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ABSTRACT
While the dynamic voltage scaling (DVS) techniques are ef-
ficient in reducing the dynamic energy consumption for the
processor, varying voltage alone becomes less effective for
the overall power reduction as the leakage power is growing
rapidly, i.e., five times per technical generation as predicted.
In this paper, we study the problem of reducing both the
static and dynamic power consumption at the same time for
the hard real-time system scheduled by the earliest deadline
first (EDF) strategy. To balance the dynamic and leakage
energy consumption, higher-than-necessary processor speeds
may be required when executing real-time tasks, which can
result in a large number of idle intervals. To effectively re-
duce the energy consumption during these idle intervals, we
propose a technique that can effectively merge these scat-
tered intervals into larger ones without causing any dead-
line miss. Simulation studies demonstrate the effectiveness
of our approach. Specifically, our experiments show that
the proposed technique can lead up to more than 80% idle
energy savings than that by the previous ones.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management–Scheduling

General Terms
Algorithms

Keywords
DVS, real-time scheduling, leakage power reduction, low
power design, embedded system

1. INTRODUCTION
Power consumption has become a major hurdle in design

of next generation portable, scalable, and sophisticated em-
bedded systems. Current power saving techniques have been
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mainly focused on reducing the dynamic power, i.e., the
power consumption due to the switching activities in the
CMOS circuit, because it has been the predominant compo-
nent in the overall power consumption for most embedded
systems today. However, as VLSI technology marching to-
wards deep submicron and nanoscale circuits operating at
multi-GHz frequencies, the rapidly elevated leakage power
dissipation will soon become comparable to, if not exceed-
ing, the dynamic power consumption [10]. More advanced
power saving techniques are demanded for enabling the de-
velopment of future generations of embedded systems.

In the face of the increasing challenge presented by the
leakage power consumption, design efforts in all fronts must
be pursued to form an integration solution for this prob-
lem. Recently, many circuit and architecture techniques,
such as [17, 5, 3, 12, 6, 1], have been proposed to control
the leakage power consumption. It is our belief that real-
time scheduling plays a unique role in this effort because
not only most of the future embedded systems are real-time
systems, but also real-time scheduling has been one of the
most effective techniques in energy reduction for the embed-
ded systems.

Many dynamic voltage scaling (DVS) based real-time schedul-
ing techniques, e.g. [20, 9, 2, 18], have been proposed to con-
serve energy. DVS can effectively reduce the dynamic power
consumption by dynamically varying the processor speed,
based on the workload and the deadline requirements of the
real-time applications. However, the energy saving perfor-
mance achievable via voltage reducing is becoming severely
limited with the dramatic increase of the leakage power con-
sumption. To obtain the maximal gain for the overall energy
reduction, the DVS-based scheduling techniques must take
the leakage power consumption into consideration.

Recently, several scheduling techniques have been reported
to reduce the leakage power consumption. In [19], a schedul-
ing algorithm that combines DVS and adaptive body biasing
(ABB) is proposed to reduce both dynamic power and leak-
age power. An analytic model is derived that can be applied
to compute the optimal supply voltage and body bias volt-
age in terms of overall energy reduction for a given clock
frequency. For processors with no complex control mecha-
nism for body biasing voltage, processor shut-down is one
of the most effective strategies to reduce the leakage power
consumption. In regard to this, Lee et. al. [13] proposed
a leakage reduction scheduling technique called LC-EDF,
which carefully delays the execution of the arriving task in-
stances when the processor is idle to extend the idle intervals



and reduce the number of power transitions. Specifically, ac-
cording to LC-EDF, the extended idle time is treated as one
part of the tasks’ execution time. As long as the resultant
total utilization is less than or equal to 1, the schedulability
of the task set is guaranteed. However, they assume a non-
DVS processor model, which cannot optimize the dynamic
power consumption. Irani et. al. [8] theoretically proved
that, with a DVS processor, the voltage schedule that opti-
mizes both the dynamic and leakage power consumption can
be constructed from the corresponding DVS voltage sched-
ule that can optimize the dynamic power consumption. In
this case, higher-than-necessary processor speeds may be re-
quired to balance the dynamic and leakage power consump-
tion, which will produce a large number of scattered idle pe-
riods. To better save the energy consumption during these
idle periods, Jejurikar et. al. [11] proposed an approach,
called CS-DVSP, to extend the idle interval by delaying
the execution of task instances. They theoretically proved
that their algorithm can guarantee the minimal idle interval
larger than the one by LC-EDF. However, the problem with
this approach is that it computes the delays based on the
utilization factor, i.e., U =

∑
i

Ci
Ti

≤ 1 [14]. When tasks’

deadlines are less than their periods, one has to use the
deadlines to replace the periods in this condition, which can
be very conservative.

