption, the DVS schedule must ju-
diciously allow the processor to enter and leave the power
down state during these idle intervals, while considering the
time and energy cost of doing so. In this paper, we present
a scheduling technique that can effectively reduce the over-
all energy consumption for hard real-time systems scheduled
according to a fixed priority (FP) scheme. Experimental re-
sults demonstrate that a processor using our strategy con-
sumes as less as 15% of the idle energy of a processor em-
ploying the conventional strategy.

1. Introduction

Power consumption has become one of the primary design
issues of next-generation portable, scalable and sophisticated
embedded systems. For CMOS circuits, power consumption
includes dynamic power and leakage power. Dynamic power
is due to the switching activities of the transistors, while leak-
age power is consumed even when no logic operations are
performed. A major component of leakage current is the sub-
threshold current that flows through the transistors when they
should be logically “off”. Current power saving techniques
mainly focus on reducing dynamic power because it has been
the dominant component in the overall power consumption
for most embedded systems today. However, as VLSI tech-
nology continues its evolution towards deep sub-micron and
nanoscale circuits operating at multi-GHz frequencies, the

rapidly elevated leakage power dissipation will soon become
comparable to, if not exceed, the dynamic power consump-
tion [1]. More advanced techniques required for the develop-
ment of future generations of low-power embedded systems.

Due to the increasing challenges presented by leakage
power consumption, design efforts on all fronts must be pur-
sued to form an integrated solution for this problem. Re-
cently, many circuit and architecture techniques, such as
those presented in [2, 3, 4, 5], have been proposed to con-
trol leakage power. It is our belief that real-time scheduling
plays a unique role in this integrated effort not only because
a large percentage of future embedded systems will be real-
time, but also because real-time scheduling is one of the most
effective ways of reducing power consumption, through the
exploitation of advanced power-management features avail-
able in many of today’s processors.

Dynamic Voltage Scaling (DVS) can effectively re-
duce dynamic power consumption in real-time systems.
DVS works by varying the processor’s supply volt-
age and frequency during runtime to match workload and
deadline requirements. However, the energy savings achiev-
able via voltage reduction is becoming severely limited due
to the dramatic increase of the leakage power consump-
tion, a five-fold increase per technology generation accord-
ing to [1]. In fact, as shown in our experiments, using DVS
alone with no consideration of leakage power consump-
tion may actually increase the total energy consumption!
This situation occurs because DVS and leakage reduc-
tion techniques are at odds. The most effective way to re-
duce leakage power is to put the processor into a low-power
sleep state during idle intervals. On the other hand, DVS re-
duces the processor’s execution speed to minimize dynamic
power. By reducing the execution speed, the proces-
sor utilization is increased, thus reducing and fragmenting
available idle times. It is this tradeoff that makes leakage re-
duction a considerable challenge.

In this paper, we study scheduling techniques that can
minimize the overall power consumption for a real-time sys-
tem scheduled using a fixed-priority (FP) scheme. Many
DVS based real-time scheduling techniques,e.g. [8, 9, 10,

11], have been proposed to conserve energy in a real-time
system. Some of these approaches, such as [11, 12, 13, 14,
15, 16, 17], are targeted at FP systems.

Recently, some work has been reported that deals with
the leakage power consumption in real-time scheduling. Lee
et. al. [18] proposed a leakage reduction scheduling tech-
nique calledLC-EDF . They assumed a non-DVS processor,
which makes shutting down the processor during idle inter-
vals the most effective way to reduce the overall energy con-
sumption. Considering the timing and energy overhead as-
sociated with shutting down the processor, LC-EDF care-
fully delays the execution of arriving task instances in or-
der to expand the length of idle intervals. Due to the limita-
tion of their processor model, the overall energy consumed
cannot be minimized. Iraniet. al. [19] theoretically proved
that the optimal voltage schedule, which also considers the
leakage power, can be constructed from the corresponding
DVS voltage schedule without the leakage power consider-
ation. In this case, higher-than-necessary processor speeds
may be required in the optimal schedule to balance the dy-
namic and leakage power consumption. To better save idle
energy during idle periods, Jejurikaret. al. [20] proposed
a better approach, calledCS-DVSPto extend idle intervals.
They showed that the minimal length of the idle intervals ac-
cording toCS-DVSPis no less that that byLC-EDF . How-
ever, all these approaches are targeted at the real-time sys-
tems scheduled according to the earliest deadline first (EDF)
scheme [21].

We are more interested in real-time systems scheduled ac-
cording to a FP scheme. Because of their high predictabil-
ity, low overhead, and ease of implementation, FP schemes
are among the most popular in real-time embedded appli-
cations [22]. Leeet. al. [18] proposed a leakage reduction
scheduling technique for FP systems, calledLC-DP, by ex-
tending the Dual-Priority (DP) scheduling model presented
in [23]. In LC-DP, idle time is treated as a “soft task” in
the DP model. A task instance is delayed by first being re-
leased in the lower priority queue if the processor is idle. It is
promoted to the higher priority queue for execution at an op-
timal promotion time to avoid any deadline misses.LC-DP
also immediately promotes a task instance to the higher pri-
ority queue when the processor is not idle in order to reduce
the number of idle intervals. However, Jejurikaret. al. [30]
pointed out that this may potentially lead to some task in-
stances missing their deadlines. They further proved that us-
ing the optimal promotion time as the allowable delay for
each task instance can guarantee schedulability for both dual
priority and fixed priority policies. However, since the com-
putation of the optimal promotion time for each task in-
stance is performed based on the exact response time anal-
ysis, which is NP-hard in nature [23], this approach cannot
be readily applied on-line or for large task sets. If the promo-
tion time is computed based on the worst case response time
(by assuming a task instance arrives simultaneously with all
the higher priority ones), the possible delay for each task in-

stance can be estimated rather pessimistically which severely
limits the energy performance of this approach.

