
Power aware scheduling for real-time systems with (m, k) guarantee

Abstract

Energy consumption and Quality of Service (QoS) are two issues of primary concern for developers
of today’s pervasive computing systems. In this paper, we study the problem of minimizing the energy
consumption while ensuring the designated QoS requirements for a real-time pervasive computing system
on a two-level variable voltage processor. In our approach, the QoS requirements are quantified with so
called (m, k)-constraints, requiring that at least m number of any k consecutive jobs of a task meet their
deadlines. In our approach, the “redundant” jobs are discarded according to the (m, k) constraints. We
develop a necessary and sufficient condition to check the schedulability for the remaining jobs, so that
some of the remaining tasks can be executed at the low voltage mode to save the energy while still meeting
the (m, k) constraints. We have conducted extensive experiments, both on synthesized systems and real
applications, to demonstrate the effectiveness of our approach.

1 Introduction

Power aware computing has come to be recognized as a critical enabling technology in the design of
real-time embedded systems for use in the pervasive computing applications. Today’s embedded systems
continue to evolve towards higher levels of performance requirements to provide rich features for a variety
of dedicated and extensible applications. Such high performance requirements are inevitably accompanied
by the high level of energy consumption required to run the pervasive computing platform—generally
consisting of an embedded processor core, a real-time operating system, and a number of VLSI custom
logic modules implementing specialized functions directly in hardware. On the other hand, designers
have realized that these pervasive, mobile and battery-operated embedded systems require low power
consumption in order to extend the battery life.

If a system is to be both energy efficient and have high performance available on-demand, it has to
be a power aware system—a system with high scalability, adaptivity, and energy efficiency, allowing the
designers, or even the users, to adjust the expected Quality of Service (QoS) dynamically and, in the
mean time, optimize the energy consumption accordingly.

In recent years, there has been increasing interest in applying scheduling techniques to conserve en-
ergy in real-time computing applications. The prevalent approach to energy conservation—particularly
common with laptop computers and cell phones— is to shut down the unit when it is idle. To achieve
better energy saving performance, however, many approaches adopt the so-called dynamic voltage scaling
(DVS) technique. DVS saves on the energy consumption by dynamically changing the processor supply
voltage levels —a characteristic supported in many modern processors such as Intel’s XScale [9], Trans-
meta’s Crusoe [14], and AMD’s Duron [2] processors. Specifically, a variable voltage processor is a CMOS
circuit, so the dynamic power— the dominant component in the processor power consumption—can be

represented [5] by
P ∝ αCLV 2f, (1)

where α is the switching activity, CL is the load capacitance, V is the supply voltage, and f is the system
clock frequency. Due to the quadratic relationship between the voltage and power consumption, reducing
voltage can significantly save the power consumption for the processor. On the other hand, however,
reducing the voltage supply increases the circuit delay, and thus the processor speed (s), which is given
by

s ∝ (V − VT)2

V
, (2)

where VT is the threshold voltage. Care must be taken when reducing the voltage level since it potentially
will cause the tasks in the real-time computing systems to miss their deadlines.

Many DVS techniques, e.g., [3, 10, 8, 11, 12, 23, 26, 30, 33], have been proposed to reduce the energy
consumption for real-time computing system. They differ from the implementation strategies and real-
time system characteristics, such as static vs. dynamic, fixed priority vs. dynamic priority assignment,
periodic vs. non-periodic systems, preemptive vs. nonpreemptive effects, and the like. One common
feature of these techniques is that they are targeted for the system requiring that all the task instances
must meet their deadlines. While tremendous energy can be saved for a wide range of applications
using these techniques, they become inefficient or inadequate when QoS requirements are imposed on the
embedded system, in which some tasks are allowed to miss their deadlines or even simply be dropped
without execution.

QoS requirements dictate under what conditions the system will provide its service to competing
or cooperating tasks executed on the embedded processor, and at what quality level relative to the
completion deadline requirements for the tasks. Typically, we think of QoS metrics such as response
delay, sample loss rate, deadline miss rate, among others.