In this paper we are interested in studying the problem
to reduce both the dynamic and leakage power consump-
tion simultaneously for hard real-time systems running on
a variable voltage processor. In particular, we propose a
scheduling technique that combines DVS and shut-down to
minimize the overall energy consumption. When the pro-
cessor is active, the processor speed is chosen such that the
dynamic and leakage power consumption are balanced [8];
when the processor is idle, the coming task instances are de-
layed as late as possible to extend the inter-task idle inter-
vals. Different from CS-DVSP and LC-EDF, we propose
a job-based strategy such that the delay for the coming task
instances can be more precisely estimated. With a prac-
tical processor model and technology parameters [15], our
experiment results show that our approach can significantly
outperform the energy saving performance achieved by CS-
DVSP and LC-EDF.

This paper is organized as follows. Section 2 introduces
the preliminaries related to our problem. Section 3 discusses
our leakage conscious DVS scheduling technique. Section 4
demonstrates the effectiveness of our approach based on sim-
ulations. Section 5 concludes the paper.

2. PRELIMINARIES
In this section, we describe the real-time system and power

model we use in this paper.

2.1 System model
The real-time system that we are interested in consists of

M independent periodic tasks, T = {τ1, τ2, · · · , τM}, sched-
uled according to the earliest deadline first (EDF) scheme [14].
Each task, τi = (Ri, Ci, Di, Pi), is characterized by its ini-
tial arrival time Ri, workload Ci (CPU cycles, for example),
deadline Di, and period Pi. We assume Di ≤ Pi. Each pe-
riodic task consists of a sequence of instances, called jobs.
In this paper, we perform analysis based on a particular
job set instead of task set. Therefore, we denote a job set
as J = {J1, J2, · · · JN}, and Ji = (ri, ci, di), where ri, ci,

and di are the arrival time, worst case execution cycles, and
absolute deadline, respectively.

2.2 Power model
In a CMOS circuit, the power consumption includes dy-

namic and static components during its active operation.
The dynamic power consumption consists of the switching
power for charging and discharging the load capacitance,
and the short circuit power due to the non-zero rising and
falling time of the input and output signals. The dynamic
power (Pdyn) can be represented [4] as

Pdyn = αCLV 2f, (1)

where α is the switching activity, CL is the load capacitance,
V is the supply voltage, and f is the system clock frequency.
The static power (Pleak) can be expressed as

Pleak = IleakV, (2)

where Ileak is the leakage current which consists of both the
subthreshold leakage current and the reverse bias junction
current in the CMOS circuit (For a formal mathematical
formulation of Ileak and detailed explanations of the related
technical parameters, we refer the reader to [11]). The power
consumption when the processor is in its active status, i.e,
Pact, is thus

Pact = Pdyn + Pleak, (3)

Leakage current increases rapidly with the scaling of the de-
vices. It becomes particularly significant with the reduction
of the threshold voltage. Therefore, the leakage power con-
sumption is becoming a major component of Pact in future
CMOS circuits.

The processor consumes energy not only in its active mode
but also when it is idle. When the processor is idle, the
major portion of the power consumption comes from the
leakage which increases rapidly with the dramatic increasing
of the leakage power consumption. It is imperative that
this part of energy be effectively reduced for the purpose of
overall energy reduction.

Power-down strategy can greatly reduce the energy con-
sumption when the processor is idle. For example, it has
been reported in [7] that the power dissipation when the
processor is idle can be in the order of 103 of that when the
processor is shut down. While the processor consumes less
power in the power down state, it has to pay extra energy
and timing overhead to shut down and later wake up the pro-
cessor in order to save/restore the context as well as initiate
the architectural components such as the cache, translation
lookaside buffers, and branch target buffers. One has to be
careful if energy can be saved when shutting down the pro-
cessor since the energy overhead may outweigh the benefit
of the energy saving if the idle interval is too short. Assume
that the power consumptions of a processor in its idle state
and sleeping state are Pidle and Psleep, respectively, the en-
ergy overhead of shutdown/wakeup is Eo, and the timing
overhead is to. Let

Pidle × t = Eo + Psleep × t. (4)

Then, the processor can be shut down with positive energy
savings only when the length of the idle interval is larger
than Tmin = max( Eo

Pidle−Psleep
, to). We call Tmin as the

minimal length of the idle interval.
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Figure 1: (a) A job set with five jobs. (b) The optimal voltage schedule [20]. (c) The actual job schedule
according to the voltage schedule shown in (b). (d) The job schedule with sth = 0.5.