In this paper, we present a scheduling technique that com-
bines both the DVS and a shut-down strategy to effectively
reduce the overall energy consumption of FP hard real-time
systems. As shown by Iraniet. al. [19], such a technique
may require that the processor run at a higher-than-necessary
speed and hence produce a large number of processor idle in-
tervals. The major source of energy consumption in these in-
tervals is the result of leakage current, which will soon be-
come a major portion of the overall energy consumption. In
this regard, we present an efficient technique that delays the
execution of tasks in order to merge scattered idle intervals,
thus greatly reduces leakage power as well as the impact of
processor shutdown overhead. The proposed technique has
a very low on-line computation cost, and experimental re-
sults show that our method can significantly reduce the en-
ergy consumption when compared with the traditional non-
delay strategy.

The rest of the paper is organized as follows. Section 2 in-
troduces preliminaries related to our problem. Section 3 dis-
cusses our delay analysis technique. Section 3.3 presents our
on-line leakage conscious DVS algorithm. Section 4 demon-
strates the effectiveness of our approach based on simula-
tions. Section 5 concludes the paper.

2. Preliminaries

This section, describes the real-time system and power
model used in this paper.

2.1. System model

We conduct our study for a set ofN independent jobs, de-
noted byJ = {J1, J2, · · · JN}. Each individual job is de-
noted byJi = (ri, ci, di), whereri, ci, anddi are arrival
time, worst case execution cycle, and absolute deadline for
the job, respectively. Additionally, each job is statically as-
signed a priority. We assume thatJi has a higher priority than
Jj , if i < j. Often a real-time system is described by a set of
periodic tasks, where each task instance represents one job.
In these cases, it is sufficient to schedule the set of jobs pro-
duced up until the Least Common Multiple (LCM) of the pe-
riods of each task.

2.2. Power model

In a CMOS circuit, the power consumption includes both
dynamic and static components during its active operation.
The dynamic power consumption (Pdyn) mainly consists of
the switching power for charging and discharging the load
capacitance, which can be represented [24] as

Pdyn = αCLV 2f, (1)

whereα is the switching activity,CL is the load capacitance,
V is the supply voltage, andf is the system clock frequency.

t=0
 5
 15
13
10

J1

J4

J3

J2
 C2=3

C3=1

C4=3

(a)

(c)

0
 1
 5
 10

(b)

S

0.5

0.22

t

22
 22

C1=1

1
 12

t=0
 5
 15
13
10

J1

J4

J3

J2

C2=3

C3=1

C4=3

22

C1=1

1
 12

(d)

t=0
 5
 15
13
10

J1

J4

J3

J2

C2=3

C3=1

C4=3

22

C1=1

1
 12
 18
 7

idle

interval

idle

interval

3

idle

interval

The static power (Pleak) can be expressed [25] as

Pleak = IleakV, (2)

where Ileak is the leakage current which consists of both
the sub-threshold leakage current and the reverse bias junc-
tion current in the CMOS circuit. Leakage current increases
rapidly with the scaling of the devices and becomes partic-
ularly significant with the reduction of the threshold volt-
age [26]. Therefore, the leakage power consumption is be-
coming a major part of the the active power consumption
(Pact), i.e.,

Pact = Pdyn + Pleak, (3)

in future CMOS circuits with low supply voltage and high
transistor density.

The processor consumes energy not only in its active
mode but also when it is idle. When the processor is idle,
the major portion of the power consumption comes from the
leakage, which is increasing rapidly with newer CMOS tech-
nologies. Shutting down the processor, i.e., putting the pro-
cessor into a “sleep mode” can greatly reduce the energy con-
sumption during these idle periods. For example, it has been
reported in [27] that the power dissipation when the pro-
cessor is idle can be on the order of103 times that when
it is sleeping. While the processor consumes less power in
sleep mode, extra energy and time are needed for it to en-
ter and later leave this state, because one must save/restore
the context as well as initiate architectural components such

as the cache, translation look aside buffers, and branch tar-
get buffers. This energy overhead may outweigh the energy
saved if the idle interval is not long enough. Assume that
the energy overhead of shutdown/wakeup isEo, the timing
overhead isto, and the power consumption of a processor in
its idle and sleeping state arePidle andPsleep, respectively.
Then, the energy can be saved only when the length of the
idle interval is larger thanTmin = max{ Eo

Pidle−Psleep
, to}.

We callTmin theminimal length of the idle interval.

2.3. A motivational example

Our goal is to minimize theoverall energy consumption
while guaranteeing task deadlines. As indicated in equation
(1), the dynamic energy consumption is quadratically related
to the supplied voltage. Therefore, traditional DVS schedul-
ing techniques [14, 15, 16] try to reduce the the supply volt-
age to as low a level as possible. As an illustrative exam-
ple, Figure 1(a) shows a job set with four jobs. Figure 1(b) is
the voltage schedule according to the DVS scheduling tech-
nique presented in [14], and Figure 1(c) shows the actual ex-
ecutions of the jobs based on the voltage schedule from Fig-
ure 1(b).