Recently, we have seen research on using the DVS technique for real-time systems also having QoS
constraints. One approach, e.g. [31, 22, 18, 28], is to dynamically set the processor speed based on both
the prediction of future workload as well as the QoS requirements. While this seems intuitive and easy
to implement, we see that the effectiveness of this combined scheduling technique greatly depends on the
precision of the prediction process. As system workload is usually volatile and difficult to predict, the
energy-saving performance of these combined scheduling approaches can be seriously limited [6]. Qiu
et. al. introduces another technique [24] based on using generalized stochastic petri nets to capture the
probabilistic nature and complex behaviors of real-time embedded systems, which is later on transformed
to a continuous time Markov decision model. In their approach, optimizing the energy consumption,
while also incorporating QoS constraints (such as delay, jitter, and loss rate) over the Markov model,
the energy consumption is minimized and the QoS requirements are satisfied. This approach seems
suitable for systems where timing specifications can only be statistically determined. However, it cannot
be readily applied to systems that have deterministic timing specifications–such as tasks’ release times,
inter arrival periods, deadlines, and worst case execution times– usually the case in many real-time
embedded systems.

All of the above QoS related power-aware scheduling techniques have been focused on formulating
the control problem using the soft real-time system approach–namely, a task should be finished by its
designated deadline, but execution of a task after the deadline still contribute to the overall system
performance. Application systems such as real-time databases, Internet servers, among others, can be
classified as soft real-time systems. In considering QoS requirements, there is another common class
systems, referred to as firm-deadline systems. In a firm-deadline system, a task can occasionally miss
its deadline, but too many missed deadlines over consecutive processing cycles would not satisfy the

2

application service requirements, or those imposed by the environment. Examples of such systems include
avionics navigational systems, aircraft engine control systems, and streaming audio/video applications.

In this paper, we are interested in the problem of minimizing energy consumption for a firm-deadline
task system, containing a set of periodic real-time tasks scheduled by an earliest deadline first (EDF)
policy [17] executing on a variable voltage processor. In addition to the deterministic timing specifications
(such as task’s period, deadline, and worst case execution time), an (m, k)(0 < m ≤ k) constraint [7]
is associated with a task of the system requiring that m out of any k consecutive job instances of the
task must meet their deadlines. Since not all executing jobs are required to meet specific deadlines
(for example, a periodic sampling process to acquire new data), some “redundant” jobs can simply be
discarded to save on the energy expenditure. In this paper, the “redundant” jobs are discarded according
to techniques discussed in the literature [27]—although the use of this technique was originally applied
to the problem of dealing with cases of task overloading in real-time systems.

We argue that this techniques can well serve our dual goals of improving the energy-saving performance,
in addition to providing a guarantee of QoS formulated as (m, k)-constraints. For the remaining jobs,
we propose a technique that is necessary and sufficient for their schedulability. Based on this capability,
some of the remaining jobs not deemed “redundant” are allowed to be executed at a low voltage operating
level to save on energy consumption while executing, so as to still meet their task completion deadlines.
Moreover, this technique can be readily incorporated with known dynamic scheduling techniques, such
as [3, 12] to further improve the energy efficiency. The significance of our approach is that, to the best
of our knowledge, this is the first approach that can efficiently save on energy consumption while also
providing a deterministic QoS guarantee for a real-time system.

This paper is organized as follows. Section 2 formally introduces our problem. Section 3 discusses how
to guarantee the QoS requirements in terms of (m, k)-constraints. Section 4 presents the necessary and
sufficient condition to predict the system’s schedulability after the redundant jobs are pruned. We then
introduce how this necessary and sufficient condition can help to adjust the processor speed dynamically
to save the energy. The effectiveness and energy efficiency of our approach are demonstrated using
simulation results in Section 6. In section 7, we offer conclusions as well as several future directions for
this paper.

2 System models

The real-time system considered in this paper contains n independent periodic tasks, T = {τ0, τ1, · · · , τn−1},
and each task contains an infinite sequence of periodically arrived instances, each of which called a job.
Task τi is characterized using five parameters, i.e., (Ti, Di, Ci, mi, ki). Ti, Di, and Ci represent the pe-
riod, the deadline for each job instance, and the worst case execution time for τi, respectively. A pair
of integers, i.e., (mi, ki) (0 < mi ≤ ki), represent the QoS requirement for τi, requiring that, among any
consecutive ki jobs of τi, at least mi must meet their prescribed completion deadlines.