2.3 A motivation example
To develop a real-time schedule that can minimize the

overall energy consumption, both the active energy and idle
energy need to be minimized with the deadlines of the tasks
guaranteed. While there have been polynomial time solu-
tion to reduce the dynamic power consumption alone [20],
no practical optimal algorithm has been proposed when the
leakage power consumption is taken into consideration.

When processor is active, reducing the processor supply
voltage can greatly reduce the dynamic energy consumption
since the energy consumption is quadratically related to the
supply voltage. Without the consideration of the leakage, it
would be most energy efficient to run the tasks with voltage
as low as possible. However, reducing the supply voltage
usually requires the reduction of the threshold voltage to
maintain the circuit performance, which will dramatically
increase the leakage current and, hence, the leakage power
consumption. Considering a job with workload w and to-
tal power function as Pact(s), the active energy (Eact(s))
consumed to finish this job with speed s can be represented
as

Eact(s) = Pact(s)× w

s
. (5)

Hence, to minimize the energy consumption, i.e, Eact(s) in
equation (5), we have

∂Eact(s)

∂s
= 0 (6)

and therefore

Pact(s) = P ′act(s)s. (7)

Equation (7) computes the most energy efficient speed to
execute one job. To increase or decrease the processor speed

from this one will increase the dynamic or leakage power
consumption. We therefore call this speed as the threshold
speed, and denoted as sth. Unfortunately, using such a speed
is not always feasible in considering the deadlines and the
preemptions of the jobs. In addition, the optimal voltage
schedule that can optimize both the active energy and idle
energy is yet to be developed.

Irani et. al. [8] present a lemma on the optimal processor
speed selection in regard to the overall energy consumption.
Let Sdyn(J ) denote the voltage schedule for job set J that
can minimize the dynamic energy consumption. The lemma
can be rephrased as follows.

Lemma 1. [8] Considering both the dynamic and static
power consumption of a processor, there exists an optimal
voltage schedule Sopt(J ) such that all jobs that run with the
speeds at or higher than sth in Sdyn(J ) run at the same
speed and same time in Sopt(J ).

Lemma 1 shows that an overall optimal voltage schedule
can be built upon part of the optimal voltage schedule for
the dynamic power consumption reduction, i.e., the part in
which a processor speed higher than sth is required. For the
rest of the jobs, according to equation (7), using sth would
be a good choice as it helps to reduce the total active energy
consumption.

As a motivation example, Figure 1(a) shows an example
of job set with five jobs. The optimal voltage schedule ac-
cording to [20] and the corresponding schedule are shown in
Figure 1(b) and Figure 1(c), respectively. And Figure 1(d)
shows the scheduling results with sth = 0.5.

As illustrated in Figure 1(b) and Figure 1(c), traditional
DVS techniques [20] can effectively reduce the processor



speed. Moreover, when considering the leakage power con-
sumption and applying the threshold speed (sth = 0.5) to
the voltage schedule, the tasks’ deadlines are guaranteed
(Figure 1(d)). The problem, however, is that applying sth

for the jobs with required speeds lower than sth can result
in a large number of small and scattered idle intervals, as
shown in Figure 1(d). Shutting down and waking up the
processor during these idle intervals will consume a signifi-
cant amount of energy. In addition, assuming Tmin = 3, it
is only energy beneficial to shut down the processor during
one in four of the idle intervals shown in Figure 1(d). This
implies a great waste of energy in consideration of the fact
that the idle power consumption can be 103 times as large
as that when processor is shut down. In what follows, we
introduce our approach that can effectively deal with the
idle intervals to save the overall energy consumptions.

3. THE LEAKAGE CONSCIOUS DVS AL-
GORITHM

In this section, we first describe the general algorithm
that can reduce both the dynamic and static power con-
sumption simultaneously while guaranteeing the deadlines
for hard real-time systems. Then we present a more deli-
cate approach to deal with the idle intervals to reduce the
leakage power during these intervals.

