Fixed Priority Scheduling for Reducing Overall Energy on Variable Voltage

Processors
Gang Quan Linwei Niu Xiaobo Sharon Hu Bren Mochocki
Dept. of CSE Dept. of CSE
University of South Carolina University of Notre Dame
Columbia, SC 29208 Notre Dame, IN 46556
{gquan, niuj@cse.sc.edu {shu, bmochock@cse.nd.edu
Abstract rapidly elevated leakage power dissipation will soon become

comparable to, if not exceed, the dynamic power consump-

While Dynamic Voltage Scaling (DVS) is an efficient tech- tion [1]. More advanced techniques required for the develop-
nique in reducing the dynamic energy consumption of a ment of future generations of low-power embedded systems.
CMOS processor, methods that employ DVS without con- pye to the increasing challenges presented by leakage
sidering leakage current are quickly becoming less efficient power consumption, design efforts on all fronts must be pur-
when considering the processor’s overall energy consump-syed to form an integrated solution for this problem. Re-
tion. A leakage conscious DVS voltage schedule may requirecently, many circuit and architecture techniques, such as
the processor to run at a higher-than-necessary speed to exthose presented in [2, 3, 4, 5], have been proposed to con-
ecute a given set of real-time tasks, which can result in atro| leakage power. It is our belief that real-time scheduling
large number of idle intervals. To effectively reduce the en- plays a unique role in this integrated effort not only because
ergy consumption during these idle intervals, and therefore 3 |arge percentage of future embedded systems will be real-
the overall energy consumption, the DVS schedule must jutime, but also because real-time scheduling is one of the most
diciously allow the processor to enter and leave the power effective ways of reducing power consumption, through the
down state during these idle intervals, while ConSidering the exp|oitati0n of advanced power-management features avail-
time and energy cost of doing so. In this paper, we presentaple in many of today’s processors.
a scheduling technique that can effectively reduce the over- Dynamic Voltage Scaling (DVS) can effectively re-
all energy consumption for hard real-time systems scheduledy,.e dynamic power consumption in real-time systems.
according to a fixed priority (FP) scheme. Experimental re- pyv/s \works by varying the processor's supply volt-
sults demonstrate that a processor using our strategy CON-age and frequency during runtime to match workload and
sumes as less as 15% of the idle energy of a processor éMgeagjine requirements. However, the energy savings achiev-
ploying the conventional strategy. able via voltage reduction is becoming severely limited due
to the dramatic increase of the leakage power consump-
tion, a five-fold increase per technology generation accord-
ing to [1]. In fact, as shown in our experiments, using DVS
alone with no consideration of leakage power consump-

Power consumption has become one of the primary desigrfion may actually increase the total energy consumption!
issues of next-generation portable, scalable and sophisticatedhis situation occurs because DVS and leakage reduc-
embedded systems. For CMOS circuits, power consumptiontion techniques are at odds. The most effective way to re-
includes dynamic power and leakage power. Dynamic powerduce leakage power is to put the processor into a low-power
is due to the switching activities of the transistors, while leak- sleep state during idle intervals. On the other hand, DVS re-
age power is consumed even when no logic operations argduces the processor’s execution speed to minimize dynamic
performed. A major component of leakage current is the sub-power. By reducing the execution speed, the proces-
threshold current that flows through the transistors when theysor utilization is increased, thus reducing and fragmenting
should be logically “off”. Current power saving techniques available idle times. It is this tradeoff that makes leakage re-
mainly focus on reducing dynamic power because it has beerfluction a considerable challenge.
the dominant component in the overall power consumption In this paper, we study scheduling techniques that can
for most embedded systems today. However, as VLSI tech-minimize the overall power consumption for a real-time sys-
nology continues its evolution towards deep sub-micron andtem scheduled using a fixed-priority (FP) scheme. Many
nanoscale circuits operating at multi-GHz frequencies, theDVS based real-time scheduling techniques. [8, 9, 10,

1. Introduction

11], have been proposed to conserve energy in a real-timestance can be estimated rather pessimistically which severely
system. Some of these approaches, such as [11, 12, 13, 14imits the energy performance of this approach.

15, 16, 17], are targeted at FP systems. In this paper, we present a scheduling technique that com-
bines both the DVS and a shut-down strategy to effectively
reduce the overall energy consumption of FP hard real-time
systems. As shown by Iramt. al. [19], such a technique
may require that the processor run at a higher-than-necessary

which makes shutting down the processor during idle inter- speed and hence produce a large number of processor idle in-
tervals. The major source of energy consumption in these in-

vals the most effective way to reduce the overall energy con—t Is is th It of leak t which will b
sumption. Considering the timing and energy overhead as- ervais 1s the result of leakage current, which will soon be-
come a major portion of the overall energy consumption. In

sociated with shutting down the processor, LC-EDF care- thi d ¢ Hicient techni that del th

fully delays the execution of arriving task instances in or- IS regard, we present an etiicient technique Ihat delays the

der to expand the length of idle intervals. Due to the limita- execution of tasks in order to merge scattered idle intervals,
| thus greatly reduces leakage power as well as the impact of

tion of their processor model, the overall energy consumed .