As shown in Figure 1(b) and Figure 1(c), previous DVS
techniques [14, 15, 16] can effectively reduce the processor
speed and guarantee the deadlines of the real-time jobs. How-
ever, such a voltage schedule is not always feasible and/or en-
ergy efficient overall. First, practical processors have a min-

imal voltage supply limitation. Second, they only provide a
discrete set of voltages, including the minimum level. This
means the processor will likely not be able to run at a speed
selected by a particular DVS algorithm. Instead, the desired
speed needs to be rounded up to the next discrete speed that
is available. On the other hand, even when a low proces-
sor speed is available, the rapidly increased leakage current
may increase the static power consumption to the extent of
over-weighing the dynamic power consumption. Therefore,
to achieve the best energy efficiency, the processor speed
must be determined in a cooperative manner with both dy-
namic and static energy consumption in mind.

Consider a job with workloadw. Let the total power of a
processor during its active mode bePact(s). Then the total
energy, i.e.,Eact(s), consumed to finish this job with speed
s can be represented as

Eact(s) = Pact(s)× w

s
. (4)

Hence, to minimize theEact(s) in equation 4, we have

Pact(s) = P ′act(s)s. (5)

Equation (5) computes the most energy efficient speed to ex-
ecute one job. We call this speed as thethreshold speed, and
denoted assth. To increase or decrease the processor speed
from sth will increase either the dynamic or static power, and
thus the total power consumption.

Note that, while it is desirable to execute a job using the
threshold speed to minimize the active power consumption,
it is not always feasible to do so when considering the dead-
lines and the preemption effects among jobs,i.e., jobs with
higher priorities can always block jobs with lower priorities
until they are finished. Given a voltage schedule, a job that
is required to run at a speed higher thansth must be exe-
cuted with that higher speed to guarantee the schedulability
of the job set. For jobs having required speeds lower thansth,
they can be executed atsth to conserve energy. Figure 1(d)
shows the scheduling results withsth = 0.5.

Using sth for jobs with speed requirements lower than
sth while maintaining the speeds of the rest certainly guar-
antees all deadlines. The problem is that, as shown in Fig-
ure 1(d), it can result in a large number of scattered idle in-
tervals. While using a processor shut-down strategy is the
most efficient method to reduce the energy consumption for
these intervals, too many shut-downs will incur a significant
energy overhead. Moreover, using a processor power down
strategy is not always feasible or necessarily energy efficient
if the idle interval is not long enough. Unless we can effec-
tively deal with the idle intervals in the schedule, we can-
not achieve our ultimate goal of maximizing the overall en-
ergy performance of the system. In what follows, we intro-
duce our approach to save the idle energy when scheduling a
FP task set by extending the length of idle intervals.

3. Leakage conscious scheduling algorithm

In this section, we present our scheduling technique to re-
duce the idle energy for a set of real-time jobs. We first ana-
lyze how a job set can be delayed without missing deadlines.
Then we construct an algorithm that can be applied on-line
to reduce energy consumption during idle intervals.

3.1. Basic concepts

The power down strategy is in favor of longer idle inter-
vals. To extend an idle interval, one can always increase the
processor speed so that each job is executed faster. However,
as shown in equation 5, increasing the speed oversth will in-
crease the overall power consumption. A better approach, as
suggested in [18, 19, 20], would be one that extends the inter-
val lengths by delaying the executions of the incoming jobs,
i.e. a job is executed as soon as possible when the proces-
sor is not idle, but delayed as much as possible when the pro-
cessor is idle.

Delaying job executions helps to merge scattered idle in-
tervals into longer ones. More energy can be saved because
energy transition overhead for entering and leaving the low-
power sleep state is reduced. Moreover, intervals that were
previously shorter thanTmin can now be shut down. As men-
tioned before, the power dissipation when the processor is
idle can be in the order of103 times of that when the proces-
sor is shut down.

The main difficulty when extending the length of idle
intervals is to determine how long a job set can be de-
layed without causing any future job to miss its deadline.
Chetto [28] introduced a static scheduling technique called
EDL (earliest deadline as late as possible) to determine the
longest time that a job can be delayed. However, it requires
the jobs be scheduled according to the earliest deadline
scheduling algorithm. For job set scheduled by a FP (fixed
priority) scheme, we derived a new approach to determine
the latest time point to which the job set can be delayed. To
facilitate a clear explanation, we first introduce the follow-
ing definitions.

Definition 1 Let job set (J) be executed with a constant
speeds∗.

• Thelatest starting time of a job, e.g.,Ji ∈ J , (denoted
as lst(Ji)) is the latest time such that, if the execution
of Ji or jobs with a priority higher thanJi start no later
thanlst(Ji), Ji will meet its deadline.

• Thelatest starting time of a job set, e.g.J , (denoted as
LST (J)) is the latest time such that, if the execution of
any jobs inJ starts no later thanLST (J), all jobs will
meet their deadlines.