The variable voltage processors used in our approach can run in one of two modes: high voltage
mode and low voltage mode. In high voltage mode, the processor requires a high supply voltage (VH),
running at a faster clock rate. In low voltage mode, the voltage (VL) supplied to the processor circuitry
is lower and, thus, the speed at which the processor operates is slower. Commercial processors such as
the ARM7D [19] and Motorola PowerPC 860 [20] have this type of operating characteristic relative to
voltage scaling. Since V À VT is usually true in most cases, from equation (2), we assume the ratio
s ∝ 1

V is valid, and use this in our formulation. We also assume that Ci is the worst case execution time
for task τi in high voltage mode. Therefore, if α = VH

VL
, the worst case execution time for τi is αCi if τi

is executed in low voltage mode.
Given the above abstraction and set of assumptions, we formulate our model as follows:

3

Problem 1 Given a real-time system T = {τ0, τ1, · · · , τn−1}, τi = (Ti, Di, Ci,mi, ki), i = 0, · · · , (n − 1),
schedule the real-time system with EDF on a variable voltage processor, which has two discrete voltage lev-
els VL and VH , such that all (m, k)-constraints for the system are guaranteed and the energy consumption
is minimized.

Since not all jobs scheduled are required to meet their deadlines due to (m,k)-constraints, there are
opportunities to save energy by running as many jobs as possible at low voltage, such that just enough
jobs meet their deadlines. The question, however, is how to minimize energy consumption while also
providing a guarantee that no less than mi of any ki consecutive jobs from task τi meet their deadlines.
We explore the theory and formulate an answer to this question in the following sections.

3 Meeting the (m,k)-constraints

There is much work, such as [4, 7, 32, 27, 25], that has investigated real-time scheduling with (m, k)-
constraints since the time the problem was first introduced in [7]. Hamdaoui and Ramanathan [7]
propose a dynamic assignment of a higher priority to tasks that are proximally “closer” to violating the
(m, k)-constraints than others assigned lower priorities. In [4], Bernat and Burns apply the so called
dual priority scheduling scheme, where a given task may be promoted to a higher priority level if there
is high likelihood that it may not meet the (m, k)-constraint otherwise. In [32], West and Poellabauer
have determined individual task priorities based on a combination of EDF and (m,k)-constraints. In this
approach, the priority of a job is first determined by its deadline–the sooner the deadline, the higher
the priority. For jobs having the same deadline, those with “tighter” (m, k)−constraints will be assigned
higher priorities.

While these best-effort approaches help improve the opportunity for tasks to meet their (m, k) con-
straints, they cannot ensure (m, k)-firm guarantee, in the sense that the scheduling techniques cannot
predict whether the (m, k)-constraints for the system can be met. Also, note that these approaches can-
not avoid the execution of jobs that will miss their deadlines. Execution of such jobs consume precious
system resources while adding little benefit to overall performance of the embedded system platform.

Ramanathan [27] proposes another approach to the scheduling problem under (m, k)-constraints, which
is of particular interest to us. In this work, the recurring jobs associated with a task are statically
partitioned to be either mandatory or optional. Specifically, the job τij , i.e. the jth job of task τi, is
determined to be mandatory if

j = bdj × mi

ki
e × ki

mi
c, j = 0, 1, 2, ..., (3)

and it is optional otherwise. For example, let τi have (m,k) constraint as (3,7). Then τi2 is mandatory
since 2 = bd2× 3

7e × 7
3c, and τi3 is optional since 3 6= bd3× 3

7e × 7
3c. It has been shown [27] that as long

as all the mandatory jobs can meet their deadlines, the (m, k)-constraints are satisfied.
While this partitioning is initially intended for improving the stability performance under overloading

situation for real-time control, we adopt it in our approach because of its ability to guarantee (m, k)-
constraints, as well as for its potential to save energy. We summarize our observations in the following
lemma.

Lemma 1 Let the mandatory jobs for task τi with (m, k) constraint (mi, ki) be determined by equation
(3). Then (i) for any ki consecutive jobs of τi, there are exactly mi mandatory jobs; (ii) within any
li(li > 0) consecutive jobs of τi, the difference of the numbers of mandatory jobs is no more than 1.

Proof: Conclusion (i) can be readily derived from Lemma 2 in [27] and therefore is omitted. We present
the proof for conclusion (ii) as follows.

4

Let Ni(xi, yi) be number of mandatory jobs starting from job xi to job yi. For pi jobs starting from job
ai and bi (ai 6= bi), we have the number of mandatory jobs are Ni(ai, ai + pi − 1) and Ni(ai, ai + pi − 1),
respectively. When the mandatory jobs are determined according to equation (3), it has been shown [27]
that, for the first qi jobs of τi, there are li(qi) = dmi

ki
qie jobs that are mandatory. Therefore,

Ni(ai, ai + pi − 1) = li(ai + pi)− li(ai + 1) = dmi

ki
(ai + pi)e − dmi

ki
(ai + 1)e,

and similarly,

Ni(bi, bi + pi − 1) = li(bi + pi)− li(bi + 1) = dmi

ki
(bi + pi)e − dmi

ki
(bi + 1)e.