cannot be minimized. Iraret. al. [19] theoretically proved processor shutt_:lown overhe'c_ld. The proposed tgchmque has
that the optimal voltage schedule, which also considers thed VeI lowon-line computation C(.)St’. _and experimental re-
leakage power, can be constructed from the correspondingsuns show that. our method can S|gn|f|cantly red.u.ce the en-
DVS voltage schedule without the leakage power consider-erglly cotns:Jmonn when compared with the traditional non-
ation. In this case, higher-than-necessary processor speeq%e ay strategy. _ . . .
may be required in the optimal schedule to balance the dy- The rest of the paper is organized as follows. Section 2 in-

namic and leakage power consumption. To better save idIetroduces preliminaries related to our problem. Section 3 dis-

energy during idle periods, Jejurikat. al. [20] proposed cus|§es|ourkdelay analy3|s tgi:/r;nlﬂue._tshecu;n 3t.'3 pzle;ents our
a better approach, call€dlS-DVSPto extend idle intervals. on-lin€ feakage conscious algorithm. Section & demon-

They showed that the minimal length of the idle intervals ac- ;trates thg effectiveness of our approach based on simula-
cording toCS-DVSPis no less that that byC-EDF. How- 1ONS- Section 5 concludes the paper.

ever, all these approaches are targeted at the real-time sys- . .

tems scheduled according to the earliest deadline first (EDF)Z- Preliminaries

scheme [21].

Recently, some work has been reported that deals with
the leakage power consumption in real-time scheduling. Lee
et. al. [18] proposed a leakage reduction scheduling tech-
nigue called_C-EDF. They assumed a non-DVS processor,

This section, describes the real-time system and power
We are more interested in real-time systems scheduled acmodel used in this paper.

cording to a FP scheme. Because of their high predictabil-

ity, low overhead, and ease of implementation, FP schemes 1. System model

are among the most popular in real-time embedded appli-

cations [22]. Leeet. al. [18] proposed a leakage reduction We conduct our study for a set 8f independent jobs, de-
scheduling technique for FP systems, call&iDP, by ex- noted by = {Ji,Jo,--- Jy}. Each individual job is de-
tending the Dual-Priority (DP) scheduling model presented noted by.J; = (r;,¢;, d;), wherer;, ¢;, andd; are arrival

in [23]. In LC-DP, idle time is treated as a “soft task” in time, worst case execution cycle, and absolute deadline for
the DP model. A task instance is delayed by first being re- the job, respectively. Additionally, each job is statically as-
leased in the lower priority queue if the processor is idle. It is signed a priority. We assume ththas a higher priority than
promoted to the higher priority queue for execution at an op- .J;, if i < j. Often a real-time system is described by a set of
timal promotion time to avoid any deadline misse€-DP periodic tasks, where each task instance represents one job.
also immediately promotes a task instance to the higher pri-In these cases, it is sufficient to schedule the set of jobs pro-
ority queue when the processor is not idle in order to reduceduced up until the Least Common Multiple (LCM) of the pe-
the number of idle intervals. However, Jejuriletr al. [30] riods of each task.

pointed out that this may potentially lead to some task in-

stances missing their deadlines. They further proved that us2.2. Power model

ing the optimal promotion time as the allowable delay for

each task instance can guarantee schedulability for both dual In a CMOS circuit, the power consumption includes both
priority and fixed priority policies. However, since the com- dynamic and static components during its active operation.
putation of the optimal promotion time for each task in- The dynamic power consumptiof?{,,) mainly consists of
stance is performed based on the exact response time anathe switching power for charging and discharging the load
ysis, which is NP-hard in nature [23], this approach cannot capacitance, which can be represented [24] as

be readily applied on-line or for large task sets. If the promo- Py = aCLV2f (1)

tion time is computed based on the worst case response time dyn = A~L ’
(by assuming a task instance arrives simultaneously with allwhere« is the switching activityC', is the load capacitance,
the higher priority ones), the possible delay for each task in- V' is the supply voltage, anflis the system clock frequency.

[| I 1 I A
|| 4 Cl:li I / |
|| | I comg
N | :J2+ —t y 05
il 4 | 3=t | ly | I | |
|| | I 1 I 022 | |
| | u 4 ! ! ! Ca=3 er l I |
I I I | LI I 1 I | | t
|| | L I [| >
t=01 5 1(J 12 13 15 22 01 5 10 22
(@ (b)
idle
interval . N
| I I | l I‘ ﬂml‘::jal mlf:a?l I | |
I a i | Pl 1=1 |
| | c2=3 I R c2=3
| ! : C3=1 : * ! | | | C3-| | *
Afm——aly oA |
| | || caks ! | ca=
I | I [A N [
| | I | I I N
| [[[[| | |
t=01 é 1b 12 13 15 18 22 t=01 3 5 7 10 12 13 15 22
(©) (d)
The static powerR,..x) can be expressed [25] as as the cache, translation look aside buffers, and branch tar-
get buffers. This energy overhead may outweigh the energy
Preak = lieakV, 2 saved if the idle interval is not long enough. Assume that

, , , the energy overhead of shutdown/wakeugFjs the timing
where I;.q, is the leakage current which consists of both qerhead ig,, and the power consumption of a processor in
the sub-threshold leakage current and the reverse bias junGis igie and sleeping state afe. and Py, respectively.

tion current in the CMOS circuit. Leakage current increases Then the energy can be saved only when the length of the
rapidly with the scaling of the devices and becomes partic- jjie interval is larger thar},;, = max{ B, to)

. . . . min — Pigie—Psicep’ °7"
ularly significant with the reduction of the threshqld \{olt— We callT},,;,, theminimal length of the idle intervai
age [26]. Therefore, the leakage power consumption is be-

coming a major part of the the active power consumption o
(Pact), i€, 2.3. A motivational example

Fact = Fayn + Preat, ®) Our goal is to minimize theverall energy consumption

in future CMOS circuits with low supply voltage and high while guaranteeing task deadlines. As indicated in equation
transistor density. (1), the dynamic energy consumption is quadratically related