In [29], Mochocki et. al. introduced a method to com-
puteLST (J) whenJ is scheduled according to EDF. Their
method is based on the following lemma.

t=0
 5
 15
13
10

J1

J4

J3

J2

C2=3

C3=1

C4=3

22

C1=1

1
 12

(a)

3
 18
 t=0
 5
 15
13
10

J1

J4

J3

J2

C2=3

C3=1

C4=3

22

C1=1

1
 12

(b)

8
 18
7

idle

interval

idle

interval

idle

interval

t=0
 5
 22
13
 15
12

J1

J4

J3

J2
 C2=3

C3=1

C4=3

C1=1

1
 10

(c)

t=0
 5
 15
13
10

J1

J4

J3

J2

C2=3

C3=1

C4=3

22

C1=1

1
 12

(d)

8
 18

deadline miss

6

Lemma 1 [29] Let job set (J) be executed with a constant
speeds∗. Then,

lst(Ji) = di −
∑

Jk∈hp(Ji)

ck

s∗
, (6)

wherehp(Ji) is the jobs with the same or higher priorities
than that ofJi. Furthermore,

LST (J) = min
i
{lst(Ji)}. (7)

The rationale behind Lemma 1 is that if the accumulated
workload from a jobJi andall the higher priority jobs can be
finished beforedi, the deadline ofJi will be satisfied. In ad-
dition, the minimal latest starting time of all the jobs can cer-
tainly guarantee all the deadlines. It is not difficult to see
that using equation (7) to compute the starting time for a FP
job set can still guarantee the feasibility of this job set. Un-
fortunately, using Lemma 1 may not ensure that thefeasible
starting time for the FP job set is always the latest. For ex-
ample, in Figure 2(a), according to equation (6) and (7), as-
sumings∗ = 0.5, we havelst(J1) = 13, lst(J2) = 14,
lst(J3) = 3, lst(J4) = 6, and therefore,LST (J) = 3.
However, as shown in Figure 2(b), if the job set is delayed
to t = 6, all the jobs can meet their deadlines. The conse-
quence is that all of the short idle intervals cannot be effec-
tively merged as shown in Figure 2(a).

Note that accumulating the workload from all the higher
priority jobs in equation (6) is equivalent toassumingthat
all the higher priority jobs have to finish before the dead-
line of current job. This is true for job sets scheduled accord-
ing to EDF, but is not necessarily true for FP job sets since

higher priority jobs in a FP job set can arrive much later than
the deadline of the current job. In what follows, we present
a more effective technique to accurately identify the latest
starting point for FP job sets.

3.2. Analyzing the latest starting time for FP job
sets

Recall that the jobs with required speeds higher thansth

should run at their required speeds in order to guarantee
deadlines. These jobs cannot be delayed at all and must be
executed within the intervals in the DVS voltage schedule.
For ease of computation, we “shrink” the intervals during
which jobs with a required speed higher thansth are exe-
cuted. This includes removing all jobs in these intervals, and
also adjusting the deadlines and arrival times of the rest of
the jobs. Specifically, we have the following definition.

Definition 2 (Adjusted job set)A job set is called anad-
justed job setof J , if all jobs in J having a speed require-
ment higher thansth (as well as the intervals containing
these jobs) are removed, and the arrival times and deadlines
of the rest of the jobs are adjusted correspondingly.

Before we explain our strategy in detail, we also want to
introduce several important terminology.

Definition 3 (Scheduling point) Time t is called aJn-
scheduling point if t = dn or t = ri, i < n and
rn < ri < dn.

As explained before, a job set is delayed only when the
processor is idle. Therefore, when identifying the delay that
a job can tolerate, we are more interested in the case that the

processor is idle when a job arrives. Specifically, we have the
following definition.

Definition 4 (Reduced job set)An adjusted job set is called
a Jn-reduced job setif every jobJi in the set satisfiesri ≥
rn.

We use Figure 2 to illustrate these definitions. Figure 2(c)
shows theJ3-reduced job set and all theJ3-scheduling points
(as marked by “x”). Note that in Figure 2(c) ifJ3 is to be fin-
ished at any one of theJ3-scheduling points (e.g.,t = 12) all
the higher priority jobs arriving before this scheduling point
(e.g.,J1) must be completed before this scheduling point.
Therefore, for eachJn-scheduling pointt, the execution of
Jn or any higher priority jobs must begin no later thanstn(t),
where

stn(t) = t−
∑

Jk∈hp(Jn)

ck

sth
, rk < t, (8)

wherehp(Jn) is the set of jobs with a priority greater than or
equal toJn and arriving beforet. It is not difficult to see that
different Jn-scheduling points can lead to differentstn(t).
Specifically, we have the following Lemma.

Lemma 2 Let job set (J) be theJn-reduced job set and
S(Jn) be the set of allJn-scheduling points. Then,

lst(Jn) = max{stn(t), t ∈ S(Jn)}. (9)

The correspondingJn-scheduling point is denoted as
P (lst(Jn)). The proof for this lemma is trivial accord-
ing to Definition 1 and is therefore omitted. From Fig-
ure 2(c), we havelst(J3) = 8 (andP (lst(J3)) = 12). It
can be readily verified thatJ3 can meet its deadline with re-
spect tolst(J3) = 8.

We are interested in finding the latest starting time for a
FP job set. Unfortunately,lst(Jn) can only guarantee the fea-
sibility of job Jn but not necessarily any other job in theJn-
reduced job set. For example, as shown in Figure 2(d), ifJ3

and all the higher priority jobs are delayed tot = 8, J4 will
miss its deadline. The reason is that, withlst(J3) = 8, J3

and the higher priority jobs are not completed until the cor-
responding scheduling pointt = 12, which will block the ex-
ecutions ofJ4 and cause it to miss its deadline. A remedy for
this problem is to compute the latest starting times in a sim-
ilar way for all the lower priority jobs that may potentially
be preempted, and pick the smallest one. We call this lat-
est starting time theeffectivelatest starting time for the job,
denoted as˜lst(Jn). The above idea is formulated in Algo-
rithm 1.

For theJn-reduced job set, Algorithm 1 helps to compute
the latest time for aJn-reduced job set. This conclusion is
formally presented in the following lemma.