3.1 The general approach
Incorporating the threshold speed in a dynamic voltage

schedule can effectively reduce the active energy consump-
tion as explained earlier. Since the idle power consumption
can be significantly larger than that when the processor is
shut down, one may seek to extend the idle interval by in-
creasing the processor speed. However, increasing processor
speed cannot reduce the number of power transitions and
thus the associated overheads. Moreover, as shown in equa-
tion 7, increasing speed over sth will increase the total active
power consumption. A better way to extend the idle inter-
vals is to delay the executions of the coming jobs when the
processor is idle. Temporarily withholding the executions of
the jobs helps to merge the scattered smaller idle times into
larger ones. The energy is saved since the processor may
therefore be put into the shut-down status when intervals
become longer. Moreover, it saves the energy overhead for
shutting down and waking up the processor.

Before we explain our approach in more details, we first
introduce several definitions. Since execution of jobs is de-
layed only when processor is idle, we are more interested
in the jobs that arrive later when processor is idle, not the
ones that have been completed. Specifically, we have the
following definition.

Definition 1. A job set is called a Jn-job set (denoted as
Jn) if every job Ji in the set satisfies ri ≥ rn.

In addition, delaying the execution of a job set should not
cause any future job to miss its deadline, we use the following
definition to capture this characteristic for a job set.

Definition 2. The latest starting time of a job, e.g.,
Jn ∈ J , (denoted as tLS(Jn)) is the latest time such that,
if the execution of Jn or the higher priority jobs starts no
later than tLS(Jn), Jn will meet its deadline. The latest
starting time(LST) of a job set , e.g. J , (denoted as

TLS(J )) is the latest time such that, if the execution of any
jobs in J starts no later than TLS(J ), all jobs will meet
their deadlines.

Algorithm DVSLK (Algorithm 1) sketches the general
idea of our approach. First, the optimal dynamic voltage
schedule Sdyn(J ) is constructed according to [20] that can
minimize the dynamic energy. The required processor speed
for each job to meet its deadline is thus obtained. When
the processor is not idle, it will run the jobs in the ready
queue according to EDF and use sth when necessary (line
5). When the processor is idle, Algorithm 1 dictates if the
processor should be shut down or be kept idle depending
on if the predicted idle interval is long enough. The key to
the success of Algorithm 1 is the computation of the latest
starting time for the coming job set when the processor is
idle (line 8), which will be addressed next.

Algorithm 1 Algorithm to reduce both dynamic and leak-
age power consumption for real-time systems scheduled ac-
cording to EDF (Algorithm DVSLK)

1: Input: J , sth, and Tmin.
2: Compute the dynamic voltage schedule according to [20]

and sn, n = 1, 2, ..., N ;
3: // sn is the minimal speed for Jn to meet its deadline
4: if processor is not idle then
5: Run job Ji in the ready queue according to EDF, using

s = max(si, sth);
6: else
7: Let Jn be the next coming job;
8: Compute TLS(Jn);
9: if TLS(Jn)− tcur > Tmin then

10: // tcur is the current time
11: Shut down the processor and set up the wake up

timer to be TLS(Jn)− tcur;
12: end if
13: end if

3.2 Computing LST for a job set
Delaying execution of jobs helps to extend the idle interval

length. At the same time, however, it will also potentially
cause a job to miss its deadline. To guarantee the deadline
of a job set, Mochocki et. al. [16] introduced a method that
can be applied to find out the longest time that the future
jobs can be delayed if the job set is to be run with a constant
speed. Their method is based on the following lemma.

Lemma 2. [16] Let job set (J ) be executed with a con-
stant speed s∗. Then,

tLS(Jn) = dn −
∑

Jk∈hp(Jn)

ck

s∗
, (8)

where hp(Jn) is the jobs with the same or higher priorities
than that of Jn. Furthermore,

TLS(J ) = min
n

tLS(Jn). (9)

The rationale behind Lemma 2 is that if the accumulated
workload from a job and all the higher priority jobs can be
finished between its starting time and deadline, the deadline
of this job can be satisfied. It is optimal in the sense that
delaying execution of jobs any further will cause at least one
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Figure 2: (a) The delay bound for a J4-job set. (b) With sth = 0.5, using the minimum of the latest start times
of the jobs arriving before TB as LST for the job set causes J2 to miss its deadline. (c) The idle intervals are
not effectively merged using TLS = 6, computed based on the completion time of the jobs according to the
DVS voltage schedule. (d) With TLS = 8, all the idle intervals are merged into one single interval and all jobs
can meet their deadlines.

deadline miss. When considering the case when different
jobs can be run at different speeds, e.g., according to the
DVS voltage schedule computed based on [20], Lemma 2
can be readily revised as follows.