The processor consumes energy not only in its activeto the supplied voltage. Therefore, traditional DVS schedul-
mode but also when it is idle. When the processor is idle, ing techniques [14, 15, 16] try to reduce the the supply volt-
the major portion of the power consumption comes from the age to as low a level as possible. As an illustrative exam-
leakage, which is increasing rapidly with newer CMOS tech- ple, Figure 1(a) shows a job set with four jobs. Figure 1(b) is
nologies. Shutting down the processor, i.e., putting the pro-the voltage schedule according to the DVS scheduling tech-
cessor into a “sleep mode” can greatly reduce the energy confique presented in [14], and Figure 1(c) shows the actual ex-
sumption during these idle periods. For example, it has beenecutions of the jobs based on the voltage schedule from Fig-
reported in [27] that the power dissipation when the pro- ure 1(b).
cessor is idle can be on the order f® times that when As shown in Figure 1(b) and Figure 1(c), previous DVS
it is sleeping. While the processor consumes less power intechniques [14, 15, 16] can effectively reduce the processor
sleep mode, extra energy and time are needed for it to enspeed and guarantee the deadlines of the real-time jobs. How-
ter and later leave this state, because one must save/restoever, such a voltage schedule is not always feasible and/or en-
the context as well as initiate architectural components suchergy efficient overall. First, practical processors have a min-

imal voltage supply limitation. Second, they only provide a 3. Leakage conscious scheduling algorithm

discrete set of voltages, including the minimum level. This

means the processor will likely not be able to run at a speed In this section, we present our scheduling technigue to re-

selected by a particular DVS algorithm. Instead, the desiredduce the idle energy for a set of real-time jobs. We first ana-

speed needs to be rounded up to the next discrete speed thitze how a job set can be delayed without missing deadlines.

is available. On the other hand, even when a low proces-Then we construct an algorithm that can be applied on-line

sor speed is available, the rapidly increased leakage currento reduce energy consumption during idle intervals.

may increase the static power consumption to the extent of

over-weighing the dynamic power consumption. Therefore, 3 1 Basic concepts

to achieve the best energy efficiency, the processor speed

must be determined in a cooperative manner with both dy- the power down strategy is in favor of longer idle inter-

namic and static energy consumption in mind. vals. To extend an idle interval, one can always increase the
Consider a job with workload. Let the total power of a processor speed so that each job is executed faster. However,

processor during its active mode Bg.(s). Then the total as shown in equation 5, increasing the speed eyewill in-

energy, i.e.F,(s), consumed to finish this job with speed crease the overall power consumption. A better approach, as

s can be represented as suggested in [18, 19, 20], would be one that extends the inter-
val lengths by delaying the executions of the incoming jobs,
Baet(8) = Pacs(s) x w @) ie. a job is executed as soon as possible _vvhen the proces-
s sor is not idle, but delayed as much as possible when the pro-
o _) cessor is idle.
Hence, to minimize thé&,.(s) in equation 4, we have Delaying job executions helps to merge scattered idle in-
tervals into longer ones. More energy can be saved because
Paci(s) = Pye(s)s. (5) energy transition overhead for entering and leaving the low-

power sleep state is reduced. Moreover, intervals that were
Equation (5) computes the most energy efficient speed to ex{reviously shorter thai,,;,, can now be shut down. As men-
ecute one job. We call this speed as theeshold speedand tioned before, the power dissipation when the processor is
denoted as,,. To increase or decrease the processor speeddle can be in the order df0® times of that when the proces-
from s,;, will increase either the dynamic or static power, and sor is shut down.
thus the total power consumption. The main difficulty when extending the length of idle

Note that, while it is desirable to execute a job using the intervals is to determine how long a job set can be de-
threshold speed to minimize the active power consumption,!ayed without causing any future job to miss its deadline.
it is not always feasible to do so when considering the dead-Chetto [28] introduced a static scheduling technique called
lines and the preemption effects among jabes, jobs with EDL (earliest deadline as late as possible) to determine the
higher priorities can always block jobs with lower priorities l0ngest time that a job can be delayed. However, it requires
until they are finished. Given a voltage schedule, a job thatth€ jobs be scheduled according to the earliest deadline
is required to run at a speed higher thap must be exe- sc.he.dullng algorithm. For job set scheduled by a FP (flx_ed
cuted with that higher speed to guarantee the schedulabilityPriority) scheme, we derived a new approach to determine
of the job set. For jobs having required speeds lower than the latest time point to which the job set can be delayed. To
they can be executed af, to conserve energy. Figure 1(d) facilitate a clear explanation, we first introduce the follow-
shows the scheduling results wigh, = 0.5. ing definitions.

Using s, for jobs with speed requirements lower than pefinition 1 Let job set {7) be executed with a constant
s¢n, While maintaining the speeds of the rest certainly guar- speeds*.

antees all deadlines. The problem is that, as shown in Fig-

ure 1(d), it can result in a large number of scattered idle in- e Thelatest starting time of a jobe.g.,J/; € J, (denoted
tervals. While using a processor shut-down strategy is the aslst(J;)) is the latest time such that, if the execution
most efficient method to reduce the energy consumption for ~ 0f J; or jobs with a priority higher than/; start no later
these intervals, too many shut-downs will incur a significant thanlst(.J;), J; will meet its deadline.

energy overhead. Moreover, using a processor power down o The|atest starting time of a job see.g..7, (denoted as
strategy is not always feasible or necessarily energy efficient LST(7)) is the latest time such that, if the execution of

if the idle intgrval is _not Ipng enou_gh. Unless we can effec- any jobs in7 starts no later tharL.ST(.7), all jobs will
tively deal with the idle intervals in the schedule, we can- meet their deadlines.