Lemma 3 LetJ be theJn-reduced job set. The effective lat-
est starting time (̃lst(Jn)), output from Algorithm 1, is the
latest time thatJn and all the higher priority jobs can be de-
layed to such thatJn and all the lower priority jobs inJ will
meet their deadlines.

Algorithm 1 Compute the effective latest starting time
˜lst(Jn) for job Jn such thatJn and all the lower priority

jobs in theJn-reduced job set can meet their deadlines.
1: Input: TheJn-reduced job setJ .
2: Output: The effective latest starting timẽlst(Jn)
3: nlst = lst(Jn); //Equation (9)
4: end = P (lst(Jn));//the scheduling point corresponding

to lst(Jn)
5: for Jk ∈ J , k = n + 1, n + 2, ... do
6: if rk < end then
7: nlst = min{nlst, lst(Jk)};
8: end = max{end, P (lst(Jk))};
9: end if

10: end for
11: ˜lst(Jn) = nlst;

Proof: According to Lemma 2, the schedulability forJn is
guaranteed in line (3) of Algorithm 1 as well as the fact that
nlst can only be smaller later on with the progress of the al-
gorithm. Variableend helps to keep track of all lower pri-
ority jobs that are potentially preempted when delayingJn

and jobs with a priority higher thanJn to nlst. The schedu-
lability for each of these jobs is guaranteed in line (7) for the
same reason as that ofJn.

Therefore, to prove Lemma 3, we only need to check if
other lower priority jobs (i.e., with a release time later than
end during each FOR loop) can meet their deadlines. Con-
sider a lower priority jobJk in one of the FOR loops and let
rk > end. Note that, when consideringJk with respect to
nlst andend, any job with priority the same or higher than
that ofJk that is delayed tonlst will finish no later thanend.
Therefore, delaying these jobs will not affect the schedula-
bility of Jk. Moreover, the value ofnlst can only be reduced
later on, soJk can meet its deadline ifJ is delayed tonlst.
¤

With Algorithm 1, we can compute the effective latest
starting time for each of the jobs in the adjusted job set. For
example, in Figure 2(c), we havẽlst(J1) = 8, ˜lst(J2) = 16,
˜lst(J3) = 6, ˜lst(J4) = 10. Also, we observe the follow-

ing interesting property of̃lst(Jn).

Lemma 4 For adjusted job setJ , let Ji, Jk ∈ J , i < k.
Then ˜lst(Ji) ≤ ˜lst(Jk) if ri < rk.

Proof: The proof for the casedi ≤ rk is trivial since ˜lst(Ji)
cannot exceeddi. We use contradiction to prove that when
di > rk andri < rk, ˜lst(Ji) > ˜lst(Jk) is not possible.

Let Ji andJk represent the correspondingJi- andJk-
reduced job sets, respectively, andLP (Jp,Jp) represent the
jobs inJp with priorities the same or lower than that ofJp.
Then

Ji ⊃ Jk, and LP (Ji,Ji) ⊃ LP (Jk,Jk).

According to Lemma 3, delaying the execution ofJi to
˜lst(Ji) can ensure that all jobs inLP (Ji,Ji) meet their

deadlines. If ˜lst(Ji) > ˜lst(Jk), this contradicts to the fact

that ˜lst(Jk) is the latest time thatJk can be delayed to such
that the jobs inLP (Jk,Jk) can meet their deadlines. ¤

Recall that our goal is to identify the latest starting time
for a job set such thateveryjob can meet its deadline. Us-
ing ˜lst(Jn) cannot achieve this goal because (1) it is based
on an adjusted job set and (2) the schedulability of jobs with
a priority higher than that ofJn is not guaranteed. However,
based on Lemma 3 and Lemma 4, we can derive the follow-
ing theorem.

Theorem 1 Given a general job setJ and threshold speed
sth, the latest starting time forJ can be computed as

LST (J) = min
n
{ ˜lst(Jn))}. (10)

where ˜lst(Jn) is rn if Jn requires a speed higher thansth

in the DVS voltage schedule, otherwise˜lst(Jn) is computed
according to Algorithm 1.

Proof: We first assumeJ is an adjusted job set. Let
LST (J) = ˜lst(Ji) = minn{ ˜lst(Jn)}. We want to prove
that any one of the jobs,i.e. Jk, can meet their dead-
lines if job setJ is delayed to˜lst(Ji).

Note that from Lemma 4, inJ , we have for anyk < i,
rk ≥ ri. We consider three different cases separately.

• Case 1:k < i.
Let job rq be the earliest arrival time for any jobJq

such thatq < k. If we haverq ≥ rk, according to
Lemma 3,Jk can meet its deadline sincẽlst(Jk) ≥
˜lst(Ji). On the other hand, ifrq < rk, the schedula-

bility of Jk is guaranteed with respect tõlst(Jq). Since
˜lst(Jq) ≥ ˜lst(Jk) ≥ ˜lst(Ji), Jk can meet its deadline

if job setJ is delayed to˜lst(Ji).

• Case 2:k = i.
The only difference between job setJ and theJk-

reduced job set is thatJ may contain some jobs with
priorities lower than that ofJk. According to Lemma 3,
Ji can meet its deadline since adding any lower priority
job to theJk-reduced job set cannot change the schedu-
lability of Ji and can only decreasẽlst(Ji).