Lemma 3. Let job Jn ∈ J , n = 1, 2, .., N be executed with
speed sn. Then, we have

tLS(Jn) = dn −
∑

Jk∈hp(Jn)

ck

sk
, (10)

and,

TLS(J ) = min
n

tLS(Jn). (11)

Lemma 3 follows the general principle as that for Lemma 2
and thus can guarantee the schedulability of the job set.
However, a straightforward implementation of Lemma 3 has
computational complexity as O(N2), where N is the total
number of jobs. For a periodic job set, N is the number
of all the jobs within the least common multiple (LCM) of
the periods. It can be considerably large, especially when
the periods of the tasks are co-prime. Therefore, due to its
complexity, this strategy cannot be applied on-line or can
be extremely costly for large periodic task sets.

Several observations help to reduce the computational
cost significantly in the computation of the latest starting
time for a job set. We use Figure 2 to illustrate these ob-
servations. Figure 2(a) shows a J4-job set (the same job set
as that shown in Figure 1(a)). Recall that the jobs with
speed requirement higher than sth cannot be delayed at all,
the processor must be activated no later than the earliest

arrival of such jobs. Moreover, the processor must also be
waken up before the deadline for any one of the incoming
jobs. Therefore, we can immediately set up an upper bound
for the LST of the job set. We call this bound as the delay
bound, and denoted as TB . Specifically, we have

TB = min
n

(dn, min(ri)), where si > sth. (12)

For example, from Figure 2(a), we have TB = 11. Since the
execution of the job set cannot be delayed over TB , the exe-
cution of at least one of the jobs that arrive before TB must
be started before TB . Therefore, one intuitive method is to
use the minimum of the latest starting times of these jobs
as the LST for the job set. Unfortunately, computing LST
in this way may cause jobs to miss their deadlines. For ex-
ample, with the job set in Figure 2(a), we have tLS(J1) = 9,
tLS(J3) = 9, tLS(J4) = 11. However, as shown in Fig-
ure 2(b), if we let LST be 9, J2 will miss its deadline. This
is because the feasibility guaranteed by Lemma 3 requires
the LST for a job set be computed based on the latest start-
ing time for all jobs in the job set. More careful analysis
must be performed to identify the maximal delay that a job
set can tolerate based on only a sub set of these jobs.

3.3 Determining LST based on a partial job
set

Lemma 3 ensure the validity of LST of the job set by
examining the latest starting time for every job. If we want
to identify the LST by examining the latest starting time for
a limited number of jobs, these latest starting times need to
guarantee not only the feasibility of these jobs themselves



but also that of the jobs that are not examined.
Note that equation (10) guarantees the schedulability of

job Jn by requiring Jn be finished at its deadline. However,
even though Jn can meet its deadline, other lower prior-
ity jobs may miss their deadlines if Jn completes exactly at
di. For example, as seen in Figure 2(b), J3 has deadline of
d3 = 23. However, assuming J3 to finish at t = 23 will block
the execution of the lower priority job, i.e., J2, during the
interval [22, 23] and cause it to miss its deadline. This indi-
cates that to guarantee the deadlines for the lower priority
jobs, a higher priority job may need to finish much earlier
than its deadline. In addition, since the deadlines of the
jobs arriving earlier than TB can be guaranteed by equation
(10), only the jobs arriving later than TB may possibly miss
their deadlines. In what follows, we want to identify when
a higher priority job has to be finished, i.e., the effective
deadline, such that other lower priority jobs arriving later
than TB can also meet their deadlines. Specifically, we have
the following definition.

Definition 3. Let Jn ∈ J be any job that arrives before
TB and let sn be the required speed for Jn to meet its dead-
line. The effective deadline for Jn is the time t = d∗n such
that if Jn finishes by d∗n, Jn and all the jobs that arrive later
than TB can meet their deadlines.