not achieve our ultimate goal of maximizing the overall en-

ergy performance of the system. In what follows, we intro- In [29], Mochocki et. al. introduced a method to com-
duce our approach to save the idle energy when scheduling @ute LST'(J) when7 is scheduled according to EDF. Their
FP task set by extending the length of idle intervals. method is based on the following lemma.

dl il r; dl
<7ml‘er5alg>| | I‘int‘en?a?’l C]_:]_I l | mller:al > | | I |

|
IR I [| [i1 c141 |
I | c2=3 [| c2=3

| | ! 32 || | 32

b ! | | | ey |
a3l # | _IF' I | T [| : .J3: T i I | l Y : | :

: [T B L | : cals | | : | l Lo caks

IREERER. Ll h“M

R | || . Ll |
=01 3 5 7 10 12 13 15 18 22 t=0 1 g 8 1b 12 13 15 18 22

(@) (b)

[[I I | (. |

|1 Jl+ C1=1 \ 4 | | JlT ClHl ¥ |

: : | 24 ! c2=3 ¢ : | : | 32 e

| P ! [c3=1 ind mi

g3l | | cant | | | 13l 4 : =1 m | | deadiing miss

| 4 X = | [I | : | | | [o cala |

I | u g 0 I c4es ¢ I I |4 N I

| | EE . |1 | P ——

N L] | | || | Lo |
t=0 1 5 o 1213 15 22 t=0 1 g 8 1b 12 13 15 18 22

(c) (d)

Lemma 1 [29] Let job set (7) be executed with a constant higher priority jobs in a FP job set can arrive much later than

speeds*. Then, the deadline of the current job. In what follows, we present
. a more effective technique to accurately identify the latest
Ist(J;) =d; — Z —’:, (6) starting point for FP job sets.
Jx€hp(J;)

3.2. Analyzing the latest starting time for FP job

wherehp(J;) is the jobs with the same or higher priorities sets

than that ofJ;. Furthermore,

Recall that the jobs with required speeds higher than
should run at their required speeds in order to guarantee
deadlines. These jobs cannot be delayed at all and must be
executed within the intervals in the DVS voltage schedule.
For ease of computation, we “shrink” the intervals during
which jobs with a required speed higher thap are exe-
cuted. This includes removing all jobs in these intervals, and
also adjusting the deadlines and arrival times of the rest of
the jobs. Specifically, we have the following definition.

LST(J) = miin{lst(Ji)}. @)

The rationale behind Lemma 1 is that if the accumulated
workload from a johJ; andall the higher priority jobs can be
finished beforei;, the deadline of/; will be satisfied. In ad-
dition, the minimal latest starting time of all the jobs can cer-
tainly guarantee all the deadlines. It is not difficult to see
that using equation (7) to compute the starting time for a FP
job set can still guarantee the feasibility of this job set. Un-
fortunately, using Lemma 1 may not ensure thatferesible ~ Definition 2 (Adjusted job set)A job set is called arad-
starting time for the FP job set is always the latest. For ex- justed job sebf 7, if all jobs in 7 having a speed require-
ample, in Figure 2(a), according to equation (6) and (7), as-ment higher thans;;, (as well as the intervals containing
sumings* = 0.5, we havelst(J;) = 13, Ist(Jy) = 14, these jobs) are removed, and the arrival times and deadlines
Ist(Js) = 3, lst(Jy) = 6, and thereforeLST(J) = 3. of the rest of the jobs are adjusted correspondingly.
However, as shown in Figure 2(b), if the job set is delayed Before we explain our strategy in detail, we also want to
tot =6, all the jobs can meet the_zlr deadlines. The conse-jntroduce several important terminology.
guence is that all of the short idle intervals cannot be effec-
tively merged as shown in Figure 2(a).

Note that accumulating the workload from all the higher
priority jobs in equation (6) is equivalent ssuminghat
all the higher priority jobs have to finish before the dead- As explained before, a job set is delayed only when the
line of current job. This is true for job sets scheduled accord- processor is idle. Therefore, when identifying the delay that
ing to EDF, but is not necessarily true for FP job sets since a job can tolerate, we are more interested in the case that the

Definition 3 (Scheduling point) Time t is called a.J,-
scheduling pointif ¢t = d, or t = r;, i < n and
Ty <15 < dp.

processor is idle when a job arrives. Specifically, we have theAlgorithm 1 Compute the effective latest starting time

following definition.

Definition 4 (Reduced job sethn adjusted job set is called
a J,-reduced job seff every jobJ; in the set satisfieg; >
Thn-

We use Figure 2 to illustrate these definitions. Figure 2(c)
shows the/;-reduced job set and all thg-scheduling points
(as marked by “x"). Note that in Figure 2(c).f is to be fin-
ished at any one of thé;-scheduling points (e.gt,= 12) all
the higher priority jobs arriving before this scheduling point
(e.g., J1) must be completed before this scheduling point.
Therefore, for eachy,,-scheduling point, the execution of
Jn or any higher priority jobs must begin no later thap(t),
where

Ck

stp(t) =t — —, Tk <t
Sth

Jrehp(Jn)

®)

wherehp(J,,) is the set of jobs with a priority greater than or
equal toJ,, and arriving before. It is not difficult to see that
different .J,,-scheduling points can lead to differest, (¢).
Specifically, we have the following Lemma.

Lemma 2 Let job set {J) be the J,-reduced job set and
S(J,) be the set of all/,,-scheduling points. Then,

In)}- ©)

The corresponding/,,-scheduling point is denoted as
P(ist(J,)). The proof for this lemma is trivial accord-
ing to Definition 1 and is therefore omitted. From Fig-
ure 2(c), we havést(J;) = 8 (and P(Ist(J3)) = 12). It
can be readily verified thaf; can meet its deadline with re-
spect talst(Js) = 8.