Assume Ni(ai, ai + pi − 1) ≥ Ni(bi, bi + pi − 1), then

|Ni(ai, ai + pi − 1)−Ni(bi, bi + pi − 1)| = dmi

ki
(ai + pi)e − dmi

ki
(ai + 1)e − dmi

ki
(bi + pi)e+ dmi

ki
(bi + 1)e.

Since dx1 + x2e ≤ dx1e+ dx2e and dx1 + x2e ≥ dx1e+ bx2c for any x1, x2 ∈ R, we have

|Ni(ai, ai + pi − 1)−Ni(bi, bi + pi − 1)| ≤ d(pi − 1)
mi

ki
e − b(pi − 1)

mi

ki
c ≤ 1.

If Ni(ai, ai + pi − 1) < Ni(bi, bi + pi − 1), we can similarly prove that,

|Ni(ai, ai + pi − 1)−Ni(bi, bi + pi − 1)| ≤ 1.

2

Lemma 1 implies that, by adopting the partitioning strategy as shown in (3), a minimal set of manda-
tory jobs are determined, no more and no less. Removing any job from this set will violate the (m, k)-
constraints, and any other jobs added to this set will be redundant in terms of (m, k)-guarantee. There-
fore, the energy is only consumed for the necessary jobs, not for jobs that are nonessential for the
(m, k)-constraints. Moreover, since the power consumption is a convex function of the processor speed,
drastic variation of the processor speed tends to increase the energy consumption [33] sharply. According
to Lemma 1, formula (3) helps to spread out the required jobs evenly along the time to avoid the “burst”
workload for the processor and, thus, has great energy-saving potential.

After getting the mandatory job sets according to equation (3), the problem then becomes how to
schedule the mandatory jobs on the two-mode processor to save energy. Recall that any mandatory job
missing its deadline will cause the violation of (m, k)-constraint. To ensure each mandatory job meet
its deadline, an accurate schedulability analysis is crucial since inaccurate prediction may either cause
the violation of the system requirements, or lead to a pessimistic design which can seriously degrade the
energy performance.

4 Schedulability analysis for the mandatory job set

In this section, we investigate the schedulability condition for the mandatory job set determined using
equation (3). There are two benefits to conduct the schedulability analysis. First, it helps to predict if
a real-time system with (m, k)-constraints using the static partitioning technique as shown in equation
(3) is schedulable or not. Second, it also helps to put the execution of some mandatory jobs in the low
voltage mode to save the energy while meeting their deadlines, and hence, the (m, k)-constraints.

Koren et. al. [13] proposed a schedulability analysis technique based on the “skip-over” model, i.e.,
a model that allows one job be ”skipped” after every s jobs. Note that the ”skip-over” model is only

5

a special case of (m, k) model with m = k − 1, the schedulability technique for this model cannot be
easily extended for a general (m, k) model. Since the mandatory jobs are scheduled according to EDF,
it is desired to use the well-known Liu&Layland bound (U ≤ 1) to predict the schedulability. However,
U ≤ 1 is only the necessary and sufficient condition for task set with tasks’ deadlines equal their periods,
or it is only a necessary condition. Using a network traffic model with periodic traffic arrivals, Zheng et.
al. [34] proposed a necessary and sufficient EDF-schedulability condition with arbitrary deadlines. Their
work is later extended by Liebeherr et. al. [16] for a more general case. For a preemptive real-time task
system with arbitrary job arrivals and deadlines, their conditions can be formulated as follows:

Theorem 1 System T = {τ0, τ1, ..., τn−1} is EDF-schedulable iff

∀t > 0,
∑

i

Wi(0, t) ≤ t, (4)

where Wi(0, t) is the total workload from the jobs of τi that arrive before t and must finish by t.

The close-form necessary and sufficient condition in Theorem 1 cannot be readily applied to check
the feasibility for a mandatory job set, since it requires checking an infinite number of points (t > 0) to
guarantee the schedulability. It is highly desirable that we should only be required to check a limited and
small number of points to determine if a mandatory job set is schedulable or not. In what follows, we
introduce another necessary and sufficient condition to precisely capture the schedulability information
of the mandatory job set. Before we introduce this theorem, we first present the following definition.