Given the fact that, based on the DVS voltage schedule
that optimizes the dynamic power consumption, all the jobs
can meet their deadlines. One intuitive strategy to deter-
mine the effective deadline is to use the completion time of
a job based on this voltage schedule. A job completes at
its effective deadline defined in this way will ensure that it
will not cause any lower priority job to miss its deadline.
Accordingly, Figure 2(c) shows the effective deadlines for
the jobs arriving earlier than TB , i.e., J1, J3, J4. Since the
schedulability of all the jobs can be guaranteed as long as all
the jobs complete before their completion times according to
the DVS voltage schedule, we can therefore apply Lemma 3
and replace di with d∗i in equation (10) to estimate the lat-
est starting time for the job set. Figure 2(c) shows the LST
computed based on the jobs arriving earlier than TB = 11,
i.e., J1, J3, J4. It can be readily verified that all the jobs can
meet their deadlines.

Recall that the jobs with required speeds less than sth

are executed with sth. This implies that the effective dead-
line for a job can be in fact much later than that computed
using the strategy stated above, especially when the thresh-
old speed is much larger than the required speeds for the
jobs. According to equation (10), the bigger the effective
deadlines are, the later the job set can be delayed. Delaying
job set not late enough may result in small intervals that
are not effectively merged. For example, two idle intervals
appear in the actual schedule as shown in Figure 2(c). A
better strategy, as shown in Figure 2(d), can merge all the
idle intervals into one single interval. In what follows, we
present a strategy to more accurately estimate the effective
deadline for each job. The strategy takes consideration of
the speed requirements as well as the threshold speed and
therefore can achieve a better result. Algorithm 2 illustrate
the general idea of this strategy.

In Algorithm 2, the completion times (line 5) for the jobs
can be obtained by a linear scanning algorithm. Since we
only need to determine the completion time for the jobs ar-
riving earlier than TB , we can perform the linear scanning

Algorithm 2 Compute the effective deadline of a job

1: Input: Jn, si, i = 1, 2, ..., N according to the optimal
DVS voltage schedule [20], TB , and sth;

2: Output: the effective deadline of Jn, i.e., d∗n
3: Let s∗k = max(sk, sth), k = 1, ..., N ;
4: Let δk = ( ck

sk
− ck

s∗
k
), k = 1, ..., N ;

5: Let fk, k = 1, ..., N be the completion time of Jk accord-
ing to the DVS voltage schedule;

6: d∗n = dn;
7: for Ji with TB < ri < d∗n and di > dn do
8: if sn > si then
9: continue;

10: else if sn < si then
11: if d∗n < di then
12: d∗n = min(d∗n, ri + δi);
13: end if
14: else
15: //sn = si;
16: d∗n = min(d∗n, max(fn + δi, ri + δi));
17: end if
18: end for

from the interval of the earliest arrival time to the maximal
deadline of these jobs, which has a complexity of O(N ′),
where N ′ is the total number of jobs within this interval.
The complexity of the rest of the algorithm is also linear
related to N ′. Since N ′ is usually very small for a periodic
task set, Algorithm 2 has a very low computation complex-
ity. To demonstrate the effectiveness of Algorithm 2, we
have the following Lemma.

Lemma 4. Given a Jn-job set Jn, the schedulability of Jn

and that of all jobs that arrives later than TB can be guar-
anteed if Jn finishes no later than d∗n, the effective deadline
computed with Algorithm 2.

Proof. To prove this Lemma, we first briefly review the
algorithm, LPEDF [20], that constructs the DVS voltage
schedule. LPEDF generates the DVS voltage schedule by
iteratively identifying the critical intervals, i.e., an inter-
val within which the highest speed is required so that the
jobs within this interval can be executed with no idle time.
According to [20], the speeds for the critical intervals are
monotonically decreasing during each iteration. Moreover, a
critical interval can only be completely contained in another
critical interval when it has a higher speed, or no two critical
intervals can intersect each other. Algorithm 2 identify the
effective deadline for a job based on the critical interval it
belongs to. For ease of our presentation, we use In to denote
the critical interval that contains Jn .

Given Jn ∈ Jn, for any other Ji with TB < ri < dn,
if Ji has a higher priority than that of Jn, delaying the
execution of Jn will not cause Ji to miss its deadline. Thus,
we only consider the schedulability of Ji when Ji has a lower
priority than that of Jn. Given Ji ∈ Jn with TB < ri < dn

and with priority lower than Jn, we have three possibilities,
i.e., sn > si, sn < si and sn = si. We consider each case
separately.

• sn > si.

According to LPEDF, the starting point of Ii cannot
be earlier than the deadline of Jn. Since Ji can be
schedulable as long as its execution starts no later than



the starting point of corresponding critical interval, the
effective deadline of Jn can be as late as its original
deadline (line 8-9).

• sn < si.