• Case 3:k > i

If all the jobs arrive later thanJi, Lemma 3 can guar-
anteeJk ’s deadline. Assume there is at least one job ar-
riving earlier thanJi, and letJk be the one with the ear-
liest arrival time. Sincẽlst(Ji) ≤ ˜lst(Jk), Jk and all the
lower priority jobs can meet their deadlines. Note that,
for job Jq such thati < q < k, removingJk and all
the lower priority jobs fromJ neither changes its fea-
sibility nor increase ˜lst(Jq). If rq < ri andrq is the
next earliest arrival time of the jobs, we can prove that
Jq and all the lower priority jobs can meet their dead-
lines similarly. By repeating this process, we thus prove
that all the lower priority jobs can meet their deadlines
if J is delayed to˜lst(Ji).

WhenJ is a general job set, any job with speed require-
ment higher thansth cannot be delayed according to equa-
tion (10). Hence, no such job will miss its deadline. In addi-
tion, the latest starting time for the rest of the jobs is no later
than that computed with the adjusted job set. Therefore, all
the jobs can meet their deadlines. ¤

From Theorem 1, we haveLST (J) = 6, which is ex-
actly the case shown in Figure 2(b).

3.3. The algorithm

After studying how long a job set can be safely delayed,
we are now ready to present our scheduling strategy to re-
duce the overall energy consumption. Our approach consists
of two phases, an off-line phase and an online phase. In the
off-line phase (Algorithm 2), we compute foreachjob, as-
suming the processor is idle upon the arrival of the job, how
long the remaining job set can be delayed; while in the on-
line phase of our approach (Algorithm 3), we apply the re-
sults produced in the off-line phase and make the scheduling
decision on-line.

Algorithm 2 The off-line phase to determine the processor
speed (sn) for each job (Jn), and, assumingJn is the next ar-
rival job, to compute the maximal delay (δn) for the remain-
ing job set.

1: Input: J , sth

2: Output: sn, δn, n = 1, 2, ..., N
3: Compute the DVS voltage schedule forJ and thus

sn, n = 1, 2...N ;
4: for Jn ∈ J do
5: Jc = J ;
6: // make a copy ofJ
7: Remove allJi ∈ Jc with ri < rn;
8: sn = max{sn, sth};
9: TB = ˜lst(Jn);

10: for Jk with rk < TB andk < n do
11: if ˜lst(Jk) < TB then
12: TB = ˜lst(Jk);
13: //computed by Algorithm 1
14: end if
15: end for
16: δn = TB − rn;
17: end for

In Algorithm 2, the latest starting time for the job set is
computed according to Theorem 1. Note that even though
equation (10) requires the computation of theeffectivelatest
starting time for all jobs, it is not necessary in practice. Note
that TB (in line 8 of Algorithm 2) actually sets up an up-
per bound on delay,i.e. the job set cannot be delayed to any
time later thanTB without missing a deadline. Therefore, we
only need to check the higher priority jobs (Lemma 4) re-
leased beforeTB to determine the latest starting time for the
job set (line 9-13). In order to do so, we only need to per-
form a linear scan within the interval from the earliest arrival

time toTB , which has a complexity ofO(N ′), whereN ′ is
the total number of higher priority jobs within this interval.
The complexity of the rest of the algorithm is also linear re-
lated toN ′. SinceN ′ is usually very small for a periodic task
set, Algorithm 2 typically has a very low computation com-
plexity.

The on-line algorithm follows the principles discussed
earlier. It takes the desired processor speed (sn) and the max-
imal delay (δn) for each jobJn (output from Algorithm 2)
as input. When the processor is not idle, it will run the jobs
in the ready queue according to the fixed priority scheme;
when it is idle, the later jobs will be delayed to the latest
starting time (line 7) computed based on the first job arrival.
The algorithm is calledFPLK and illustrated in Algorithm 3.
FPLK has a constant time complexity, because it only re-
quires a single table lookup to identifyδn.

Algorithm 3 (FPLK) The on-line leakage conscious fixed-
priority scheduling algorithm

1: Input: (J , sn, δn, n = 1, ..., N)
2: if processor is not idlethen
3: Run jobJn in the ready queue according to FP, using

speedsn;
4: else
5: Let Jn be the next coming job;
6: nlst = rn + δn;
7: if nlst− tcur > Tmin then
8: // tcur is the current time
9: Shut down the processor and set up the wake up

time to benlst− tcur;
10: end if
11: end if

4. Experimental results

In this section, we evaluate the overall energy efficiency
of the proposed technique with several experiments. In our
experiments, we compare five strategies:

• No DVS, No Delay (NSND)The task sets are sched-
uled without DVS,i.e., all jobs are always executed us-
ing the highest speed. A processor is shut down when
there is enough idle time, and no task instance is de-
layed.

• DVS, No Threshold, No Delay (SNTND)The task sets
are scheduled with DVS but with no consideration of the
leakage (i.e. the threshold speed), and no task instance
is delayed;

• DVS, Threshold, No Delay (STND)The task sets are
scheduled with DVS, and the jobs are executed with
the threshold speed,i.e. sth, if its speed requirement is
lower thansth in the DVS voltage schedule. However,
no job execution is delayed.

0

1

2

3

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5
 0.5 - 0.6
 0.6 - 0.7

Utilization

N
o

rm
al

iz
ed

 T
o

ta
l E

n
er

g
y

C
o

n
su

m
p

ti
o

n

NSND

SNTND

STND

STD

SDP

Figure 3. The average total energy consump-
tions of five different approaches.

• DVS, Threshold, Delay (STD) – Our approachTask
sets are scheduled with DVS with consideration of both
the leakage (i.e. the threshold speed) and execution de-
lay (Algorithm 2).