Definition 1 Let w(t) represent the workload from the jobs that arrives in [0, t] but not finished before
t. A busy interval, i.e.[ts, te], is the interval such that w(t−s) = w(t+e) = 0 and w(t) > 0 for ts ≤ t < te.

The following theorem allows one to predict the schedulability for a mandatory job set by checking only
a limited number of points.

Theorem 2 Let system T = {τ0, τ1, ..., τn−1}, where τi = {Ti, Di, Ci, mi, ki}, and R be the mandatory
job set generated from T according to equation (3). R is schedulable with EDF iff all the mandatory jobs
within the first busy interval can meet their deadlines.

Proof: The necessity of this statement follows naturally with the definition of the schedulability. To
prove the sufficiency of this statement, we use the contradiction.

We use the following notation, i.e. dxe+ in our proof. Specifically,

dxe+ =

{
n n− 1 ≤ x < n, n ∈ Z
0 x < 0

(5)

Suppose the first deadline miss happens at t which is not in the first busy interval. Then we can always
find a t′ < t such that the processor is busy during [t′, t] and t′ is the starting point of this busy interval.
It has been shown [27] that, if the mandatory jobs are determined according to equation (3), for the first
pi jobs of τi, there are li(t) = dmi

ki
pie jobs that are mandatory. Therefore, the total workload in interval

[t′, t] can be formulated as follows:

W (t′, t) =
∑

i

(dmi

ki
d t−Di

Ti
e+e − dmi

ki
d t
′ −Di

Ti
e+e)Ci. (6)

6

Since dx1 + x2e ≤ dx1e+ dx2e for any x1, x2 ∈ R, we have

W (t′, t) ≤
∑

i

dmi

ki
d t− t′ −Di

Ti
e+eCi. (7)

Since the deadline miss happens at t, we have

∑

i

dmi

ki
d t− t′ −Di

Ti
e+eCi > t− t′. (8)

On the other hand, since no deadline miss happens earlier than t, we have

W (0, t− t′) =
∑

i

dmi

ki
d t− t′ −Di

Ti
e+eCi ≤ t− t′. (9)

This contradicts to (8). 2

The ending point of the first busy interval can be easily found by observing that it must be the smallest
t such that the accumulated workload within interval [0, t] equals t, that is,

∑

i

Wi(0, t) = t. (10)

One can easily compute the ending point for the first busy interval by using fixed-point iteration on
formula (10) with the initial value t set to mini Di, i = 0, · · · , (n − 1). The fixed-point iteration will
converge rapidly as long as the task set is schedulable. After getting the ending point for the first busy
interval, we can then apply Theorem 2 and check if a mandatory job set is schedulable.

5 DVS scheduling for the mandatory job set

After a mandatory job set is determined to be schedulable according to Theorem 2, one can use DVS
techniques to schedule the mandatory jobs and save energy. In regard to the two-mode nature of the
variable voltage processor and the characteristics of the mandatory jobs, one intuitive approach is to use
the shut-down-when-idle strategy. That is, all the mandatory jobs are executed at the high level voltage,
the processor is shut down if all the previously arrived jobs have been finished and new jobs have not
arrived. While this approach is intuitive and easy to implement, it does not take the advantage of the
DVS and, thus, the energy performance is severely limited.

Recall that the processor power consumption is a quadratic function of the voltage. Reducing the
supply voltage of the processor can significantly reduce the power consumption. Therefore, to better
save the energy, we can assign some tasks to the low voltage mode as long as the resultant mandatory
jobs are schedulable. However, when assigned to the low voltage mode, a job may take the risk of missing
its deadline or cause other jobs to miss their deadlines. Our goal is to assign as many tasks as possible
in the low voltage mode to save the energy as long as all the mandatory jobs can meet their deadline.
We can formulate the problem as follows.

Problem 2 Given a real-time system T = {τ0, τ1, · · · , τn−1} with τi = (Ti, Di, αiCi,mi, ki), and αi = 1
or α. Select {αi, i = 0, · · · , (n − 1)} such that all the (m, k)-constraints for T can be satisfied and the
energy consumption is minimized.

Note that, for a given set of {αi, i = 0, · · · , (n − 1)}, we can use Theorem 2 to analyze its schedula-
bility. As this static analysis can be made off-line, we can afford of using some classic exhaustive search

7

algorithms such as branch-and-bound to find the optimal solution, when the number of tasks n of the
task set is not extremely large (which is common for many real applications).