If In and Ii do not intersect, according to LPEDF, the
ending point of In can be no later than ri. Therefore,
Jn needs to be finished before the arrival of Ji or it may
block the execution of Ji and cause Ji to miss its dead-
line. On the other hand, if Ji is to be executed with
sth which is higher than si, the corresponding slack δi

for executing Ji (defined in line 4) can be exploited by
Jn as Jn has a higher priority than Ji. Therefore, Jn

can be completed no later than ri + δi (line 12).

• sn = si.

In and Ii may be the same or different intervals. Two
strategies can be applied to ensure that the execution
of Jn will not cause Ji to miss its deadline: one is
to assume that Jn completes before the arrival of Ji,
the other is to assume that Jn finishes before the com-
pletion time according to the DVS voltage schedule
by LPEDF. In addition, when Ji is executed with sth

which is higher than si, Jn can be further delayed δi

as shown in line 16 of Algorithm 2.

Figure 2(d) shows the effective deadlines for the jobs that
arrives earlier than TB . Note that the newly identified effec-
tive deadlines for J1 and J4 are larger than the ones shown
in Figure 2(c). With these effective deadlines, we can there-
fore compute the corresponding latest starting times for the
jobs arriving earlier than TB , and take the minimum as the
latest starting time for the job sets. Specifically, we have
the following theorem.

Theorem 1. Given job set J , the required speed sn for
each job Jn, delay bound TB, and the threshold speed sth,
then the execution of J can be delayed to T̃LS(J ) with no
job missing its deadline, where

T̃LS(J ) = min(TB , min
Ji∈Js

(d∗i −
∑

Jk∈hp(Ji)

(
ck

s∗k
)) (13)

where Js consists of jobs with arrival times earlier than TB,
s∗k = max(sth, sk), d∗i is computed based on Algorithm 2 and
hp(Ji) are the jobs with the same or higher priorities than
that of Ji.

Proof. Let J be a Jn job set. Then Jn ∈ Js. Let

t̃LS(Jn) = d∗n −
∑

Ji∈hp(Jn)

ci

s∗i
. (14)

Since T̃LS(J ) ≤ t̃LS(Jn) , Jn and all jobs that arrive later
than TB can meet their deadlines. For any job Ji (i 6= n)

that arrives before TB , since T̃LS(J ) ≤ t̃LS(Ji), the schedu-

lability of Ji is guaranteed. Therefore, T̃LS(J ) can guaran-
tee the deadlines of all the jobs.

Figure 2(d) shows latest starting time for the job set com-
puted according to Theorem 1, as well as the actual schedule.
As shown in Figure 2(d), with a better estimation of the ef-
fective deadlines, all the scattered idle times are merged into
one single idle interval. In next section, we use experiments
to demonstrate the energy efficiency of our approach.
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Figure 3: The average total energy consumption by
the different approaches.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the energy saving performance

of our approach with simulations. Specifically, we com-
pare the energy saving performance for the following five
approaches (We do not compare our approach with LC-
EDF [13] since it is proved [11] that CS-DVSP outper-
forms LC-EDF).

• No-DVS The task sets are scheduled with the non-
DVS scheme, i.e., all jobs are executed using the high-
est possible speed, and the processor is shut down
when the idle interval is long enough.

• DVS The task sets are scheduled with pure DVS ac-
cording to [20]. There is no consideration of either
the leakage (i.e., the threshold speed) or delaying the
execution of task instances.

• CS-DVSP This is the approach presented in [11]. The
task instances from the same task have the same pro-
cessor speed. A task instance with speed less than the
threshold speed is executed with the threshold speed.
When processor is in idle, the execution of later task
instances may be delayed.

• DVSLK The task sets are scheduled with DVS ac-
cording to [20] with consideration of both the leak-
age(i.e. the threshold speed ) and job execution delay.
The maximal delay for the task set is computed based
on Theorem 1.

• DVSLK-O Same as that for DVSLK. The only dif-
ference is that the maximal delay for the task set is
computed based on Lemma 3.

The power model and technology parameters of the pro-
cessor used in our simulation were adopted from [15] (Based
on this processor model, the threshold speed is around 0.4 [11]).