• DVS, Dual Priority (SDP) Task sets are scheduled with
DVS and delayed with Dual Priority. This is the ap-
proach in [30]. We compute the promotion time once
for each task based on the worst case scenario and use
it for each jobs in the task.

For the algorithms employing DVS above (SNTND,
STND and STD), the method in [14] is used to find the off-
line voltage schedule under FP scheme. This method is cho-
sen because, while the FP DVS problem is NP-Hard, this
heuristic can provide results very close to that by the opti-
mal one [15] in polynomial time (O(N3)). The power model
and technology parameters of the processor used in our sim-
ulation are adopted from [25]. The threshold speed is
around 0.4 [20] for this processor model. For the pro-
cessor power down/up overhead, we use the same val-
ues as that used in [20],i.e., Pidle = 240mW , Eo = 483µJ ,
andto = 2ms.

The real-time systems tested in our experiments are pe-
riodic task systems randomly generated with five periodic
tasks each. All tasks are scheduled with the RM method.
The period of each task is randomly chosen in the range of
[5, 30]ms. The deadline of each task is set to be equal to its
period. We examine the different energy saving performance
of the above four approaches for systems with different uti-
lization. Based on the utilization bound for periodic task set
with five periodic tasks, i.e.,U = 5(21/5 − 1) = 0.74, we
divide utilization ranging from 0.0 to 0.7 into intervals of
length0.1. Within each interval, we randomly generated no

less than 50 periodic task sets. For each task set, we collect
both overall energy consumption and the idle energy con-
sumption for the task set starting from 0 to the LCM of its
periods. We accumulated the values for each utilization inter-
val, normalized1 the results byNSND. The results are shown
in Figure 3 and Figure 4, respectively.

From Figure 3, it is interesting to note that using DVS
without the consideration of the leakage current (SNTND)
cannot effectively reduce the overall energy consumed. This
is particularly true when the utilization of the task set is low.
For example, when the utilization is less than 0.2, the aver-
age overall energy consumption withSNTND is in fact larger
than that byNSND. When the utilization is less than 0.1, the
average overall energy with “pure” DVS voltage schedule
(SNTND) is 1.2 times higher than that byNSND, and almost
as three times as that by the other two strategies. This is be-
cause, when the utilization is low, the processor is running at
a very low speed inSNTND. The processor consumes more
energy due to the large leakage current. Also, the overall en-
ergy consumption ofSTD is about19.6% less thanSTND
andSDP. When the utilization of the task set is high, from
Figure 3, the overall energy consumption forSNTND seems
to be very close to that ofSTND, STD or SDP. This is be-
cause the processor usually has to run at a speed higher than
the threshold speed to guarantee the deadlines of the tasks.
Therefore, all these strategies use the similar speed most of
the time and have similar energy consumption.

Since the leakage power consumption is becoming com-
parable or even exceeding the dynamic power consump-
tion, the energy consumption during the processor idle time,
mainly due to the leakage current, will soon become a signif-
icant part of the overall energy consumption. We are there-
fore interested in investigating how our approach can help
to reduce this part of energy consumption compared with
other approaches. In Figure 4, it is not surprising to see that
SNTND consumes very little idle energy since there is less
slack time during task execution. Unfortunately, the type of
processors required bySNTND cannot be built in practice
since leakage current is no longer negligible. It is interest-
ing to see that by delaying the execution of the jobs (STD),
the idle energy is greatly reduced compared withSTND. The
smaller the utilization is, the more energy is saved during
idle periods by delaying jobs. When the utilization is low, the
threshold speed can be much larger than the speed required
for each job and results in a large number of idle intervals.
STD can effectively merge many of the intervals by delay-
ing the execution of jobs and is therefore a much better ap-
proach thanSTND. As shown in Figure 4, when the utiliza-
tion is within 0.1-0.2, the average idle energy consumed by
STD is less than 15% of that consumed bySTND. When the
utilization is high, there is only a limited number of idle inter-
vals. In addition, many jobs may require speeds higher than

1 For example, normalizingC to N means usingC
N

as the value of C for
comparisons.

0

0.4

0.8

1.2

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5
 0.5 - 0.6
 0.6 - 0.7

Utilization

N
o

rm
al

iz
ed

 Id
le

 E
n

er
g

y
C

o
n

su
m

p
ti

o
n

NSND
 SNTND
 STND
 STD
 SDP

Figure 4. The average idle energy consump-
tions by five different approaches.

the threshold speed which cannot be delayed at all. Hence,
the idle energy efficiency ofSTD is limited. Even so, when
the utilization of a task set is within [0.4-0.5], the idle energy
consumed usingSTD is, on average, around 50% of that us-
ing STND as shown in Figure 4. Our experiments also show
that pessimistically estimating the delay amount for each job
in SDPcan severely degrade the energy efficiency of this ap-
proach. As shown in Figure 4, when the utilization is within
0.3-0.4, the average idle energy consumed bySTD is less
than 10% of that consumed bySDP.

5. Summary

Reducing the overall power dissipation is critical in the
design of future real-time embedded systems. As the IC tech-
nology continues to scale down, leakage power consumption
is becoming a more and more significant part of the overall
power consumption. In this paper, we investigated the prob-
lem of applying scheduling techniques to reduce the overall
energy consumption for fixed-priority real-time systems.