Note that, after we assign the voltage levels for each task, we can further improve the energy perfor-
mance by incorporating the dynamic techniques such as the ones in [3, 15, 12] to exploit the dynamic
slack time, i.e. the slack time due to the task’s actual execution being usually smaller than its worst
case value. For example, when a job finishes earlier than its estimated completion time, the next job
from the ready queue can first run in the low voltage mode until the slack time is completely consumed,
and then run in its designated voltage mode. More energy is saved in this way since a greater number
of the mandatory jobs can be executed (either partially or completely) at this low voltage level. In next
section, we use experiments to evaluate the energy performance of our approach.

6 Experimental Results

In this section, we use experiments to demonstrate the effectiveness of using our approach to schedule
the real-time systems while guaranteeing the QoS requirements in terms of (m, k)-constraints.

A fair evaluation would need to compare our approach with any other ones that can deal with the
energy saving and guarantee to satisfy the (m, k)-constraints deterministically. However, as explained
before, no other previous work from our best knowledge has been reported in the literature. Therefore,
in our experiments, we compare energy saving performance by our approach with two other previous
approaches. One approach uses the shut-down-when-idle strategy, and the other one uses the dynamic
slack reclaiming technique [15], which is also incorporated in our approach to reclaim the dynamic slacks
after some of the tasks are put in the low voltage mode. For brevity, we use MKLP , MKSD, and
MKDY N to represent our approach, the one with shut-down-when-idle, and the one using dynamic slack
reclaiming technique, respectively.

Our experiments contain two sets of test cases. The first set contains randomly generated real-time
task sets and uses an ideal two-mode variable processor. For the second set of the tests, we use the
practical applications reported in the literature and adopt the hardware specifications of a real two-mode
processor, i.e. Motorola PowerPC 860 [20].

For the randomly generated task sets, the periods are randomly selected from interval 10,50 and the
deadlines are assumed to be equal to their periods. The worst case execution time (WCET) of a task at the
high voltage mode is uniformly distributed from 1 to its deadline, and the actual execution time of a job
is randomly picked from 0.5WCET, WCET. The mi and ki for the (m, k)-constraints are also randomly
generated such that ki is uniformly distributed between 2 to 12, and mi < ki. In our experiment, we
investigate the energy saving performance by different approaches under different task utilizations, since
different task utilizations can result in significant differences for energy savings. Specifically, we assign
the task sets into 10 groups according to their (m, k) utilization, i.e. Um =

∑
i

miCi
kiTi

. For example, a task
set with 0 < Um ≤ 0.1 is assigned to the first group. To reduce the statistical errors, we require that each
group contain at least 20 schedulable task sets, or until at least 5000 task sets with the corresponding
(m, k) utilization have been generated. For the processor used for the randomly generated task sets, we
assume it is a two-mode variable voltage processor with α = VH

VL
= 2. The average energy consumption

for each approach in each group is collected. All results are normalized against the ones by MKSD and
filled into Table 1.

Table 1 shows the average energy consumptions by the three approaches, i.e. MKSD, MKDY N , and
MKLP , as well as the energy saving improvements of MKLP over MKSD and MKDY N . From Table 1,
one can readily see that our approach have much better energy saving performance than the other
two. Compared with the simply shut-down-when-idle strategy, our approach can save the average energy
consumption up to around 56%. This is because that, our approach can assign some mandatory jobs that

8

(m, k) Average Energy Consumption Improvement by MKLP

Utilization MKSD MKDY N MKLP MKSD MKDY N

0.0-0.1 100 98.2 44.9 55.1% 53.3%
0.1-0.2 100 98.1 43.4 56.6% 55.7%
0.2-0.3 100 96.7 53.4 46.6% 44.8%
0.3-0.4 100 92.8 52.2 47.8% 43.8%
0.4-0.5 100 91.9 64.3 35.7% 30.0%
0.5-0.6 100 89.7 65.8 34.2% 26.6%
0.6-0.7 100 85.2 75.4 24.6% 11.5%
0.7-0.8 100 89.8 89.0 11.0% 0.89%
0.8-0.9 100 83.3 83.3 16.7% 0.00%
0.9-1.0 100 80.2 80.2 19.8% 0.00%

Table 1. Average energy consumption randomly generated task sets and the corresponding energy
saving improvement of MKLP over MKSD and MKDY N .

initially need to be executed in the high voltage mode to the low voltage mode and still guarantee their
deadlines, and hence, the (m, k)−requirements. The more mandatory jobs can be assigned to the low
voltage mode, the higher the energy saving improvement. The energy saving certainly also comes from
the factor that, by incorporating the dynamic reclaiming technique in our approach, more mandatory
jobs (either partially or completely) can be executed in the low voltage mode.