We are interested in finding the latest starting time for a
FP job set. Unfortunatelyst(.J,,) can only guarantee the fea-
sibility of job J,, but not necessarily any other job in thg-
reduced job set. For example, as shown in Figure 2(d); if
and all the higher priority jobs are delayedtte- 8, J4 will
miss its deadline. The reason is that, wit(.J3) = 8, J3
and the higher priority jobs are not completed until the cor-
responding scheduling point= 12, which will block the ex-
ecutions ofJ and cause it to miss its deadline. A remedy for
this problem is to compute the latest starting times in a sim-
ilar way for all the lower priority jobs that may potentially
be preempted, and pick the smallest one. We call this lat-
est starting time theffectivelatest starting time for the job,
denoted asst(.J,,). The above idea is formulated in Algo-
rithm 1.

For theJ,,-reduced job set, Algorithm 1 helps to compute
the latest time for a/,,-reduced job set. This conclusion is
formally presented in the following lemma.

Ist(Jn) = mazx{st,(t),t € S(

Lemma 3 LetJ be theJ,,-reduced job set. The effective lat-
est starting time l(st(), output from Algorithm 1, is the
latest time that/,, and all the higher priority jobs can be de-
layed to such thaf,, and all the lower priority jobs in7 will
meet their deadlines.

Ist(.J,,) for job J,, such thatJ, and all the lower priority

jobs in theJ,,-reduced job set can meet their deadlines.

1: Input: The J,-reduced job sey.
2: Output: The effective latest starting tinist(.J,,)
3: nlst = Ist(J,,); /Equation (9)
4: end = P(lst()):/lthe scheduling point corresponding
to Ist(Jy,)
cfor e T, k=n+1,n+2,..
if r, <end then
nlst = min{nist,lst(J;)};
end = max{end, P(Ist(Jx))};
end if
end for
Ist(J,) = nlst;

do

©® NG

10:
11:

Proof: According to Lemma 2, the schedulability fdy, is
guaranteed in line (3) of Algorithm 1 as well as the fact that
nlst can only be smaller later on with the progress of the al-
gorithm. Variableend helps to keep track of all lower pri-
ority jobs that are potentially preempted when delayihg
and jobs with a priority higher thas, to nlst. The schedu-
lability for each of these jobs is guaranteed in line (7) for the
same reason as that &f.

Therefore, to prove Lemma 3, we only need to check if
other lower priority jobsi(e., with a release time later than
end during each FOR loop) can meet their deadlines. Con-
sider a lower priority jobJ, in one of the FOR loops and let
rr > end. Note that, when considering, with respect to
nlst andend, any job with priority the same or higher than
that of J;, that is delayed ta/st will finish no later tharend.
Therefore, delaying these jobs will not affect the schedula-
bility of .J. Moreover, the value afist can only be reduced
later on, saJ;, can meet its deadline i is delayed taulst.

With Algorithm 1, we can compute the effective latest
starting time for each of the jobs in the adjusted job set. For
example, in Figure 2(c), we havet(J,) = 8, Ist(.J,) = 16,
Ist(J3) = 6, lst(Js) = 10. Also, we observe the follow-
ing interesting property dfst(.J,,).

Lemma 4 For adjusted job sel/, let J;, J, € J,1 < k.
Thenlst(Jv) < lSt(Jk) if r; <rp.

Proof: The proof for the casé; < ry is trivial sincelst(.J;)
cannot exceed,. We use contradiction to prove that when
d; > ri, andr; < ry, Ist(J;) > Ist(J},) is not possible.

Let J; and J;, represent the correspondinfy and Jj-
reduced job sets, respectively, ab&#(J,, J,) represent the
jobs in 7, with priorities the same or lower than that 8.
Then

Ji O Tk, and LP(J;, J;) O LP(Ji, Ji)-

According to Lemma 3, delaying the execution gf to
Ist(J;) can ensure that all jobs i P(J;, J;) meet their
deadlines. Ifist(J;) > lst(Jy), this contradicts to the fact

thatlét(Jk) is the latest time tha¥, can be delayed to such
that the jobs inL P(Jy, Ji.) can meet their deadlines. O

for a job set such thagveryjob can meet its deadline. Us-

on an adjusted job set and (2) the schedulability of jobs with the jobs can meet their deadlines.

a priority higher than that of,, is not guaranteed. However,

When 7 is a general job set, any job with speed require-

ment higher tham,;, cannot be delayed according to equa-
Recall that our goal is to identify the latest starting time tion (10). Hence, no such job will miss its deadline. In addi-
tion, the latest starting time for the rest of the jobs is no later
ing Ist(.J,,) cannot achieve this goal because (1) it is basedthan that computed with the adjusted job set. Therefore, all

O
From Theorem 1, we havBST(J) = 6, which is ex-

based on Lemma 3 and Lemma 4, we can derive the follow-actly the case shown in Figure 2(b).

ing theorem.

Theorem 1 Given a general job sef and threshold speed
s, the latest starting time faf7 can be computed as

LST(J) = min{lst(.J,))}. (10)
wherelét(Jn) is r, if J, requires a speed higher than,

in the DVS voltage schedule, otherwisé(.J,,) is computed
according to Algorithm 1.

Proof: We first assume7 is an adjusted job set. Let
LST(J) = Ist(J;) = min,{lst(.J,)}. We want to prove
that any one of the jobs,e. J,, can meet their dead-
lines if job set7 is delayed tdst(J;).