As shown by our experiments and discussions, applying a
DVS based voltage schedule alone cannot effectively reduce
the overall energy consumption for the system, and can even
increase it significantly. A leakage power conscious DVS
voltage schedule may require the processor to adopt a speed
higher-than-necessary to avoid the rapidly increasing leak-
age current at low voltage levels. This may result in a large
number of small idle intervals during job execution. We pro-
posed an efficient approach to merge these intervals by de-
laying the execution of the jobs to reduce the processor shut-
down overhead and improve the overall energy performance.
In our approach, the maximal delay for each job is statically
computed, and is then applied on-line to extend idle inter-
vals. Based on a practical processor model, our experimen-

tal results clearly demonstrate that this approach has a great
potential in future embedded systems to reduce the overall
power consumption. Finally, it is worth mentioning that our
approach is a greedy approach. How to achieve the optimal
overall energy performance is another very interesting prob-
lem and needs further study.

References

[1] ITRS, International Technology Roadmap for Semi-
conductors. Austin, TX.: International SEMATECH,
http://public.itrs.net/.

[2] C. Neau and K. Roy, “Optimal body bias selection for leakage
improvement and process compensation over different tech-
nology generations,”ISLPED, pp. 116–121, 2003.

[3] S. Duarte, Y. Tsai, N. Vijaykrishnan, and M. Irwin, “Evalu-
ating run-time techniques for leakage power reduction,”VL-
SID’02, 2002.

[4] B. H. Calhoun, F. A. Honore, and A. Chandrakasan, “De-
sign methodology for fine-grained leakage control in mtc-
mos,” ISLPED, pp. 104–109, 2003.

[5] M. Johnson, D. Somasekhar, and K. Roy, “Leakage con-
trol with efficient use of transistor stacks in single threshold
cmos,”DAC, pp. 442–445, 1999.

[6] J. Halter and F. Najm, “A gate-level leakage power reduction
method for ultra low power cmos circuits,”CICC, pp. 475–
478, 1997.

[7] F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. Ko, and
C. Hu, “Dynamic threshold-voltage mosfet (dtmos) for ultra-
low voltage vlsi,” IEEE Trans. on Elec. Dev., vol. 44, no. 3,
pp. 414–422, Mar 1997.

[8] F. Yao, A. Demers, and S. Shenker, “A scheduling model for
reduced cpu energy,”IEEE Annual Foundations of Comp. Sci.,
pp. 374–382, 1995.

[9] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors,”ISLPED, pp. 197–
202, August 1998.

[10] H. Aydin, R. Melhem, D. Mosse, and P. Alvarez, “Dynamic
and aggressive scheduling techniques for power aware real-
time systems,”IEEE Real-Time System Symposium, 2001.

[11] P. Pillai and K. G. Shin, “Real-time dynamic voltage scal-
ing for low-power embedded operating systems,” in18th ACM
Symposium on Operating Systems Principles, 2001.

[12] Y. Shin and K. Choi, “Power conscious fixed priority schedul-
ing for hard real-time systems,”DAC, pp. 134–139, 1999.

[13] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-
time embedded systems on variable speed processors,”In-
ternational Conference on Computer-Aided Design, pp. 365–
368, 2000.

[14] G. Quan and X. S. Hu, “Energy efficient fixed-priority
scheduling for real-time systems on voltage variable proces-
sors,”DAC, pp. 828–833, 2001.

[15] G. Quan and X. Hu, “Minimum energy fixed-priority schedul-
ing for variable voltage processors,”2002 European Design
and Test Conference, 2002.

[16] H.-S. Yun and J. Kim, “On energy optimal voltage scheduling
for fixed-prioirty hard real-time systems,”ACM Transactions
on Embedded Computing Systems, vol. vol 2, 2003.

[17] W. Kim, J. Kim, and S.L.Min, “Dynamic voltage scaling algo-
rithm for fixed-priority real-time systems using work-demand
analysis,”ISLPED, 2003.

[18] Y. Lee, K. Reddy, and C. Krishna, “Scheduling techniques for
reducing leakage power in hard real-time systems,”ECRTS,
2003.

[19] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power sav-
ings,” ISDA, 2003.

[20] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dy-
namic voltage scaling for real-time embedded systems,”DAC,
pp. 275 – 280, 2004.

[21] C. L. Liu and J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in a hard real-time environment,”Journal of
the ACM, vol. 17, no. 2, pp. 46–61, 1973.

[22] J. Liu, Real-Time Systems. NJ: Prentice Hall, 2000.
[23] R. Davis and A. Burns, “Optimal priority assignment for ape-

riodic tasks with firm deadlines in fixed-priority preemptive
systems,”Information Processing Letters, vol. 53, no. 5, pp.
249–254, 1995.

[24] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-
power cmos digital design,”IEEE Journal of Solid-State Cir-
cuits, vol. 27, no. 4, pp. 473–484, April 1992.

[25] S. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Com-
bined dynamic voltage scaling and adaptive body biasing for
lower power microporcessor under dynamic workloads,”IC-
CAD, 2002.

[26] D.Duarte, N.Vijaykrishnan, M.J.Irwin, H.-S. Kim, and
G.McFarland, “Impact of scaling on the effectiveness of dy-
namic power reduction schemes,”ICCD, 2002.

[27] Intel, PXA250 and PXA210 Applications Processors Design
Guide. Intel, 2002.

[28] H. Chetto and M. Chetto, “Some results of the earliest dead-
line scheduling algorithm,”IEEE Transction On Software En-
gineering, vol. 15, 1989.

[29] B. Mochocki, X. Hu, and G. Quan, “A realistic variable volt-
age scheduling model for real-time applications,”IEEE/ACM
2002 International Conference on Computer Aided Design,
2002.

[30] R. Jejurikar and R. Gupta, “procrastination scheduling in fixed
priority real-time systems,”LCTES, 2004.