To investigate the impacts of the dynamic slack reclaim technique relative to our capability of statically
assigning the mandatory jobs in the low voltage mode based on our accurate schedulability analysis, we
only need to compare the energy saving results of MKDY N and MKLP as shown in Table 1. Compared
with the dynamic slack reclaiming, our proposed technique has significant energy saving improvement
when the system utilization is relative small. As the system utilization increases, the energy saving
improvement is decreasing. For example, from Table 1, the energy saving improvement can be as high
as around 56% when the system (m, k)-utilization is among 0.1 to 0.2, while the improvement becomes
around 11% for system with (m, k)-utilization among 0.6 to 0.7. The reason is that, when the utilization
is lower, the probability for statically assign the execution of mandatory jobs is higher. Therefore, our
approach can have a much higher energy saving improvement than using the dynamic slack reclaiming
technique alone. If the system utilization is very high, statically assigning a mandatory job to the low
voltage mode will potentially cause it or other mandatory jobs to miss the deadlines, and thus the energy
improvement is not as significant as that for the systems with low utilizations.

We also test our conclusions in a more practical environment. In the second set of experiments, we
use three real-world applications: web phone [29], CNC (Computerized Numerical Control) machine
controller [21], and INS (Inertial Navigation System) [1], as our task systems. For the (m, k)-constraints,
we still resort to the extensive randomly generated samples as we do for the randomly generated task sets
to provide us with some meaningful insights. The processor used in this set of experiments is adopted from
the product specifications of a practical two-mode variable voltage processor, i.e. Motorola PowerPC
860. Specifically, it can be run at 50Mhz on 3.3 V, or 25Mhz at 2.4V. 20 sets of (m, k)−constraints are
randomly generated for each applications. The average energy consumptions for the applications are
listed in Table 2, after normalized against the ones by MKSD.

From Table 2, we can see that our approach can lead to much less energy consumption, i.e. 13%

9

Average Energy Consumption Improvement by MKLP

Systems MKSD MKDY N MKLP MKSD MKDY N

web phone 100 99.1 90.1 19.9% 9.08%
CNC 100 92.1 71.0 29% 22.9%
INS 100 96.0 87.0 13% 9.38%

Table 2. Average energy consumptions for three real applications (web phone [29], CNC [21], and
INS [1]) using the practical two-mode processor (Motorola PowerPC 860 [20]), as well as the corre-
sponding energy saving improvement of MKLP over MKSD and MKDY N .

to 29%, compared with the power down strategy. Compared with that by using the dynamic slack
reclaiming technique alone, our approach can save more energy, i.e. from 9.08% to 22.9%. Overall, the
experimental results based on both the randomly generated systems as well as the practical applications
have clearly demonstrate the effectiveness of our approach in saving energy.

7 Conclusions and future work

Low power/energy consumption, along with QoS guarantee, are two of the most critical factors for
the successful design of pervasive real-time computing platforms with the objectives as discussed in this
paper. We have proposed in this paper the use of a power-aware scheduling technique that can be used in
systems with a two-mode variable voltage processor. We use this feature to reduce energy consumption
while also ensuring QoS requirements deterministically. The QoS requirements are quantified by a set
of (m, k)-constraints. Jobs identified as redundant are discarded statically. A necessary and sufficient
condition of feasibility is introduced that enables remaining tasks to be executed in low voltage mode for
accrued energy savings. Finally, our technique can be readily incorporated with some existing dynamic
scheduling techniques, which can lead to further enery savings. Experiments with parameters drawn from
both synthesized systems as well as practical applications has shown the effectiveness of our approach.

There are several possible extensions of this work. In this paper, the mandatory jobs are statically
determined, solely according to their (m, k)-constraints. It would be interesting to find some dynamic
ways to decide if a job should be executed or not. However, to guarantee the schedulability for the
dynamic determined mandatory jobs, and therefore the (m, k)−constraints, can be challenging. Also,
this approach targets only on two-mode variable voltage processor. It would be interesting to extend
further for the multiple level voltage processor.

References

[1] A.Burns, K. Tindell, and A. Wellings. Effective analysis for engineering real-time fixed priority schedulers.
IEEE Transactions on Software Engineering, 21:920–934, May 1995.