Note that from Lemma 4, i/, we have for anye < 1,
r, > r;. We consider three different cases separately.

e Case 1% < 1.

Let jobr, be the earliest arrival time for any jak,
such thaty < k. If we haver, > r, according to
Lemma 3,J; can meet its deadline sindet(.J;,) >
Ist(J;). On the other hand, if, < rg, the schedula-
bility of J, is guaranteed with respect/fgt(Jq). Since
Ist(J,) > Ist(Jy,) > lst(J;), J, can meet its deadline
if job set.7 is delayed tdst(J;).

Case 2k = 1.

The only difference between job sgt and theJy-
reduced job set is thaf may contain some jobs with
priorities lower than that of;,. According to Lemma 3,

J; can meet its deadline since adding any lower priority

job to theJ,-reduced job set cannot change the schedu-

lability of .J; and can only decreaget(.J;).

Case 3k > i

If all the jobs arrive later thad;, Lemma 3 can guar-
anteeJ's deadline. Assume there is at least one job ar-
riving earlier thanJ;, and letJ;, be the one with the ear-
liest arrival time. Sincést(.J;) < Ist(J;.), J, and all the

for job J, such that < ¢ < k, removingJ;, and all
the lower priority jobs from7 neither changes its fea-
sibility nor increaselst(J,). If r, < r; andr, is the

3.3. The algorithm

After studying how long a job set can be safely delayed,

we are now ready to present our scheduling strategy to re-
duce the overall energy consumption. Our approach consists
of two phases, an off-line phase and an online phase. In the
off-line phase (Algorithm 2), we compute feachjob, as-
suming the processor is idle upon the arrival of the job, how
long the remaining job set can be delayed; while in the on-
line phase of our approach (Algorithm 3), we apply the re-
sults produced in the off-line phase and make the scheduling
decision on-line.

Algorithm 2 The off-line phase to determine the processor
speed §,,) for each job {,,), and, assuming,, is the next ar-
rival job, to compute the maximal delay,) for the remain-
ing job set.

» Input: 7, s
: Output: sp,,0,,n=1,2, ...,

N

3: Compute the DVS voltage schedule fgf and thus
Sp,n =1,2...N,
4: for J, € J do
5: jc = j,
6: // make a copy off
7. Remove allJ; € J. with r; < r,,;
8 s, = max{s,, St}
9. Tp=Ist(J,);
10: for Jp withr, < Tp andk < n do
11: if 1st(Jx) < Tp then
12: Tp = Ist(Jy);
/lcomputed by Algorithm 1
14 end if
15. end for
16: 0, =T — rp;
17: end for

In Algorithm 2, the latest starting time for the job set is

computed according to Theorem 1. Note that even though
lower priority jobs can meet their deadlines. Note that, equation (10) requires the computation of #ffectivelatest

starting time for all jobs, it is not necessary in practice. Note

that Tz (in line 8 of Algorithm 2) actually sets up an up-

per bound on delay,e. the job set cannot be delayed to any

next earliest arrival time of the jobs, we can prove that time later thari's without missing a deadline. Therefore, we
J, and all the lower priority jobs can meet their dead- only need to check the higher priority jobs (Lemma 4) re-
lines similarly. By repeating this process, we thus prove leased befor&s to determine the latest starting time for the
that all the lower priority jobs can meet their deadlines job set (line 9-13). In order to do so, we only need to per-
if 7 is delayed tdst(.J;). form a linear scan within the interval from the earliest arrival

time to 7'z, which has a complexity oO(N’), whereN’ is
the total number of higher priority jobs within this interval.
The complexity of the rest of the algorithm is also linear re-
lated toN’. SinceN’ is usually very small for a periodic task
set, Algorithm 2 typically has a very low computation com-
plexity.

The on-line algorithm follows the principles discussed
earlier. It takes the desired processor spagilgnd the max-
imal delay ¢,,) for each job.J,, (output from Algorithm 2)
as input. When the processor is not idle, it will run the jobs
in the ready queue according to the fixed priority scheme
when it is idle, the later jobs will be delayed to the latest
starting time (line 7) computed based on the first job arrival
The algorithmis calle#fPLK and illustrated in Algorithm 3.
FPLK has a constant time complexity, because it only re
quires a single table lookup to identidy.

Algorithm 3 (FPLK) The on-line leakage conscious fixed-
priority scheduling algorithm

1: Input: (7, 8n,0n,n=1,..,N)

2: if processor is not idlthen

3: RunjobJ, in the ready queue according to FP, using

3

Normalized Total Energy Consumption

B NSND
@ SNTND
B STND
OsTD
O sbpP
0.0-0.1 0.1-0.2 02-03 03-04 04-05 05-0.6 0.6-0.7
Utilization

Figure 3. The average total energy consump-

tions of five different approaches.

e DVS, Threshold, Delay (STD) — Our approachTask

speeds,,;

4: else

5. LetJ, be the next coming job;

6: nlst =1, + On;

7. if nlst — teyr > T then

8: I .., is the current time

9: Shut down the processor and set up the wake up

time to benlist — t.yr;

10 endif
11: end if

4. Experimental results

experiments, we compare five strategies:

e No DVS, No Delay (NSND) The task sets are sched-
uled without DVS,i.e,, all jobs are always executed us-

layed.

e DVS, No Threshold, No Delay (SNTND)The task sets
are scheduled with DVS but with no consideration of the

leakage i¢e. the threshold speed), and no task instance

is delayed;
e DVS, Threshold, No Delay (STND) The task sets are
the threshold speede. s;;, if its speed requirement is

lower thans,;, in the DVS voltage schedule. However,
no job execution is delayed.

sets are scheduled with DVS with consideration of both
the leakagei(e. the threshold speed) and execution de-
lay (Algorithm 2).