For the processor power down/up overhead, we used the
same values as that used in [11], i.e., Pidle = 240mW ,
Eo = 483µJ , and to = 2ms. The periodic task sets tested in
our experiments were randomly generated with the periods
and the worst case execution times of these tasks randomly
chosen in the range of [10ms, 50ms] and [1ms, 10ms], re-
spectively. The deadlines of the tasks were set to be 80% of
their periods. To investigate the energy performance of dif-
ferent approaches under different workload, we divided the
total utilization into intervals of length 0.1 and randomly
generate 50 feasible task sets for each interval. The average
energy consumptions within each interval was normalized to
that by No-DVS.

Figure 3 shows the average total energy consumptions by
different approaches. It is interesting to see that in Figure 3,
the DVS approach (DVS) may actually increase the total
energy consumptions when the utilization is low. For exam-
ple, when the utilization is less than 0.1, the overall energy
consumption of that by DVS can be as high as 1.5 times of
that by No-DVS. This is because, when the utilization is
low, the processor is running at a very low speed and con-
sumes more energy due to the large leakage current. This
result clearly demonstrates that reducing the dynamic power
consumption may not effectively save the overall energy con-
sumption for the embedded system as technology continues
to evolve. Leakage power consumption must be taken into
consideration to make overall power efficient system.

On the other hand, as shown in Figure 3, when the uti-
lization is high, the energy consumption by DVS is very
close to that by DVSLK and DVSLK-O. This is because
when the utilization is high, most of the processor speeds,
which optimize the dynamic power consumption, become
higher than the threshold speed. Therefore DVS, DVSLK,
and DVSLK-O tend to use the same processor speeds in
most cases. Moreover, due to the optimum of the DVS al-
gorithm [20], there are much less idle periods that can be
exploited to further save the energy.

With the scaling of IC technology and reduction of the
supply voltage, the threshold speed of a processor can be
very close to its maximal supply voltage. A large number
of idle intervals may be generated even for task sets with
high utilizations as higher-than-necessary processor speeds
are applied for these tasks. Moreover, with the dramatic
increasing of the leakage, the energy consumption during the
processor idle time will soon become a significant part of the
overall energy consumption. We are therefore interested in
investigating how our approach can help to reduce this part
of energy consumption compared with other approaches.

Figure 4 shows the average idle energy consumptions by
four different approaches, i.e., No-DVS, CS-DVSP, DVSLK,
and DVSLK-O. Note that, our approach, i.e. DVSLK
can always lead to better average idle energy savings than
the previous approach CS-DVSP. As seen in Figure 4,
DVSLK can save as much as 80% idle energy compared
with CS-DVSP. This is because that, with a job-based
analysis, the delay for the job set can be more accurately
identified, and therefore the smaller idle intervals can be
more effectively merged. Moreover, we can see that the en-
ergy savings obtained by DVSLK are very close to that
by DVSLK-O. DVSLK-O determines the maximal delay
for a job set by computing the latest starting time for all
the jobs in the job set, which is not always viable in prac-
tice. DVSLK, on the other hand, can achieve almost the
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Figure 4: The average idle energy consumption by
the different approaches.

same energy saving performance but with a greatly reduced
computation complexity. In general, our experiment results
demonstrate that our proposed approach is not only effec-
tive but also computation efficient, and therefore, has a great
potential for future embedded system in reducing both the
dynamic and static power consumption.

5. CONCLUSIONS AND FUTURE WORK
Power efficient technology is the critical enable technique

in the design of future real-time embedded systems. As the
IC technology continues to evolve, leakage power consump-
tion is becoming a more and more significant part of the
overall power consumption. In this paper, we investigated
the problem of applying scheduling techniques to reduce
both the dynamic and leakage energy consumption.

As demonstrated in our experiments, applying the DVS
based voltage schedule without the consideration of leakage
power consumption cannot effectively reduce the overall en-
ergy consumption, and may even increase the total energy
consumption for the embedded systems. A leakage power
conscious DVS voltage schedule may require the processor
to adopt a speed higher-than-necessary to avoid the rapidly
increasing leakage current at low voltage level. This may re-
sult in a large number of small idle intervals during task ex-
ecutions. We proposed an efficient approach to merge these
idle intervals by delaying the execution of task instances so
that the processor shutdown overhead can be reduced and
the overall energy performance can be improved. Our exper-
iments show that our approach can outperform the related
previous approach as much as 80% in reducing the idle en-
ergy consumption.

Finally, it is worth mentioning that our approach is a
greedy approach. It is greedy in the sense that the job set is
always delayed as late as possible which might not be glob-
ally optimal for the overall energy reduction. How to achieve
the optimal overall energy performance is yet another very
interesting problem and needs further study.
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