[2] AMD. Mobile amd duron processor, 2001.
[3] H. Aydin, R. Melhem, D. Mosse, and P. Alvarez. Determining optimal processor speeds for periodic real-time

tasks with different power characteristics. In ECRTS01, June 2001.
[4] G. Bernat and A. Burns. Combining (n,m)-hard deadlines and dual priority scheduling. In RTSS, Dec 1997.
[5] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power cmos digital design. IEEE Journal of

Solid-State Circuits, 27(4):473–484, April 1992.
[6] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey III, and M. Neufeld. Policies for dynamic clock scheduling.

Proceedings of OSDI, pages 73–86, 2000.

10

[7] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for streams with (m,k)-firm
deadlines. IEEE Transactions on Computes, 44:1443–1451, Dec 1995.

[8] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power optimization of variable voltage
core-based systems. In DAC, pages 176–181, 1998.

[9] Intel. Developer manual: Intel 80200 processor based on intel xscale microarchitecture, 2002.
[10] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable voltage processors. In

ISLPED, pages 197–202, August 1998.
[11] R. Jejurkar and R. Gupta. Energy aware task scheduling with task synchronization for embedded real time

systems. CASES, 2002.
[12] W. Kim, J. Kim, and S.L.Min. A dynamic voltage scaling algorithm for dynamic-priority hard real-time

systems using slack analysis. DATE, 2002.
[13] G. Koren and D. Shasha. Skip-over: Algorithms and complexity for overloaded systems that allow skips. In

RTSS, 1995.
[14] D. Laird. Crusoe processor products and technology, January 2000.
[15] Y. Lee, Y. Doh, and C. Krishna. Edf scheduling using two-mode voltage-clock-scaling for hard real-time

systems. CASE, pages 221–228, 2001.
[16] J. Liebeherr, D.W.Wrege, and D. Ferrari. Exact admission control for networks with a bounded delay service.

IEEE/ACM Transactions on Networking, 4:885–901, 1996.
[17] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment.

Journal of the ACM, 17(2):46–61, 1973.
[18] J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling algorithms with PACE. In SIGMET-

RICS/Performance, pages 50–61, 2001.
[19] A. R. M. Ltd. Introduction to thumb. version 2.0. ARM DVI-0001A, 1995.
[20] MPC860. Mpc860 powerpc hardware specifications. MPC860EC/D, Mortorola 1998.
[21] N.Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin. Visual assessment of a real-time system design:

a case study on a cnc controller. In RTSS, Dec 1996.
[22] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic voltage scaling algorithms.

ISLPED, pages 76–81, 1998.
[23] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating systems. In

SOSP, 2001.
[24] Q. Qiu, Q. Wu, and M.Pedram. Dynamic power management in a mobile multimedia system with guaranteed

quality-of-service. In DAC, pages 834–839, 2001.
[25] G. Quan and X. Hu. Enhanced fixed-priority scheduling with (m,k)-firm guarantee. In 2000 IEEE Real-Time

System Symposium, pages 79–88, 2000.
[26] G. Quan and X. S. Hu. Energy efficient fixed-priority scheduling for real-time systems on voltage variable

processors. In DAC, pages 828–833, 2001.
[27] P. Ramanathan. Overload management in real-time control applications using (m,k)-firm guarantee. IEEE

Trans. on Paral. and Dist. Sys., 10(6):549–559, Jun 1999.
[28] K. F. S. Reinhardt and T. Mudge. Automatic performance-setting for dynamic voltage scaling. Proceedings

of the 7th Conference on Mobile Computing and Networking MOBICOM’01, 2001.
[29] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for low-energy hard real-time applications. IEEE

Design and Test of Computers, 18(2), March-April 2001.
[30] V. Swaminathan and K. Chakrabarty. Investigating the effect of voltage switching on low-energy task schedul-

ing in hard real-time systems. In ASP-DAC, pages 251–254, June 2001.
[31] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu energy. In Proceedings of

USENIX Symposium on Operating System Design and Implementation, pages 13–23, 1994.
[32] R. West and K. Schwan. Dynamic window-constrained scheduling for multimedia applications. In ICMCS,

1999.
[33] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In IEEE Annual Found. of

Comp. Sci., pages 374–382, 1995.
[34] Q. Zheng and K. G. Shin. On the ability of establishing real-time channels in point-to-point packet-switched

networks. IEEE Trans. on Comm., 42(2/3/4):1096–1105, 1994.

11