DVS, Dual Priority (SDP) Task sets are scheduled with
DVS and delayed with Dual Priority. This is the ap-
proach in [30]. We compute the promotion time once
for each task based on the worst case scenario and use
it for each jobs in the task.

For the algorithms employing DVS above (SNTND,

STND and STD), the method in [14] is used to find the off-
line voltage schedule under FP scheme. This method is cho-
sen because, while the FP DVS problem is NP-Hard, this

In this section, we evaluate the overall energy efficiency heuristic can provide results very close to that by the opti-

of the proposed technique with several experiments. In ourMal one [15] in polynomial time@(N?)). The power model
and technology parameters of the processor used in our sim-

ulation are adopted from [25]. The threshold speed is
around 0.4 [20] for this processor model. For the pro-
cessor power down/up overhead, we use the same val-
ing the highest speed. A processor is shut down whenues as that used in [20]e., P;g;c = 240mW, E, = 483u.J,
there is enough idle time, and no task instance is de-andt, = 2ms.

The real-time systems tested in our experiments are pe-
riodic task systems randomly generated with five periodic
tasks each. All tasks are scheduled with the RM method.
The period of each task is randomly chosen in the range of
[5,30]ms. The deadline of each task is set to be equal to its
period. We examine the different energy saving performance
of the above four approaches for systems with different uti-
scheduled with DVS, and the jobs are executed with lization. Based on the utilization bound for periodic task set
with five periodic tasks, i.el] = 5(21/° — 1) = 0.74, we
divide utilization ranging from 0.0 to 0.7 into intervals of
length0.1. Within each interval, we randomly generated no

less than 50 periodic task sets. For each task set, we collert
both overall energy consumption and the idle energy cc 12
sumption for the task set starting from 0 to the LCM of it ENSND @SNTND BSTND OSTD OSDP
periods. We accumulated the values for each utilization int
val, normalized the results bNSND. The results are shown
in Figure 3 and Figure 4, respectively.

From Figure 3, it is interesting to note that using DV
without the consideration of the leakage curreBNTND)
cannot effectively reduce the overall energy consumed. T
is particularly true when the utilization of the task set is lov
For example, when the utilization is less than 0.2, the av
age overall energy consumption WBINTND is in fact larger
than that byNSND. When the utilization is less than 0.1, th
average overall energy with “pure” DVS voltage schedu
(SNTND) is 1.2 times higher than that BWSND, and almost 0 - - - =
as three times as that by the other two strategies. This is 0OT0L 04702 02703 03-04 0405 08-06 06-07
cause, when the utilization is low, the processor is running
a very low speed iISNTND. The processor consumes more
energy due to the large leakage current. Also, the overall en-
ergy consumption o8TD is about19.6% less thanSTND
and SDP. When the utilization of the task set is high, from
Figure 3, the overall energy consumption 8&XTND seems
to be very close to that TND, STD or SDP. This is be-
cause the processor usually has to run at a speed higher th
the threshold speed to guarantee the deadlines of the task
Therefore, all these strategies use the similar speed most o
the time and have similar energy consumption.

Since the leakage power consumption is becoming com-
parable or even exceeding the dynamic power consump-
tion, the energy consumption during the processor idle time,
mainly due to the leakage current, will soon become a signif-
icant part of the overall energy consumption. We are there-
fore interested in investigating how our approach can help
to reduce this part of energy consumption compared with - Summary
other approaches. In Figure 4, it is not surprising to see that

SNTND consumes very little idle energy since there is less educing the overall power dissipation is critical in the
slack time during task execution. Unfortunately, the type of design of future real-time embedded systems. As the IC tech-

processors required ENTND cannot be built in practice ~ "°10gy continues to scale down, leakage power consumption
since leakage current is no longer negligible. It is interest- IS Pecoming a more and more significant part of the overall
ing to see that by delaying the execution of the joB%D), power consumption. In t_h|s paper, we investigated the prob-
the idle energy is greatly reduced compared \@THND. The lem of applying sc_:hedullr_lg techmques to r_educe the overall
smaller the utilization is, the more energy is saved during €N€rgy consumption for fixed-priority real-time systems.

idle periods by delaying jobs. When the utilization is low, the __AS Shown by our experiments and discussions, applying a
threshold speed can be much larger than the speed requireQVS based voltage schedulg alone cannot effectively reduce
for each job and results in a large number of idle intervals. the overall energy consumption for the system, and can even
STD can effectively merge many of the intervals by delay- Ncrease it significantly. A _Ieakage power conscious DVS
ing the execution of jobs and is therefore a much better ap-vo!tage schedule may require the processor to adopt a speed
proach tharSTND. As shown in Figure 4, when the utiliza- higher-than-necessary to avoid the rap|dly increasing leak-
tion is within 0.1-0.2, the average idle energy consumed by @9€ current at low voltage levels. This may result in a large
STDis less than 15% of that consumed®yND. When the number of small idle intervals during job execution. We pro-
utilization is high, there is only a limited number of idle inter- P0Sed an efficient approach to merge these intervals by de-

vals. In addition, many jobs may require speeds higher thani@ying the execution of the jobs to reduce the processor shut-
down overhead and improve the overall energy performance.

In our approach, the maximal delay for each job is statically
1 Forexample, normalizing’ to N means usings: as the value of Cfor computed, and is then applied on-line to extend idle inter-
comparisons. vals. Based on a practical processor model, our experimen-

0.8

0.4 —

Normalized Idle Energy Consumption

Utilization

Figure 4. The average idle energy consump-
tions by five different approaches.

the threshold speed which cannot be delayed at all. Hence,
atﬁe idle energy efficiency &8 TD is limited. Even so, when
%he utilization of a task set is within [0.4-0.5], the idle energy
?'onsumed usin@TD is, on average, around 50% of that us-
ing STND as shown in Figure 4. Our experiments also show
that pessimistically estimating the delay amount for each job
in SDPcan severely degrade the energy efficiency of this ap-
proach. As shown in Figure 4, when the utilization is within
0.3-0.4, the average idle energy consumedSAY is less
than 10% of that consumed ISDP.

tal results clearly demonstrate that this approach has a gregl7] W. Kim, J. Kim, and S.L.Min, “Dynamic voltage scaling algo-
potential in future embedded systems to reduce the overall
power consumption. Finally, it is worth mentioning that our
approach is a greedy approach. How to achieve the optimal18]
overall energy performance is another very interesting prob-
lem and needs further study.

References
[1] ITRS, International Technology Roadmap for Semi-
conductors Austin, TX.: International SEMATECH,

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

http://public.itrs.net/.

C. Neau and K. Roy, “Optimal body bias selection for leakage
improvement and process compensation over different tech-
nology generationsJSLPED, pp. 116-121, 2003.

S. Duarte, Y. Tsai, N. Vijaykrishnan, and M. Irwin, “Evalu-
ating run-time techniques for leakage power reductidft,”
SID'02, 2002.

B. H. Calhoun, F. A. Honore, and A. Chandrakasan, “De-
sign methodology for fine-grained leakage control in mtc-
mos,”ISLPED, pp. 104-109, 2003.

M. Johnson, D. Somasekhar, and K. Roy, “Leakage con-
trol with efficient use of transistor stacks in single threshold
cmos,”DAC, pp. 442-445, 1999.

J. Halter and F. Najm, “A gate-level leakage power reduction
method for ultra low power cmos circuitsCICC, pp. 475—
478, 1997.

F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. Ko, and
C. Hu, “Dynamic threshold-voltage mosfet (dtmos) for ultra-
low voltage vlsi,”IEEE Trans. on Elec. Dewvol. 44, no. 3,
pp. 414-422, Mar 1997.

F. Yao, A. Demers, and S. Shenker, “A scheduling model for
reduced cpu energylEEE Annual Foundations of Comp. Sci.
pp. 374-382, 1995.

T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processorkSLPED, pp. 197—
202, August 1998.

H. Aydin, R. Melhem, D. Mosse, and P. Alvarez, “Dynamic
and aggressive scheduling techniques for power aware real-
time systems,JEEE Real-Time System Symposi@®01.

P. Pillai and K. G. Shin, “Real-time dynamic voltage scal-
ing for low-power embedded operating systems 1 &th ACM
Symposium on Operating Systems Princip2&91.

Y. Shin and K. Choi, “Power conscious fixed priority schedul-
ing for hard real-time systemd)AC, pp. 134-139, 1999.

Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-
time embedded systems on variable speed procesdors,”
ternational Conference on Computer-Aided Desigp. 365—
368, 2000.

G. Quan and X. S. Hu, “Energy efficient fixed-priority
scheduling for real-time systems on voltage variable proces-
sors,”DAC, pp. 828-833, 2001.

G. Quan and X. Hu, “Minimum energy fixed-priority schedul-
ing for variable voltage processor®002 European Design
and Test Conferenc@002.

H.-S. Yun and J. Kim, “On energy optimal voltage scheduling
for fixed-prioirty hard real-time systems®CM Transactions

on Embedded Computing Systerd. vol 2, 2003.

(19]

(20]

(21]

[22]
(23]

(24]

(25]

[26]

[27]

(28]

(29]

(30]

rithm for fixed-priority real-time systems using work-demand
analysis,"ISLPED, 2003.

Y. Lee, K. Reddy, and C. Krishna, “Scheduling techniques for
reducing leakage power in hard real-time systerBGRTS
2003.

S. Irani, S. Shukla, and R. Gupta, “Algorithms for power sav-
ings,” ISDA 2003.

R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dy-
namic voltage scaling for real-time embedded systeDAC,

pp. 275 — 280, 2004.

C. L. Liuand J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in a hard real-time environmenigurnal of

the ACM vol. 17, no. 2, pp. 46-61, 1973.

J. Liu, Real-Time Systems NJ: Prentice Hall, 2000.

R. Davis and A. Burns, “Optimal priority assignment for ape-
riodic tasks with firm deadlines in fixed-priority preemptive
systems,”Information Processing Lettersol. 53, no. 5, pp.
249-254, 1995.

A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-
power cmos digital design/EEE Journal of Solid-State Cir-
cuits vol. 27, no. 4, pp. 473-484, April 1992.

S. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Com-
bined dynamic voltage scaling and adaptive body biasing for
lower power microporcessor under dynamic workloadis;”
CAD, 2002.

D.Duarte, N.Vijaykrishnan, M.J.Irwin, H.-S. Kim, and
G.McFarland, “Impact of scaling on the effectiveness of dy-
namic power reduction schemekZCD, 2002.

Intel, PXA250 and PXA210 Applications Processors Design
Guide Intel, 2002.

H. Chetto and M. Chetto, “Some results of the earliest dead-
line scheduling algorithm JEEE Transction On Software En-
gineering vol. 15, 1989.

B. Mochocki, X. Hu, and G. Quan, “A realistic variable volt-
age scheduling model for real-time applicationEEE/ACM
2002 International Conference on Computer Aided Design
2002.

R. Jejurikar and R. Gupta, “procrastination scheduling in fixed
priority real-time systemsl.CTES 2004.

